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ABSTRACT 

In the last two decades, the application of Input-output (IO) models has increased due to 

general availability of extensive structural data sets, esp. IO tables, and the increase in 

computing power. Today, a broad range of different IO models and applications exists –

from simple, static to comprehensive, dynamic IO models. 

Simple static IO models are used for comparative-static scenario analysis. With the help of 

IO quantity models, statements can be made about direct and indirect effects based on 

exogenous changes in demand. However, these are to be interpreted against the back-

ground of their limitations and assumptions such as the time-independency and the non-

consideration of feedbacks such as income and price effects. In contrast to the static IO 

quantity model, the static IO price model is able to capture the effects of input factors such 

as wages on sectoral production prices. Hereby it is assumed that cost changes are passed 

on completely and directly. No volume adjustments are made by substitution processes of 

the customer industries. Both model types can be easily implemented in Microsoft (MS) 

Excel which provides the necessary functionalities (e. g. matrix algebra functions) without 

any need for programming tasks. Another advantage is that most IO tables are distributed 

in MS Excel file formats, e. g. xlsx. 

More complex dynamic IO models largely resolve the limitations and inherent assumptions 

of static IO models. Time is considered explicitly as well as quantity and price reactions are 

modelled endogenously in a holistic approach and feedback effects are captured. Thus, 

such models are not only suitable for scenario analysis but also for forecasting. Due to the 

increased complexity of dynamic IO models, their implementation usually requires exten-

sive programming tasks. Commonly used programming environments are EViews, R or 

MATLAB. 

In this paper, we will show that MS Excel is suitable for the implementation for both static 

and dynamic IO models. First, we will present a template for a static IO quantity and price 

model with free available data for Mexico. Second, a template named DIOM-X is discussed 

which contains all the necessary tools to build a dynamic IO model in MS Excel and its 

programming language Visual Basic for Application (VBA). The template contains all the 

necessary tools to perform both scenario analysis and forecasting (data management, re-

gression analysis, model execution engine, presentation of model results). This approach 

greatly simplifies the task of building a dynamic IO model: Existing knowledge in MS Excel 

can be used, most computers are already equipped with the software and thus don’t any 

additional software licenses and setup and models may be easily shared or distributed by 

just transferring one file. 
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1 INTRODUCTION 

In the last two decades, the application of Input-output (IO) models has increased especially 

due to the increase in computing power and the general availability of extensive structural 

data sets, esp. IO tables.  

Common tasks such as inverting a matrix or solving equation systems which in the past 

could only be accomplished on expensive workstations or mainframe computers can now 

be calculated in seconds or a few minutes by cheap desktop or notebook computers. Model 

builders can now choose from a wide range of programming languages (e. g. Python1) and 

integrated application frameworks (e. g. GAMS, Eviews). 

Today’s internet technology greatly simplifies the task of collecting the necessary infor-

mation to build an IO model. In the past, the data had to be extracted either from books or 

later CD-ROMs. A lot of time-consuming, tedious work was necessary to be able to build 

the IO database. In recent years, the internet technology greatly simplified the process of 

data publishing: The number of data sources increased dramatically while the up-date-cy-

cles became much shorter (e. g. the online version of the Eurostat database (https://ec.eu-

ropa.eu/eurostat/data/database) is updated daily). Furthermore, the number of data formats 

has been reduced over time which makes data processing less time-consuming. For desk-

top data processing, most data providers offer either MS Excel, CSV (comma-separated 

values) or XML (extended markup language) files. In order to be able to use the data in an 

IO model, it still has to be processed. Most model building tools require the data to be ar-

ranged in a certain layout (e. g. values in columns). Even more importantly, variable names 

(and types) have to be assigned to the data before it can be accessed in the model.  

Even with these powerful technologies at hand, the task of building IO models is still a 

challenge. A potential model builder has not only to get acquainted to IO theory but must 

have profound knowledge in information technologies (i. e. data processing, programming, 

spread-sheet programs). 

IO models greatly differ in size and possible applications. Simple static IO models are used 

for comparative-static impact (scenario) analysis. With the help of IO quantity models, state-

ments can be made about direct and indirect effects based on exogenous changes in de-

mand. However, these are to be interpreted against the background of their limitations and 

assumptions such as the time-independency and the non-consideration of feedbacks such 

as income and price effects. In contrast to the static IO quantity model, the static IO price 

model is able to capture the effects of input factors such as wages on sectoral production 

prices. Hereby it is assumed that cost changes are passed on completely and directly. No 

volume adjustments are made by substitution processes of the customer industries. Both 

model types can be easily implemented without any programming tasks. The necessary 

functionality (i. e. basic algebra, data file format support) is already provided by spread-

sheet programs such as MS Excel of OpenOffice. In chapter 2, the implementation of such 

a model in MS Excel is discussed for the Mexican economy but could also be used for other 

countries. 

 

1 Nazara et al. 2003 used Python for IO analysis. 
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More complex dynamic IO models largely resolve the limitations and inherent assumptions 

of static IO models. Time is considered explicitly; quantity and price reactions are modelled 

endogenously in a holistic approach and feedback effects are captured. Thus, such models 

are not only suitable for scenario analysis but also for forecasting. Due to the increased 

complexity of dynamic IO models, their implementation usually requires extensive program-

ming tasks. Potential model builders first have to decide on their development environment. 

They can either build their own development environment by selecting one out of the hun-

dreds of common programming languages (which all have specific strengths and weak-

nesses) and collecting or implementing programming libraries which carry out specific tasks 

(e. g. handling of times-series data, matrix algebra). Another option is to get acquainted to 

a (costly) all-in-one application framework such as GAMS or Eviews. With each of these 

options, potential model builders will be facing a steep learning curve before they can fully 

exploit the power of these systems.  

Another option to build a dynamic IO model is to use MS Excel not only for data preparation 

but to build a fully-fledged model in the integrated programming language VBA (Visual Basic 

for Applications). This approach offers some important advantages: 

1. MS Excel is widely used for data processing and evaluation. Thus, most poten-

tial model builders are already familiar with at least the basic functionality. 

2. Most computers which are used in an professional environment are equipped 

with the MS Office program suite and are therefore prepared for model develop-

ment. 

3. A model which is fully built in MS Excel can be easily shared or distributed to 

other users. 

4. There is no need for buying other (expensive) model building tools. 

5. By reusing existing knowledge in operating MS Excel, the time needed to build 

a model is greatly reduced which is important for projects with tight time and/or 

budget restrictions. 

In chapter 3, a template for a dynamic IO model and its technical implementation into MS 

Excel is discussed. Chapter 4 concludes and gives some ideas about further development. 

2 STATIC INPUT-OUTPUT MODELS 

2.1 OVERVIEW 

Standard IO models are able to reveal how different sectors of an economy are intercon-

nected and how changes in one sector affect all other sectors. Their application relies on 

an IO table providing a comprehensive picture of the supply of goods and services by do-

mestic production and imports, its composition by intermediate consumption and value 

added as well as the use of goods and services for intermediate and for final consumption, 

for gross capital formation and exports. 
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Besides the use of the IO data for descriptive analyses of economic interrelations, this table 

also provides the empirical fundament for a wide scale of impact analyses of e. g. govern-

mental programs in different fields on domestic production, income and employment. The 

basis of this kind of analysis is the Leontief equation. Equation (1) shows the reduced form 

of this equation whereby production x is determined by final demand y and the Leontief 

inverse (� − ��)�� which incorporates the input coefficient matrix A and the identity matrix I 

(Eurostat 2008, Leontief 1986). 

