

SQL Server 2008 and 2008 R2

end of support is coming

SQL Server 2008 and SQL Server 2008 R2 will no longer be supported by Microsoft

starting in July 2019. Avoid challenges and vulnerabilities caused by end of support.

Why should you upgrade?

Mitigate risks with platform security and compliance

There will be no access to critical security updates, opening the potential for business interruptions and

loss of data.

Modernize to innovate

Grow your environments with data, analytics and the cloud.

Upgrade to better cost efficiency

Maintaining legacy servers, firewalls, intrusion systems, and other tools can get expensive quickly.

SQL

More than an upgrade

With SQL Server 2017 you don’t just get an update—you get in-

memory performance across workloads, mission-critical high

availability, and built-in security features to help protect your data

at rest and in motion.

Learn more about SQL Server 2017

#1 OLTP performance1

#1 DW performance on 1TB2, 10TB3, and 30TB4

#1 OLTP price/performance5

#1 DW price/performance on 1TB2, 10TB3, and 30TB4

All TPC Claims as of 1/19/2018. 1http://www.tpc.org/4081; 2http://www.tpc.org/3331; 3http://www.tpc.org/3326; 4http://www.tpc.org/3321; 5http://www.tpc.org/4080

End of support options for SQL Server 2008 and 2008 R2

Take advantage of the Azure
Hybrid Benefit

Save when you migrate your SQL Server 2008
or 2008 R2 workloads to Azure SQL Database
with the Azure Hybrid Benefit for SQL Server.
Learn more.

Extended Security Updates for
on-premises environments

Customers with Software Assurance or subscription
licenses may purchase Extended Security Updates
for three years of security updates for SQL Server
2008 and 2008 R2. Learn more.

Free Extended Security Updates
in Azure

Lift and shift your SQL Server 2008 workloads to
Azure with no application code changes. This
gives you more time to plan for end of support.
Learn more.

Learn more about SQL Server 2008 and 2008 R2 end of support

© 2018 Microsoft Corporation. All rights reserved.

https://www.microsoft.com/en-us/sql-server/sql-server-2017
https://azure.microsoft.com/en-us/pricing/hybrid-benefit/
http://download.microsoft.com/download/A/3/F/A3F0908A-0FD8-494C-82BC-E75F313F3FAD/Extended_Security_Updates_for_Windows_Server_2008_and_SQL_Server_2008_End_of_Service.pdf
http://download.microsoft.com/download/A/3/F/A3F0908A-0FD8-494C-82BC-E75F313F3FAD/Extended_Security_Updates_for_Windows_Server_2008_and_SQL_Server_2008_End_of_Service.pdf
https://www.microsoft.com/en-us/sql-server/sql-server-2008

Keep learning from the inside out—and save!

Save 50% when you purchase the complete eBook edition of
SQL Server 2017 Administration Inside Out by William Assaf, Randolph
West, Sven Aelterman, and Mindy Curnutt.

Visit microsoftpressstore.com/SQLAdmin to select title and use code
SQLADMIN during checkout to apply discount. The eBook is delivered
in EPUB, PDF, and MOBI to read on your preferred device.

Sign up to receive more special offers from Microsoft Press at
microsoftpressstore.com/newsletters

Discount code valid on eBook purchase from microsoftpressstore.com and cannot be combined with another offer.
Microsoft Press products are published, marketed, and distributed by Pearson.

SQL Server 2017
Administration Inside Out
Second Edition

William Assaf
Randolph West
Sven Aelterman
Mindy Curnutt

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2018 by Pearson Education Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms, and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/. No patent liability is
assumed with respect to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is
any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-1-5093-0521-6
ISBN-10: 1-5093-0521-1

Library of Congress Control Number: 2017961300

Printed and bound in the United States of America.

1 18

Trademarks
Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are trademarks
of the Microsoft group of companies. All other marks are property of their respective owners.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness
is implied. The information provided is on an “as is” basis. The authors, the publisher, and Microsoft Corporation
shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising
from the information contained in this book or programs accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief: Greg Wiegand
Acquisitions Editor: Trina MacDonald
Development Editor: Mark Renfrow
Technical Editor: Louis Davidson
Managing Editor: Sandra Schroeder
Senior Project Editor: Tracey Croom
Editorial Production: Octal Publishing, Inc.
Copy Editor: Octal Publishing, Inc.
Indexer: Octal Publishing, Inc.
Proofreader: Octal Publishing, Inc.
Cover Designer: Twist Creative, Seattle

http://www.pearsoned.com/permissions/
https://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

To David III
for inspiring and enabling STEM careers for many, including my own.

—William Assaf

To Marinus and Trixie
for putting up with the lies of “almost done,” and sharing my lap with a MacBook.

—Randolph West

To Ebony, Edward, and Sofia
in recognition of their sacrifices, support, and endless love.

—Sven Aelterman

To Chris
For believing in me more than I even believed in myself.

