

SHAIO CONFERENCE PAPER 2019

Static and Dynamic Input-Output
Modelling with Microsoft Excel

Anett Großmann,

Frank Hohmann (GWS)

 2

TABLE OF CONTENTS

Figures 3

Abstract 4

1 Introduction 5

2 Static Input-Output Models 6

2.1 Overview 6

2.2 Implementation into MS Excel 7

2.2.1 Leontief Quantity Model 8

2.2.2 Leontief Price Model 11

2.2.3 Scenario Analysis 15

2.3 Conclusions 16

3 Dynamic Input-Output Model (DIOM-X) 16

3.1 Overview 16

3.2 Technical Foundation 18

3.2.1 Essential Programming Language Features 18

3.2.2 Excel VBA Language and Programming Environment 20

3.3 Steps in Model Building 21

3.4 Implementation into MS Excel 24

3.4.1 Data Management 24

3.4.2 Regression Analysis 27

3.4.3 Core Model Framework 30

3.4.4 Model Template and its Implementation in VBA 32

3.4.5 Scenario Analysis 37

3.5 Conclusions 39

4 Summary and Outlook 40

References 41

 3

FIGURES

Figure 1: Static Impact Analysis Tool 8

Figure 2: MS Excel: name manager 9

Figure 3: Leontief quantity model: calculating input coefficients for domestic
intermediates by using defined names and array formula 9

Figure 4: Leontief quantity model: Scenario input sheet 10

Figure 5: Leontief quantity model: scenario results sheet 10

Figure 6: Leontief price model: input and result sheet (I) 11

Figure 7: Creating a list in MS Excel 12

Figure 8: Leontief price model: input and result sheets (II) 13

Figure 9: Leontief price model: input and result sheets (III) 14

Figure 10: Leontief price model: input and result sheets (IV) 14

Figure 11: Leontief price model: input and result sheets (V) 15

Figure 12: Simplified illustration of a dynamic IO model Source: own
illustration 17

Figure 13: MS Excel: VBA programming environment 21

Figure 14: Comparing scenarios 24

Figure 15: Worksheets Dataset and RowColDesc 25

Figure 16: Values worksheet with data 26

Figure 17: Regression example I 28

Figure 18: Implementing regressions into the VBA code I 28

Figure 19: Regression example II 29

Figure 20: Implementing regressions into the VBA code II 30

Figure 21: Model source code 31

Figure 22: DIOM-X Model worksheet 32

Figure 23: DIOM-X model template (simplified) 33

Figure 24: Code snippet from the subprogram Calculate I 35

Figure 25: Code snippet from the subprogram Calculate II 36

Figure 26: Worksheet Scenario 37

Figure 27: Code snippet from the subprogram Calculate III 38

Figure 28: Example scenario: Export promotion 38

 4

ABSTRACT

In the last two decades, the application of Input-output (IO) models has increased due to

general availability of extensive structural data sets, esp. IO tables, and the increase in

computing power. Today, a broad range of different IO models and applications exists –

from simple, static to comprehensive, dynamic IO models.

Simple static IO models are used for comparative-static scenario analysis. With the help of

IO quantity models, statements can be made about direct and indirect effects based on

exogenous changes in demand. However, these are to be interpreted against the back-

ground of their limitations and assumptions such as the time-independency and the non-

consideration of feedbacks such as income and price effects. In contrast to the static IO

quantity model, the static IO price model is able to capture the effects of input factors such

as wages on sectoral production prices. Hereby it is assumed that cost changes are passed

on completely and directly. No volume adjustments are made by substitution processes of

the customer industries. Both model types can be easily implemented in Microsoft (MS)

Excel which provides the necessary functionalities (e. g. matrix algebra functions) without

any need for programming tasks. Another advantage is that most IO tables are distributed

in MS Excel file formats, e. g. xlsx.

More complex dynamic IO models largely resolve the limitations and inherent assumptions

of static IO models. Time is considered explicitly as well as quantity and price reactions are

modelled endogenously in a holistic approach and feedback effects are captured. Thus,

such models are not only suitable for scenario analysis but also for forecasting. Due to the

increased complexity of dynamic IO models, their implementation usually requires exten-

sive programming tasks. Commonly used programming environments are EViews, R or

MATLAB.

In this paper, we will show that MS Excel is suitable for the implementation for both static

and dynamic IO models. First, we will present a template for a static IO quantity and price

model with free available data for Mexico. Second, a template named DIOM-X is discussed

which contains all the necessary tools to build a dynamic IO model in MS Excel and its

programming language Visual Basic for Application (VBA). The template contains all the

necessary tools to perform both scenario analysis and forecasting (data management, re-

gression analysis, model execution engine, presentation of model results). This approach

greatly simplifies the task of building a dynamic IO model: Existing knowledge in MS Excel

can be used, most computers are already equipped with the software and thus don’t any

additional software licenses and setup and models may be easily shared or distributed by

just transferring one file.

 5

1 INTRODUCTION

In the last two decades, the application of Input-output (IO) models has increased especially

due to the increase in computing power and the general availability of extensive structural

data sets, esp. IO tables.

Common tasks such as inverting a matrix or solving equation systems which in the past

could only be accomplished on expensive workstations or mainframe computers can now

be calculated in seconds or a few minutes by cheap desktop or notebook computers. Model

builders can now choose from a wide range of programming languages (e. g. Python1) and

integrated application frameworks (e. g. GAMS, Eviews).

Today’s internet technology greatly simplifies the task of collecting the necessary infor-

mation to build an IO model. In the past, the data had to be extracted either from books or

later CD-ROMs. A lot of time-consuming, tedious work was necessary to be able to build

the IO database. In recent years, the internet technology greatly simplified the process of

data publishing: The number of data sources increased dramatically while the up-date-cy-

cles became much shorter (e. g. the online version of the Eurostat database (https://ec.eu-

ropa.eu/eurostat/data/database) is updated daily). Furthermore, the number of data formats

has been reduced over time which makes data processing less time-consuming. For desk-

top data processing, most data providers offer either MS Excel, CSV (comma-separated

values) or XML (extended markup language) files. In order to be able to use the data in an

IO model, it still has to be processed. Most model building tools require the data to be ar-

ranged in a certain layout (e. g. values in columns). Even more importantly, variable names

(and types) have to be assigned to the data before it can be accessed in the model.

Even with these powerful technologies at hand, the task of building IO models is still a

challenge. A potential model builder has not only to get acquainted to IO theory but must

have profound knowledge in information technologies (i. e. data processing, programming,

spread-sheet programs).

IO models greatly differ in size and possible applications. Simple static IO models are used

for comparative-static impact (scenario) analysis. With the help of IO quantity models, state-

ments can be made about direct and indirect effects based on exogenous changes in de-

mand. However, these are to be interpreted against the background of their limitations and

assumptions such as the time-independency and the non-consideration of feedbacks such

as income and price effects. In contrast to the static IO quantity model, the static IO price

model is able to capture the effects of input factors such as wages on sectoral production

prices. Hereby it is assumed that cost changes are passed on completely and directly. No

volume adjustments are made by substitution processes of the customer industries. Both

model types can be easily implemented without any programming tasks. The necessary

functionality (i. e. basic algebra, data file format support) is already provided by spread-

sheet programs such as MS Excel of OpenOffice. In chapter 2, the implementation of such

a model in MS Excel is discussed for the Mexican economy but could also be used for other

countries.

1 Nazara et al. 2003 used Python for IO analysis.

 6

More complex dynamic IO models largely resolve the limitations and inherent assumptions

of static IO models. Time is considered explicitly; quantity and price reactions are modelled

endogenously in a holistic approach and feedback effects are captured. Thus, such models

are not only suitable for scenario analysis but also for forecasting. Due to the increased

complexity of dynamic IO models, their implementation usually requires extensive program-

ming tasks. Potential model builders first have to decide on their development environment.

They can either build their own development environment by selecting one out of the hun-

dreds of common programming languages (which all have specific strengths and weak-

nesses) and collecting or implementing programming libraries which carry out specific tasks

(e. g. handling of times-series data, matrix algebra). Another option is to get acquainted to

a (costly) all-in-one application framework such as GAMS or Eviews. With each of these

options, potential model builders will be facing a steep learning curve before they can fully

exploit the power of these systems.

Another option to build a dynamic IO model is to use MS Excel not only for data preparation

but to build a fully-fledged model in the integrated programming language VBA (Visual Basic

for Applications). This approach offers some important advantages:

1. MS Excel is widely used for data processing and evaluation. Thus, most poten-

tial model builders are already familiar with at least the basic functionality.

