
ECE4540/5540: Digital Control Systems 4–1

STABILITY ANALYSIS TECHNIQUES

4.1: Bilinear transformation

■ Three main aspects to control-system design:

1. Stability,

2. Steady-state response,

3. Transient response.

■ Here, we look at determining system stability using various methods.

DEFINITION: A system is BIBO stable iff a bounded input produces a

bounded output.

■ Check by first writing system input–output relationship as

Y (z) =
G(z)

1 + G H(z)
R(z) =

K
∏m(z − zi)∏n(z − pi)

R(z).

■ Assume for now that all the poles {pi} are distinct and different from

the poles in R(z). Then,

Y (z) =
k1z

z − p1

+ · · · +
knz

z − pn︸ ︷︷ ︸
Response to initial conditions

+ YR(z).︸ ︷︷ ︸
Response to R(z)

■ If the system is stable, the response to initial conditions must decay to

zero as time progresses.

Z
−1

[
ki z

z − pi

]
= ki(pi)

k1[k].

So, the system is stable if |pi | < 1.
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ECE4540/5540, STABILITY ANALYSIS TECHNIQUES 4–2

■ {pi} are the roots of 1 + G H(z) = 0. So, the roots of 1 + G H(z) = 0

must lie within the unit circle of the z-plane.

• Same result even if poles are repeated, but harder to show.

■ If the magnitude of a pole |pi | = 1, then the system is marginally

stable. The unforced response does not decay to zero but also does

not increase to ∞. However, it is possible to drive the system with a

bounded input and have the output go to ∞. Therefore, a marginally

stable system is unstable.

Bilinear transformation

■ The stability criteria for a discrete-time system is that all its poles lie

within the unit circle on the z-plane.

■ Stability criteria for cts.-time systems is that the poles be in the LHP.

• Simple tool to test for continuous-time stability—Routh test.

■ Can we use the Routh test to determine stability of a discrete-time

system (either directly or indirectly)?

■ To use the Routh test, we need to do a z-plane to s-plane conversion

that retains stability information. The s-plane version of the z-plane

system does NOT need to correspond in any other way.

■ That is,

• The frequency responses

may be different

• The step responses may

be different . . .

z-plane w-plane
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■ Since only stability properties are maintained by the transform, it is

not accurate to label the destination plane the s-plane. It is often

called the w-plane, and the transformation between the z-plane and

the w-plane is called the w-Transform.

■ A transform that satisfies these requirements is the bilinear transform.

Recall:

H(w) = H(z)|z=1+(T/2)w
1−(T/2)w

and H(z) = H(w)|w= 2
T

z−1
z+1

.

■ Three things to check:

1. Unit circle in z-plane #→ jω-axis in w-plane.

2. Inside unit circle in z-plane #→ LHP in w-plane.

3. Outside unit circle in z-plane #→ RHP in w-plane.

■ If true,

1. Take H(z) #→ H(w) via the bilinear transform.

2. Perform Routh test on H(w).

CHECK: Let z = re jωT . Then, z is on the unit circle if r = 1, z is inside the

unit circle if |r | < 1 and z is outside the unit circle if |r | > 1.

z = re jωT

w =
2

T

z − 1

z + 1

∣∣∣∣
z=re jωT

=
2

T

re jωT − 1

re jωT + 1
.

■ Expand e jωT = cos(ωT ) + j sin(ωT ) and use the shorthand

c
"
= cos(ωT ) and s

"
= sin(ωT ). Also note that s2 + c2 = 1.

w =
2

T

[
rc + jrs − 1

rc + jrs + 1

]
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=
2

T

[
(rc − 1) + jrs

(rc + 1) + jrs

] [
(rc + 1) − jrs

(rc + 1) − jrs

]

=
2

T

[
(r2c2 − 1) + j (rs)(rc + 1) − j (rs)(rc − 1) + r2s2

(rc + 1)2 + (rs)2

]

=
2

T

[
r2 − 1

r2 + 2rc + 1

]
+ j

2

T

[
2rs

r2 + 2rc + 1

]
.

Notice that the real part of w is 0 when r = 1 (w is on the imaginary

axis), the real part of w is negative when |r | < 1 (w in LHP), and that

the real part of w is positive when |r | > 1 (w in RHP). Therefore, the

bilinear transformation does exactly what we want.

■ When r = 1,

w = j
2

T

2 sin(ωT )

2 + 2 cos(ωT )
= j

2

T
tan

(
ωT

2

)
,

which will be useful to know.