—Mindy Curnutt

This page intentionally left blank

 v

Contents at a glance

Chapter 1
Getting started with SQL Server tools 1

Chapter 2
Introducing database server components 45

Chapter 3
Designing and implementing a database
infrastructure .79
infrastructure

Chapter 4
Provisioning databases . 127

Chapter 5
Provisioning Azure SQL Database 197

Chapter 6
Administering security and permissions 241

Chapter 7
Securing the server and its data 291

Chapter 8
Understanding and designing tables 333

Chapter 9
Performance tuning SQL Server 383

Chapter 10
Understanding and designing indexes 429

Chapter 11
Developing, deploying, and managing data
recovery . 459

Chapter 12
Implementing high availability and disaster
recovery . 493

Chapter 13
Managing and monitoring SQL Server 557

Chapter 14
Automating SQL Server administration 607

This page intentionally left blank

 vii

Table of contents

Foreword . xvii

Introduction . xix
Who this book is for .xix

Assumptions about you .xix
How this book is organized . xx
About the companion content . xxii
Acknowledgments. xxii
Support and feedback .xxiv

Errata & support .xxiv
Stay in touch .xxiv

Chapter 1 Getting started with SQL Server tools . 1
SQL Server setup . 1

Installing SQL Server by using the Installation Center . 2
Planning before an upgrade or installation. 3
Installing or upgrading SQL Server . 6

Tools and services installed with the SQL Server Database Engine . 7
Machine Learning Services . 7
Data Quality Services . 7
Command-line interface . 9
SQL Server Configuration Manager .11

Performance and reliability monitoring tools. 12
Database Engine Tuning Advisor . 12
Extended events. 13
Management data warehouse. 15

SQL Server Reporting Services . 18
Installation . 19
Report Services Configuration Manager . 20

viii Table of contents

SQL Server Management Studio. 21
Releases and versions . 21
Installing SQL Server Management Studio . 22
Upgrading SQL Server Management Studio . 22
Features of SQL Server Management Studio. 23
Additional tools in SQL Server Management Studio . 29
Error logs . 32
Activity Monitor . 33
SQL Server Agent . 37

SQL Server Data Tools . 41
SQL Server Integration Services . 41

 A note on deprecation .44

Chapter 2 Introducing database server components .45
Memory . 45

Understanding the working set. .46
Caching data in the buffer pool .46
Caching plans in the procedure cache . 47
Lock pages in memory . 47
Editions and memory limits .48

Central Processing Unit . 49
Simultaneous multithreading . 49
Non-Uniform Memory Access . 50
Disable power saving everywhere . 51

Storing your data . 51
Types of storage . 52
Configuring the storage layer . 53

Connecting to SQL Server over the network. 57
Protocols and ports . 58
Added complexity with Virtual Local-Area Networks . 58

High availability concepts . 59
Why redundancy matters . 60
Disaster recovery . 60
Clustering . 61
The versatility of Log Shipping . 63
Always On availability groups .64
Read-scale availability groups . 66
Distributed availability groups. 67
Basic availability groups. 67
Improve redundancy and performance with NIC teaming. 67

Securing SQL Server . 68
Integrated authentication and Active Directory . 68
Azure Active Directory . 71

Abstracting hardware with virtualization. 73
Resource provisioning for VMs . 74
When processors are no longer processors. 75
The network is virtual, too. 77

Summary . 77

 Table of contents ix

Chapter 3 Designing and implementing a database infrastructure 79
Physical database architecture . 79

Data files and filegroups . 80
Recording changes in the transaction log . 85
Table partitioning . 92
Data compression . 93
Managing the temporary database . 96

Configuration settings . 98
Managing system usage by using Resource Governor . 98
Configuring the page file (Windows). 99
Taking advantage of logical processors by using parallelism . 100
SQL Server memory settings . 102
Carving up CPU cores using an affinity mask . 105
File system configuration . 107

Azure and the Data Platform . 110
Infrastructure as a service . 110
Platform as a service . 116
Hybrid cloud with Azure . 121

Chapter 4 Provisioning databases . 127
What to do before installing SQL Server . 127

Deciding on volume usage . 127
Important SQL Server volume settings . 130
SQL Server editions . 131

Installing a new instance . 134
Planning for multiple SQL Server instances . 134
Installing a SQL Server instance. 134
Installing options and features . 137
Installing other core features . 142
“Smart Setup” . 146
Setting up logging. 147
Automating SQL Server Setup by using configuration files . 147

Post-installation server configuration . 151
Post-installation checklist . 151

Installing and configuring features . 164
SSISDB initial configuration and setup . 164
SQL Server Reporting Services initial configuration and setup 165
SQL Server Analysis Services initial configuration and setup . 168

Adding databases to a SQL Server instance . 169
Considerations for migrating existing databases. 169
Moving existing databases . 175
Creating a database . 177
Database properties and options . 181

Moving and removing databases . 189
Moving user and system databases . 189
Database actions: offline versus detach versus drop . 191
Single-user mode. 195

x Table of contents

Chapter 5 Provisioning Azure SQL Database . 197
Azure and database-as-a-service concepts . 198

Database-as-a-service . 198
Managing Azure: The Azure portal and PowerShell. 199
Azure governance .200
Logical SQL Servers . 201
Cloud-first .202
Database Transaction Unit .202
Resource scalability .203

Provisioning a logical SQL server .204
Creating a server using the Azure portal .205
Creating a server by using PowerShell .206
Establishing a connection to your server .207
Deleting a server .209

Provisioning a database in Azure SQL Database .209
Creating a database using the Azure portal . 210
Creating a database by using PowerShell . 211
Creating a database by using Azure CLI . 212
Creating a database by using T-SQL . 213
Selecting a pricing tier and service objective . 213
Scaling up or down . 214

Provisioning an elastic pool . 214
Limitations of Azure SQL Database . 215

Database limitations . 215
Other SQL Server services . 216
Overcoming limitations with managed instances . 218

Security in Azure SQL Database . 218
Security features shared with SQL Server 2017 . 219
Server and database-level firewall . 219
Access control using Azure AD .222
Role-Based Access Control .223
Auditing and threat detection .224

Preparing Azure SQL Database for disaster recovery. .229
Understanding default disaster recovery features .229
Manually backing up a database .230
Configuring geo-replication .232
Setting up failover groups. .235
Using Azure Backup for long-term backup retention .237