(1) �� = (� − ��)�� ∙ ��  

All components of this equations can be derived from an IO table. The resulting set of linear 

equations (Leontief quantity model or demand pull model) can be used to answer questions 

such as ‘what happens to the output if final demand due to export promotion or investment 

changes?’ The results show the impacts on the economy to satisfy an additional (final) de-

mand and give insights into the industry-wide effects (direct and indirect effects). 

If the number of employees by industry is also known, the implications for the labour market 

can be derived in addition to the output effects. Based on equation (1), production-induced 

employment effects e can be computed by multiplying with employment coefficients b 

(equation (2)). 

(2) �� = �(� − ��)�� ∙ ���  

Another application of the IO table is the Leontief price model (or cost push model, (Miller, 

Blair 2009, Eurostat 2008, Oosterhaven 1996). It rests on equation (3) where p’t is the out-

put price, (� − �′�)�� is the transposed Leontief inverse, Q is the diagonal matrix with unit 

factor price for primary inputs and v are the input coefficients for primary inputs. 

(3) �′� = (� − �′�)���� 

It can be used to evaluate the impacts of changes in cost factors such as wages, fuel or 

import prices on output prices by industries. 

2.2 IMPLEMENTATION INTO MS EXCEL 

The practical implementation of the Leontief demand-pull and cost-push models in Excel is 

straightforward. In the following subsections the steps to be taken are described in short for 

both models.  

A prerequisite for building a Leontief model is an IO table. For our illustration purposes, we 

use an IO table for Mexico downloadable from OECD website (https://stats.oecd.org) which 

includes an IO table for imports, domestic production as well as the total IO table in the ISIC 

Rev. 4 classification. Employment data are available at STAN Database for Structural Anal-

ysis (ISIC Rev. 4, SNA08). These data are the basis for the development of the static open 

impact analysis tools.  

The original data are included in the Excel workbook StaticIOTool.xlsx2 in different work-

sheets as listed below: 

 

2 This tool will be made available on request. Please contact the authors. 
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• zij_Xj includes the symmetric IO table in million USD 

• zij_im includes import matrix in million USD 

• zij_dom includes domestic production matrix in million USD 

• Labour includes the employment data in 1,000 persons 

All worksheets in the workbook StaticIOTool.xlsx with original data are coloured in white. 

The other worksheets contain the calculation steps to derive the linear equation set for the 

Leontief quantity model and price model. The scenario input form and results sheet for the 

price model is coloured in dark blue, for the quantity model in turquoise (Figure 1). 

 

Figure 1: Static Impact Analysis Tool 

2.2.1 LEONTIEF QUANTITY MODEL 

The following steps have to be taken to build the open Leontief quantity model: 

(1) Calculation of input coefficients 

(2) Calculation of Leontief-Inverse 

(3) Calculation of labour coefficients 

(4) Prepare scenario input form 

(5) Prepare scenario result sheet 

The following explanations only refer to the implementation in MS Excel and do not explain 

IO theory and the derivation of the Leontief equations (for this please refer e. g. to Leontief 

1986, Miller, Blair 2009).  

Excel offers helpful functions like array formulas, which make cell by cell links superfluous. 

Furthermore, the name manager offers possibilities to define names for ranges, e. g. inter-

mediate demand matrix that can be used for further calculations. Named ranges are much 
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easier to understand and maintain as Excel calculations can often be written just like the 

formulas in a text book. 

In the first step the input coefficients for domestic intermediates Aij_dom need to be calcu-

lated by dividing domestic intermediate inputs zij_dom by total output xj. Instead of applying 

the division in each cells of the A-matrix, the use of the name manager and array formulas 

are suggested. 

To define a name, go to the Excel menu bar, select Formulas tab and click Define Name. 

A new dialog window shows up. In the field Name enter a name, e. g. zij_dom for the vari-

able. Then select the field Refers to and mark the associated cells in sheet zij_dom. Finally, 

click the OK button (Figure 2). After finishing these steps, the name should appear in the 

name manager. 

 

 

Figure 2: MS Excel: name manager 

After defining the names for the variables used in the formula, the domestic input coeffi-

cients are calculated using an array formula. For this, select all cells where the formula 

should be applied to. In the formula bar the equation – using the defined names – is inserted. 

Then, press Ctrl + Shift + Enter. The formula is enclosed by curly brackets {} and for the 

selected dimension the values are calculated according to the formula (Figure 3). 

 

Figure 3: Leontief quantity model: calculating input coefficients for domestic interme-
diates by using defined names and array formula 

In the next step, the Leontief-Inverse is calculated for which an identity matrix I needs to be 

created. MS Excel 2013 and 2016 provide the MUNIT()-function that returns an identity 
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matrix for the specified dimension. First, select the dimension of the identity matrix. Then, 

type the formula =MUNIT (dimension, e. g. 36) as an array formula (Ctrl + Shift + Enter). A 

36x36 matrix with the value one along the diagonal will appear. For matrix inversion, MS 

Excel provides the MINVERSE() function that can be used for calculation of the Leontief 

equation. 

After the derivation of the Leontief equation, the scenario input und result sheet needs to 

be prepared. Here, the quantified inputs of a scenario (expressed as a change of final de-

mand) will be introduced (Figure 4). 

 

Figure 4: Leontief quantity model: Scenario input sheet 

The scenario input(s) have to be linked to the input and employment coefficients. To calcu-

late the direct, indirect and total input coefficients for production, the inputs from the sce-

nario input sheet are multiplied by the respective coefficient matrix (Figure 5).  

 

Figure 5: Leontief quantity model: scenario results sheet 

The Excel function for performing matrix multiplication is MMULT(). The employment effects 

are calculated by linking the production effects (given in the results sheet) and the labour 

coefficients. 



      11 

2.2.2 LEONTIEF PRICE MODEL 

The development of the Leontief price model comprises the following steps: 

(1) Calculate input coefficients for domestic intermediates 

(2) Calculate price equation � =  (� − ����
� )�� 

(3) Prepare price model sheet 

The first two steps can be done easily by using the Excel matrix functions MINVERSE() and 

TRANSPOSE(). The worksheet “price model” includes the input form for scenario assump-

tions as well as the results. 

 

Figure 6: Leontief price model: input and result sheet (I) 

There are three scenario input cells: In cell B2 the price change assumption is given (Figure 

6). In the cell B3 it is specified if the price change assumption is applied for all 36 industries 

or only for selected industries. In the cell E6 the cost component to which the price change 

should be applied is given. 

In cell B3 a list with two entries is created: Either the price assumption is applied to all 

industries or only for selected industries. The list to be created includes the following two 

entries: YES - use the assumption for all sectors, NO - adjust values for each sector indi-

vidually. The text is given in the field Source (Figure 7). 

To create a list, first go to the excel menu bar, select data and click data validation. A new 

dialog window shows up (Figure 7). In the tab ‘Settings’ select in the field Allow: ‘List’. Then, 

in die field Source enter a text or link to the source. Finally, click the OK button. 



      12 

 

Figure 7: Creating a list in MS Excel 

In cell F6 another list is created based on the cost components that are given in the domes-

tic flow matrix (sheet zij_dom). Instead of typing each list entry by hand, references to range 

C9:C48 in sheet zij_dom are used. 

The scenario input for all industries is given in cell B2. If the values should be adjusted only 

for selected industries they have to be given in column C for the suitable industries (rows). 