■ The following diagram summarizes the relationship between the

s-plane, z-plane, and w-plane:

̂
̂

+1

s-plane z-plane w-plane

j
2

T

j
ωs

2

j
ωs

4

− j
ωs

2

− j
ωs
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2
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R = 1
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➆
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4.2: Discrete-time stability via Routh–Hurwitz test

■ Review of Routh test.

Let H(w) =
b(w)

a(w)
. . . a(w) is the characteristic polynomial.

a(w) = anw
n + an−1w

n−1 + · · · + a1w + a0.

Case 0: If any of the an are negative then the system is unstable

(unless ALL are negative).

Case 1: Form Routh array:

wn an an−2 an−4 · · ·

wn−1 an−1 an−3 an−5 · · ·

wn−2 b1 b2 · · ·

wn−3 c1 c2 · · ·
...

w1 j1

w0 k1

b1 =
−1

an−1

∣∣∣∣∣
an an−2

an−1 an−3

∣∣∣∣∣ b2 =
−1

an−1

∣∣∣∣∣
an an−4

an−1 an−5

∣∣∣∣∣ · · ·

c1 =
−1

b1

∣∣∣∣∣
an−1 an−3

b1 b2

∣∣∣∣∣ c2 =
−1

b1

∣∣∣∣∣
an−1 an−5

b1 b3

∣∣∣∣∣ · · ·

TEST: Number of RHP roots = number of sign changes in left column.

Case 2: If one of the left column entries is zero, replace it with ϵ

as ϵ → 0.

Case 3: Suppose an entire row of the Routh array is zero, the

wi−1th row. The wi th row, right above it, has coefficients

α1, α2, . . .
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Then, form the auxiliary equation:

α1w
i + α2w

i−2 + α3w
i−4 + · · · = 0.

This equation is a factor of the characteristic equation

and must be tested for RHP roots (it WILL have non-LHP

roots—we might want to know how many are RHP).

EXAMPLE: Consider:

r (t) y(t)
T

1 − e−sT

s

1

s(s + 1)
K

G(s) =

(
1 − e−T s

s

) (
1

s(s + 1)

)
.

■ From z-transform tables:

G(z) =

(
z − 1

z

)
Z

[
1

s2(s + 1)

]

=

(
z − 1

z

) (
(e−T + T − 1)z2 + (1 − e−T − T e−T )z

(z − 1)2(z − e−T )

)
.

Let T = 0.1 s.

=
0.00484z + 0.00468

(z − 1)(z − 0.905)
.

■ Perform the bilinear transform

G(w) = G(z)|z=1+(T/2)w
1−(T/2)w

= G(z)|z=1+0.05w
1−0.05w

=
−0.00016w2 − 0.1872w + 3.81

3.81w2 + 3.80w
.

■ The characteristic equation is:
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0 = 1 + K G(w)

= (3.81 − 0.00016K )w2 + (3.80 − 0.1872K )w + 3.81K .

w2 (3.81 − 0.00016K ) 3.81K ➠ K < 23, 813

w1 (3.80 − 0.1872K ) ➠ K < 20.3

w0 3.81K ➠ K > 0

■ So, for stability, 0 < K < 20.3.

NOTE: The “equivalent” continuous-time system is:

(system

r (t) y(t)
1

s(s + 1)
K

T (s) =
K G(s)

1 + K G(s)
.

■ Characteristic equation: s(s + 1) + K = 0.

s2 1 K

s1 1

s0 K

■ Stable for all K > 0 ➠ sample and hold destabilizes the system.

EXAMPLE: Let’s do the same example, but with T = 1 s (not 0.1 s).

■ (math happens)

0 = 1 + K G(w)

= (1 − 0.0381K )w2 + (0.924 − 0.86K )w + 0.924K .

w2 (1 − 0.0381K ) 0.924K ➠ K < 26.2

w1 (0.924 − 0.386K ) ➠ K < 2.39

w0 0.924K ➠ K > 0
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■ So, for stability, 0 < K < 2.39.

■ This is a much more restrictive range than when T = 0.1 s ➠ slow

sampling really destabilizes a system.
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4.3: Jury’s stability test

■ H(z) #→ H(w) #→ Routh is complicated and error-prone.

■ Jury made a direct test on H(z) for stability.

■ Disadvantage (?) . . . another test to learn.

■ Let T (z) =
b(z)

a(z)
, a(z) =“characteristic polynomial.”

■ a(z) = anzn + an−1zn−1 + · · · + a1z + a0 = 0, an > 0.

