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1. INTRODUCTION 

The stability theory presented here was developed in a series of papers 
([6]-[9]). The purpose of this paper is to refine the fundamental theorems 
and to provide proofs for results which previously had only been stated. 
The applications of this theory have been discussed and illustrated in the 
above-mentioned references and in [5]. For a discussion of and references 
to the exploitation of the “invariance principle” used here see [d] and [9]. 
For difference equations and applications to numerical analysis see [4]. 

In order to see how much is gained when it is known that the limit sets 
of solutions have an invariance property and for completeness we give first 
in Section 2 the best result we know for locating limit sets of nonautonomous 
systems. This result is an improvement of a theorem given by Yoshizawa 
in [IZ]. Section 3 is for autonomous ordinary differential equations, and 
from Theorems 2 and 3 follow all of the classical Liapunov results on the 
stability and instability of these systems. 

2. NONAUTONOMOUS SYSTEMS 

We want first to define a “Liapunov function” relative to a nonautonomous 
system 

f =f(t, x). (1) 
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Let G be a set in R” and let G* be an open set of Rn containing G, the 
closure of G. We assume that f is a continuous function on [0, co) x G* 
into Rn. 

Let V be a continuous function on [0, co) x G* to R that is locally 
Lipschitzian; that is, corresponding to each (t, X) in [0, CO) x G* and 
some neighborhood N of (t, , X) there is a constant L such that 

I W,X)- V@,Y)I GLlx--Yl for all (t, y) in N. 

Define 

V(‘(t, X) = liFi!f h-r[V(t + h, x + hf (t, x)) - V(t, x)]. 
-a 

Now let x(t) be a solution of (1) that remains in G for t 2 0 and let [0, W) 
be its maximal positive interval of definition (W can be co). Then under 
our assumption that V is locally Lipschitzian, v is related to the rate of 
change of V along solutions by (see, e.g., [13] p. 3 with I’ replaced by -I’) 

q’(t, x(t)) = D+V(t, x(t)), (2) 

where D, is the lower right-hand derivative (with respect to t). We then 
make the following observation: 

LEMMA 1. Let V be continuous and locally Lipschitzian on [0, co) x G* 
to R, and let x(t) be a solution of (1) that remains in G for all t E [0, w), the 
maximum positive interval of definition of x(t). If r(t, x) Q 0 few all t E [0, w) 
and all x E G, then V(t, x(t)) is d#erentiable almost everywhere 011 [0, w) and 
on [O, CJJ) 

V(t, x(t)) - VU? x(O)) < 1; % 44) dT. (3) 

Proof. It follows from (2), since V(t, x(t)) is continuous on [0, w), that 
V(t, x(t)) is nonincreasing (see [ZO], Sec. 34.1; note in this reference that 
monotonic decreasing means nonincreasing). Therefore V(t, x(t)) is dif- 
ferentiable almost everywhere and (3) follows (see Sec. 34.2 of [IO]). 

In applications it is usually true that I’ is C’ (has continuous first partials). 
Then 

is easily computed and 

V(t, x(t)) - V(0, x(0)) = j-t I+, x(7)) dT. 
0 
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Note now that as far as this lemma is concerned it really does not matter 
whether the right or left-hand limit is used to define p. For functional 
differential equations P must be defined relative to solutions and there a 
right-hand limit must be used. 

We shall say that I’ is a Liapunoer function of (1) un G if it is continuous 
and locally Lipschitzian on [0, co) x G* and if 

(i) given x in G there is a neighborhood N of x such that V(t, x) is 
bounded from below for all t >, 0 and all x in N n G. 

(ii) P(t, x) < - IV(x) < 0 for all t > 0 and all x in G, where W is 
continuous on G. 

We want to see now what information can be obtained from a Liapunov 
function. Assume that V is a Liapunov function of (1) on G and it can be 
that W = 0. Let G, C G be such that V(t, x) < 01 for all t > 0 and all 
x E Gr , and let G, C G be such that V(t, x) > OL for all t > 0 and all x E G, . 
Then, if x(t) is any solution of (1) that remains in G for all t > 0, V(t, x(t)) 

is nonincreasing and x(t) cannot go from G, to G, in increasing time. It is 
this type of argument that yields sufficient conditions for boundedness and 
simple stability. For instance, one obtains immediately, 

If (a) V is a Liapunov function of (1) on G, (b) V(t, , x) < a for all x E G 
and some t,, > 0, and (c) a(x) < V(t, x) on [0, co) x G, where relative to 
G lim infi r, -)oD a(x) = a, then solutions which start in G at time t, and remain 
in the future in G are bounded in the future (u = co is the usual case). 