2. Most computers which are used in an professional environment are equipped

with the MS Office program suite and are therefore prepared for model develop-

ment.

3. A model which is fully built in MS Excel can be easily shared or distributed to

other users.

4. There is no need for buying other (expensive) model building tools.

5. By reusing existing knowledge in operating MS Excel, the time needed to build

a model is greatly reduced which is important for projects with tight time and/or

budget restrictions.

In chapter 3, a template for a dynamic IO model and its technical implementation into MS

Excel is discussed. Chapter 4 concludes and gives some ideas about further development.

2 STATIC INPUT-OUTPUT MODELS

2.1 OVERVIEW

Standard IO models are able to reveal how different sectors of an economy are intercon-

nected and how changes in one sector affect all other sectors. Their application relies on

an IO table providing a comprehensive picture of the supply of goods and services by do-

mestic production and imports, its composition by intermediate consumption and value

added as well as the use of goods and services for intermediate and for final consumption,

for gross capital formation and exports.

 7

Besides the use of the IO data for descriptive analyses of economic interrelations, this table

also provides the empirical fundament for a wide scale of impact analyses of e. g. govern-

mental programs in different fields on domestic production, income and employment. The

basis of this kind of analysis is the Leontief equation. Equation (1) shows the reduced form

of this equation whereby production x is determined by final demand y and the Leontief

inverse (� − ��)�� which incorporates the input coefficient matrix A and the identity matrix I

(Eurostat 2008, Leontief 1986).

(1) �� = (� − ��)�� ∙ ��

All components of this equations can be derived from an IO table. The resulting set of linear

equations (Leontief quantity model or demand pull model) can be used to answer questions

such as ‘what happens to the output if final demand due to export promotion or investment

changes?’ The results show the impacts on the economy to satisfy an additional (final) de-

mand and give insights into the industry-wide effects (direct and indirect effects).

If the number of employees by industry is also known, the implications for the labour market

can be derived in addition to the output effects. Based on equation (1), production-induced

employment effects e can be computed by multiplying with employment coefficients b

(equation (2)).

(2) �� = �(� − ��)�� ∙ ���

Another application of the IO table is the Leontief price model (or cost push model, (Miller,

Blair 2009, Eurostat 2008, Oosterhaven 1996). It rests on equation (3) where p’t is the out-

put price, (� − �′�)�� is the transposed Leontief inverse, Q is the diagonal matrix with unit

factor price for primary inputs and v are the input coefficients for primary inputs.

(3) �′� = (� − �′�)����

It can be used to evaluate the impacts of changes in cost factors such as wages, fuel or

import prices on output prices by industries.

2.2 IMPLEMENTATION INTO MS EXCEL

The practical implementation of the Leontief demand-pull and cost-push models in Excel is

straightforward. In the following subsections the steps to be taken are described in short for

both models.

A prerequisite for building a Leontief model is an IO table. For our illustration purposes, we

use an IO table for Mexico downloadable from OECD website (https://stats.oecd.org) which

includes an IO table for imports, domestic production as well as the total IO table in the ISIC

Rev. 4 classification. Employment data are available at STAN Database for Structural Anal-

ysis (ISIC Rev. 4, SNA08). These data are the basis for the development of the static open

impact analysis tools.

The original data are included in the Excel workbook StaticIOTool.xlsx2 in different work-

sheets as listed below:

2 This tool will be made available on request. Please contact the authors.

 8

• zij_Xj includes the symmetric IO table in million USD

• zij_im includes import matrix in million USD

• zij_dom includes domestic production matrix in million USD

• Labour includes the employment data in 1,000 persons

All worksheets in the workbook StaticIOTool.xlsx with original data are coloured in white.

The other worksheets contain the calculation steps to derive the linear equation set for the

Leontief quantity model and price model. The scenario input form and results sheet for the

price model is coloured in dark blue, for the quantity model in turquoise (Figure 1).

Figure 1: Static Impact Analysis Tool

2.2.1 LEONTIEF QUANTITY MODEL

The following steps have to be taken to build the open Leontief quantity model:

(1) Calculation of input coefficients

(2) Calculation of Leontief-Inverse

(3) Calculation of labour coefficients

(4) Prepare scenario input form

(5) Prepare scenario result sheet

The following explanations only refer to the implementation in MS Excel and do not explain

IO theory and the derivation of the Leontief equations (for this please refer e. g. to Leontief

1986, Miller, Blair 2009).

Excel offers helpful functions like array formulas, which make cell by cell links superfluous.

Furthermore, the name manager offers possibilities to define names for ranges, e. g. inter-

mediate demand matrix that can be used for further calculations. Named ranges are much

 9

easier to understand and maintain as Excel calculations can often be written just like the

formulas in a text book.

In the first step the input coefficients for domestic intermediates Aij_dom need to be calcu-

lated by dividing domestic intermediate inputs zij_dom by total output xj. Instead of applying

the division in each cells of the A-matrix, the use of the name manager and array formulas

are suggested.

To define a name, go to the Excel menu bar, select Formulas tab and click Define Name.

A new dialog window shows up. In the field Name enter a name, e. g. zij_dom for the vari-

able. Then select the field Refers to and mark the associated cells in sheet zij_dom. Finally,

click the OK button (Figure 2). After finishing these steps, the name should appear in the

name manager.

Figure 2: MS Excel: name manager

After defining the names for the variables used in the formula, the domestic input coeffi-

cients are calculated using an array formula. For this, select all cells where the formula

should be applied to. In the formula bar the equation – using the defined names – is inserted.

Then, press Ctrl + Shift + Enter. The formula is enclosed by curly brackets {} and for the

selected dimension the values are calculated according to the formula (Figure 3).

Figure 3: Leontief quantity model: calculating input coefficients for domestic interme-
diates by using defined names and array formula

In the next step, the Leontief-Inverse is calculated for which an identity matrix I needs to be

created. MS Excel 2013 and 2016 provide the MUNIT()-function that returns an identity

 10

matrix for the specified dimension. First, select the dimension of the identity matrix. Then,

type the formula =MUNIT (dimension, e. g. 36) as an array formula (Ctrl + Shift + Enter). A

36x36 matrix with the value one along the diagonal will appear. For matrix inversion, MS

Excel provides the MINVERSE() function that can be used for calculation of the Leontief

equation.

After the derivation of the Leontief equation, the scenario input und result sheet needs to

be prepared. Here, the quantified inputs of a scenario (expressed as a change of final de-

mand) will be introduced (Figure 4).

Figure 4: Leontief quantity model: Scenario input sheet

The scenario input(s) have to be linked to the input and employment coefficients. To calcu-

late the direct, indirect and total input coefficients for production, the inputs from the sce-

nario input sheet are multiplied by the respective coefficient matrix (Figure 5).

Figure 5: Leontief quantity model: scenario results sheet

The Excel function for performing matrix multiplication is MMULT(). The employment effects

are calculated by linking the production effects (given in the results sheet) and the labour

coefficients.

 11

2.2.2 LEONTIEF PRICE MODEL

The development of the Leontief price model comprises the following steps:

(1) Calculate input coefficients for domestic intermediates

(2) Calculate price equation � = (� − ����
�)��

(3) Prepare price model sheet

The first two steps can be done easily by using the Excel matrix functions MINVERSE() and

TRANSPOSE(). The worksheet “price model” includes the input form for scenario assump-

tions as well as the results.

Figure 6: Leontief price model: input and result sheet (I)

There are three scenario input cells: In cell B2 the price change assumption is given (Figure

6). In the cell B3 it is specified if the price change assumption is applied for all 36 industries

or only for selected industries. In the cell E6 the cost component to which the price change

should be applied is given.

In cell B3 a list with two entries is created: Either the price assumption is applied to all

industries or only for selected industries. The list to be created includes the following two

entries: YES - use the assumption for all sectors, NO - adjust values for each sector indi-

vidually. The text is given in the field Source (Figure 7).

To create a list, first go to the excel menu bar, select data and click data validation. A new

dialog window shows up (Figure 7). In the tab ‘Settings’ select in the field Allow: ‘List’. Then,

in die field Source enter a text or link to the source. Finally, click the OK button.

 12

Figure 7: Creating a list in MS Excel

In cell F6 another list is created based on the cost components that are given in the domes-

tic flow matrix (sheet zij_dom). Instead of typing each list entry by hand, references to range

C9:C48 in sheet zij_dom are used.