Moving to Azure SQL Database .239

Chapter 6 Administering security and permissions . 241
Logins and users. 241

Different types of authentication .242
Solving orphaned SIDs .246
Preventing orphaned SIDs .249
Factors in securing logins .249
Login security .254
Contained databases .256

 Table of contents xi

Permissions in SQL Server .257
Understanding Permissions for Data Definition Language and257
Data Manipulation Language
Modifying permissions. .259
Granting commonly needed permissions . 261
Ownership versus authorization .265
Understanding views, stored procedures, and function permissions267
Understanding server roles .273
Understanding database roles. .278
Using the Dedicated Administrator Connection .283

Moving SQL Server logins and permissions .285
Moving logins by using SQL Server Integration Services (SQL Server only)286
Moving Windows-authenticated logins by using T-SQL (SQL Server only)287
Moving SQL Server–authenticated logins by using T-SQL (SQL Server only)287
Moving server roles by using T-SQL (SQL Server only). .288
Moving server permissions by using T-SQL (SQL Server only).288
Moving Azure SQL Database logins. .289
Other security objects to move .289
Alternative migration approaches .290

Chapter 7 Securing the server and its data . 291
Introducing security principles and protocols .292

Securing your environment with defense in depth .292
The difference between hashing and encryption .294
A primer on protocols and transmitting data .296
Symmetric and asymmetric encryption .300
Digital certificates . 301

Encryption in SQL Server .302
Data protection from the OS .303
The encryption hierarchy in detail .303
Using EKM modules with SQL Server. .304
Master keys in the encryption hierarchy. .306
Encrypting data by using TDE .308
Protecting sensitive columns with Always Encrypted. 310

Securing data in motion . 314
Securing network traffic with TLS . 314
Row-level security . 315
Dynamic data masking. 317
Azure SQL Database . 318

Auditing with SQL Server and Azure SQL Database . 319
SQL Server Audit . 319
Auditing with Azure SQL Database .326

Securing Azure infrastructure as a service .326
Network Security Group .327
User-defined routes and IP forwarding .328
Additional security features in Azure networking. .330

xii Table of contents

Chapter 8 Understanding and designing tables .333
Reviewing table design .333

Generic data types. .333
Specialized data types .339
Keys and relationships .345
Constraints .346
Sequences .347
User-defined data types and user-defined types .350
Sparse columns. .352
Computed columns. .352

Special table types. .354
System-versioned temporal tables. .354
Memory-optimized tables .357
PolyBase external tables . 361
Graph tables .362

Storing BLOBs .367
Understanding FILESTREAM. .368
FileTable .369

Table partitioning .370
Horizontally partitioned tables and indexes . 371
Vertical partitioning .377

Capturing modifications to data .377
Using change tracking .378
Using change data capture. .380
Comparing change tracking, change data capture, and temporal tables 381

Chapter 9 Performance tuning SQL Server
 .383
Understanding isolation levels and concurrency. .383

Understanding how concurrent sessions become blocked .386
Stating the case against READ UNCOMMITTED (NOLOCK). .390
Changing the isolation level within transactions . 391
Understanding the enterprise solution to concurrency: SNAPSHOT393
Understanding on-disk versus memory-optimized concurrency398

Understanding delayed durability .400
Delayed durability database options. 401
Delayed durability transactions. 401

Understanding execution plans . 401
Understanding parameterization and “parameter sniffing” .402
Understanding the Procedure Cache . 404
Analyzing cached execution plans in aggregate .405
Retrieving execution plans in SQL Server Management Studio408

Using the Query Store feature . 413
Initially configuring the query store. 415
Using query store data in your troubleshooting . 416

Understanding automatic plan correction . 418

 Table of contents xiii

Understanding execution plan operators . 419
Interpreting graphical execution plans . 419
Forcing a parallel execution plan .425

Understanding parallelism .425

Chapter 10 Understanding and designing indexes .429
Designing clustered indexes. .429

Choosing a proper clustered index key. .429
The case against intentionally designing heaps .433

Designing nonclustered indexes. .434
Understanding nonclustered index design .435
Creating “missing” nonclustered indexes . 441
Understanding and proving index usage statistics .445

Designing Columnstore indexes . 446
Demonstrating the power of Columnstore indexes . 448
Using compression delay on Columnstore indexes. .449

Understanding indexing in memory-optimized tables .449
Understanding hash indexes for memory-optimized tables .450
Understanding nonclustered indexes for memory-optimized tables. 451
Moving to memory-optimized tables . 451

Understanding other types of indexes .452
Understanding full-text indexes .452
Understanding spatial Indexes .452
Understanding XML indexes .453

Understanding index statistics .453
Manually creating and updating statistics .454
Automatically creating and updating statistics .454
Important performance options for statistics. .455
Understanding statistics on memory-optimized tables .456
Understanding statistics on external tables .457

Chapter 11 Developing, deploying, and managing data recovery 459
The fundamentals of data recovery .460

A typical disaster recovery scenario. .460
Losing data with the RPO .462
Losing time with the RTO. .463
Establishing and using a run book .463
An overview of recovery models. 464

Understanding backup devices. .470
Backup disk .470
Backup sets and media. .470
Physical backup device. .472

Understanding different types of backups .472
Full backups .473
Transaction log backups . 474
Differential backups .475
File and filegroup backups .477
Additional backup options .477

xiv Table of contents

Creating and verifying backups .478
Creating backups .479
Verifying backups .480
Restoring a database .482
Restoring a piecemeal database .486

Defining a recovery strategy .487
A sample recovery strategy for a DR scenario .488
Strategies for a cloud/hybrid environment .490

Chapter 12 Implementing high availability and disaster recovery 493
Overview of high availability and disaster recovery technologies in SQL Server493