Depending on the YES / NO selection in cell C3 either the value that is given in cell B2 or 

the values given in column D should be used as an input for the IO price model. The Excel 

IF()-Function is applied in column D to select the appropriate values (Figure 8). 

In column E the value of each industry given in row 7 to 42 of a selected cost component in 

cell E6 is shown. As an example, if the industry ‘Food products; beverages’ needs input 

from the industry ‘Agriculture, forestry and fishing’ then the value given in the domestic flow 

matrix is linked to cell E11 and multiplied by the assumed price change. 
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Figure 8: Leontief price model: input and result sheets (II) 

Therefore, depending on the selected list entry and the price change assumption the values 

in range E7:E42 change automatically. The following array formula combining the Excel 

INDEX() and MATCH() functions is used: 
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Figure 9: Leontief price model: input and result sheets (III) 

To calculate the direct output price effect by industry as percentage change per unit of 

output (column F), entries in column E are divided by the production by industries Xj (Figure 

10). 

 

Figure 10: Leontief price model: input and result sheets (IV) 

The total price effect (column G) is calculated as an array formula by multiplying the price 

equation (� =  (� − ����
� )��) and the direct effect given in column F (Figure 11). 
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Figure 11: Leontief price model: input and result sheets (V) 

The indirect price effect (column H) is calculated by subtracting the direct effect (column F) 

from the total effect (column G). 

2.2.3 SCENARIO ANALYSIS 

Once the impact analysis tools are implemented, they can be used for impact analysis which 

is a technique that analyses the possible consequences (or impacts) of a measure of a 

future event that is specified in a scenario (e. g. export promotion programs, wage in-

crease). The analysis is comparative-static meaning that a situation before and after an 

exogenous change is compared but the adjustment process is neglected. 

An impact analysis starts with the (1) choice of a policy measure or initial change that should 

be analysed (scenario design). Then, the appropriate tool (Leontief quantity or Leontief 

price model) has to be selected. The Leontief quantity model is applied if the direct and 

indirect impacts of final demand e. g. due to export promotion or investment changes should 

be evaluated. The Leontief price model is used to evaluate the impacts of changes in cost 

factors such as wages or fuel prices on output prices by industries. 

(2) The policy measure needs to be translated into an impulse – either a change of final 

demand (Leontief quantity model) or changes in e. g. wages or fuel prices. Furthermore, 

one or more of the 36 industries that are affected have to be selected. 

Afterwards (3), the impacts on production and employment (Leontief quantity model) or out-

put price effects (Leontief price model) are evaluated. In the Excel tools, all results will be 

updated immediately and automatically.  
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2.3 CONCLUSIONS 

Both model types – the open Leontief quantity model and Leontief price model – can be 

applied for specific purposes but have their advantages and limitations (see for example, 

ILO 2017, Großmann et al. 2016, Oosterhaven 1996, Holub, Schnabl 1994). 

The advantage of static IO models is that the industry structure and relations are clearly 

described and transparent, so that the status quo of the value chains, supplier and customer 

relationships can be analysed comprehensively. Key industries and industries which are 

vulnerable to exogenous price and volume effects can be identified by applying a compar-

ative-static analysis which show direct and indirect impacts. 

Limitations of IO models consist in the assumption that the input structure is fixed (so-called 

limitational production function) and there are constant returns to scale. There is no substi-

tution of inputs across industries. Future technological changes and innovations are ne-

glected and therefore static IO models might be useful in the short run but cannot be used 

for analysing structural changes. In the Leontief price model, this restriction (constant input 

coefficients) implies that changes in costs are passed on completely to downstream indus-

tries and they cannot substitute the more expensive input factors by cheaper products. Cus-

tomers are assumed to be price takers, so that the demand will not change. 

Capacity constraints are not considered in the Leontief quantity model. If capacity utilization 

is high, producers may not be able to satisfy the additional demand in full without investing 

in e. g. new machinery. Additional demand might also be satisfied with imports. Thus, re-

sulting impacts of a scenario may be overestimated. Furthermore, prices are assumed to 

be fixed and do not respond to demand shocks. Another aspect – not part of a static open 

IO analysis – is that the income effect occurring with a higher employment level causes an 

additional higher demand for consumer goods. 

There are many applications of the static IO models. Well-known are for example, IMPLAN 

(www.implan.com), REMI and RIMS II (BEA (n.d.)) which have some extensions to the very 

basic static IO model described in this chapter but are still not dynamic IO models which 

are described in the next chapter. 

3 DYNAMIC INPUT-OUTPUT MODEL (DIOM-X) 

3.1 OVERVIEW 

In contrast to static IO models where the structure of the economy is assumed to be con-

stant, dynamic IO models3 consider developments over time. The dynamic IO model pre-

sented in this chapter is based on the INFORUM approach (Almon 1991, 2014). 

As with static IO models, the IO relationships are the focus of the analysis. The models are 

typically demand-side driven. However, the demand is determined endogenously and not 

 

3 For examples of dynamic IO models please refer to e. g. Thijs 2017, Eurostat 2008, pp. 527, West 1995, 

Kratena et al. 2013 
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given exogenously. The economic cycle is completely represented by the national ac-

counts, so that for the main economic sectors a. o. private households, companies and 

government, production, income generation and redistribution to consumption can be 

shown. An important variable in the national accounts (SNAB) is disposable income, which 

is influenced by both the current labour market situation and the redistributive activities of 

the government through taxes and subsidies. In addition to other variables such as selling 

prices, disposable income, it is an important determinant of private consumer demand. 

The link between demand and supply is given by the Leontief production function. Further-

more, the IO table shows the cost structure for each industry given by demand for interme-

diate goods and used primary inputs such as compensation for employees, depreciation, 

net taxes on production. Prices are derived by using a unit cost approach considering the 

single cost components. Production prices plus net taxes on goods determine purchasers 

prices. The latter determine, in addition to disposable income, the demand of private house-

holds. 

In contrast to simple static IO models, the volume and price reactions in this macro-econo-

metric IO model are empirically based and take the passing on of costs into account and 

thus include the competitive situation on the different product markets and the labour mar-

ket. 

Supplementary data are population by age groups, employment and wages by industries. 

Population at working age determines the work force. Labour demand is determined at in-

dustry level and related to real production and wages by industries. Increasing real wages 

tend to lower employment while a higher production level will increase employment. The 

macroeconomic wage rate is determined by using a Phillips curve approach. 

 

Figure 12: Simplified illustration of a dynamic IO model 
Source: own illustration 

The model contexts shown in Figure 12 are captured both via identities (e. g. in the IO 

context) and behavioural equations that are empirically validated. Using econometric 
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methods allows for imperfect markets and bounded rationality (Meyer, Ahlert 2016). How-

ever, the specification of the model is not finished with the estimation of single equations. 

The complete, non-linear, interdependent model equation system is solved iteratively for 

each year using the Gauss-Seidel algorithm. The iteration process is ended once a given 

criterion is fulfilled. This criterion has to be an endogenously calculated model variable, e. g. 

output. As long as the model has not converged, all model equations are recalculated for 

the current year. Afterwards, all equations are solved for the next years within a given time 

span. The model template contains the necessary code for the iteration algorithm. A model 

builder might redefine the criterion. 

