STABILITY ANALYSIS TECHNIQUES

4.1: Bilinear transformation

- Three main aspects to control-system design:

1. Stability,
2. Steady-state response,
3. Transient response.

- Here, we look at determining system stability using various methods.

DEFINITION: A system is BIBO stable iff a bounded input produces a bounded output.

- Check by first writing system input-output relationship as

$$
Y(z)=\frac{G(z)}{1+\overline{G H}(z)} R(z)=\frac{K \prod^{m}\left(z-z_{i}\right)}{\prod^{n}\left(z-p_{i}\right)} R(z) .
$$

- Assume for now that all the poles $\left\{p_{i}\right\}$ are distinct and different from the poles in $R(z)$. Then,

$$
Y(z)=\underbrace{\frac{k_{1} z}{z-p_{1}}+\cdots+\frac{k_{n} z}{z-p_{n}}}_{\text {Response to initial conditions }}+\underbrace{Y_{R}(z)}_{\text {Response to } R(z)}
$$

- If the system is stable, the response to initial conditions must decay to zero as time progresses.

$$
\mathcal{Z}^{-1}\left[\frac{k_{i} z}{z-p_{i}}\right]=k_{i}\left(p_{i}\right)^{k} 1[k] .
$$

So, the system is stable if $\left|p_{i}\right|<1$.

- $\left\{p_{i}\right\}$ are the roots of $1+\overline{G H}(z)=0$. So, the roots of $1+\overline{G H}(z)=0$ must lie within the unit circle of the z-plane.
- Same result even if poles are repeated, but harder to show.
- If the magnitude of a pole $\left|p_{i}\right|=1$, then the system is marginally stable. The unforced response does not decay to zero but also does not increase to ∞. However, it is possible to drive the system with a bounded input and have the output go to ∞. Therefore, a marginally stable system is unstable.

Bilinear transformation

- The stability criteria for a discrete-time system is that all its poles lie within the unit circle on the z-plane.
- Stability criteria for cts.-time systems is that the poles be in the LHP.
- Simple tool to test for continuous-time stability—Routh test.
- Can we use the Routh test to determine stability of a discrete-time system (either directly or indirectly)?
- To use the Routh test, we need to do a z-plane to s-plane conversion that retains stability information. The s-plane version of the z-plane system does NOT need to correspond in any other way.
- That is,
- The frequency responses may be different
- The step responses may be different...

- Since only stability properties are maintained by the transform, it is not accurate to label the destination plane the s-plane. It is often called the w-plane, and the transformation between the z-plane and the w-plane is called the w-Transform.
- A transform that satisfies these requirements is the bilinear transform. Recall:

$$
H(w)=\left.H(z)\right|_{z=\frac{1+(T / 2) w}{1-(T) 2 w}} \quad \text { and } \quad H(z)=\left.H(w)\right|_{w=\frac{2}{T} \frac{z-1}{z+1}} .
$$

- Three things to check:

1. Unit circle in z-plane $\mapsto j \omega$-axis in w-plane.
2. Inside unit circle in z-plane \mapsto LHP in w-plane.
3. Outside unit circle in z-plane \mapsto RHP in w-plane.

- If true,

1. Take $H(z) \mapsto H(w)$ via the bilinear transform.
2. Perform Routh test on $H(w)$.

CHECK: Let $z=r e^{j \omega T}$. Then, z is on the unit circle if $r=1, z$ is inside the unit circle if $|r|<1$ and z is outside the unit circle if $|r|>1$.

$$
\begin{aligned}
z & =r e^{j \omega T} \\
w & =\left.\frac{2}{T} \frac{z-1}{z+1}\right|_{z=r e^{j \omega T}}=\frac{2}{T} \frac{r e^{j \omega T}-1}{r e^{j \omega T}+1}
\end{aligned}
$$

- Expand $e^{j \omega T}=\cos (\omega T)+j \sin (\omega T)$ and use the shorthand $c \triangleq \cos (\omega T)$ and $s \triangleq \sin (\omega T)$. Also note that $s^{2}+c^{2}=1$.