Understanding log shipping. .494
Understanding types of replication .497
Understanding the capabilities of failover clustering. .500
Understanding the capabilities of availability groups .503
Comparing HA and DR technologies. .506

Configuring Failover Cluster Instances .507
Configuring a SQL Server FCI . 510

Configuring availability groups . 513
Comparing different cluster types and failover . 514
Creating WSFC for use with availability groups . 519
Understanding the database mirroring endpoint .520
Configuring the minimum synchronized required nodes .520
Choosing the correct secondary replica availability mode. 521
Understanding the impact of secondary replicas on performance522
Understanding failovers in availability groups .524
Seeding options when adding replicas .525
Additional actions after creating an availability group .529
Reading secondary database copies . 531
Implementing a hybrid availability group topology. 537

Configuring an availability group on Red Hat Linux .538
Installation requirements .538
Setting up an availability group .539
Setting up the cluster .545

Administering availability groups. .548
Analyzing DMVs for availability groups .548
Analyzing wait types for availability groups .554
Analyzing extended events for availability groups .555
Alerting for availability groups .556

Chapter 13 Managing and monitoring SQL Server .557
Detecting database corruption . 557

Setting the database’s page verify option . 557
Using DBCC CHECKDB .558
Repairing database data file corruption .560
Recovering the database transaction log file corruption .560
Database corruption in databases in Azure SQL Database. 561

 Table of contents xv

Maintaining indexes and statistics . 561
Changing the Fill Factor property when beneficial . 561
Monitoring index fragmentation .563
Rebuilding indexes .564
Reorganizing indexes .568
Updating index statistics .569
Reorganizing Columnstore indexes . 571

Maintaining database file sizes . 571
Understanding and finding autogrowth events. .573
Shrinking database files . 574

Monitoring databases by using DMVs .575
Sessions and requests. 576
Understanding wait types and wait statistics .577

Reintroducing extended events .584
Viewing extended events data .586
Using extended events to detect deadlocks .589
Using extended events to detect autogrowth events .590
Securing extended events. 591

Capturing Windows performance metrics with DMVs and data collectors592
Querying performance metrics by using DMVs. .592
Querying performance metrics by using Performance Monitor595
Monitoring key performance metrics .596

Protecting important workloads using Resource Governor. .600
Configuring the Resource Governor classifier function . 601
Configuring Resource Governor pools and groups. .602
Monitoring pools and groups .603

Understanding the new servicing model .604

Chapter 14 Automating SQL Server administration .607
Components of SQL Server automated administration. .607

Database Mail .608
SQL Server Agent. 612

Configuring SQL Server Agent jobs . 612
Maintaining SQL Server .623

Basic “care and feeding” of SQL Server .623
Using SQL Server Maintenance Plans .625

Maintenance Plan report options .632
Covering databases with the Maintenance Plan .633
Building Maintenance Plans by using the design surface in SQL Server.634
Management Studio
Backups on secondary replicas in availability groups. .636

Strategies for administering multiple SQL Servers .638
Master and Target servers for SQL Agent jobs .638
SQL Server Agent event forwarding .642
Policy-Based Management. .643
Evaluating policies and gathering compliance data .643

Using PowerShell to automate SQL Server administration. .648

xvi Table of contents

PowerShell basics .649
Installing the PowerShell SQLSERVER module . 651
Using PowerShell with SQL Server .652
Using PowerShell with availability groups .656
Using PowerShell with Azure .660

Index .665

About the authors . .679

About the Foreword author .680

 xvii

Foreword
The world as we know it is being inundated with data. We live in a culture in which almost every
individual has at least two devices, a smart phone, and a laptop or computer of some sort.
Everything we do on these devices is constantly collecting, sharing, or producing data. This
data is being used not only to help organizations make smarter decisions, but also to shape and
transform how we as a society live, work, make decisions, and sometimes think.

This massive explosion can be attributed to the technological transformation that every busi-
ness and nearly every industry is undergoing. Every click or purchase by an individual is now
triggering some event that triggers another event that likely amounts to hundreds or possibly
thousands of rows of data. Multiply this by every person in the world and now you have an
unprecedented amount of stored data that no one could have ever imagined. Now, not only
must organizations store this data, but also ensure that this data—this massive amount of
data—is readily available for consumption at the click of a button or the swipe of a screen.

This is where the database comes into play. Databases are the backbone or back end to possibly
every aspect of business today. Back when Ted Codd, the father of the relational database, came
up with this seminal idea, he probably had no idea how widespread their use would be today.
Initially, database usage was intended to store data and retrieve data. The primary purpose was
to simply ensure the security, availability, and reliability of any information written by on-prem-
ises applications at varying scales.

Today, all of that has changed. Data must be available 24 hours per day, 7 days each week, pri-
marily via the internet instead of just by way of on-premises applications. Microsoft SQL Server
2017 was designed with all of this in mind. It can support high-volume Online Transactional
Processing (OLTP) databases and very large Online Analytical Processing (OLAP) systems out of
the box. And, by taking advantage of Microsoft Azure, developers can grow and scale databases
dynamically and transparently behind the scenes to accommodate planned and unplanned
spikes in demand and resource utilization. In other words, the latest version of SQL Server was
built to not only accommodate this new world of data, but to push the limits of what organiza-
tions are doing today and what they will be doing tomorrow and deeper into the future.