The scenario input for all industries is given in cell B2. If the values should be adjusted only

for selected industries they have to be given in column C for the suitable industries (rows).

Depending on the YES / NO selection in cell C3 either the value that is given in cell B2 or

the values given in column D should be used as an input for the IO price model. The Excel

IF()-Function is applied in column D to select the appropriate values (Figure 8).

In column E the value of each industry given in row 7 to 42 of a selected cost component in

cell E6 is shown. As an example, if the industry ‘Food products; beverages’ needs input

from the industry ‘Agriculture, forestry and fishing’ then the value given in the domestic flow

matrix is linked to cell E11 and multiplied by the assumed price change.

 13

Figure 8: Leontief price model: input and result sheets (II)

Therefore, depending on the selected list entry and the price change assumption the values

in range E7:E42 change automatically. The following array formula combining the Excel

INDEX() and MATCH() functions is used:

 14

Figure 9: Leontief price model: input and result sheets (III)

To calculate the direct output price effect by industry as percentage change per unit of

output (column F), entries in column E are divided by the production by industries Xj (Figure

10).

Figure 10: Leontief price model: input and result sheets (IV)

The total price effect (column G) is calculated as an array formula by multiplying the price

equation (� = (� − ����
�)��) and the direct effect given in column F (Figure 11).

 15

Figure 11: Leontief price model: input and result sheets (V)

The indirect price effect (column H) is calculated by subtracting the direct effect (column F)

from the total effect (column G).

2.2.3 SCENARIO ANALYSIS

Once the impact analysis tools are implemented, they can be used for impact analysis which

is a technique that analyses the possible consequences (or impacts) of a measure of a

future event that is specified in a scenario (e. g. export promotion programs, wage in-

crease). The analysis is comparative-static meaning that a situation before and after an

exogenous change is compared but the adjustment process is neglected.

An impact analysis starts with the (1) choice of a policy measure or initial change that should

be analysed (scenario design). Then, the appropriate tool (Leontief quantity or Leontief

price model) has to be selected. The Leontief quantity model is applied if the direct and

indirect impacts of final demand e. g. due to export promotion or investment changes should

be evaluated. The Leontief price model is used to evaluate the impacts of changes in cost

factors such as wages or fuel prices on output prices by industries.

(2) The policy measure needs to be translated into an impulse – either a change of final

demand (Leontief quantity model) or changes in e. g. wages or fuel prices. Furthermore,

one or more of the 36 industries that are affected have to be selected.

Afterwards (3), the impacts on production and employment (Leontief quantity model) or out-

put price effects (Leontief price model) are evaluated. In the Excel tools, all results will be

updated immediately and automatically.

 16

2.3 CONCLUSIONS

Both model types – the open Leontief quantity model and Leontief price model – can be

applied for specific purposes but have their advantages and limitations (see for example,

ILO 2017, Großmann et al. 2016, Oosterhaven 1996, Holub, Schnabl 1994).

The advantage of static IO models is that the industry structure and relations are clearly

described and transparent, so that the status quo of the value chains, supplier and customer

relationships can be analysed comprehensively. Key industries and industries which are

vulnerable to exogenous price and volume effects can be identified by applying a compar-

ative-static analysis which show direct and indirect impacts.

Limitations of IO models consist in the assumption that the input structure is fixed (so-called

limitational production function) and there are constant returns to scale. There is no substi-

tution of inputs across industries. Future technological changes and innovations are ne-

glected and therefore static IO models might be useful in the short run but cannot be used

for analysing structural changes. In the Leontief price model, this restriction (constant input

coefficients) implies that changes in costs are passed on completely to downstream indus-

tries and they cannot substitute the more expensive input factors by cheaper products. Cus-

tomers are assumed to be price takers, so that the demand will not change.

Capacity constraints are not considered in the Leontief quantity model. If capacity utilization

is high, producers may not be able to satisfy the additional demand in full without investing

in e. g. new machinery. Additional demand might also be satisfied with imports. Thus, re-

sulting impacts of a scenario may be overestimated. Furthermore, prices are assumed to

be fixed and do not respond to demand shocks. Another aspect – not part of a static open

IO analysis – is that the income effect occurring with a higher employment level causes an

additional higher demand for consumer goods.

There are many applications of the static IO models. Well-known are for example, IMPLAN

(www.implan.com), REMI and RIMS II (BEA (n.d.)) which have some extensions to the very

basic static IO model described in this chapter but are still not dynamic IO models which

are described in the next chapter.

3 DYNAMIC INPUT-OUTPUT MODEL (DIOM-X)

3.1 OVERVIEW

In contrast to static IO models where the structure of the economy is assumed to be con-

stant, dynamic IO models3 consider developments over time. The dynamic IO model pre-

sented in this chapter is based on the INFORUM approach (Almon 1991, 2014).

As with static IO models, the IO relationships are the focus of the analysis. The models are

typically demand-side driven. However, the demand is determined endogenously and not

3 For examples of dynamic IO models please refer to e. g. Thijs 2017, Eurostat 2008, pp. 527, West 1995,

Kratena et al. 2013

 17

given exogenously. The economic cycle is completely represented by the national ac-

counts, so that for the main economic sectors a. o. private households, companies and

government, production, income generation and redistribution to consumption can be

shown. An important variable in the national accounts (SNAB) is disposable income, which

is influenced by both the current labour market situation and the redistributive activities of

the government through taxes and subsidies. In addition to other variables such as selling

prices, disposable income, it is an important determinant of private consumer demand.

The link between demand and supply is given by the Leontief production function. Further-

more, the IO table shows the cost structure for each industry given by demand for interme-

diate goods and used primary inputs such as compensation for employees, depreciation,

net taxes on production. Prices are derived by using a unit cost approach considering the

single cost components. Production prices plus net taxes on goods determine purchasers

prices. The latter determine, in addition to disposable income, the demand of private house-

holds.

In contrast to simple static IO models, the volume and price reactions in this macro-econo-

metric IO model are empirically based and take the passing on of costs into account and

thus include the competitive situation on the different product markets and the labour mar-

ket.

Supplementary data are population by age groups, employment and wages by industries.

Population at working age determines the work force. Labour demand is determined at in-

dustry level and related to real production and wages by industries. Increasing real wages

tend to lower employment while a higher production level will increase employment. The

macroeconomic wage rate is determined by using a Phillips curve approach.

Figure 12: Simplified illustration of a dynamic IO model
Source: own illustration

The model contexts shown in Figure 12 are captured both via identities (e. g. in the IO

context) and behavioural equations that are empirically validated. Using econometric

Exogenous

Estimated

By definition

IO framework

Final Demand
Intermediate

Demand

Production

Labour market

(Employment,
Wages)

Population

Unit Costs

Intermediate

inputs

Labour Costs

Other Net Taxes

of Production

Depreciation

Prices

Value Added

System of National Accounts

 18

methods allows for imperfect markets and bounded rationality (Meyer, Ahlert 2016). How-

ever, the specification of the model is not finished with the estimation of single equations.

The complete, non-linear, interdependent model equation system is solved iteratively for

each year using the Gauss-Seidel algorithm. The iteration process is ended once a given

criterion is fulfilled. This criterion has to be an endogenously calculated model variable, e. g.

output. As long as the model has not converged, all model equations are recalculated for

the current year. Afterwards, all equations are solved for the next years within a given time

span. The model template contains the necessary code for the iteration algorithm. A model

builder might redefine the criterion.

Exogenous impulses for the model are, for example, population development and exports,

which trigger adjustment reactions in the highly interdependent, non-linear model. The mod-

elling approach which covers not only quantity effects but also income and price effects,

provides further multipliers that determine the dynamics of the system:

 Leontief multiplier: shows the direct and indirect effects of demand changes (e. g.

consumption, investments) on production;

 Employment and income multiplier: Increased production leads to more jobs and

thus higher incomes resulting in higher demand (induced effect);

 Investment accelerator: Indicates the necessary investments to maintain the capi-

tal stock needed for production based on the demand for goods.

Dynamic IO models exist in different forms and degrees of complexity (see e. g. Eurostat

2008, pp. 527, Stocker et al. 2011, Lehr et al. 2016, Ahlert et al. 2009, Großmann, Lutz

2017, Großmann, Hohmann 2016, Cambridge Econometrics 2014, Lewney et al. 2019).