$$
w=\frac{2}{T}\left[\frac{r c+j r s-1}{r c+j r s+1}\right]
$$

$$
\begin{aligned}
& =\frac{2}{T}\left[\frac{(r c-1)+j r s}{(r c+1)+j r s}\right]\left[\frac{(r c+1)-j r s}{(r c+1)-j r s}\right] \\
& =\frac{2}{T}\left[\frac{\left(r^{2} c^{2}-1\right)+j(r s)(r c+1)-j(r s)(r c-1)+r^{2} s^{2}}{(r c+1)^{2}+(r s)^{2}}\right] \\
& =\frac{2}{T}\left[\frac{r^{2}-1}{r^{2}+2 r c+1}\right]+j \frac{2}{T}\left[\frac{2 r s}{r^{2}+2 r c+1}\right]
\end{aligned}
$$

Notice that the real part of w is 0 when $r=1$ (w is on the imaginary axis), the real part of w is negative when $|r|<1$ (w in LHP), and that the real part of w is positive when $|r|>1$ (w in RHP). Therefore, the bilinear transformation does exactly what we want.

- When $r=1$,

$$
w=j \frac{2}{T} \frac{2 \sin (\omega T)}{2+2 \cos (\omega T)}=j \frac{2}{T} \tan \left(\frac{\omega T}{2}\right)
$$

which will be useful to know.

- The following diagram summarizes the relationship between the s-plane, z-plane, and w-plane:

4.2: Discrete-time stability via Routh-Hurwitz test

- Review of Routh test.

$$
\begin{aligned}
& \text { Let } H(w)=\frac{b(w)}{a(w)} \ldots a(w) \text { is the characteristic polynomial. } \\
& a(w)=a_{n} w^{n}+a_{n-1} w^{n-1}+\cdots+a_{1} w+a_{0} .
\end{aligned}
$$

Case 0: If any of the a_{n} are negative then the system is unstable (unless ALL are negative).
Case 1: Form Routh array:

$$
\begin{aligned}
& \begin{array}{c|cccc}
w^{n} & a_{n} & a_{n-2} & a_{n-4} & \cdots \\
w^{n-1} & a_{n-1} & a_{n-3} & a_{n-5} & \cdots \\
w^{n-2} & b_{1} & b_{2} & \cdots & \\
w^{n-3} & c_{1} & c_{2} & \cdots & \\
\vdots & & & & \\
w^{1} & j_{1} & & & \\
w^{0} & k_{1} & & &
\end{array} \\
& b_{1}=\frac{-1}{a_{n-1}}\left|\begin{array}{cc}
a_{n} & a_{n-2} \\
a_{n-1} & a_{n-3}
\end{array}\right| \quad b_{2}=\frac{-1}{a_{n-1}}\left|\begin{array}{cc}
a_{n} & a_{n-4} \\
a_{n-1} & a_{n-5}
\end{array}\right| \\
& c_{1}=\frac{-1}{b_{1}}\left|\begin{array}{cc}
a_{n-1} & a_{n-3} \\
b_{1} & b_{2}
\end{array}\right| \quad c_{2}=\frac{-1}{b_{1}}\left|\begin{array}{cc}
a_{n-1} & a_{n-5} \\
b_{1} & b_{3}
\end{array}\right|
\end{aligned}
$$

TEST: Number of RHP roots = number of sign changes in left column.
Case 2: If one of the left column entries is zero, replace it with ϵ as $\epsilon \rightarrow 0$.