Close your eyes and imagine a world in which a DBA can configure a database system to auto-
matically increase or decrease resource utilization based on end-user application usage. But
that’s not all. What if the relational database management system (RDBMS) could automati-
cally tune performance based on usage patterns? All of this is now possible with SQL Server
and Azure SQL Database. By using features such as the Query Store and Elastic Database Pools,
DBAs can proactively design solutions that will scale and perform to meet any application
Service-Level Agreement.

xviii Foreword

In addition to world-class performance, these databases also include security and high-availability
features that are unparalleled to any other RDBMS. Organizations can build mission-critical
secure applications by taking advantage of SQL Server out-of-the-box built-in features without
purchasing additional software. These features are available both in the cloud and on-premises
and can be managed using SQL Server Management Studio, SQL Server Data Tools, and SQL
Operations Studio. All three tools are available to download for free, and will be familiar to
DBAs and database developers.

Throughout this book, the authors highlight many of the capabilities that make it possible for
organizations to successfully deploy and manage database solutions using a single platform.
If you are a DBA or database developer looking to take advantage of the latest version of SQL
Server, this book encompasses everything needed to understand how and when to take advan-
tage of the robust set of features available within the product.

This book is based on the skills of a group of seasoned database professionals with several
decades experience in designing, optimizing, and developing robust database solutions, all
based on SQL Server technology. It is written for experienced DBAs and developers, aimed at
teaching the advanced techniques of SQL Server.

SQL Server, Microsoft’s core database platform, continues its maturity from supporting some
of the smallest departmental tasks to supporting some the largest RDBMS deployments in the
world. Each release not only includes capabilities that enhance its predecessor, but also boasts
features that rival and exceed those of many competitors.

This trend continues with SQL Server 2017. This release, just like all past releases, continues
to add capabilities to an already sophisticated and reliable toolkit. Features include a secure,
elastic, and scalable cloud system; advanced in-memory technologies; faster and consolidated
management and development experiences; and continued growth and enhancements in the
area of high availability and disaster recovery. In addition, concerted efforts have been focused
on making the number one secure RDBMS in the world even more secure, by adding capabili-
ties such as row-level security, Always Encrypted, and dynamic data masking. Finally, and as
always, performance is at the center of this release. With enhancements to the Query Store,
DBAs can take a more proactive approach to monitoring and tuning performance.

All in all, this book is sort of like an “Inside Out” look of each of the core components of SQL
Server 2017, with a few excursions into the depths of some very specific topics. Each chapter
first provides and overview of the topic and then delves deeper into that topic and any cor-
responding related topics. Although it’s impossible to cover every detail of every Transact-SQL
statement, command, feature or capability, this book provides you with a comprehensive look
into SQL Server 2017. After reading each page of this book, you will be able implement a cloud-
based or on-premises scalable, performant, secure, and reliable database solution using SQL
Server 2017.

Patrick LeBlanc, Microsoft

 xix

Introduction
The velocity of change for the Microsoft SQL Server DBA has increased this decade. The span
between the releases of SQL Server 2016 and 2017 was only 16 months, the fastest new release
ever. Gone are the days when DBAs had between three to five years to soak in and adjust to new
features in the engine and surrounding technologies.

This book is written and edited by SQL Server experts with two goals in mind: to deliver a solid
foundational skillset for all of the topics covered in SQL Server configuration and administra-
tion, and also to deliver awareness and functional, practical knowledge for the dramatic number
of new features introduced in SQL Server 2016 and 2017. We haven’t avoided new content—
even content that stretched the boundaries of writing deadlines with late-breaking new releases.
You will be presented with not only the “how” of new features, but also the “why” and the
“when” for their use.

Who this book is for
SQL Server administration was never the narrow niche skillset that our employers might have
suspected it was. Even now it continues to broaden, with new structures aside from the tradi-
tional rowstore, such as Columnstore and memory-optimized indexes, or new platforms such as
Microsoft Azure SQL Database platform as a service (PaaS) and Azure infrastructure as a service
(IaaS). This book is for the DBAs who are unafraid to add these new skillsets and features to their
utility belt, and to give courage and confidence to those who are hesitant. SQL Server adminis-
trators should read this book to become more prepared and aware of features when talking to
their colleagues in application development, business intelligence, and system administration.

Assumptions about you
We assume that you have some experience and basic vocabulary with administering a recent
version of SQL Server. You might be curious, preparing, or accomplished with Microsoft
Certifications for SQL Server. DBAs, architects, and developers can all benefit from the content
provided in this book, especially those looking to take their databases to the cloud, to reach
heights of performance, or to ensure the security of their data in an antagonistic, networked
world.

This book mentions some of the advanced topics that you’ll find covered in more detail else-
where (such as custom development, business intelligence design, data integration, or data
warehousing).

xx Introduction

Book Features
These are the book’s signature tips. In these tips, you’ll get the straight scoop on what’s going
on with the software or service—inside information about why a feature works the way it does.
You’ll also find field-tested advice and guidance as well as details that give you the edge on
deploying and managing like a pro.

How this book is organized
This book gives you a comprehensive look at the various features you will use. It is structured in
a logical approach to all aspects of SQL Server 2017 Administration.

Chapter 1, “Getting started with SQL Server tools” gives you a tour of the tooling you need,
from the installation media to the free downloads, not the least of which is the modern, rapidly
evolving SQL Server Management Studio. We also cover SQL Server Data Tools, Configuration
Manager, performance and reliability monitoring tools, provide an introduction to PowerShell,
and more.

Chapter 2, “Introducing database server components,” introduces the working vocabulary and
concepts of database administration, starting with hardware-level topics such as memory, pro-
cessors, storage, and networking. We then move into high availability basics (much more on
those later), security, and hardware virtualization.

Chapter 3, “Designing and implementing a database infrastructure” introduces the architecture
and configuration of SQL Server, including deep dives into transaction log virtual log files (VLFs),
data files, in-memory Online Transaction Processing (OLTP), partitioning, and compression. We
spend time with TempDB and its optimal configuration, and server-level configuration options.
Here, we also cover running SQL Server in Azure virtual machines or Azure SQL databases as
well as hybrid cloud architectures.