For example, IO models can be modelled bottom-up and top-down: bottom-up indicates

that each industry respectively product group is modelled individually and macroeconomic

variables are calculated through explicit aggregation. Top-down means that first, the final

demand components are determined at the macro level and then are disaggregated ac-

cordingly e. g. by using the industry or product shares of the respective variable.

In the following, a template for a simplified dynamic IO model is developed and implemented

in MS Excel VBA.

3.2 TECHNICAL FOUNDATION

3.2.1 ESSENTIAL PROGRAMMING LANGUAGE FEATURES

Today, hundreds of programming languages exist and each of them has been developed

to overcome some problems or to improve certain features of other languages. In principal,

almost any of these programming languages may be used to build an dynamic IO model as

long as at least the following features are provided.

A dynamic IO model is processing data over time, thus the language has to support multi-

dimensional data structures. These are called array in most programming languages. Some

languages such as Python do not have a built-in array type. This is not a problem as long

as programming libraries are available which offer array-like data structures (for Python, a

well-known library for numeric data processing is named “Numpy” (www.numpy.org). In

some languages, array-indexing is zero-based (e. g. C, C++) whereas in other languages

 19

the first element in an array has the index one. The latter is preferable since most of the

published data and sector classifications use one-based indices.

Array-like data structures are not only necessary to process data over time but also to han-

dle data which contains more than one value per year (e. g. sectoral data, IO matrices). For

most use-cases, three-dimensional structures are sufficient, i. e. to store a sequence of IO

matrices. The speed of indexing into arrays greatly differs between programming languages

and is quite important because a comprehensive dynamic IO model contains a considerable

amount of these statements. The following table shows the processing time for setting each

element in a 10,000x10,000 double-precision floating point array in some popular program-

ming languages4. The most simple built-in array implementation in each of the languages

was used to receive comparable results.

Interpreted languages are the slowest because instructions are processed one-by-one with-

out much room for optimizations. Compiled code performs fastest because the program as

a whole is translated into machine-executable form and usually highly optimized. JIT (Just

In Time)-compiled code is often almost as fast as compiled code by translating the program

into an intermediate, processor-independent code which is then translated into processor-

dependent code at run-time. The table shows that Excel`s built-in VBA language – although

it is an interpreted language – performs more than acceptable in comparison to other lan-

guages.

Table 1: Processing time for array element processing (10k x 10k elements) in se-
lected programming languages
Source: Own calculations

Language Time (s) First Index Language type

Eviews 9 93 1 Interpreter

Octave 5.1 435 1 Interpreter

R 3.6.1 2628 0 Interpreter

Python 3.6 54 0 Interpreter

Julia 1.0 4.5 1 Interpreter

VBA 2016 5 1 Interpreter

VBScript 5.812 19 0 Interpreter

C# Interactive 3.1 0.5 0 JIT Compiler

Java JDK 1.8 0.2 0 JIT Compiler

C# .NET 4.7 0.6 0 JIT Compiler

MinGW C++ 7.3 0.3 0 Compiler

Additional essential features which are provided by almost every programming language

are

 loops to be able to iterate over time as well as to address elements in a multidi-

mensional data structure

4 The size was chosen to simulate a comprehensive model with a lot of indexing statements The calculation

was done using an Intel i7-8600k processor with 32GB RAM. The code is available on request.

 20

 conditional statements to differentiate cases in order to be able to execute different

branches of code

 sub-programs (functions, procedures) to create reusable subroutines

 modules to divide a program into logical parts

A few programming languages support matrix and vector algebra (e. g. Matlab, Octave)

which makes equation statements much more readable. For languages lacking this feature

– VBA belongs to this group –, matrix and vector algebra must be implemented by using

“functions”. The missing functionality is often available in the form of programming libraries

which can be downloaded or purchased as add-ons. The model template contains a few

additional algebraic functions in order to perform the necessary calculations in the model.

In order to track down errors, a debugger is extremely useful: Code may be halted at any

statement (often called break) as well as data may be evaluated at run-time when the pro-

gram has been interrupted by a “break” instruction. Some debuggers even allow for evalu-

ating expressions while the program is in interrupted state. MS Excel has a built-in debug-

ger which supports these features.

3.2.2 EXCEL VBA LANGUAGE AND PROGRAMMING ENVIRONMENT

In VBA, (multi-dimensional) arrays may be declared by using the Dim or Redim statements

with the proper bounds given for each dimension 5 . VBA does not directly support

matrix/vector algebra but provides functions for some essential tasks such as matrix

inversion (MINVERSE()) and matrix multiplication (MMULT()) which is needed e. g. for the

calculation of the Leontief-Inverse. The model template contains additional functions for

those that are missing in VBA, e. g. vector addition. In this regard, Excel is not as powerful

as other software solutions which might be used for model building.

The variables are empty at program startup and must be filled by reading the data from the

worksheets. The model template which is described in section 3.4.4 comes with a simple

dataset manager that automatically translates the list of model variables into VBA

declarations.

After the model has finished the calculations, the data is transferred back into dataset

worksheets. Performing all calculations on arrays is magnitudes faster than reading/writing

worksheet cells.

VBA provides the for loop statement for a fixed and the while loop statement for a varying

number of iterations. The select case statement is useful if a certain statement out of a

group of statements shall be executed. The if statement is used when code must be

executed with respect to the result of an evaluated expression.

Subroutines may be implemented by using a sub … end sub block. If a subroutine has a

return value, the statements have to be embraced by a function … end function block.

Excel stores all model code along with the data in a *.XLSM (XLS with macros) file or *.XLSB

(binary) file. The XLSB format usually offers better compression and loading/saving times.

Small to medium size models with some hundred variables may be conveniently stored with

5 Multi-dimensional arrays are easier to set up but make some algebraic calculations more complicated.

 21

all the code in just one file. The setup and distribution of such a model can therefore be

accomplished by just distributing one file to the recipient. With bigger models, it might be

more convenient to use separate files, e. g. by separating historical and forecasted data.

By default, the VBA programming environment (Figure 13) is not visible with a default

installation of MS Excel or Office, most likely because only the minority of users is using the

programming features. The environment can be activated by pressing Alt+F11 or by

activating the Developer menu entries under Options, Customize Ribbon.

The project pane gives access to the VBA code which may either be attached to worksheets

or be stored in user-created modules. The text editor with syntax highlighting is used to edit

the code. The evaluator is helpful for inspecting variables at runtime and for evaluating

expressions. By clicking the grey vertical bar next to a certain line in the text editor, a

breakpoint may be set in order to suspend the program for error checking, expression

evaluation, etc.

Figure 13: MS Excel: VBA programming environment

With the combination of the data stored in worksheets and the VBA programming

environment which allows for editing and storing the model code along with the data, a

potential model builder has all the necessary tools at hand to start building dynamic IO

models.

3.3 STEPS IN MODEL BUILDING

The main steps of building a dynamic IO model are:

1. Database management

2. Regression analysis

3. Core model building

4. Forecasting and scenario analysis

 22

It has to be pointed out that model building is not a sequential process. The model building

steps may have to be repeated under certain conditions, e. g. availability of updated or

additional data, errors that has been tracked down to previous model building steps or the

need for more detailed specifications.

1. Database management

The foundation of every quantitative model is data collected from different sources, i. e.

official sources (national and international statistical offices, e. g. Eurostat, OECD.stat). The

selection and quantity of data depends on the aim of the modelling exercise.

Data from different sources usually comes in different file formats (e. g. CSV, MS Excel).

Even if the file format is the same as with Excel files, data is often organized differently:

Time series data may be stored in rows or columns or spread over different sheets. Matrix

data may be stored in worksheets or different files (workbooks).

The first important step in building the historical database is to harmonize the data structure

by creating a unified dataset where each data item shares the same layout.

One important property missing from original data is the naming of each variable which is

needed to access its values from within the model. It is advisable to develop some sort of

naming convention which is shared between model builders in order to be able to identify

and address each variable in the data set. Additional meta information such as unit, dimen-

sion and source should be collected accordingly to further describe the content of the da-

taset (“meta information”). This information is often useful to avoid errors in certain compu-

tational statements such as unit conversions. The model template contains worksheets for

both the harmonized dataset and the list of variables with placeholders to fill in this important

information.

2. Regression analysis

The availability of historical data is the most important prerequisite for regression analysis

which is carried out by econometric models to estimate model parameters for behavioural

equations. Instead of using elasticities from the literature, relationships of variables known

from e. g. economic theory are econometrically tested against historical data. Regression

results (parameters/coefficients) show the direction and magnitude of the relation between

the dependent (or left hand side (LHS) variable) and independent variable(s) (or right hand

side (RHS) variable(s)). In contrast, variables that are given by definition have a fixed rela-

tion to each other.