Case 3: Suppose an entire row of the Routh array is zero, the w^{i-1} th row. The w^{i} th row, right above it, has coefficients $\alpha_{1}, \alpha_{2}, \ldots$

Then, form the auxiliary equation:

$$
\alpha_{1} w^{i}+\alpha_{2} w^{i-2}+\alpha_{3} w^{i-4}+\cdots=0
$$

This equation is a factor of the characteristic equation and must be tested for RHP roots (it WILL have non-LHP roots-we might want to know how many are RHP).
example: Consider:

- From z-transform tables:

$$
\begin{aligned}
G(z) & =\left(\frac{z-1}{z}\right) \mathcal{Z}\left[\frac{1}{s^{2}(s+1)}\right] \\
& =\left(\frac{z-1}{z}\right)\left(\frac{\left(e^{-T}+T-1\right) z^{2}+\left(1-e^{-T}-T e^{-T}\right) z}{(z-1)^{2}\left(z-e^{-T}\right)}\right) .
\end{aligned}
$$

Let $T=0.1 \mathrm{~s}$.

$$
=\frac{0.00484 z+0.00468}{(z-1)(z-0.905)} .
$$

- Perform the bilinear transform

$$
\begin{aligned}
G(w) & =\left.G(z)\right|_{z=\frac{1+(T / 2) w}{1-(T / 2) w}} \\
& =\left.G(z)\right|_{z=\frac{1+0.05 w}{1-0.5 s w}} \\
& =\frac{-0.00016 w^{2}-0.1872 w+3.81}{3.81 w^{2}+3.80 w} .
\end{aligned}
$$

- The characteristic equation is:

$$
\begin{array}{rl}
0 & =1+K G(w) \\
= & (3.81-0.00016 K) w^{2}+(3.80-0.1872 K) w+3.81 K \\
w^{2} & (3.81-0.00016 K) 3.81 K \\
w^{1} & (3.80-0.1872 K) \\
w^{0} & 3.81 K \\
& K<23,813 \\
& \\
& \\
& \\
\hline
\end{array}
$$

- So, for stability, $0<K<20.3$.

NOTE: The "equivalent" continuous-time system is:

- Characteristic equation: $s(s+1)+K=0$.

$$
\begin{array}{c|cc}
s^{2} & 1 & K \\
s^{1} & 1 & \\
s^{0} & K &
\end{array}
$$

- Stable for all $K>0$ nil> sample and hold destabilizes the system.

EXAMPLE: Let's do the same example, but with $T=1 \mathrm{~s}$ (not 0.1 s).

- (math happens)

$$
\begin{aligned}
& 0=1+K G(w) \\
& =(1-0.0381 K) w^{2}+(0.924-0.86 K) w+0.924 K \\
& w^{2} \\
& w^{1} \\
& w^{0}
\end{aligned} \left\lvert\, \begin{array}{cccc}
(1-0.924-0.386 K) & 0.924 K & & K<26.2 \\
0.924 K & & K<2.39 \\
& & & \\
\hline
\end{array}\right.
$$

- So, for stability, $0<K<2.39$.
- This is a much more restrictive range than when $T=0.1 \mathrm{~s}$ maw sampling really destabilizes a system.

4.3: Jury's stability test

- $H(z) \mapsto H(w) \mapsto$ Routh is complicated and error-prone.
- Jury made a direct test on $H(z)$ for stability.
- Disadvantage (?) . . . another test to learn.
- Let $T(z)=\frac{b(z)}{a(z)}, \quad a(z)=$ "characteristic polynomial."

■ $a(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=0, \quad a_{n}>0$.

- Form Jury array:

z^{0}	z^{1}	z^{2}	\cdots	z^{n-k}	\cdots	z^{n-1}	z^{n}
a_{0}	a_{1}	a_{2}	\cdots	a_{n-k}	\cdots	a_{n-1}	a_{n}
a_{n}	a_{n-1}	a_{n-2}	\cdots	a_{k}	\cdots	a_{1}	a_{0}
b_{0}	b_{1}	b_{2}	\cdots	b_{n-k}	\cdots	b_{n-1}	
b_{n-1}	b_{n-2}	b_{n-3}	\cdots	b_{k-1}	\cdots	b_{0}	
c_{0}	c_{1}	c_{2}	\cdots	c_{n-k}	\cdots		
c_{n-2}	c_{n-3}	c_{n-4}	\cdots	c_{k-2}	\cdots		
\vdots	\vdots	\vdots		\vdots			
l_{0}	l_{1}	l_{2}	l_{3}				
l_{3}	l_{2}	l_{1}	l_{0}				
m_{0}	m_{1}	m_{2}					