Exogenous impulses for the model are, for example, population development and exports, 

which trigger adjustment reactions in the highly interdependent, non-linear model. The mod-

elling approach which covers not only quantity effects but also income and price effects, 

provides further multipliers that determine the dynamics of the system: 

 Leontief multiplier: shows the direct and indirect effects of demand changes (e. g. 

consumption, investments) on production; 

 Employment and income multiplier: Increased production leads to more jobs and 

thus higher incomes resulting in higher demand (induced effect); 

 Investment accelerator: Indicates the necessary investments to maintain the capi-

tal stock needed for production based on the demand for goods. 

Dynamic IO models exist in different forms and degrees of complexity (see e. g. Eurostat 

2008, pp. 527, Stocker et al. 2011, Lehr et al. 2016, Ahlert et al. 2009, Großmann, Lutz 

2017, Großmann, Hohmann 2016, Cambridge Econometrics 2014, Lewney et al. 2019). 

For example, IO models can be modelled bottom-up and top-down: bottom-up indicates 

that each industry respectively product group is modelled individually and macroeconomic 

variables are calculated through explicit aggregation. Top-down means that first, the final 

demand components are determined at the macro level and then are disaggregated ac-

cordingly e. g. by using the industry or product shares of the respective variable. 

In the following, a template for a simplified dynamic IO model is developed and implemented 

in MS Excel VBA. 

3.2 TECHNICAL FOUNDATION 

3.2.1 ESSENTIAL PROGRAMMING LANGUAGE FEATURES 

Today, hundreds of programming languages exist and each of them has been developed 

to overcome some problems or to improve certain features of other languages. In principal, 

almost any of these programming languages may be used to build an dynamic IO model as 

long as at least the following features are provided. 

A dynamic IO model is processing data over time, thus the language has to support multi-

dimensional data structures. These are called array in most programming languages. Some 

languages such as Python do not have a built-in array type. This is not a problem as long 

as programming libraries are available which offer array-like data structures (for Python, a 

well-known library for numeric data processing is named “Numpy” (www.numpy.org). In 

some languages, array-indexing is zero-based (e. g. C, C++) whereas in other languages 
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the first element in an array has the index one. The latter is preferable since most of the 

published data and sector classifications use one-based indices.   

Array-like data structures are not only necessary to process data over time but also to han-

dle data which contains more than one value per year (e. g. sectoral data, IO matrices). For 

most use-cases, three-dimensional structures are sufficient, i. e. to store a sequence of IO 

matrices. The speed of indexing into arrays greatly differs between programming languages  

and is quite important because a comprehensive dynamic IO model contains a considerable 

amount of these statements. The following table shows the processing time for setting each 

element in a 10,000x10,000 double-precision floating point array in some popular program-

ming languages4. The most simple built-in array implementation in each of the languages 

was used to receive comparable results. 

Interpreted languages are the slowest because instructions are processed one-by-one with-

out much room for optimizations. Compiled code performs fastest because the program as 

a whole is translated into machine-executable form and usually highly optimized. JIT (Just 

In Time)-compiled code is often almost as fast as compiled code by translating the program 

into an intermediate, processor-independent code which is then translated into processor-

dependent code at run-time. The table shows that Excel`s built-in VBA language – although 

it is an interpreted language – performs more than acceptable in comparison to other lan-

guages. 

Table 1: Processing time for array element processing (10k x 10k elements) in se-
lected programming languages 
Source: Own calculations 

Language Time (s) First Index Language type 

Eviews 9 93 1 Interpreter 

Octave 5.1 435 1 Interpreter 

R 3.6.1 2628 0 Interpreter 

Python 3.6 54 0 Interpreter 

Julia 1.0 4.5 1 Interpreter 

VBA 2016 5 1 Interpreter 

VBScript 5.812 19 0 Interpreter 

C# Interactive 3.1 0.5 0 JIT Compiler 

Java JDK 1.8 0.2 0 JIT Compiler 

C# .NET 4.7 0.6 0 JIT Compiler 

MinGW C++ 7.3 0.3 0 Compiler 

 

Additional essential features which are provided by almost every programming language 

are  

 loops to be able to iterate over time as well as to address elements in a multidi-

mensional data structure 

 

4 The size was chosen to simulate a comprehensive model with a lot of indexing statements The calculation 

was done using an Intel i7-8600k processor with 32GB RAM. The code is available on request. 
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 conditional statements to differentiate cases in order to be able to execute different 

branches of code 

 sub-programs (functions, procedures) to create reusable subroutines 

 modules to divide a program into logical parts 

A few programming languages support matrix and vector algebra (e. g. Matlab, Octave) 

which makes equation statements much more readable. For languages lacking this feature 

– VBA belongs to this group –, matrix and vector algebra must be implemented by using 

“functions”. The missing functionality is often available in the form of programming libraries 

which can be downloaded or purchased as add-ons. The model template contains a few 

additional algebraic functions in order to perform the necessary calculations in the model. 

In order to track down errors, a debugger is extremely useful: Code may be halted at any 

statement (often called break) as well as data may be evaluated at run-time when the pro-

gram has been interrupted by a “break” instruction. Some debuggers even allow for evalu-

ating expressions while the program is in interrupted state. MS Excel has a built-in debug-

ger which supports these features. 

3.2.2 EXCEL VBA LANGUAGE AND PROGRAMMING ENVIRONMENT 

In VBA, (multi-dimensional) arrays may be declared by using the Dim or Redim statements 

with the proper bounds given for each dimension 5 . VBA does not directly support 

matrix/vector algebra but provides functions for some essential tasks such as matrix 

inversion (MINVERSE()) and matrix multiplication (MMULT()) which is needed e. g. for the 

calculation of the Leontief-Inverse. The model template contains additional functions for 

those that are missing in VBA, e. g. vector addition. In this regard, Excel is not as powerful 

as other software solutions which might be used for model building. 

The variables are empty at program startup and must be filled by reading the data from the 

worksheets. The model template which is described in section 3.4.4 comes with a simple 

dataset manager that automatically translates the list of model variables into VBA 

declarations.  

After the model has finished the calculations, the data is transferred back into dataset 

worksheets. Performing all calculations on arrays is magnitudes faster than reading/writing 

worksheet cells.  

VBA provides the for loop statement for a fixed and the while loop statement for a varying 

number of iterations. The select case statement is useful if a certain statement out of a 

group of statements shall be executed. The if statement is used when code must be 

executed with respect to the result of an evaluated expression.  

Subroutines may be implemented by using a sub … end sub block. If a subroutine has a 

return value, the statements have to be embraced by a function … end function block. 

Excel stores all model code along with the data in a *.XLSM (XLS with macros) file or *.XLSB 

(binary) file. The XLSB format usually offers better compression and loading/saving times. 

Small to medium size models with some hundred variables may be conveniently stored with 

 

5 Multi-dimensional arrays are easier to set up but make some algebraic calculations more complicated.  
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all the code in just one file. The setup and distribution of such a model can therefore be 

accomplished by just distributing one file to the recipient. With bigger models, it might be 

more convenient to use separate files, e. g. by separating historical and forecasted data. 

By default, the VBA programming environment (Figure 13) is not visible with a default 

installation of MS Excel or Office, most likely because only the minority of users is using the 

programming features. The environment can be activated by pressing Alt+F11 or by 

activating the Developer menu entries under Options, Customize Ribbon. 

The project pane gives access to the VBA code which may either be attached to worksheets 

or be stored in user-created modules. The text editor with syntax highlighting is used to edit 

the code. The evaluator is helpful for inspecting variables at runtime and for evaluating 

expressions. By clicking the grey vertical bar next to a certain line in the text editor, a 

breakpoint may be set in order to suspend the program for error checking, expression 

evaluation, etc. 