Chapter 4, “Provisioning databases” is a grand tour of SQL Server Setup, including all the
included features and their initial installation and configuration. We review initial configura-
tions, a post-installation checklist, and then the basics of creating SQL Server databases, includ-
ing database-level configuration options for system and user databases.

Chapter 5, “Provisioning Azure SQL Database,” introduces Microsoft’s SQL Server database-as-
a-service (DBaaS) offering. This Azure cloud service provides a database service with a very high
degree of compatibility with SQL Server 2017. You will read about the concepts behind Azure
SQL Database, learn how to create databases, and perform common management tasks for
your databases.

Chapter 6, “Administering security and permissions” begins with the basics of authentication,
the configuration, management, and troubleshooting of logins and users. Then, we dive into
permissions, including how to grant and revoke server and database-level permissions and role
membership, with a focus on moving security from server to server.

 Introduction xxi

Chapter 7, “Securing the server and its data” takes the security responsibilities of the SQL Server
DBA past the basics of authentication and permissions and discusses advanced topics including
the various features and techniques for encryption, Always Encrypted, and row-level security.
We discuss security measures to be taken for SQL Server instances and Azure SQL databases as
well as the Enterprise-level SQL Server Audit feature.

Chapter 8, “Understanding and designing tables,” is all about creating SQL Server tables, the
object that holds data. In addition to covering the basics of table design, we cover special table
types and data types in-depth. In this chapter, we also demonstrate techniques for discovering
and tracking changes to data.

Chapter 9, “Performance tuning SQL Server” dives deep into isolation and concurrency options,
including READ COMMITTED SNAPSHOT ISOLATION (RCSI), and why your developers shouldn’t
be using NOLOCK. We review execution plans, including what to look for, and the Query Store
feature that was introduced in SQL Server 2016 and improved in SQL Server 2017.

Chapter 10, “Understanding and designing indexes” tackles performance from the angle of
indexes, from their creation, monitoring, and tuning, and all the various forms of indexes at our
disposal, past clustered and nonclustered indexes and into Columnstore, memory-optimized
hash indexes, and more. We review indexes and index statistics in detail, though we cover their
maintenance later on in Chapter 13.

Chapter 11, “Developing, deploying, and managing data recovery” covers the fundamentals of
database backups in preparation for disaster recovery scenarios, including a backup and recov-
ery strategy appropriate for your environment. Backups and restores in a hybrid environment,
Azure SQL Database recovery, and geo-replication are important assets for the modern DBA,
and we cover those, as well.

Chapter 12, “Implementing high availability and disaster recovery” goes beyond backups and
into strategies for disaster recovery from the old (log shipping and replication) to the new
(availability groups), including welcome new enhancements in SQL Server 2017 to support
cross-platform and clusterless availability groups. We go deep into configuring clusters and
availability groups on both Windows and Linux.

Chapter 13, “Managing and monitoring SQL Server” covers the care and feeding of SQL Server
instances, including monitoring for database corruption, monitoring database activity, and
index fragmentation. We dive into extended events, the superior alternative to traces, and also
cover Resource Governor, used for insulating your critical workloads.

Chapter 14, “Automating SQL Server administration” includes an introduction to PowerShell,
including features available in PowerShell 5.0. We also review the tools and features needed to
automate tasks to your SQL Server, including database mail, SQL Server Agent jobs, Master/
Target Agent jobs, proxies, and alerts. Finally, we review the vastly improved Maintenance Plans
feature, including what to schedule and how.

xxii Introduction

About the companion content
We have included this companion content to enrich your learning experience. You can down-
load this book’s companion content from the following page:

https://aka.ms/SQLServ2017Admin/downloads

The companion content includes helpful Transact-SQL and PowerShell scripting, as mentioned
in the book, for easy reference and adoption into your own toolbox of scripts.

Acknowledgments
From William Assaf:

I’d like to thank the influencers and mentors in my professional career who affected my
trajectory, and to whom I remain grateful for technical and nontechnical lessons learned. In no
particular order, I’d like to thank Connie Murla, David Alexander, Darren Schumaker, Ashagre
Bishaw, Charles Sanders, Todd Howard, Chris Kimmel, Richard Caronna, and Mike Huguet.
There’s definitely a special love/hate relationship developed between an author and a tech
editor, but I couldn’t have asked for a better one than Louis Davidson. Finally, from user groups
to SQLSaturdays to roadshow presentations to books, I am indebted to my friend Patrick Leblanc,
who climbed the ladder and unfailingly turned to offer a hand and a hug.

From Randolph West:

In June 2017, I told my good friend Melody Zacharias that I’d like to finish at least one of the
many books I’ve started before I die. She suggested that I might be interested in contributing to
this one. Piece of cake, I thought.

I have seven more gray hairs now. Seven!

I would like to thank Melody for recommending me in her stead, my husband for giving me
space at the kitchen counter to write, and my dog Trixie for much needed distraction.

Trina, William, Louis, Sven and Mindy have been a great support as well, especially during the
Dark Times.

This book would not be possible without the contributions of everyone else behind the scenes,
too. Writing a book of this magnitude is a huge endeavour. (So help me if “endeavour” is the
one word I get to spell the Canadian way!)

https://aka.ms/SQLServ2017Admin/downloads

 Introduction xxiii

From Sven Aelterman:

I met William Assaf several years ago when I spoke at the Baton Rouge SQLSaturday. I have
been back to this event many times since then and enjoyed preceding the Troy University
Trojans’ victory over Louisiana State University. (This just added in case the actual college foot-
ball game doesn’t make it in the history books. At least it will be recorded here.)