- Quite different from Routh array.
- Every row is duplicated ... in reverse order.
- Final row in table has three entries (always).
- Elements are calculated differently.

$$
b_{k}=\left|\begin{array}{cc}
a_{0} & a_{n-k} \\
a_{n} & a_{k}
\end{array}\right| \quad c_{k}=\left|\begin{array}{cc}
b_{0} & b_{n-1-k} \\
b_{n-1} & b_{k}
\end{array}\right| \quad d_{k}=\left|\begin{array}{cc}
c_{0} & c_{n-2-k} \\
c_{n-2} & c_{k}
\end{array}\right|
$$

- Stability criteria is different.

$$
\begin{aligned}
\left.a(z)\right|_{z=1} & >0 \\
\left.(-1)^{n} a(z)\right|_{z=-1} & >0 \quad n=\text { order of } a(z) \\
\left|a_{0}\right| & <a_{n} \\
\left|b_{0}\right| & >\left|b_{n-1}\right| \\
\left|c_{0}\right| & >\left|c_{n-2}\right| \\
\left|d_{0}\right| & >\left|d_{n-3}\right| \\
& \vdots \\
\left|m_{0}\right| & >\left|m_{2}\right|
\end{aligned}
$$

- First, check that $a(1)>0,(-1)^{n} a(-1)>0$ and $\left|a_{0}\right|<a_{n}$. (relatively few calculations). If not satisfied, stop.
- Next, construct array. Stop if any condition not satisfied.

EXAMPLE:

- Characteristic equation:

$$
0=1+K G(z)=1+K \frac{(0.368 z+0.264)}{z^{2}-1.368 z+0.368}
$$

$$
=z^{2}+(0.368 K-1.368) z+(0.368+0.264 K)
$$

- The Jury array is:

z^{0}	z^{1}	z^{2}
$0.368+0.264 K$	$0.368 K-1.368$	1

- The constraint $a(1)>0$ yields

$$
1+0.368 K-1.368+0.368+0.264 K=0.632 K>0 \quad \text { Int } \quad K>0 .
$$

- The constraint $(-1)^{2} a(-1)>0$ yields

$$
1-0.368 K+1.368+0.368+0.264 K=-0.104 K+2.736>0 \quad \text { ॥l"t } \quad K<26.3
$$

- The constraint $\left|a_{0}\right|<a_{2}$ yields

$$
0.368+0.264 K<1 \quad K<\frac{0.632}{0.264}=2.39
$$

- So, $0<K<2.39$. (Same result as on pg. 4-8 using bilinear rule.)

EXAMPLE: Suppose that the characteristic equation for a closed-loop discrete-time system is given by the expression:

$$
a(z)=z^{3}-1.8 z^{2}+1.05 z-0.20=0
$$

- $a(1)=1-1.8+1.05-0.2=0.05>0$
- $(-1)^{3} a(-1)=-[-1-1.8-1.05-0.2]>0$
- $\left|a_{0}\right|=0.2<a_{3}=1$
- Jury array:

z^{0}	z^{1}	z^{2}	z^{3}
-0.2	1.05	-1.8	1
1	-1.8	1.05	-0.2
-0.96	1.59	-0.69	

$$
\begin{aligned}
& b_{0}=\left|\begin{array}{cc}
-0.2 & 1 \\
1 & -0.2
\end{array}\right|=-0.96 \quad b_{1}=\left|\begin{array}{cc}
-0.2 & -1.8 \\
1 & 1.05
\end{array}\right|=1.59 \\
& b_{2}=\left|\begin{array}{cc}
-0.2 & 1.05 \\
1 & -1.8
\end{array}\right|=-0.69
\end{aligned}
$$

- $\left|b_{0}\right|=0.96>\left|b_{2}\right|=0.69$ nut The system is stable.