 

Figure 13: MS Excel: VBA programming environment 

With the combination of the data stored in worksheets and the VBA programming 

environment which allows for editing and storing the model code along with the data, a 

potential model builder has all the necessary tools at hand to start building dynamic IO 

models. 

3.3 STEPS IN MODEL BUILDING 

The main steps of building a dynamic IO model are: 

1. Database management 

2. Regression analysis 

3. Core model building 

4. Forecasting and scenario analysis 
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It has to be pointed out that model building is not a sequential process. The model building 

steps may have to be repeated under certain conditions, e. g. availability of updated or 

additional data, errors that has been tracked down to previous model building steps or the 

need for more detailed specifications. 

1. Database management 

The foundation of every quantitative model is data collected from different sources, i. e. 

official sources (national and international statistical offices, e. g. Eurostat, OECD.stat). The 

selection and quantity of data depends on the aim of the modelling exercise.  

Data from different sources usually comes in different file formats (e. g. CSV, MS Excel). 

Even if the file format is the same as with Excel files, data is often organized differently: 

Time series data may be stored in rows or columns or spread over different sheets. Matrix 

data may be stored in worksheets or different files (workbooks).  

The first important step in building the historical database is to harmonize the data structure 

by creating a unified dataset where each data item shares the same layout. 

One important property missing from original data is the naming of each variable which is 

needed to access its values from within the model. It is advisable to develop some sort of 

naming convention which is shared between model builders in order to be able to identify 

and address each variable in the data set. Additional meta information such as unit, dimen-

sion and source should be collected accordingly to further describe the content of the da-

taset (“meta information”). This information is often useful to avoid errors in certain compu-

tational statements such as unit conversions. The model template contains worksheets for 

both the harmonized dataset and the list of variables with placeholders to fill in this important 

information. 

2. Regression analysis 

The availability of historical data is the most important prerequisite for regression analysis 

which is carried out by econometric models to estimate model parameters for behavioural 

equations. Instead of using elasticities from the literature, relationships of variables known 

from e. g. economic theory are econometrically tested against historical data. Regression 

results (parameters/coefficients) show the direction and magnitude of the relation between 

the dependent (or left hand side (LHS) variable) and independent variable(s) (or right hand 

side (RHS) variable(s)). In contrast, variables that are given by definition have a fixed rela-

tion to each other. 

For example, theory tells that there is a relation between consumption and disposable in-

come. Relative prices and population can play an additional role. Finding the appropriate 

specification heavily depends on data availability and quality. Furthermore, even with the 

same specification of the regression equation, the estimated parameters may differ for dif-

ferent countries. That is not really astonishing because people in different countries show 

different consumption behaviours. Even within one country their behaviour may change 

over time. 

In DIOM-X, regression analysis can be carried out using built-in MS Excel functions such 

as RGP(). Other econometric software such as EViews or R can be used as well. Like with 

most other model building environments, the data need to be manually transferred to 
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another statistical program and after estimation the parameters must be manually imple-

mented in the model code. 

3. Core model building 

The main task of this model building step is to create the model structure by putting the set 

of equations together. Most equations – both regressions and definitions – are not inde-

pendent but interrelated. LHS variables of one statement occur as RHS variables in another 

equation. Therefore, the model builder has to carefully define the sequence in which the 

equations have to be calculated. The model building itself follows the IO approach (Leontief 

1986, Miller, Blair 2009). In section 3.4.4, the model template used as an example for a 

dynamic IO model is introduced. 

Furthermore, the model should be divided into logical blocks which then can be imple-

mented (often independently) in the programming language instead of creating a monolithic 

program structure. The template is organized as a set of modules which interact with each 

other. It contains modules for the model-independent calculation engine, generated parts 

such as the variable declarations and model codes. 

The template’s calculation engine keeps the values constant for those variables for which 

no computation statements (i.e. regression or definition) have been implemented. This ap-

proach makes sure that the values of a such variables cannot drop to zero or are not defined 

in the forecasting part.  

MS Excel’s VBA programming language in combination with the pre-structured model tem-

plate greatly simplifies the task of implementing the model. For example, the calculation of 

GDP can be written as  

v_vacp(t) = v_gosmi(t) + v_coe(t) + v_otlsp(t) with 

v_vacp (t): Value added at current prices 

v_gosmi (t): Gross operating surplus and mixed income 

v_coe (t): Compensation of employees 

v_otlsp (t): Other taxes less subsidies on production 

For more please refer to section 3.4. 

4. Forecasting and scenario analysis 

The DIOM-X model template implements a dynamic IO model, thus all model equations – 

definitions and behavioural equations – are solved year by year during the simulation pe-

riod. A forecast usually covers a time span of 10 to 30 years. Due to many feedback linkages 

the model has no explicit solution and solves all model equations iteratively. The iteration 

process is ended once a given criterion is fulfilled: For a central model variable, the deviation 

in percent between two consecutive iterations has to be smaller than a given value (e. g. 

an output deviation of less than 0.1 % for each industry). 

The inherent uncertainty of the future makes it impossible to forecast one 'real' prospective 

development. The outcome of the most basic forecast is based on the assumption that past 

behaviour is also effective in the future (business as usual scenario, BAU). Scenario anal-

ysis is a method to handle uncertainty and to carry out 'what if'-analysis especially to ana-

lyse the impacts of policy measures before implementation. A scenario consists of a set of 
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consistent assumptions which are fed into the model. With DIOM-X, this task becomes ex-

tremely easy by typing the desired variable names and values into the Scenario worksheet 

(see section 3.4.4). The alternative scenario is then calculated within a few seconds. Com-

paring two scenarios reveals differences at a specific point in time and over time (Figure 

14) that can be interpreted as reactions to the impulses induced by the initial changes.  

 

Figure 14: Comparing scenarios 

From a technical point of view, scenarios are adjustments of the value of one model variable 

or a set of model variables. 

A DIOM-X model not only stores the historical data but also the forecasted data which 

makes it straightforward to visualize the data appropriately (e. g. by creating a management 

summary graphs and tables for the most important variables). 

3.4 IMPLEMENTATION INTO MS EXCEL 

The following sections describe a simple, yet useful template for building a dynamic IO 

model in MS Excel step-by-step. 

3.4.1 DATA MANAGEMENT 

In order to retain the usability of an IO model, it often needs to be extended, revised and 

updated. Its foundation is the historical data set and the quality of the latter has a great 

impact on the model results. Thus, the data management plays an important role in the life 

cycle of a model. The time and effort that has to be spend on building the historical database 

for an elaborated IO model is often underestimated: 

 Most data providers offer data in Excel format but the layout of such files is not standardized 

so that often the data needs to be converted into a format the model is able to handle. 

 Data providers from time to time change the layout of their data files which requires that 

the data processing routines need to be revised. 

In order to be able to perform calculations inside the model, each time series has to be 

given a name. From a model’s perspective, the variables with their associated data are 
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sufficient to carry out the calculations. From a modeller’s perspective, additional information 

(“meta data”) is needed to keep the model complexity under control, e. g. a description for 

each variable and its dimensions, units, data source, last revision, etc. 

 

 

Figure 15: Worksheets Dataset and RowColDesc 

While for the model execution only the number of rows and columns is needed, the model 

builder needs to lookup the description of the elements which are given in worksheet 
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RowColDesc (Figure 15 above). The entries in column G and H in Figure 15 (top figure) 

refer to the associate description in worksheet RowColDesc. 