■ Form Jury array:

z0 z1 z2 · · · zn−k · · · zn−1 zn

a0 a1 a2 · · · an−k · · · an−1 an

an an−1 an−2 · · · ak · · · a1 a0

b0 b1 b2 · · · bn−k · · · bn−1

bn−1 bn−2 bn−3 · · · bk−1 · · · b0

c0 c1 c2 · · · cn−k · · ·

cn−2 cn−3 cn−4 · · · ck−2 · · ·
... ... ... ...

l0 l1 l2 l3

l3 l2 l1 l0

m0 m1 m2

■ Quite different from Routh array.

• Every row is duplicated . . . in reverse order.

• Final row in table has three entries (always).

• Elements are calculated differently.

bk =

∣∣∣∣∣
a0 an−k

an ak

∣∣∣∣∣ ck =

∣∣∣∣∣
b0 bn−1−k

bn−1 bk

∣∣∣∣∣ dk =

∣∣∣∣∣
c0 cn−2−k

cn−2 ck

∣∣∣∣∣ . . .
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• Stability criteria is different.

a(z)|z=1 > 0

(−1)n a(z)|z=−1 > 0 n = order of a(z)

|a0| < an

|b0| > |bn−1|

|c0| > |cn−2|

|d0| > |dn−3|

...

|m0| > |m2| .

• First, check that a(1) > 0, (−1)na(−1) > 0 and |a0| < an. (relatively

few calculations). If not satisfied, stop.

• Next, construct array. Stop if any condition not satisfied.

EXAMPLE:

r (t)

r [k]

y(t)

y[k]

T = 1s

1 − e−sT

s

K

s(s + 1)

K
0.368z + 0.264

z2 − 1.368z + 0.368

■ Characteristic equation:

0 = 1 + K G(z) = 1 + K
(0.368z + 0.264)

z2 − 1.368z + 0.368
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= z2 + (0.368K − 1.368)z + (0.368 + 0.264K ).

■ The Jury array is:

z0 z1 z2

0.368 + 0.264K 0.368K − 1.368 1

■ The constraint a(1) > 0 yields

1 + 0.368K − 1.368 + 0.368 + 0.264K = 0.632K > 0 ➠ K > 0.

■ The constraint (−1)2a(−1) > 0 yields

1−0.368K+1.368+0.368+0.264K = −0.104K+2.736 > 0 ➠ K < 26.3.

■ The constraint |a0| < a2 yields

0.368 + 0.264K < 1 ➠ K <
0.632

0.264
= 2.39.

■ So, 0 < K < 2.39. (Same result as on pg. 4–8 using bilinear rule.)

EXAMPLE: Suppose that the characteristic equation for a closed-loop

discrete-time system is given by the expression:

a(z) = z3 − 1.8z2 + 1.05z − 0.20 = 0.

■ a(1) = 1 − 1.8 + 1.05 − 0.2 = 0.05 > 0 ✓

■ (−1)3a(−1) = −[−1 − 1.8 − 1.05 − 0.2] > 0 ✓

■ |a0| = 0.2 < a3 = 1 ✓

■ Jury array:

z0 z1 z2 z3

−0.2 1.05 −1.8 1

1 −1.8 1.05 −0.2

−0.96 1.59 −0.69
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b0 =

∣∣∣∣∣
−0.2 1

1 −0.2

∣∣∣∣∣ = −0.96 b1 =

∣∣∣∣∣
−0.2 −1.8

1 1.05

∣∣∣∣∣ = 1.59

b2 =

∣∣∣∣∣
−0.2 1.05

1 −1.8

∣∣∣∣∣ = −0.69

■ |b0| = 0.96 > |b2| = 0.69 ✓

➠ The system is stable.
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4.4: Root-locus and Nyquist tests

■ For cts.-time control, we examined the locations of the roots of the

closed-loop system as a function of the loop gain K ➠ Root locus.

r (t) y(t)K D(s) G(s)

H (s)

T (s) =
K D(s)G(s)

1 + K D(s)G(s)H(s)
.

■ Let L(s) = D(s)G(s)H(s). (The “loop transfer function”).

■ Developed rules for plotting the roots of the equation

1 + K
b(s)

a(s)
= 0.

“Root Locus Drawing Rules.”

■ Applied them to plotting roots of

1 + K L(s) = 0.

Now, we have the digital system:

̂
ŷ

r (t) y(t)
T

1 − e−sT

s
G p(s)K D(z)

H (s)

G(s)︷ ︸︸ ︷

T (z) =
K D(z)G(z)

1 + K D(z)G H(z)
,

■ So, we let L(z) = D(z)G H(z).