We are mainly interested in seeing what additional information a Liapunov 
function can give on the asymptotic behaviors of solutions. Let x(t) be any 
solution of (1) that remains in G for all t 3 0 with [0, W) its maximal positive 
interval of definition. If w is finite, then x(t) is unbounded in the future. 
We want our fundamental theorem on nonautonomous systems to include 
theorems on finite escape times, unboundedness and other instabilities, and 
therefore do not want to restrict ourselves to bounded solutions. For this 
reason we compactify the space R” and denote the one-point compactifica- 
tion of Rn by RE, Let d(x, y) = 1 x - y 1 denote the Euclidean distance 
between x and y, and define d(x, co) = l/l x I. For Q a set in Rz , define 
d(x, Q) = inf{d(x, y); y E Q}. Let x(t) be a continuous function on [0, w); 
then x(t) -+ Q as t + w- means d(x(t), Q) + 0 as t --f w-. If we know that 
x(t) + Q as t + W-, where Q is not all of Rz , then we have obtained 
information about the asymptotic behavior of x(t) as t -+ W-. We would 
like to be able to find the smallest closed set Q that x(t) approaches as 
t + w-. This set 52 is well defined in Rz and is G. D. BirkhofF’s positive 
limit set. The set Sz is nonempty, closed, and connected in Rc . 

If V is a Liapunov function for (1) on G, we define 

E = {x; W(x) = 0, x E G} and E, = Eu{co}. 
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If x(t) is a solution of (1) that remains in G for t > 0, then our first theorem 
gives sufficient conditions that x(t) + E, as t + co. Since the positive 
limit set Q of x(t) is contained in E, , which is a closed set in Rz , this gives 
information about the asymptotic behavior of x(t) as t + W-. 

THEOREM 1. Let IT be a Liapunov function for (1) on G, and let x(t) be a 
soZution of (1) that remains in G for t > t, > 0 with [to , w) the maximal 
future interval of def’kition of x(t). 

(a) If for each p E G there is a neighborhood N of p such that 1 f(t, x)1 
is bounded for all t > 0 and all x in N n G, then either x(t) + co as t + W-, 
OY w = co and x(t) + E, as t - cc). 

(b) If W(x(t)) is absolutely continuous and its derivative is bounded from 
above (OY from below) almost everywhere on [to , W) and if w = 00, then 
x(t)+E,ast+ 0~1. 

Proof. Let p E R” be a finite positive limit point of x(t). Then there is 
an increasing sequence t, such that t, --f w- and x(t,J -+ p as n + co. Then 
(i) and (ii) in the definition of a Liapunov function imply that V(t, , x(Q) 
is nonincreasing and bounded from below. Therefore V(t, , x(a)) + c as 
n + 00, and again since V(t, x(t)) is nonincreasing, V(t, x(t)) + c as t -+ W-. 
We also know by Lemma 1 that on [0, W) 

v(4 x(t)) - Vo , x(4,)) < - ,;, W@(T)) dr, 

and hence 

r w W(X(T)) dT < co. 
- to 

Part (a). Assume that p is not in E. Then W(p) > 26 > 0, and within 
some neighborhood N(~E, p) of radius 2~ about p, we would have IV(x) > S 
for x in N(26, p) n G. Now it could be that x(t) remains in N(~E, p) for all t 
in [tl , w) for some t, > t, . If this were true, then w would be co, and this 
would contradict sc W(X(T)) d7 < co. The other possibility is that x(t) 
goes in and out of N(~E, p) an infinite number of times. This would mean 
that x(t) travels an infinite distance within N(2~,p), since p is a positive 
limit point and x(t) must enter N(e,p) an infinite number of times. This 
means x(t) travels an infinite distance in N(2~,p). Since its speed 1 k(t)1 is 
bounded in N(26, p) for E sufficiently small, x(t) must remain in N(~E, p) 
an infinite length of time. Again this implies w = co, and this contradicts 

St”, WX(T)> dT -=c co. Therefore W(p) = 0, and E contains all finite positive 
limit points of x(t). The above also shows that if x(t) has finite limit points 
then w = co, and this completes the proof of (a). 
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Part (b). Here we assume w = CO, and because St”, W(X(T)) dT < CO, 
the boundedness of the derivative of W(x(t)) almost everywhere from above 
(or from below) implies W(x(t)) + 0 as t + co. Since W is continuous, 
W(p) = 0, and this completes the proof of (b). 