The DIOM-X framework provides the Dataset worksheet in which the data contents of the 

model need to be defined. Each row in the worksheet defines one variable with its basic 

information such as variable name, last year of available data (lastdata) and the additional 

meta data such as data source (Figure 15). 

By pressing the Generate button, the framework automatically translates the full data set 

(the list of variable definitions) into appropriate VBA variable declaration code. 

A model builder should also keep in mind that with a rich dataset, defining variables names 

becomes a challenge on its own: Very short abbreviations are hard to remember whereas 

longer, expressive names take much more time to type when it comes to coding. It is rec-

ommended to establish some sort of convention which defines a set of rules for naming the 

variables of the dataset. The convention used for the DIOM-X model template reads as 

follows: 

 Each variable name starts with a letter which describes the variable type followed by an 

underscore: s_ means (time) series, v_ describes a vector and m_ names a matrix. 

 For the name part, the first letter of each noun of the variable description is used, e. g. fd 

means final demand. 

 The variable names are composed of lower case letters only. 

In order to assign the historical values to the variables in the dataset, the template contains 

the Values worksheet (Figure 16): 

 

Figure 16: Values worksheet with data 

For each variable (and in case of vectors and matrices for each element), the model builder 

needs to the variable name, row and column numbers and values for each year. The model 
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framework reads in this worksheet prior to execution. The worksheet can be created in 

different ways, depending on the structure and size of the dataset as well as the skills of 

the model builder: 

 Data can be manually copied and pasted from the original data files (not recommended) 

 Data may be linked to the original data sources 

 The worksheet could be the output of a data processing program 

 A mix of the aforementioned options 

After successful model execution, the framework automatically copies the full historical da-

taset as defined in this worksheet as well as the forecasted data to the Results worksheet 

for further processing and evaluation. 

3.4.2 REGRESSION ANALYSIS 

If the parameters are not taken from the literature, they must be determined on the basis of 

the country-specific data set. Excel provides the RGP() function which does linear regres-

sion using the least squares method. Other econometric software such as EViews or R – 

which provide more statistical techniques – can also be used. The user needs to transfer 

the dataset from the worksheet Values to the program of his choice to perform the estima-

tions.  

The authors use the econometric regression program G76. In the model template (see Fig-

ure 23), the variables are marked with dashed lines, whose parameters are explained econ-

ometrically. Among them are macro / time series (e. g. labour force s_lfce) as well as vector 

variables (e. g. GDP components v_gdpev). 

The following steps describe the procedure of getting macro and vector regressions into the 

model: 

The parameters for the labour force equation are derived by using the OLS technique. At 

the left hand side of the equation, the variable to be explained is labour force s_lfce(t) and 

on the right hand side is the explanatory variable v_pag(t)(3) which is population at working 

age (see red arrow in Figure 17). Based on the Mexican dataset, the estimation includes 

historical data from 2005 to 2018. 

The parameters (Reg-Coef) of the regression equation are shown in Figure 17 (red box) as 

well. The equation and the parameters must be transferred manually into the VBA code at 

an appropriate position which is determined by the model logic created by the model builder 

(Figure 18). 

 

6 http://www.inforum.umd.edu/software/g7.html  
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Figure 17: Regression example I 

The latter part of the equation is the error term which corrects the estimated value in the 

last year for which historical data is available. This term ensures a smooth development 

between the historical and projected data (red circle and graph in Figure 17). 

 

Figure 18: Implementing regressions into the VBA code I  

A log-log estimation is done to derive price-adjusted GDP components v_gdpev(t). The es-

timation procedure for series and vector variables differ in one aspect: the row number has 

to be given (Figure 19). 
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Figure 19: Regression example II 

The log-log estimation equation must then be converted into a linear-log equation. The re-

sult of the mathematical transformation is defined as: 

Log-log: log(v_gdpev2)=5.744173 + 0.878422*(log(v_snfa20/v_gdped2))+ 0.025 

Linear-log:

 v_gdpev(t)(2)=Exp(5.744173+0.878422*(Log(v_snfa(t)(20)/v_gdped(t)(2))))+0.025 

Again, the equation and the parameters must be manually transferred into the VBA code at 

an appropriate position (Figure 20). 
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Figure 20: Implementing regressions into the VBA code II 

3.4.3 CORE MODEL FRAMEWORK 

The DIOM-X model framework is self-contained and a fully stored in the DIOM-X.XLSB 

Excel workbook. It contains three modules (red rectangle in Figure 21): 

DataSet: This module contains the model variable declarations which have been automat-

ically generated from the Dataset worksheet entries. 

ModelCore: The module contains the model-independent source code of the framework 

that is responsible i. e. for data processing and model execution (see details below). It 

also contains some (matrix algebra) functions which are not already part of VBA, e. g. 

vector/matrix sums, addition, subtraction. It also contains the necessary functionality to 

change variable values at runtime (tweaks) which is essential for scenario analysis (see 

section 3.4.5).  

Model: This module contains the user-written source code of the model itself (Figure 21). 
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Figure 21: Model source code 

The model builder has to provide three subprograms needed by the framework to perform 

the model calculations: 

Initialize: This subprogram may be used to initialize additional variables (e. g. the identity 

matrix m_i for the Leontief inverse). 

Calculate: This subprogram contains all the statements which need to be executed at 

model runtime, i. e. definitions and behavioral equations (see previous screenshot). The 

DIOM-X framework contains the complete source code for the template model as de-

scribed in section 3.4.4 of this chapter. 

HasConverged: After each iteration, the model framework calls this function in order to de-

tect whether the model has converged in the current year. In a simple model, the function 

could just return true which means that the Calculate subprogram should be executed 

once a year. In a highly interdependent and non-linear equation system using the Gauss-

Seidel7 technique the convergence criteria has to be an endogenously calculated variable. 

In the Mexican IO model, the very central variable gross output by v_gov(t) is used. The 

model has converged if the percentage deviation in each industry is smaller than 0.1 %. 

 

7 This method is named after the German mathematicians Gauss and Seidel. They developed an iterative 

method which is used for solving non-linear systems of equations. This method solves the left hand side of 

any equation, using previous values for the variables on the right hand side. The computation of a left hand 

side variable uses the elements of variables that have already been computed. In the next iteration all left 

hand side variables are calculated again 
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The number of iterations per year and the industry with the highest deviations but smaller 

than the convergence criterion is shown in the Model worksheet (Figure 22). 

To execute the model, the Run button on the Model worksheet must be pressed (Figure 

22). The framework first initializes the model by reading in the historical data as defined in 

the Values worksheet and calling the user-defined Initialize subprogram (see above). Next, 

the frameworks loops through the years by calling the user-defined Calculate and HasCon-

verged subprograms. Variables which are not explicitly calculated in the calculate subpro-

gram are automatically kept constant for the future in order to avoid calculation errors such 

as division by zero. At the end of the calculation process the full dataset is copied to the 

Results worksheet. If the model could not converge for one year by exceeding the user-

defined maximum of iterations, the model will be halted by the framework showing an error 

message.  

The model can also be developed from scratch in order to implement a different modelling 

philosophy. For such use-cases, an empty “vanilla” version of the model DIOM-X framework 

has been built which only contains the core framework code. The model can still be exe-

cuted but does not perform any calculations because the dataset as well as the Calculate 

subprogram are empty. The “vanilla” version may also be used to fill in gaps that has been 

detected in the historical dataset of a model. 