For example, theory tells that there is a relation between consumption and disposable in-

come. Relative prices and population can play an additional role. Finding the appropriate

specification heavily depends on data availability and quality. Furthermore, even with the

same specification of the regression equation, the estimated parameters may differ for dif-

ferent countries. That is not really astonishing because people in different countries show

different consumption behaviours. Even within one country their behaviour may change

over time.

In DIOM-X, regression analysis can be carried out using built-in MS Excel functions such

as RGP(). Other econometric software such as EViews or R can be used as well. Like with

most other model building environments, the data need to be manually transferred to

 23

another statistical program and after estimation the parameters must be manually imple-

mented in the model code.

3. Core model building

The main task of this model building step is to create the model structure by putting the set

of equations together. Most equations – both regressions and definitions – are not inde-

pendent but interrelated. LHS variables of one statement occur as RHS variables in another

equation. Therefore, the model builder has to carefully define the sequence in which the

equations have to be calculated. The model building itself follows the IO approach (Leontief

1986, Miller, Blair 2009). In section 3.4.4, the model template used as an example for a

dynamic IO model is introduced.

Furthermore, the model should be divided into logical blocks which then can be imple-

mented (often independently) in the programming language instead of creating a monolithic

program structure. The template is organized as a set of modules which interact with each

other. It contains modules for the model-independent calculation engine, generated parts

such as the variable declarations and model codes.

The template’s calculation engine keeps the values constant for those variables for which

no computation statements (i.e. regression or definition) have been implemented. This ap-

proach makes sure that the values of a such variables cannot drop to zero or are not defined

in the forecasting part.

MS Excel’s VBA programming language in combination with the pre-structured model tem-

plate greatly simplifies the task of implementing the model. For example, the calculation of

GDP can be written as

v_vacp(t) = v_gosmi(t) + v_coe(t) + v_otlsp(t) with

v_vacp (t): Value added at current prices

v_gosmi (t): Gross operating surplus and mixed income

v_coe (t): Compensation of employees

v_otlsp (t): Other taxes less subsidies on production

For more please refer to section 3.4.

4. Forecasting and scenario analysis

The DIOM-X model template implements a dynamic IO model, thus all model equations –

definitions and behavioural equations – are solved year by year during the simulation pe-

riod. A forecast usually covers a time span of 10 to 30 years. Due to many feedback linkages

the model has no explicit solution and solves all model equations iteratively. The iteration

process is ended once a given criterion is fulfilled: For a central model variable, the deviation

in percent between two consecutive iterations has to be smaller than a given value (e. g.

an output deviation of less than 0.1 % for each industry).

The inherent uncertainty of the future makes it impossible to forecast one 'real' prospective

development. The outcome of the most basic forecast is based on the assumption that past

behaviour is also effective in the future (business as usual scenario, BAU). Scenario anal-

ysis is a method to handle uncertainty and to carry out 'what if'-analysis especially to ana-

lyse the impacts of policy measures before implementation. A scenario consists of a set of

 24

consistent assumptions which are fed into the model. With DIOM-X, this task becomes ex-

tremely easy by typing the desired variable names and values into the Scenario worksheet

(see section 3.4.4). The alternative scenario is then calculated within a few seconds. Com-

paring two scenarios reveals differences at a specific point in time and over time (Figure

14) that can be interpreted as reactions to the impulses induced by the initial changes.

Figure 14: Comparing scenarios

From a technical point of view, scenarios are adjustments of the value of one model variable

or a set of model variables.

A DIOM-X model not only stores the historical data but also the forecasted data which

makes it straightforward to visualize the data appropriately (e. g. by creating a management

summary graphs and tables for the most important variables).

3.4 IMPLEMENTATION INTO MS EXCEL

The following sections describe a simple, yet useful template for building a dynamic IO

model in MS Excel step-by-step.

3.4.1 DATA MANAGEMENT

In order to retain the usability of an IO model, it often needs to be extended, revised and

updated. Its foundation is the historical data set and the quality of the latter has a great

impact on the model results. Thus, the data management plays an important role in the life

cycle of a model. The time and effort that has to be spend on building the historical database

for an elaborated IO model is often underestimated:

 Most data providers offer data in Excel format but the layout of such files is not standardized

so that often the data needs to be converted into a format the model is able to handle.

 Data providers from time to time change the layout of their data files which requires that

the data processing routines need to be revised.

In order to be able to perform calculations inside the model, each time series has to be

given a name. From a model’s perspective, the variables with their associated data are

 25

sufficient to carry out the calculations. From a modeller’s perspective, additional information

(“meta data”) is needed to keep the model complexity under control, e. g. a description for

each variable and its dimensions, units, data source, last revision, etc.

Figure 15: Worksheets Dataset and RowColDesc

While for the model execution only the number of rows and columns is needed, the model

builder needs to lookup the description of the elements which are given in worksheet

 26

RowColDesc (Figure 15 above). The entries in column G and H in Figure 15 (top figure)

refer to the associate description in worksheet RowColDesc.

The DIOM-X framework provides the Dataset worksheet in which the data contents of the

model need to be defined. Each row in the worksheet defines one variable with its basic

information such as variable name, last year of available data (lastdata) and the additional

meta data such as data source (Figure 15).

By pressing the Generate button, the framework automatically translates the full data set

(the list of variable definitions) into appropriate VBA variable declaration code.

A model builder should also keep in mind that with a rich dataset, defining variables names

becomes a challenge on its own: Very short abbreviations are hard to remember whereas

longer, expressive names take much more time to type when it comes to coding. It is rec-

ommended to establish some sort of convention which defines a set of rules for naming the

variables of the dataset. The convention used for the DIOM-X model template reads as

follows:

 Each variable name starts with a letter which describes the variable type followed by an

underscore: s_ means (time) series, v_ describes a vector and m_ names a matrix.

 For the name part, the first letter of each noun of the variable description is used, e. g. fd

means final demand.

 The variable names are composed of lower case letters only.

In order to assign the historical values to the variables in the dataset, the template contains

the Values worksheet (Figure 16):

Figure 16: Values worksheet with data

For each variable (and in case of vectors and matrices for each element), the model builder

needs to the variable name, row and column numbers and values for each year. The model

 27

framework reads in this worksheet prior to execution. The worksheet can be created in

different ways, depending on the structure and size of the dataset as well as the skills of

the model builder:

 Data can be manually copied and pasted from the original data files (not recommended)

 Data may be linked to the original data sources

 The worksheet could be the output of a data processing program

 A mix of the aforementioned options

After successful model execution, the framework automatically copies the full historical da-

taset as defined in this worksheet as well as the forecasted data to the Results worksheet

for further processing and evaluation.

3.4.2 REGRESSION ANALYSIS

If the parameters are not taken from the literature, they must be determined on the basis of

the country-specific data set. Excel provides the RGP() function which does linear regres-

sion using the least squares method. Other econometric software such as EViews or R –

which provide more statistical techniques – can also be used. The user needs to transfer

the dataset from the worksheet Values to the program of his choice to perform the estima-

tions.

The authors use the econometric regression program G76. In the model template (see Fig-

ure 23), the variables are marked with dashed lines, whose parameters are explained econ-

ometrically. Among them are macro / time series (e. g. labour force s_lfce) as well as vector

variables (e. g. GDP components v_gdpev).

The following steps describe the procedure of getting macro and vector regressions into the

model:

The parameters for the labour force equation are derived by using the OLS technique. At

the left hand side of the equation, the variable to be explained is labour force s_lfce(t) and

on the right hand side is the explanatory variable v_pag(t)(3) which is population at working

age (see red arrow in Figure 17). Based on the Mexican dataset, the estimation includes

historical data from 2005 to 2018.

The parameters (Reg-Coef) of the regression equation are shown in Figure 17 (red box) as

well. The equation and the parameters must be transferred manually into the VBA code at

an appropriate position which is determined by the model logic created by the model builder

(Figure 18).

6 http://www.inforum.umd.edu/software/g7.html

 28

Figure 17: Regression example I

The latter part of the equation is the error term which corrects the estimated value in the

last year for which historical data is available. This term ensures a smooth development

between the historical and projected data (red circle and graph in Figure 17).