Theorem l(a) stems from and is a modification of a result due to Yoshizawa 
(see Theorem 5 [12] or Theorem 14.1 [13]). If in Theorem l(a) the condition 
that W(x) is continuous is replaced by the condition that IV(x) is “positive 
definite with respect to a closed set E”, (see [I21 or [13]) then the result 
is more general than Yoshizawa’s. In some instances Theorem l(b) can be 
applied when Theorem l(a) cannot. For an example that illustrates this and 
also shows that the conclusion of the theorem is the “best possible” see 

PI or PI- 
The smaller the set E the “better” is the Liapunov function, and the 

problem in applications is to find “good” Liapunov functions. It is also 
necessary to have information about which solutions remain in G in the 
future. In practice this is often done using more than one Liapunov function. 
Note that if V1 and V2 are Liapunow functions for (1) on G, then V = V1 + V2 
is also a Liapunov function for (1) on G and E, = EL n Ez . Another remark 
that is useful in applications is that if E, is made up of a number of components 
(maximal connected sets) and x(t) remains in Gfor t > 0, then x(t) approaches 
just one of these components, since Q is connected. For example, if E is bounded, 
then either x(t) --f co as t --+ W- OY x(t) + E as t - co. 

The following result is also worth noting, and its proof is contained in 
the proof of Theorem 1. If the Liapunov function in Theorem 1 does not depend 
upon t, then “x(t) -+ E, as t - co” can be replaced by “x(t) + (E n Qc) u {co}” 

for some c where Qe = {x; V(X) = c}. Thus, in the example 3i =y, 
j = -p(t) y - X, p(t) > 6 > 0 of [S] or [9] one can conclude using 
V = x2 + y2 for each solution (x(t), y(t)) not only that y(t) -+ 0 as t -+ co 
but also x(t) + constant as t + co. 

3. AUTONOMOUS SYSTEMS. AN INVARIANCE PRINCIPLE 

For the autonomous system 

we assume that f is a continuous function on G* to Rn where G* is an open 
set of Rn. Let V be locally Lipschitzian from G* to R where G is a subset 
of G*. The definition of a Liapunov function then becomes simpler. We 
shall say that V is a Liapunov function for (4) on G if P < 0 on G, where 

V(X) = liEi:f h-I[ V(x + hf (x)) - V(x)]. 

505/4/I-5 
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Define 
E = (x; V(x) = o, x E C}, 

and let M be the union of all solutions that remain in E on their maximal 
interval of definition. Exploiting the fact that for autonomous systems the 
limit sets have an invariance property, we then obtain the following result 
which says that a Liapunov function on G gives information about all 
positive and negative limit sets of solutions which remain in G. 

THEOREM 2. Let V be a Liapunov function for (4) on G and let x(t) be a 
solution of (4) with maximal interval of definition (a, w), 01 < 0 < w. If x(t) 
is in G for t in [0, ~)((a, 0]), then either x(t) -+ 00 as t -+ w-(t -+ a+) or 
~=a(,=--~~)andx(t)--+M,=Mu{co}ast+~((t+--CO). 

Proof. If we assume that V(x) is Cl on G*, then this result is a corollary 
of Theorem 1. However without making this assumption we obtain an easy 
proof using the invariance of limit sets. We consider the case t 3 0. Now 
just as before in the proof of Theorem 1 we have that V(x(t)) ---f c as t -+ W-. 

Let Yu denote the set of finite positive limit points of cc(t). If F+ is empty, 
then x(t) - to as t -+ w-. If I’+ is nonempty, then just as in the proof of 
Theorem I we conclude that w = co. This set Iv has the property that 
if q E P then at least one solution starting at q remains in r+ on its maximal 
interval of definition (see [3], p. 145, Theorem 1.2). As in Theorem 1, 
V = c on P. Since P has the above invariance property, P = 0 on F+, 
I’+CE, and hence F+CM. Then 52= rVu{co}CM,, and x(t)+M, 
as t + co. Replacing t by -t and V by -V takes care of the case t 4 -co 
and this completes the proof. 