■ Poles are roots of 1 + K L(z) = 0.
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■ This is exactly the same form as the Laplace-transform root locus.

Plot roots in exactly the same way.

EXAMPLE:

G H(z) =
0.368(z + 0.717)

(z − 1)(z − 0.368)
D(z) = 1.

numd=0.368*[1 0.717];

dend=conv([1 -1],[1 -0.368]);

d=tf(numd,dend,-1);

rlocus(d);

K = 2.39

The Nyquist test

■ In continuous-time control we also used the Nyquist test to assess

stability.

I(s) I(s)

R(s)R(s)
I

II
III

IV

ρ → 0

θ

Zoom

■ The Nyquist “D” path encircles the entire (unstable) RHP.

■ The Nyquist plot is a polar plot of L(s) evaluated on the “D” path.

■ Adjustments to “D” shape are made if pole on the jω-axis.
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■ The Nyquist test evaluated stability by looking at the Nyquist plot.

• N=No. of CW encirclements of −1 in Nyquist plot.

• P=No. of open-loop unstable poles (poles inside “D” shape).

• Z=No. of closed-loop unstable poles.

• Z = N + P, Z = 0 for stable closed-loop system.

EXAMPLE:

r (t) y(t)
K

s(s + 1)

■ This gives:

L(s) =
1

s(s + 1)

■ Pole at origin: Need detour s = ρe jθ , ρ ≪ 1.

■ Resulting Nyquist map has infinite radius.

Cannot draw to scale.

■ No poles inside modified-“D” curve: P = 0.

■ Z = N + P = 0 ➠ Stable system.

■ Note that increasing the gain “K ” only magnifies the entire plot. The

−1 point is not encircled for K > 0 (infinite gain margin).

Nyquist test for discrete systems

■ Three different ways to do the Nyquist test for discrete systems.

■ Based on three different representations of the characteristic eqn.

1. 1 + L∗(s) = 0. L = DG H

2. 1 + L(z) = 0.

3. 1 + L(w) = 0.
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1. 1 + L∗(s) = 0.

■ We know that L∗(s) is periodic in jωs.

Therefore, the “D” curve does not need

to encircle the entire RHP to encircle

all unstable poles. [If there were any,

there would be an infinite number.]

■ Modify “D” curve to be:

I(s)

R(s)

j
ωs

2

− j
ωs

2

■ Evaluate L∗(s) on new contour and plot polar plot. Same Nyquist

test as before.

2. 1 + L(z) = 0.

■ We can do the Nyquist test directly using z-transforms. The stable

region is the unit circle. The z-domain Nyquist plot is done using a

Nyquist curve which is the unit circle.

■ Nyquist test changes because we are now encircling the STABLE

region (albeit CCW).

• Z = # closed-loop unstable poles.

• P = # open-loop unstable poles.

• N = # CCW encirclements of −1 in

Nyquist plot.

• Z = P − N .

I(z)

R(z)

■ Probably difficult to evaluate L(z)|z=e jθ for −π ≤ θ ≤ π unless using

a digital computer.
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3. 1 + L(w) = 0.

■ Now, we convert L(z) #→ L(w)

L(w) = L(z)|z=1+(T/2)w
1−(T/2)w

.

■ Bilinear transform maps unit circle

to jω-axis in w-plane.

■ Use standard continuous-time test

in w-plane.

I(w)

R(w)

■ Summary:

Open-loop fn. Range of variable Rule

G H
∗
(s) s = jω, −ωs/2 ≤ ω ≤ ωs/2 Z = P + Ncw

G H(z) z = e jωT , −π ≤ ωT ≤ π Z = P − Nccw = P + Ncw

G H(w) w = jωw, −∞ ≤ ωw ≤ ∞ Z = P + Ncw

■ All three methods produce identical Nyquist plots.

■ Note that the sampled

system does not have ∞

gain margin (a = 0.418,

GM = 2.39) and has smaller

PM than cts.-time system. Im
a
g
in

a
ry

A
xi

s

Real Axis

Nyquist Diagrams

PM

a
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4.5: Bode methods

■ Bode plots are an extremely important tool for analyzing and

designing control systems.

■ They provide a critical link between continuous-time and discrete-time

control design methods.

■ Recall:

• Bode plots are plots of frequency response of a system:

Magnitude and Phase.

• In s-plane, H(s)|s= jω is frequency response for 0 ≤ ω < ∞.