Figure 18: Implementing regressions into the VBA code I

A log-log estimation is done to derive price-adjusted GDP components v_gdpev(t). The es-

timation procedure for series and vector variables differ in one aspect: the row number has

to be given (Figure 19).

 29

Figure 19: Regression example II

The log-log estimation equation must then be converted into a linear-log equation. The re-

sult of the mathematical transformation is defined as:

Log-log: log(v_gdpev2)=5.744173 + 0.878422*(log(v_snfa20/v_gdped2))+ 0.025

Linear-log:

 v_gdpev(t)(2)=Exp(5.744173+0.878422*(Log(v_snfa(t)(20)/v_gdped(t)(2))))+0.025

Again, the equation and the parameters must be manually transferred into the VBA code at

an appropriate position (Figure 20).

 30

Figure 20: Implementing regressions into the VBA code II

3.4.3 CORE MODEL FRAMEWORK

The DIOM-X model framework is self-contained and a fully stored in the DIOM-X.XLSB

Excel workbook. It contains three modules (red rectangle in Figure 21):

DataSet: This module contains the model variable declarations which have been automat-

ically generated from the Dataset worksheet entries.

ModelCore: The module contains the model-independent source code of the framework

that is responsible i. e. for data processing and model execution (see details below). It

also contains some (matrix algebra) functions which are not already part of VBA, e. g.

vector/matrix sums, addition, subtraction. It also contains the necessary functionality to

change variable values at runtime (tweaks) which is essential for scenario analysis (see

section 3.4.5).

Model: This module contains the user-written source code of the model itself (Figure 21).

 31

Figure 21: Model source code

The model builder has to provide three subprograms needed by the framework to perform

the model calculations:

Initialize: This subprogram may be used to initialize additional variables (e. g. the identity

matrix m_i for the Leontief inverse).

Calculate: This subprogram contains all the statements which need to be executed at

model runtime, i. e. definitions and behavioral equations (see previous screenshot). The

DIOM-X framework contains the complete source code for the template model as de-

scribed in section 3.4.4 of this chapter.

HasConverged: After each iteration, the model framework calls this function in order to de-

tect whether the model has converged in the current year. In a simple model, the function

could just return true which means that the Calculate subprogram should be executed

once a year. In a highly interdependent and non-linear equation system using the Gauss-

Seidel7 technique the convergence criteria has to be an endogenously calculated variable.

In the Mexican IO model, the very central variable gross output by v_gov(t) is used. The

model has converged if the percentage deviation in each industry is smaller than 0.1 %.

7 This method is named after the German mathematicians Gauss and Seidel. They developed an iterative

method which is used for solving non-linear systems of equations. This method solves the left hand side of

any equation, using previous values for the variables on the right hand side. The computation of a left hand

side variable uses the elements of variables that have already been computed. In the next iteration all left

hand side variables are calculated again

 32

The number of iterations per year and the industry with the highest deviations but smaller

than the convergence criterion is shown in the Model worksheet (Figure 22).

To execute the model, the Run button on the Model worksheet must be pressed (Figure

22). The framework first initializes the model by reading in the historical data as defined in

the Values worksheet and calling the user-defined Initialize subprogram (see above). Next,

the frameworks loops through the years by calling the user-defined Calculate and HasCon-

verged subprograms. Variables which are not explicitly calculated in the calculate subpro-

gram are automatically kept constant for the future in order to avoid calculation errors such

as division by zero. At the end of the calculation process the full dataset is copied to the

Results worksheet. If the model could not converge for one year by exceeding the user-

defined maximum of iterations, the model will be halted by the framework showing an error

message.

The model can also be developed from scratch in order to implement a different modelling

philosophy. For such use-cases, an empty “vanilla” version of the model DIOM-X framework

has been built which only contains the core framework code. The model can still be exe-

cuted but does not perform any calculations because the dataset as well as the Calculate

subprogram are empty. The “vanilla” version may also be used to fill in gaps that has been

detected in the historical dataset of a model.

Figure 22: DIOM-X Model worksheet

3.4.4 MODEL TEMPLATE AND ITS IMPLEMENTATION IN VBA

This section gives a general overview on the model template and highlights a few state-

ments in the source code as implemented in the subprogram Calculate. Commenting the

full set of statements is beyond the scope of this paper.

 33

The blueprint of the DIOM-X basic macro-econometric IO model basically follows the IN-

FORUM approach for inter-industry and macroeconomic modelling (Almon 1991, 2014;

Meade 2014) which combines IO calculations with econometric methods (West 1995, Lew-

ney 2019).

Figure 23 shows the DIOM-X model template which is based on previous work (Großmann,

Hohmann 2013, 2015). The goal was to develop a macro-econometric IO model (or dy-

namic IO model - DIOM) template based on publicly accessible and constantly updated

data sources as well as covering as many countries as possible by using Eurostat and / or

OECD datasets. Furthermore, the template serves as a starting point for a more compre-

hensive model.

Figure 23: DIOM-X model template (simplified)

Economic growth is determined at macro level by modelling quantity and price relationships

and then broken down to the industries (top-down approach). The final demand compo-

nents – either price-adjusted values or nominal values as well as deflators – are determined

at macro level: Price-adjusted final consumption expenditures of households v_gdpev(t)(2)

is computed from real disposable income v_snfa(t)(20) / v_gdped(t)(2). While increasing

disposable income positively affects consumption, an overall consumer price increase af-

fects it negatively. Disposable income v_snfa(t)(20) is determined in the SNAB. The same

formula is used for calculating price-adjusted final consumption expenditures of non-profit

institutions serving households v_gdpev(t)(3) but the respective deflator is taken (please

refer to section 3.4.2).

Growth rates Estimated Exogenous By definition

m_tidn = m_iidn
+ m_didn

v_gobp

Labour market

(s_lfce, v_empl,
v_coe, v_wpc)

Population by

age groups
(v_pag)

Unit costs (v_uc)

v_uctii

v_uccoe

v_ucotlsp

v_god

v_ticnpp

System of National Accounts
(v_snfa)

m_fd = m_ifd
+ m_dfd

shares

E
X

H
H

N
PO

v_gdped

IM

G
O

V

G
D

P

IN
V

D
ef

la
to

r

E
X

H
H

N
PO

v_gdpen

IMG
O

V

G
D

P

IN
V

N
o

m
in

a
l

EXH
H

N
P

O

v_gdpev

IMG
O

V

G
D

P

IN
V

P
ri

ce
-a

d
ju

st
ed

m_stpi

v_vacp

v_tiicp

v_gocp

v_gosmi

v_coe

v_otlsp

Intermediate

Demand

Final Demand

 34

Price adjusted government expenditures v_gdpev(t)(4) depends on the development of total

population v_pag(t)(1) assuming that the government expenditures increase with popula-

tion. Gross fixed capital formation v_gdpev(t)(5) is a function of price adjusted gross do-

mestic product v_gdpev(t)(1).

The deflators for the GDP components v_gdped(t)(r) are estimated with the total output

price s_god(t) which in turn is calculated by a unit cost approach. r indicates the single GDP

components starting with GDP (r=1) to imports (r=9). The import deflator v_gdped(t)(7) is

usually given exogenously or in the case of Mexico follows the trend. The GDP deflator is

calculated by definition as the ratio of nominal GDP and price-adjusted GDP.

Unit costs v_uc(t)(r) are defined as costs per unit of price adjusted output by industry

v_gov(t)(r) while r represents all industries (here: 1 to 38 as given from the STAN database)

as given from the data. Main cost components are labour costs v_uccoe(t)(r) and interme-

diate costs v_uctii(t)(r). The labour costs by each industry is calculated from the total com-

pensation of employees and the price-adjusted output at industry level. The intermediate

costs are calculated from the price-adjusted intermediate inputs m_ticr(t)(r,c) purchased by

the respective industry at a given price v_god_s(t)(r).

Output deflators v_god(t)(r) are estimated by total costs v_uc(t)(r) at industry level. The

magnitude of mark-up pricing depends on the predominant market structure. In monopolis-

tic markets, the profit margin tends to be higher than under competition.

Nominal GDP components v_gdpen(t)(r) are basically derived from deflators v_gdped(t)(r)

and corresponding price-adjusted values v_gdpev(t)(r). An exception exists for exports

v_gdpen(t)(7) which are given exogenously.

The transition from the domestic concept (GDP expenditure approach) to the national con-

cept (final demand m_fd(t)(r,c)) occurs under consideration of direct purchases abroad by

residents and non-residents as well as the exchange rate s_exra(t) because the IO tables

are given in USD.