We shall now consider some consequences of this theorem that have 
turned out to be of particular importance in applications. The original 
versions of these results appeared in [5], and what is given here is a refinement 
of those results. Let Q be a set C Go and let x(t, x”) denote any solution of (4) 
satisfying x(0, x0) = x0 with ( a, W) denoting the maximal interval of definition 
of x(t, x0). If there is a neighborhood N of Q, such that x0 EN implies 
x(t, x0) + Q as t + W- for each solution x(t, x0), we say that Q is an 
attractor. A set Q is said to be stable if given a neighborhood N of Q there 
is a neighborhood No of Q such that x0 E No implies that each solution 
x(t, fi) is in N for t E [0, w). A stable attractor is said to be asymptotically 
stable. A set Q is said to be positively invariant if for each x0 E Q, each x(t, x”) 
is in Q for t E [0, w). We then have as an immediate consequence of Theorem 2, 

COROLLARY 1. Let G be a bounded, open, positively invariant set. If V is a 
Liapunov function for (4) on G and MC G, then M is an attractor and G is 
in its region of attraction. 
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Proof. By Theorem 2 each solution starting in G approaches M. Now 
M is the maximal invariant set in E and is therefore closed (since the closure 
of an invariant set is invariant). Hence G is a neighborhood of M, and M is 
an attractor. 

In using this result one looks for a Liapunov function such that 
Qe = {x; V(X) < c} or some component of Qe is the set G in this corollary. 
If, in Corollary 1, M is a single point p and if it is known that V is positive- 
definite relative to p, then it follows that p is asymptotically stable. The 
next theorem shows that even without the assumption that V is positive- 
definite p is actually asymptotically stable. An example is given in [S] to 
show how information about asymptotic stability can be obtained using 
Liapunov functions which are not positive-definite. Even though in most 
applications “good” Liapunov functions are positive-definite, this result 
shows it is not necessary to check this, and this in itself is an advantage 
since, except for quadratic forms, there are no computable criteria for 
positive-definiteness. 

THEOREM 3. If, in addition, to the conditions of Corollary I we assume 

(i) solutions x(t, x”) qf (4) are unique and (ii) V is constant on the boundary 
of M, then M is asymptotically stable and G is in its region of asymptotic 
stability. 

Proof. Assume that M is not stable. Then there is a neighborhood 
NC G of M such that given any positive integer n there is a yn such that 
d( y,, , M) < l/n and for some TV > 0 the point ~(7~ , y,J is on the boundary 
of N. Using compactness we can conclude that there is a sequence x, and 
a sequence t, > 0 such that x, + ~0 and x(tn ; x,J + y as n--t CO. We 
know then that x0 is on the boundary of M and that y is on the boundary 
of N. Note also that all solutions are defined on [0, co), since G is bounded 
and positively invariant. Define relative to the fixed sequence x, 

y+ = {x; x(tn , x,) -+ z as n -+ co for some sequence tn > 0, x not in M}. 

Since y E y+, y+ is nonempty and is in G but outside M. Note that it must 
be that tn + 00 as n -+ co. If t, contained a convergent subsequence si = t,,, 
with a finite limit s, then x(sj , x,,) -+ z = x(s, x0). But M is an invariant set 
and since x0 E M this contradicts z not in M. Given t E: (-CO, co), x(t + tn , x,) 
is defined for n sufficiently large and x(t + tn , x,) = x(t, x(tn , xn)) + x(t, 2) 
as n + co. Therefore x(t, z) is defined on (--co, co) and x(t, z) E y+ for all t. 
Hence y+ is an invariant set in G not contained in M. Then for z E y+ 

V(s) = i+z V(x(Tn; x,)) < k+c V(xJ = V(x,) = c. 



64 LASALLE 

where c is the value of V on M. But, since x(t, z) + M as t - co, F(z) > c. 
Therefore V = c on y+, and, since yf is an invariant set, p = 0 on y+. 
This then implies that y+ C M, and this contradiction completes the proof. 

The results of this paper go beyond classical Liapunov theory and also 
provide a unification of that theory. Their greatest value will undoubtedly 
turn out to be their extension to other types of systems (see, for example [I]). 
One direction of extension has been to abstract dynamical systems. Zubov 
did the classical Liapunov theory in [24], and this has been further extended 
particularly by Auslander and Seibert (see [II] and the references given 
there). This has been revealing, has produced new results for stability 
theory of autonomous differential equations, and can include results of the 
type given here (see [IZ]). Unfortunately, however, this theory for abstract 
dynamical systems does not contain Hale’s extension to functional differential 
equations in [I] and certainly will not be suitable for extensions to partial 
differential equations. Two of the reasons for this are that the state space 
is assumed to be locally compact and the motions are assumed to define a 
group. These are not the only difficulties, and Hale and Infante in [2] have 
recently taken a big step forward in this direction with the introduction 
of what they call an “extended dynamical system”. It is hoped that this 
will be applicable to certain classes of problems arising from partial differ- 
ential equations. 
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