I am grateful for William’s invitation to contribute two chapters to this book. William made
a valiant attempt to prepare me for the amount of work “just” two chapters would be. Yet,
I underestimated the effort. If it weren’t for his support and that of Randolph West, techni-
cal editor Louis Davidson, editor Trina Macdonald, and even more people behind the scenes,
the space for this acknowledgment might have been saved. They were truly a great team and
valued collaborators. Without hesitation, I would go on the journey of book writing again with
each of them.

My children, Edward and Sofia, and my wife, Ebony, have experienced firsthand that SQL Server
can slow down time. “About two months” must have felt to them like months with 60 days each.
I thank them for their patience while they had to share me with Azure and various table types. I
hope that maybe my children will be inspired one day to become authors in their career fields.

Finally, I’d like to thank my coworkers at Troy University for inspiring me to do my best work.
Working in a public higher education institution has some challenges, but the environment is
so conducive to intellectual growth that it makes up for each challenge and then some.

From Mindy Curnutt:

I would like to thank Patrick LeBlanc for inviting me to participate in the creation of this book.
Thanks also to Tracy Boggiano, for an amazing amount of help pulling together much of
the chapter about automating administration. She’s an MVP in my eyes! To everyone in the
2016-2017 TMW DBA Services “Team Unicorn”: Eric Blinn, Lisa Bohm, Dan Andrews, Vedran
Ikonic, and Dan Clemens, thank you for your proof reading and feedback. Thanks to my mom
Barbara Corry for always swooping in to help with just about anything I needed. Of course, I
couldn’t have done any of this without the support of my husband, Chris Curnutt. He is always
supportive despite long work hours, phone conversations with strange acronyms, and travel,
he’s also the love of my life. Last but not least, thanks to our two children, Riley and Kimball,
who have supported and encouraged me in more ways than I can count.

xxiv Introduction

Support and feedback
The following sections provide information on errata, book support, feedback, and contact
information.

Errata & support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

https://aka.ms/SQLServ2017Admin/errata

If you discover an error that is not already listed, please submit it to us at the same page. If you
need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
https://support.microsoft.com.

Stay in touch
Let’s keep the conversation going! We’re on Twitter at http://twitter.com/MicrosoftPress.

https://aka.ms/SQLServ2017Admin/errata
mailto:mspinput@microsoft.com
https://support.microsoft.com
http://twitter.com/MicrosoftPress

 45

CHAPTER 2

Introducing database server
components

In this chapter, we cover the components that make up a typical database infrastructure. This
chapter is introductory; the chapters that follow provide more detail about designing, imple-
menting, and provisioning databases.

Although Microsoft SQL Server is new to Linux, Microsoft has, as much as possible, crafted it to
work the same way that it does on Windows. We highlight places where there are differences.

No matter which configurations you end up using, there are four basic parts to a database
infrastructure:

●● Memory

●● Processor

●● Permanent storage

●● Network

We also touch on a couple of high availability offerings, including improvements to availability
groups in SQL Server 2017. We then look at an introduction to security concepts, including ways
to access instances of SQL Server on-premises with Windows and Linux, and Microsoft Azure
SQL Database. Finally, we take a brief look at virtualization.

Memory
SQL Server is designed to use as much memory as it needs, and as much as you give it. By
default, the upper limit of memory that SQL Server can access, is limited only by the physical
Random Access Memory (RAM) available to the server, or the edition of SQL Server you’re
running, whichever is lower.

Memory .45

Central Processing Unit .49

Storing your data . 51

Connecting to SQL Server over the network 57

High availability concepts . 59

Securing SQL Server . 68

Abstracting hardware away with virtualization 73

CH
A

PT
ER

 2

46 Chapter 2 Introducing database server components

Understanding the working set
The physical memory made available to SQL Server by the operating system (OS), is called the
working set. This working set is broken up into several sections by the SQL Server memory man-
ager, the two largest and most important ones being the buffer pool and the procedure cache
(also known as the plan cache).

In the strictest sense, “working set” applies only to physical memory. However, as we will see
shortly, the buffer pool extension blurs the lines.

We look deeper into default memory settings in Chapter 3, in the section, “Configuration
settings.”

Caching data in the buffer pool
For best performance, you cache data in memory because it’s much faster to access data
directly from memory than storage.

The buffer pool is an in-memory cache of 8-KB data pages that are copies of pages in the data-
base file. Initially the copy in the buffer pool is identical, but changes to data are applied to this
buffer pool copy (and the transaction log) and then asynchronously applied to the data file.

When you run a query, the Database Engine requests the data page it needs from the Buffer
Manager, as depicted in Figure 2-1. If the data is not already in the buffer pool, a page fault
occurs (an OS feature that informs the application that the page isn’t in memory). The Buffer
Manager fetches the data from the storage subsystem and writes it to the buffer pool. When
the data is in the buffer pool, the query continues.

Figure 2-1 The buffer pool and the buffer pool extension.

CH
A

PTER 2

 Memory 47

The buffer pool is usually the largest consumer of the working set because that’s where your
data is. If the amount of data requested for a query exceeds the capacity of the buffer pool, the
data pages will spill to a drive, either using the buffer pool extension or a portion of TempDB.

The buffer pool extension makes use of nonvolatile storage to extend the size of the buffer
pool. It effectively increases the database working set, forming a bridge between the storage
layer where the data files are located and the buffer pool in physical memory.

For performance reasons, this should be solid-state storage, directly attached to the server.

 ➤ To see how to turn on the buffer pool extension, read the section “Configuration settings”
in Chapter 3. To learn more about TempDB, read the section “Physical database architec-
ture,” also in Chapter 3 .