In a next step, the total values of final demand are split to the single industries by using

constant shares for each final demand component. Additionally, total final demand

m_fd(t)(r,c) is divided into domestic m_dfd(t)(r,c) and imported final demand m_ifd(t)(r,c) by

applying historically observed import shares by component.

Production-induced imports pii(t)(r) – which are based on domestic production – are calcu-

lated by pii = m_iicn(t) * (m_i(r,c) - m_dicn(t))-1 * tfdd

with: m_iicn(t) - Imported input coefficients, nominal

 m_i - Identity matrix

 m_dicn(t) - Domestic input coefficients, nominal

 tfdd - Total final domestic demand

The sum of imported final demand and production-induced imports results in total imports

which have to be subtracted from total final demand before entering the Leontief equation

(m_i, m_ticn(t))-1 from which the output by industries v_gobp(t)(r) can be derived.

Figure 24 depicts the implementation of the formula for production-induced imports (see

arrow 1) and the Leontief equation (see arrow 2) in VBA code which is straightforward by

 35

using the Excel functions for matrix multiplication MMULT and matrix inversion MINVERSE.

Additional functions that are missing in VBA such as matrix subtraction MSub are

implemented in the core model framework (refer to section 3.4.3).

Both formulas are only calculated if the current year t is greater then the lastdata (specified

in the worksheet Dataset) of the respective variable (red rectangle in Figure 24). This

condition avoids that the historical values are overwritten.

Figure 24: Code snippet from the subprogram Calculate I

Both output v_gobp(t)(r) and intermediate consumption v_ticnpp(t)(r) by industries calcu-

lated from the IO framework need to be transferred to the economic activities (v_gocp(t)(r)

and v_tiicp(t)(r)) which corresponds to the STAN industrial data (ISIC rev. 4) published by

OECD. The supply table provides a detailed overview of transactions in goods and services

by industries which is used as transaction table m_stpi(t)(r,c). Value added v_vacp(t)(r) is

simply the difference between the previously mentioned variables.

The value added components compensation of employees v_coe(t)(r), gross operating sur-

plus and mixed income v_gosmi(t)(r) as well as other taxes less subsidies on production

v_otlsp(t)(r) are determined in the modelling context. It is assumed that the latter variables

changes accordingly with production v_gocp(t)(r). Compensation of employees depends on

the number of employees v_empl(t)(r) and wages per capita v_wpc(t)(r) (Figure 25). Be-

sides from intermediate inputs v_tiicp(t)(r), compensation of employees and other taxes less

subsidies on production feed back into the calculation of unit costs.

 1

 2

 36

Figure 25 shows the calculation of the employees v_empl(t)(r) and compensation of em-

ployees v_coe(t)(r) for all industries. Since these variables are vectors, the calculation can

be done in three lines instead of repeating the calculation for all 38 industries (red rectan-

gles in Figure 25). r indicates the number of vector elements which is derived automatically

from the row specification in the worksheet Dataset. The VBA function UBound returns the

maximum size of the array (here: 38 industries). With the for next loop statement the equa-

tion is executed 38 times. The UBound function provides high flexibility: the function returns

the upper bound and thus the number of elements in the array so that if the number of

vector elements is changed in the Dataset, there is no need for adopting the code.

Figure 25: Code snippet from the subprogram Calculate II

Gross operating surplus and mixed income is calculated as a residual from value added

and the remaining components.

The labour market is modelled at an aggregate level. Demographic development, i. e. pop-

ulation at working age v_pag(t)(4) determines labour force s_lfce(t). Employment at industry

level v_empl(t)(r) is explained by historically observed labour coefficients v_lc(t)(r) and price

adjusted output v_gov(t)(r). A wage rate per capita over all industries s_wpc(t) is calculated

as a function which forecasts the result of the bargaining process between the unions and

the firms: Macroeconomic labour productivity v_gdpev(t)(1) / s_empl(t) and the consumer

price index v_gdped(t)(2) determines the macro wage rate s_wpc(t), which, in turn, drives

the wage rates per capita for all industries v_wpc(t)(r).

The system of national accounts and balancing items (SNAB) is an integral part of the mod-

elling system which allows for modelling the complete economic circuit and the monetary

flows from production to consumption as well as the interaction of economic actors. Im-

portant variables are derived within the SNAB are, for example, the disposable income and

net lending/borrowing.

Many variables from the IO framework such as value added, final consumption expendi-

tures, gross fixed capital formation etc. serves as input into the SNAB. Other SNAB

 37

variables such as social contributions and savings are determined within the system either

by estimating them or by definition.

3.4.5 SCENARIO ANALYSIS

Once the model building process is finished and the model executes flawlessly, the most

basic forecast is done. This forecast is both based on the premises that past behaviour is

also effective in the future (business as usual scenario, BAU) as well as on a few exoge-

nous assumptions. While the first premise is part of the regression analysis, the latter is

specified in the Scenario worksheet (Figure 26). The model framework reads the scenario

settings (“tweaks”) from the Scenario worksheet at model runtime and injects these set-

tings by changing the (calculated) variable values to the values given in the worksheet. So

far, all variables which are given in this worksheet are exogenous variables meaning they

are not dependent on other model variables, e. g. population v_pag, nominal exports

v_gdpen(t)(7). While the population forecast by age groups is given by the World popula-

tions prospects from the United Nations, nominal exports follow a trend. The applied

tweak type is repl.

DIOM-X provides four types of tweaks:

 repl replace current value

 mult multiply current value by given value

 gr apply given growth rate in % to value of previous year

 add add given value to current value

If a tweak is to be activated, a “x” must be placed in column D. Otherwise the tweak is not

active.

Figure 26: Worksheet Scenario

The tweaks must be implemented at an appropriate position in the VBA code as well (Figure

27). For the exogenous variables, it makes sense to apply these tweaks at the beginning of

the Calculate subprogram in order to make them available to subsequent calculations.

The tweak function makes sure that tweaks can only be applied if the current year t is

greater than lastdata before tweaks are applied. This protects historical data from being

accidently overwritten.

 38

Figure 27: Code snippet from the subprogram Calculate III

Once the BAU scenario is finalized the Result worksheet should be copied and renamed

e. g. BAU. Thus, when carrying out scenario analysis the results of the BAU will not be

overwritten. Each time when do the model run again, new results are stored in the Results

worksheet.

Scenario or impact analysis is the main purpose of DIOM-X. Impacts of policy measures

or adjustments of certain model assumptions can be analysed before they are imple-

mented as actions, laws or regulations by defining a set of consistent assumptions and

feeding them into the model.

For example, the exports which are following a trend in the BAU scenario are assumed to

grow at a rate of 5 % (Figure 28).

Figure 28: Example scenario: Export promotion

After the model run, the results are stored in the Results worksheet. The worksheets Ab-

sDiffResultsBAU and RelDiffResultsBAU compare the results of both scenarios as absolute

deviations in given units respectively in relative deviations in percentage. Further evaluation

sheets with figures and tables can be created by the user, which show for example selected

results in graphs or tables.

 39

The comparative presentation of selected results of the export and BAU scenario shows

the expected results: Higher nominal export yield in a higher GDP although imports are

increasing as well. Prices are increasing – except import prices – due to higher costs espe-

cially labor costs which are related to a higher employment. More complex scenarios may

yield results which are not self-evident at the beginning but prove to be correct by examining

the feedback effects.

3.5 CONCLUSIONS

Most model builders use Excel either for simple (static) models only or as a pre/post data

processing tool with more complex models. DIOM-X was built to examine whether Excel

and especially the integrated VBA programming language are both suitable and sufficient

to build elaborated dynamic input-output models. First results show, that this approach has

some advantages especially for beginners in model building:

1. The software package offers most features that are needed out-of-the box.

Some minor missing features such as matrix/vector algebra can be imple-

mented without too much effort.

2. Execution speed is more than sufficient with small to medium sized models.

3. With the self-contained DIOM-X package, model distribution and sharing is very

easy because the only technical prerequisite is a computer with preinstall Excel.

4. Potential model builders have to get acquainted to just one software pack-

age/programming language only and can reuse their knowledge with spread-

sheet programs. Depending on the model size, a more sophisticated regression

tool might be necessary.

5. The integrated debugger helps with model misspecifications and bugs because

all data can be inspected at runtime.

6. The DIOM-X package is comparably easy to learn, esp. because of the clear

structure, simple but powerful VBA language and thus seems to be a suitable

toolset for capacity building.