4.4: Root-locus and Nyquist tests

- For cts.-time control, we examined the locations of the roots of the closed-loop system as a function of the loop gain K

$$
T(s)=\frac{K D(s) G(s)}{1+K D(s) G(s) H(s)} .
$$

- Let $L(s)=D(s) G(s) H(s)$. (The "loop transfer function").
- Developed rules for plotting the roots of the equation

$$
1+K \frac{b(s)}{a(s)}=0
$$

"Root Locus Drawing Rules."

- Applied them to plotting roots of

$$
1+K L(s)=0
$$

Now, we have the digital system:

- So, we let $L(z)=D(z) \overline{G H}(z)$.
- Poles are roots of $1+K L(z)=0$.
- This is exactly the same form as the Laplace-transform root locus. Plot roots in exactly the same way.

EXAMPLE:

$$
\overline{G H}(z)=\frac{0.368(z+0.717)}{(z-1)(z-0.368)} \quad D(z)=1
$$

numd $=0.368 *\left[\begin{array}{ll}1 & 0.717\end{array}\right]$;
dend=conv([1 -1],[1 -0.368]);
$d=t f($ numd, dend, -1);
rlocus(d);

The Nyquist test

- In continuous-time control we also used the Nyquist test to assess stability.

- The Nyquist "D" path encircles the entire (unstable) RHP.
- The Nyquist plot is a polar plot of $L(s)$ evaluated on the "D" path.
- Adjustments to "D" shape are made if pole on the $j \omega$-axis.
- The Nyquist test evaluated stability by looking at the Nyquist plot.
- $N=$ No. of CW encirclements of -1 in Nyquist plot.
- $P=$ No. of open-loop unstable poles (poles inside "D" shape).
- $Z=$ No. of closed-loop unstable poles.
- $Z=N+P, \quad Z=0$ for stable closed-loop system.

EXAMPLE:

- This gives:

$$
L(s)=\frac{1}{s(s+1)}
$$

- Pole at origin: Need detour $s=\rho e^{j \theta}, \rho \ll 1$.
- Resulting Nyquist map has infinite radius. Cannot draw to scale.
- No poles inside modified-"D" curve: $P=0$.
- $Z=N+P=0$ "

- Note that increasing the gain " K " only magnifies the entire plot. The -1 point is not encircled for $K>0$ (infinite gain margin).

Nyquist test for discrete systems

- Three different ways to do the Nyquist test for discrete systems.
- Based on three different representations of the characteristic eqn.

1. $1+L^{*}(s)=0 . \quad L=D \overline{G H}$
2. $1+L(z)=0$.
3. $1+L(w)=0$.
4. $1+L^{*}(s)=0$.

- We know that $L^{*}(s)$ is periodic in $j \omega_{s}$. Therefore, the "D" curve does not need to encircle the entire RHP to encircle all unstable poles. [If there were any, there would be an infinite number.]
- Modify "D" curve to be:

- Evaluate $L^{*}(s)$ on new contour and plot polar plot. Same Nyquist test as before.

2. $1+L(z)=0$.

- We can do the Nyquist test directly using z-transforms. The stable region is the unit circle. The z-domain Nyquist plot is done using a Nyquist curve which is the unit circle.
- Nyquist test changes because we are now encircling the STABLE region (albeit CCW).
- $Z=\#$ closed-loop unstable poles.
- $P=\#$ open-loop unstable poles.
- $N=\#$ CCW encirclements of -1 in Nyquist plot.
- $Z=P-N$.

- Probably difficult to evaluate $\left.L(z)\right|_{z=e^{j \theta}}$ for $-\pi \leq \theta \leq \pi$ unless using a digital computer.

3. $1+L(w)=0$.