 

Figure 22: DIOM-X Model worksheet 

3.4.4 MODEL TEMPLATE AND ITS IMPLEMENTATION IN VBA 

This section gives a general overview on the model template and highlights a few state-

ments in the source code as implemented in the subprogram Calculate. Commenting the 

full set of statements is beyond the scope of this paper. 
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The blueprint of the DIOM-X basic macro-econometric IO model basically follows the IN-

FORUM approach for inter-industry and macroeconomic modelling (Almon 1991, 2014; 

Meade 2014) which combines IO calculations with econometric methods (West 1995, Lew-

ney 2019). 

Figure 23 shows the DIOM-X model template which is based on previous work (Großmann, 

Hohmann 2013, 2015). The goal was to develop a macro-econometric IO model (or dy-

namic IO model - DIOM) template based on publicly accessible and constantly updated 

data sources as well as covering as many countries as possible by using Eurostat and / or 

OECD datasets. Furthermore, the template serves as a starting point for a more compre-

hensive model. 

 

Figure 23: DIOM-X model template (simplified) 

Economic growth is determined at macro level by modelling quantity and price relationships 

and then broken down to the industries (top-down approach). The final demand compo-

nents – either price-adjusted values or nominal values as well as deflators – are determined 

at macro level: Price-adjusted final consumption expenditures of households v_gdpev(t)(2) 

is computed from real disposable income v_snfa(t)(20) / v_gdped(t)(2). While increasing 

disposable income positively affects consumption, an overall consumer price increase af-

fects it negatively. Disposable income v_snfa(t)(20) is determined in the SNAB. The same 

formula is used for calculating price-adjusted final consumption expenditures of non-profit 

institutions serving households v_gdpev(t)(3) but the respective deflator is taken (please 

refer to section 3.4.2).  
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Price adjusted government expenditures v_gdpev(t)(4) depends on the development of total 

population v_pag(t)(1) assuming that the government expenditures increase with popula-

tion. Gross fixed capital formation v_gdpev(t)(5) is a function of price adjusted gross do-

mestic product v_gdpev(t)(1). 

The deflators for the GDP components v_gdped(t)(r) are estimated with the total output 

price s_god(t) which in turn is calculated by a unit cost approach. r indicates the single GDP 

components starting with GDP (r=1) to imports (r=9). The import deflator v_gdped(t)(7) is 

usually given exogenously or in the case of Mexico follows the trend. The GDP deflator is 

calculated by definition as the ratio of nominal GDP and price-adjusted GDP. 

Unit costs v_uc(t)(r) are defined as costs per unit of price adjusted output by industry 

v_gov(t)(r) while r represents all industries (here: 1 to 38 as given from the STAN database) 

as given from the data. Main cost components are labour costs v_uccoe(t)(r) and interme-

diate costs v_uctii(t)(r). The labour costs by each industry is calculated from the total com-

pensation of employees and the price-adjusted output at industry level. The intermediate 

costs are calculated from the price-adjusted intermediate inputs m_ticr(t)(r,c) purchased by 

the respective industry at a given price v_god_s(t)(r). 

Output deflators v_god(t)(r) are estimated by total costs v_uc(t)(r) at industry level. The 

magnitude of mark-up pricing depends on the predominant market structure. In monopolis-

tic markets, the profit margin tends to be higher than under competition. 

Nominal GDP components v_gdpen(t)(r) are basically derived from deflators v_gdped(t)(r) 

and corresponding price-adjusted values v_gdpev(t)(r). An exception exists for exports 

v_gdpen(t)(7) which are given exogenously. 

The transition from the domestic concept (GDP expenditure approach) to the national con-

cept (final demand m_fd(t)(r,c)) occurs under consideration of direct purchases abroad by 

residents and non-residents as well as the exchange rate s_exra(t) because the IO tables 

are given in USD.  

In a next step, the total values of final demand are split to the single industries by using 

constant shares for each final demand component. Additionally, total final demand 

m_fd(t)(r,c) is divided into domestic m_dfd(t)(r,c) and imported final demand m_ifd(t)(r,c) by 

applying historically observed import shares by component. 

Production-induced imports pii(t)(r) – which are based on domestic production – are calcu-

lated by pii = m_iicn(t) * (m_i(r,c) - m_dicn(t))-1 * tfdd 

with: m_iicn(t) - Imported input coefficients, nominal 

 m_i  - Identity matrix 

 m_dicn(t) - Domestic input coefficients, nominal 

 tfdd  - Total final domestic demand 

The sum of imported final demand and production-induced imports results in total imports 

which have to be subtracted from total final demand before entering the Leontief equation 

(m_i, m_ticn(t))-1 from which the output by industries v_gobp(t)(r) can be derived. 

Figure 24 depicts the implementation of the formula for production-induced imports (see 

arrow 1) and the Leontief equation (see arrow 2) in VBA code which is straightforward by 
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using the Excel functions for matrix multiplication MMULT and matrix inversion MINVERSE. 

Additional functions that are missing in VBA such as matrix subtraction MSub are 

implemented in the core model framework (refer to section 3.4.3). 

Both formulas are only calculated if the current year t is greater then the lastdata (specified 

in the worksheet Dataset) of the respective variable (red rectangle in Figure 24). This 

condition avoids that the historical values are overwritten. 

 

Figure 24: Code snippet from the subprogram Calculate I 

Both output v_gobp(t)(r) and intermediate consumption v_ticnpp(t)(r) by industries calcu-

lated from the IO framework need to be transferred to the economic activities (v_gocp(t)(r) 

and v_tiicp(t)(r)) which corresponds to the STAN industrial data (ISIC rev. 4) published by 

OECD. The supply table provides a detailed overview of transactions in goods and services 

by industries which is used as transaction table m_stpi(t)(r,c). Value added v_vacp(t)(r) is 

simply the difference between the previously mentioned variables. 

The value added components compensation of employees v_coe(t)(r), gross operating sur-

plus and mixed income v_gosmi(t)(r) as well as other taxes less subsidies on production 

v_otlsp(t)(r) are determined in the modelling context. It is assumed that the latter variables 

changes accordingly with production v_gocp(t)(r). Compensation of employees depends on 

the number of employees v_empl(t)(r) and wages per capita v_wpc(t)(r) (Figure 25). Be-

sides from intermediate inputs v_tiicp(t)(r), compensation of employees and other taxes less 

subsidies on production feed back into the calculation of unit costs. 

 1                                                                              

 2                                     
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Figure 25 shows the calculation of the employees v_empl(t)(r) and compensation of em-

ployees v_coe(t)(r) for all industries. Since these variables are vectors, the calculation can 

be done in three lines instead of repeating the calculation for all 38 industries (red rectan-

gles in Figure 25). r indicates the number of vector elements which is derived automatically 

from the row specification in the worksheet Dataset. The VBA function UBound returns the 

maximum size of the array (here: 38 industries). With the for next loop statement the equa-

tion is executed 38 times. The UBound function provides high flexibility: the function returns 

the upper bound and thus the number of elements in the array so that if the number of 

vector elements is changed in the Dataset, there is no need for adopting the code. 

 

Figure 25: Code snippet from the subprogram Calculate II 

Gross operating surplus and mixed income is calculated as a residual from value added 

and the remaining components. 