7. By providing the full source code for both the model framework and the model

template, the DIOM-X package can be adopted or enhanced to meet given

specifications.

Currently, there is no straightforward way to get regression statements into the model. Pos-

sible options are to either enhance the DIOM-X framework by a implementing a regression

tool in VBA which uses the data from the Values worksheet or to provide import and/or

export routines from/for common statistics software packages. One example is to convert

the contents of the Values worksheet to a CSV (comma separated values) file where the

variables are stored in columns and the values per year stored in rows.

 40

4 SUMMARY AND OUTLOOK

A static IO model can be easily implemented in any spreadsheet program and a great num-

ber of examples can be found in books and on the internet which help with the implemen-

tation.

Dynamic IO models are much more complicated so that their implementation is usually

time-consuming, esp. because there are not many complete exercises that a potential

model builder can start with.

The DIOM-X model building framework tries to fill in the gap by providing both a technical

as well as a practical solution. Since all the information (system code, data, template model)

is contained in one workbook, the model can be easily set up and distribution/sharing is just

a matter of transferring that file to possible recipients. MS Excel is already widely used for

data preparation as well as data evaluation, thus the next logical step seems to be to also

perform the calculations within this software. Both the features and the performance are

more than sufficient to implement a dynamic IO model.

Many potential users are skeptical when it comes to using computer models to address

economic issues, partly because they often have no access to the model and/or model

code. In contrast, a DIOM-X model is not a "black box". The framework contains the full

source code for its data processing, model execution and scenario analysis statements.

Thus, the model can be fully verified, tailored and/or extended to meet specific require-

ments.

The only technical prerequisite of implementing a DIOM-X is a computer with MS Excel/Of-

fice installed. In combination with the integrated model template, DIOM-X becomes a much

easier to use the environment for capacity building in IO model theory and application.

DIOM-X has still a lot of room for improvement. The initial version needs a much better

documentation if the system is to be used for capacity building. The calculation engine could

be improved as well, i. e. by providing an interface for regression analysis and by simplifying

the system code. Furthermore, the model template could be revised to even better meet

the requirements of new model builders. With more models built in DIOM-X, comparing

results and improving the models becomes much easier.

 41

REFERENCES

Almon, C., 1991. The INFORUM Approach to Interindustry Modeling. Economic System

Research 3/1, 1-7

Almon, C. (2014): The Craft of economic modelling – Part 1. Fifth edition. January 2014.

Department of Economics, University of Maryland.

Ahlert, G., Distelkamp, M., Lutz, C., Meyer, B., Mönnig, A. & Wolter, M. I. (2009): Das

IAB/INFORGE-Modell. In: Schnur, P. & Zika, G. [Hrsg]: Das IAB/INFORGE-Modell.

Ein sektorales makroökonometrisches Projektions- und Simulationsmodell zur Vo-

rausschätzung des längerfristigen Arbeitskräftebedarfs. IAB-Bibliothek 318, Nürn-

berg, S. 15-175.

BEA (n. d.): RIMSII. An essential tool for regional developers and planners. Bureau of

Economic Analysis. U.S: Department of Commerce.

Cambridge Econometrics (2014): E3ME. Technical Manual, Version 6.0, Cambridge.

Eurostat (2008): Eurostat manual of Supply, Use and Input-Output Tables. Luxembourg.

https://ec.europa.eu/eurostat/documents/3859598/5902113/KS-RA-07-013-

EN.PDF/b0b3d71e-3930-4442-94be-70b36cea9b39

Gretton, P. (2013): On input-output tables: used and abuses. Productivity Commission

Staff Research Note.

Großmann, A. & Lutz, C. (2017): Economic effects of reforming energy tax exemptions for

the industry in Germany. In: Weishaar, S. E., Kreiser, L., Milne, J. E., Ashiabor, H. &

Mehling, M. (eds.): The Green Market Transition. Carbon Taxes, Energy Subsidies

and Smart Instrument Mixes. Critical Issues in Environmental Taxation, Vol. XIX, pp.

128-142, Edward Elgar. http://dx.doi.org/10.4337/9781788111171

Großmann, A., Lehr, U., Lutz, C., Mönnig, A. & Kleissl, S. (2016): Planning Policy Impact

Assessments and Choosing the Right Methods: Manual for Development Practition-

ers. Published by GIZ, Eschborn. https://www.giz.de/fachexpertise/down-

loads/giz2016-en-Planning_Policy_Impact_Assessments.pdf

Großmann, A. & Hohmann, F. (2016): E3.pt – An E3 PortableDyme Model for Portugal.

Proceedings (Vol. 1) of the 8th International Congress on Environmental Modelling

and Software for supporting a sustainable future (iEMSs 2016) in Toulouse

(France).

Großmann, A. & Hohmann, F. (2015): PortableDyme – A simplified software package for

model building. Proceedings of the 23rd conference of the International Input Output

Association in Mexico City (Mexico).

Großmann, A., Hohmann, F. & Wiebe, K. S. (2013): PortableDyme – a simplified software

package for econometric model building. In: Bardazzi, Gezzi (Ed.): Macroeconomic

modelling for policy analysis. Firenze University Press.

Holub, H.-W., Schnabl, H. (1994): Input-Output-Rechnung: Input-Output-Analyse. Olden-

bourg Verlag, München.

 42

ILO (2017): How to measure and model social and employment outcomes of climate and

sustainable development policies. Training guidebook. Green Jobs Assessment In-

stitution Network (GAIN), Geneva.

Lehr, U., Mönnig, A., Missaoui, R. & Marrouki, S. (2012): Renewable energy and energy

efficiency in Tunisia – employment, qualification and economic effects , Study

comissioned by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ),

Tunis.

Meade, D.S. (2014): Some Thoughts about the Interindustry Macroeconomic Model. Pa-

per presented at the 22nd International Input-Output Conference July 14 – 17, 2014

Lisbon.

Nazara, S., Guo, G., Hewings, G. J. D. & Dridi, C. (2003): PyIO: Input-Output Analysis

with Python. Regional Economics Applications Laboratory, University of Illinois at

Urbana-Champaign.

Stocker, A., Großmann, A., Madlener, R. & Wolter, M. I. (2011): Sustainable energy devel-

opment in Austria until 2020: Insights from applying the integrated model "e3.at".

Energy Policy, 39 (10), pp. 6082-6099, doi: 10.1016/j.enpol.2011.07.2009

Kratena, K., Streicher, G., Temurshoev, U., Amores, A. F., Arto, I., Mongelli, I., Neuwahl,

F., Rueda Cantuche, J. M., Andreoni, V., 2013. FIDELIO 1: Fully Interregional Dy-

namic Econometric Long-term Input-Output Model for the EU27. JRC Scientific and

Policy Reports, European Commission, Luxemburg.

Leontief, W., 1986. Input-Output Economics. 2nd ed., New York, Oxford University Press.

Lewney, R. , Pollitt, H. & Mercure, J.-F. (2019): From input-output to macro-econometric

model. Paper presented to the 27th International Input-Output Association Confer-

ence, 30th June to 5th July 2019, Glasgow, Scotland https://www.iioa.org/confer-

ences/27th/papers/files/3602_20190429051_Frominput-outputtomacro-econo-

metricmodel-Lewneyv1.0.pdf

Meade, D.S., 2014. Some Thoughts about the Interindustry Macroeconomic Model. Paper

presented at the 22nd International Input-Output Conference July 14 – 17, 2014 Lis-

bon.

Meyer, B., Ahlert, G., 2016. Imperfect Markets and the Properties of Macro-Economic-En-

vironmental Models as Tools for Policy Evaluation. GWS Discussion Paper 2016/9,

Osnabrück.

Miller, R. E., Blair, P.D. (2009): Input-Output-Analysis. Foundations and Extensions. Cam-

bridge University Press. Second Edition, New York.

Oosterhaven, J. (1996): Leontief versus Ghoshian Price and Quantity Models. Southern

Economic Journal Vol. 62, No. 3 (Jan., 1996), pp. 750-759. DOI: 10.2307/1060892

Thijs, t. R. (2017): Handbook of Input-Output Analysis. Edward Elgar, Cheltenham, UK,

Northampton, USA.

West, G.R., 1995. Comparison Input-Output, Input-Output + Econometric and Computable

General Equilibrium Impact Models at the Regional Level. Economic System Re-

search, Vol. 7, No. 2, 209-227.