- Now, we convert $L(z) \mapsto L(w)$

$$
L(w)=\left.L(z)\right|_{z=\frac{1+(T / 2) w}{1-(T / 2) w}}
$$

- Bilinear transform maps unit circle to $j \omega$-axis in ω-plane.
- Use standard continuous-time test in w-plane.

- Summary:

| Open-loop fn. | Range of variable | Rule |
| :--- | :--- | :--- | :--- |
| $\overline{G H}^{*}(s)$ | $s=j \omega, \quad-\omega_{s} / 2 \leq \omega \leq \omega_{s} / 2$ | $Z=P+N_{c w}$ |
| $\overline{G H}(z)$ | $z=e^{j \omega T}, \quad-\pi \leq \omega T \leq \pi$ | $Z=P-N_{c c w}=P+N_{c w}$ |
| $\overline{G H}(w)$ | $w=j \omega_{w}, \quad-\infty \leq \omega_{w} \leq \infty$ | $Z=P+N_{c w}$ |

- All three methods produce identical Nyquist plots.
- Note that the sampled system does not have ∞ gain margin ($a=0.418$, $G M=2.39$) and has smaller $P M$ than cts.-time system.

Real Axis

4.5: Bode methods

- Bode plots are an extremely important tool for analyzing and designing control systems.
- They provide a critical link between continuous-time and discrete-time control design methods.
- Recall:
- Bode plots are plots of frequency response of a system: Magnitude and Phase.
- In s-plane, $\left.H(s)\right|_{s=j \omega}$ is frequency response for $0 \leq \omega<\infty$.
- In z-plane, $\left.H(z)\right|_{z=e^{j \omega T}}$ is frequency response for $0 \leq \omega \leq \omega_{s} / 2$.
- Straight-line tools of s-plane analysis DON'T WORK! They are based on geometry and geometry has changed- $j \omega$-axis to z-unit circle.
- BUT in w-plane, $\left.H(w)\right|_{w=j \omega_{w}}$ is the frequency response for $0 \leq \omega_{w}<\infty$. Straight-line tools work, but frequency axis is warped.

PROCEDURE:

1. Convert $H(z)$ to $H(w)$ by $H(w)=\left.H(z)\right|_{z=\frac{1+(T / 2) w}{1-(T / 2) w} \text {. }}$.
2. Simplify expression to rational-polynomial in w.
3. Factor into zeros and poles in standard "Bode Form" (Refer to review notes).
4. Plot the response exactly the same way as an s-plane Bode plot.

Note: Plots are versus $\log _{10} \omega_{w} \quad \ldots \quad \omega_{w}=\frac{2}{T} \tan \left(\frac{\omega T}{2}\right)$. Can re-scale axis in terms if ω if we want.

EXAMPLE: Example seen before with $T=1$ second.

$$
\text { Let } G(z)=\frac{0.368 z+0.264}{z^{2}-1.368 z+0.368} .
$$

$(1,2)$

$$
\begin{aligned}
G(w) & =\frac{0.368\left[\frac{1+0.5 w}{1-0.5 w}\right]+0.264}{\left[\frac{1+0.5 w}{1-0.5 w}\right]^{2}-1.368\left[\frac{1+0.5 w}{1-0.5 w}\right]+0.368} \\
& =\frac{0.368(1+0.5 w)(1-0.5 w)+0.264(1-0.5 w)^{2}}{(1+0.5 w)^{2}-1.368(1+0.5 w)(1-0.5 w)+0.368(1-0.5 w)^{2}} \\
& =\frac{-0.0381(w-2)(w+12.14)}{w(w+0.924)} .
\end{aligned}
$$

(3)

$$
G\left(j \omega_{w}\right)=\frac{-\left(j \frac{\omega_{w}}{2}-1\right)\left(j \frac{\omega_{w}}{\frac{\omega_{2}}{12.14}}+1\right)}{j \omega_{w}\left(j \frac{\omega_{w}}{0.924}+1\right)} .
$$

(4)