• In z-plane, H(z)|z=e jωT is frequency response for 0 ≤ ω ≤ ωs/2.

■ Straight-line tools of s-plane analysis DON’T WORK! They are based

on geometry and geometry has changed— jω-axis to z-unit circle.

■ BUT in w-plane, H(w)|w= jωw
is the frequency response for

0 ≤ ωw < ∞. Straight-line tools work, but frequency axis is warped.

PROCEDURE:

1. Convert H(z) to H(w) by H(w) = H(z)|z=1+(T/2)w
1−(T/2)w .

2. Simplify expression to rational-polynomial in w.

3. Factor into zeros and poles in standard “Bode Form” (Refer to review

notes).

4. Plot the response exactly the same way as an s-plane Bode plot.

Note: Plots are versus log10 ωw . . . ωw =
2

T
tan

(
ωT

2

)
. Can

re-scale axis in terms if ω if we want.

EXAMPLE: Example seen before with T = 1 second.
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Let G(z) =
0.368z + 0.264

z2 − 1.368z + 0.368
.

(1,2)

G(w) =
0.368

[
1+0.5w
1−0.5w

]
+ 0.264

[
1+0.5w
1−0.5w

]2
− 1.368

[
1+0.5w
1−0.5w

]
+ 0.368

=
0.368(1 + 0.5w)(1 − 0.5w) + 0.264(1 − 0.5w)2

(1 + 0.5w)2 − 1.368(1 + 0.5w)(1 − 0.5w) + 0.368(1 − 0.5w)2

=
−0.0381(w − 2)(w + 12.14)

w(w + 0.924)
.

(3)

G( jωw) =
−

(
j ωw

2
− 1

) (
j ωw

12.14
+ 1

)

jωw

(
j ωw

0.924
+ 1

) .

(4)

10
−1

10
0

10
1

10
2

10
3

−40

−20

0

20

40

10
−1

10
0

10
1

10
2

10
3

−270

−180

−90

0

90

180

Bode Plots

Frequency (warped rads/sec)

M
a
g
n
itu

d
e

(d
B

)
P

h
a
se

(d
e
g
)

■ Gain margin and phase margin work the SAME way we expect.
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WAIT!

■ We have discussed frequency-response methods without verifying

that discrete-time frequency response means the same thing as

continuous-time frequency response.

■ Verify

X (z) −→ G(z) −→ Y (z)

■ Let x[k] = sin(ωkT ) . . . X (z) =
z sin ωT

(z − e jωT )(z − e− jωT )
.

Y (z) = G(z)X (z)

=
G(z)z sin ωT

(z − e jωT )(z − e− jωT )
.

■ Do partial-fraction expansion

Y (z)

z
=

k1

z − e jωT
+

k2

z − e− jωT
+ Yg(z).

■ Yg(z) is the response due to the poles of G(z). IF the system is

stable, the response due to Yg(z) → 0 as t → ∞.

■ So, as t → ∞ we say

Yss(z)

z
=

k1

z − e jωT
+

k2

z − e− jωT

k1 =
G(z) sin ωT

z − e− jωT

∣∣∣∣
z=e jωT

=
G(e jωT ) sin ωT

e jωT − e− jωT

=
G(e jωT )

2 j

=
|G(e jωT )|e j ̸ G(e jωT )

2 j
.
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■ Similarly,

k2 =
|G(e jωT )|e− j ̸ G(e jωT )

2(− j)
= −

|G(e jωT )|e− j ̸ G(e jωT )

2 j
.

■ Combining and solving for yss[k]

yss[k] = k1(e
jωT )k + k2(e

− jωT )k

= |G(e jωT )|
e jωkT+ j ̸ G(e jωT ) − e− jωkT − j ̸ G(e jωT )

2 j

= |G(e jωT )| sin(ωkT + ̸ G(e jωT )).

■ Sure enough, |G(e jωT )| is magnitude response to sinusoid, and

̸ G(e jωT ) is phase response to sinusoid.

Closed-loop frequency response

■ We have looked at open-loop concepts and how they apply to closed

loop systems . . . our end product.

■ Closed-loop frequency response usually calculated by computer:
G(z)

1 + G(z)
, for example.

■ In general, if |G(e jωT )| large, |T (e jωT )| ≈ 1. If |G(e jωT )| small,

|T (e jωT )| ≈ |G(e jωT )|.

■ Closed-loop bandwidth similar to open-loop bandwidth.

• If PM = 90◦, then C.L. BW = O.L. BW.

• If PM = 45◦, then C.L. BW = 2×O.L. BW.
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