The labour market is modelled at an aggregate level. Demographic development, i. e. pop-

ulation at working age v_pag(t)(4) determines labour force s_lfce(t). Employment at industry 

level v_empl(t)(r) is explained by historically observed labour coefficients v_lc(t)(r) and price 

adjusted output v_gov(t)(r). A wage rate per capita over all industries s_wpc(t) is calculated 

as a function which forecasts the result of the bargaining process between the unions and 

the firms: Macroeconomic labour productivity v_gdpev(t)(1) / s_empl(t) and the consumer 

price index v_gdped(t)(2) determines the macro wage rate s_wpc(t), which, in turn, drives 

the wage rates per capita for all industries v_wpc(t)(r). 

The system of national accounts and balancing items (SNAB) is an integral part of the mod-

elling system which allows for modelling the complete economic circuit and the monetary 

flows from production to consumption as well as the interaction of economic actors. Im-

portant variables are derived within the SNAB are, for example, the disposable income and 

net lending/borrowing. 

Many variables from the IO framework such as value added, final consumption expendi-

tures, gross fixed capital formation etc. serves as input into the SNAB. Other SNAB 
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variables such as social contributions and savings are determined within the system either 

by estimating them or by definition. 

3.4.5 SCENARIO ANALYSIS 

Once the model building process is finished and the model executes flawlessly, the most 

basic forecast is done. This forecast is both based on the premises that past behaviour is 

also effective in the future (business as usual scenario, BAU) as well as on a few exoge-

nous assumptions. While the first premise is part of the regression analysis, the latter is 

specified in the Scenario worksheet (Figure 26). The model framework reads the scenario 

settings (“tweaks”) from the Scenario worksheet at model runtime and injects these set-

tings by changing the (calculated) variable values to the values given in the worksheet. So 

far, all variables which are given in this worksheet are exogenous variables meaning they 

are not dependent on other model variables, e. g. population v_pag, nominal exports 

v_gdpen(t)(7). While the population forecast by age groups is given by the World popula-

tions prospects from the United Nations, nominal exports follow a trend. The applied 

tweak type is repl. 

DIOM-X provides four types of tweaks: 

 repl replace current value 

 mult multiply current value by given value 

 gr apply given growth rate in % to value of previous year 

 add add given value to current value 

If a tweak is to be activated, a “x” must be placed in column D. Otherwise the tweak is not 

active. 

 

Figure 26: Worksheet Scenario 

The tweaks must be implemented at an appropriate position in the VBA code as well (Figure 

27). For the exogenous variables, it makes sense to apply these tweaks at the beginning of 

the Calculate subprogram in order to make them available to subsequent calculations. 

The tweak function makes sure that tweaks can only be applied if the current year t is 

greater than lastdata before tweaks are applied. This protects historical data from being 

accidently overwritten. 
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Figure 27: Code snippet from the subprogram Calculate III 

Once the BAU scenario is finalized the Result worksheet should be copied and renamed 

e. g. BAU. Thus, when carrying out scenario analysis the results of the BAU will not be 

overwritten. Each time when do the model run again, new results are stored in the Results 

worksheet. 

Scenario or impact analysis is the main purpose of DIOM-X. Impacts of policy measures 

or adjustments of certain model assumptions can be analysed before they are imple-

mented as actions, laws or regulations by defining a set of consistent assumptions and 

feeding them into the model. 

For example, the exports which are following a trend in the BAU scenario are assumed to 

grow at a rate of 5 % (Figure 28). 

 

Figure 28: Example scenario: Export promotion 

After the model run, the results are stored in the Results worksheet. The worksheets Ab-

sDiffResultsBAU and RelDiffResultsBAU compare the results of both scenarios as absolute 

deviations in given units respectively in relative deviations in percentage. Further evaluation 

sheets with figures and tables can be created by the user, which show for example selected 

results in graphs or tables. 
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The comparative presentation of selected results of the export and BAU scenario shows 

the expected results: Higher nominal export yield in a higher GDP although imports are 

increasing as well. Prices are increasing – except import prices – due to higher costs espe-

cially labor costs which are related to a higher employment. More complex scenarios may 

yield results which are not self-evident at the beginning but prove to be correct by examining 

the feedback effects. 

3.5 CONCLUSIONS 

Most model builders use Excel either for simple (static) models only or as a pre/post data 

processing tool with more complex models. DIOM-X was built to examine whether Excel 

and especially the integrated VBA programming language are both suitable and sufficient 

to build elaborated dynamic input-output models. First results show, that this approach has 

some advantages especially for beginners in model building: 

1. The software package offers most features that are needed out-of-the box. 

Some minor missing features such as matrix/vector algebra can be imple-

mented without too much effort. 

2. Execution speed is more than sufficient with small to medium sized models. 

3. With the self-contained DIOM-X package, model distribution and sharing is very 

easy because the only technical prerequisite is a computer with preinstall Excel. 

4. Potential model builders have to get acquainted to just one software pack-

age/programming language only and can reuse their knowledge with spread-

sheet programs. Depending on the model size, a more sophisticated regression 

tool might be necessary. 

5. The integrated debugger helps with model misspecifications and bugs because 

all data can be inspected at runtime. 

6. The DIOM-X package is comparably easy to learn, esp. because of the clear 

structure, simple but powerful VBA language and thus seems to be a suitable 

toolset for capacity building. 

7. By providing the full source code for both the model framework and the model 

template, the DIOM-X package can be adopted or enhanced to meet given 

specifications. 

Currently, there is no straightforward way to get regression statements into the model. Pos-

sible options are to either enhance the DIOM-X framework by a implementing a regression 

tool in VBA which uses the data from the Values worksheet or to provide import and/or 

export routines from/for common statistics software packages. One example is to convert 

the contents of the Values worksheet to a CSV (comma separated values) file where the 

variables are stored in columns and the values per year stored in rows. 
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4 SUMMARY AND OUTLOOK 

A static IO model can be easily implemented in any spreadsheet program and a great num-

ber of examples can be found in books and on the internet which help with the implemen-

tation. 

Dynamic IO models are much more complicated so that their implementation is usually 

time-consuming, esp. because there are not many complete exercises that a potential 

model builder can start with. 

The DIOM-X model building framework tries to fill in the gap by providing both a technical 

as well as a practical solution. Since all the information (system code, data, template model) 

is contained in one workbook, the model can be easily set up and distribution/sharing is just 

a matter of transferring that file to possible recipients. MS Excel is already widely used for 

data preparation as well as data evaluation, thus the next logical step seems to be to also 

perform the calculations within this software. Both the features and the performance are 

more than sufficient to implement a dynamic IO model. 

Many potential users are skeptical when it comes to using computer models to address 

economic issues, partly because they often have no access to the model and/or model 

code. In contrast, a DIOM-X model is not  a "black box". The framework contains the full 

source code for its data processing, model execution and scenario analysis statements. 

Thus, the model can be fully verified, tailored and/or extended to meet specific require-

ments. 

The only technical prerequisite of implementing a DIOM-X is a computer with MS Excel/Of-

fice installed. In combination with the integrated model template, DIOM-X becomes a much 

easier to use the environment for capacity building in IO model theory and application. 

DIOM-X has still a lot of room for improvement. The initial version needs a much better 

documentation if the system is to be used for capacity building. The calculation engine could 

be improved as well, i. e. by providing an interface for regression analysis and by simplifying 

the system code. Furthermore, the model template could be revised to even better meet 

the requirements of new model builders. With more models built in DIOM-X, comparing 

results and improving the models becomes much easier. 
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