- Gain margin and phase margin work the SAME way we expect.
- We have discussed frequency-response methods without verifying that discrete-time frequency response means the same thing as continuous-time frequency response.
- Verify

$$
X(z) \longrightarrow G(z) \longrightarrow Y(z)
$$

- Let $x[k]=\sin (\omega k T) \quad \ldots \quad X(z)=\frac{z \sin \omega T}{\left(z-e^{j \omega T}\right)\left(z-e^{-j \omega T}\right)}$.

$$
\begin{aligned}
Y(z) & =G(z) X(z) \\
& =\frac{G(z) z \sin \omega T}{\left(z-e^{j \omega T}\right)\left(z-e^{-j \omega T}\right)} .
\end{aligned}
$$

- Do partial-fraction expansion

$$
\frac{Y(z)}{z}=\frac{k_{1}}{z-e^{j \omega T}}+\frac{k_{2}}{z-e^{-j \omega T}}+Y_{g}(z) .
$$

- $Y_{g}(z)$ is the response due to the poles of $G(z)$. IF the system is stable, the response due to $Y_{g}(z) \rightarrow 0$ as $t \rightarrow \infty$.
- So, as $t \rightarrow \infty$ we say

$$
\begin{aligned}
\frac{Y_{s s}(z)}{z} & =\frac{k_{1}}{z-e^{j \omega T}}+\frac{k_{2}}{z-e^{-j \omega T}} \\
k_{1} & =\left.\frac{G(z) \sin \omega T}{z-e^{-j \omega T}}\right|_{z=e^{j \omega T}} \\
& =\frac{G\left(e^{j \omega T}\right) \sin \omega T}{e^{j \omega T}-e^{-j \omega T}} \\
& =\frac{G\left(e^{j \omega T}\right)}{2 j} \\
& =\frac{\left|G\left(e^{j \omega T}\right)\right| e^{j L G\left(e^{j \omega T}\right)}}{2 j}
\end{aligned}
$$

- Similarly,

$$
k_{2}=\frac{\left|G\left(e^{j \omega T}\right)\right| e^{-j \angle G\left(e^{j \omega T}\right)}}{2(-j)}=-\frac{\left|G\left(e^{j \omega T}\right)\right| e^{-j L G\left(e^{j \omega T}\right)}}{2 j} .
$$

- Combining and solving for $y_{s s}[k]$

$$
\begin{aligned}
y_{s s}[k] & =k_{1}\left(e^{j \omega T}\right)^{k}+k_{2}\left(e^{-j \omega T}\right)^{k} \\
& =\left|G\left(e^{j \omega T}\right)\right| \frac{e^{j \omega k T+j \angle G\left(e^{j \omega T}\right)}-e^{-j \omega k T-j \angle G\left(e^{j \omega T}\right)}}{2 j} \\
& =\left|G\left(e^{j \omega T}\right)\right| \sin \left(\omega k T+\angle G\left(e^{j \omega T}\right)\right) .
\end{aligned}
$$

- Sure enough, $\left|G\left(e^{j \omega T}\right)\right|$ is magnitude response to sinusoid, and $\angle G\left(e^{j \omega T}\right)$ is phase response to sinusoid.

Closed-loop frequency response

- We have looked at open-loop concepts and how they apply to closed loop systems ... our end product.
- Closed-loop frequency response usually calculated by computer:
$\frac{G(z)}{1+G(z)}$, for example.
- In general, if $\left|G\left(e^{j \omega T}\right)\right|$ large, $\left|T\left(e^{j \omega T}\right)\right| \approx 1$. If $\left|G\left(e^{j \omega T}\right)\right|$ small, $\left|T\left(e^{j \omega T}\right)\right| \approx\left|G\left(e^{j \omega T}\right)\right|$.
- Closed-loop bandwidth similar to open-loop bandwidth.
- If $P M=90^{\circ}$, then C.L. BW $=$ O.L. BW.
- If $P M=45^{\circ}$, then C.L. BW $=2 \times$ O.L. BW.