Caching plans in the procedure cache
Generally speaking, the procedure cache is smaller than the buffer pool. When you run a query,
the Query Optimizer compiles a query plan to explain to the Database Engine exactly how to
run the query. To save time, it keeps a copy of that query plan so that it doesn’t need to com-
pile the plan each time the query runs. It is not quite as simple as this, of course (plans can be
removed, and trivial plans are not cached, for instance), but it’s enough to give you a basic
understanding.

The procedure cache is split into various cache stores by the memory manager, and it’s also here
where you can see if there are single-use query plans that are polluting memory.

 ➤ For more information about cached execution plans, read Chapter 9 or visit https://blogs.
msdn.microsoft.com/blogdoezequiel/2014/07/30/too-many-single-use-plans-now-what/ .

Lock pages in memory
Turning on the Lock pages in memory (LPIM) policy means that Windows will not be able to trim
(reduce) SQL Server’s working set.

Locking pages in memory ensures that Windows memory pressure cannot rob SQL Server of
resources or shunt SQL Server memory into the Windows Server system page file, dramatically
reducing performance. Windows doesn’t “steal” memory from SQL Server flippantly; it is done
in response to memory pressure on the Windows Server. Indeed, all applications can have their
memory affected by pressure from Windows.

On the other hand, without the ability to relieve pressure from other applications’ memory
demands or a virtual host’s memory demands, LPIM means that Windows cannot deploy

CH
A

PT
ER

 2

https://blogs.msdn.microsoft.com/blogdoezequiel/2014/07/30/too-many-single-use-plans-now-what/
https://blogs.msdn.microsoft.com/blogdoezequiel/2014/07/30/too-many-single-use-plans-now-what/

48 Chapter 2 Introducing database server components

enough memory to remain stable. Because of this concern, LPIM cannot be the only method to
use to protect SQL Server’s memory allocation.

The controversy of the topic is stability versus performance, in which the latter was especially
apparent on systems with limited memory resources and older operating systems. On larger
servers with operating systems since Windows Server 2008, and especially virtualized systems,
there is a smaller but nonzero need for this policy to insulate SQL Server from memory pressure.

The prevailing wisdom is that the LPIM policy should be turned on by default for SQL Server
2017, provided the following:

●● The server is physical, not virtual. See the section “Sharing more memory than we have
(overcommit)” later in this chapter.

●● Physical RAM exceeds 16 GB (the OS needs a working set of its own).

●● Max Server Memory has been set appropriately (SQL Server can’t use everything it sees).

●● The Memory\Available Mbytes performance counter is monitored regularly (to keep
some memory free).

If you would like to read more, Jonathan Kehayias explains this thinking in a
Simple Talk article (https://www.simple-talk.com/sql/database-administration/
great-sql-server-debates-lock-pages-in-memory/).

Editions and memory limits
Since SQL Server 2016 Service Pack 1, many Enterprise edition features have found their way
into the lower editions. Ostensibly, this was done to allow software developers to have far more
code that works across all editions of the product.

Although some features are still limited by edition (high availability, for instance), features such
as Columnstore and In-Memory OLTP are turned on in every edition, including Express. How-
ever, only Enterprise edition can use all available physical RAM for these features. Other editions
are limited.

CH
A

PTER 2

https://www.simple-talk.com/sql/database-administration/great-sql-server-debates-lock-pages-in-memory/
https://www.simple-talk.com/sql/database-administration/great-sql-server-debates-lock-pages-in-memory/

 Central Processing Unit 49

Inside OUT
In-Memory OLTP considerations

In-Memory OLTP requires an overhead of at least double the amount of data for a
memory-optimized object . For example, if a memory-optimized table is 5 GB in size,
you will need at least 10 GB of RAM available for the exclusive use of that table . Keep
this in mind before turning on this feature in the Standard edition .

With Standard edition, as well, take care when using memory-optimized table-valued
functions because each new object will require resources . Too many of them could
starve the working set and cause SQL Server to crash .

You can read more at Microsoft Docs at https://docs.microsoft.com/sql/relational-
databases/in-memory-oltp/requirements-for-using-memory-optimized-tables.

Central Processing Unit
The Central Processing Unit, or CPU, and often called the “brain” of a computer, is the most
important part of a system. CPU speed is measured in hertz (Hz), or cycles per second. Current
processor speed is measured in GHz, or billions of cycles per second.

Modern systems can have more than one CPU, and each CPU in turn can have more than one
CPU core (which, in turn, might be split up into virtual cores).

For a typical SQL Server workload, single-core speed matters. It is better to have fewer cores
with higher clock speeds than more cores with lower speeds, especially for non-Enterprise
editions.

With systems that have more than one CPU, each CPU might be allocated its own set of memory,
depending on the physical motherboard architecture.

Simultaneous multithreading
Some CPU manufacturers have split their physical cores into virtual cores to try to eke out even
more performance. They do this via a feature called simultaneous multithreading (SMT). Intel
calls this Hyper-Threading, so when you buy a single Intel® Xeon® CPU with 20 physical cores,
the OS will see 40 virtual cores, because of SMT.

SMT becomes especially murky with virtual machines (VMs) because the guest OS might not
have any insight into the physical versus logical core configuration.

CH
A

PT
ER

 2

https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/requirements-for-using-memory-optimized-tables
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/requirements-for-using-memory-optimized-tables

50 Chapter 2 Introducing database server components

SMT should be turned on for physical database servers. For virtual environments, you need to
take care to ensure that the virtual CPUs are allocated correctly. See the section “Abstracting
hardware away with virtualization” later in this chapter.

Non-Uniform Memory Access
CPUs are the fastest component of a system, and they spend a lot of time waiting for data to
come to them. In the past, all CPUs would share one bank of RAM on a motherboard, using a
shared bus. This caused performance problems as more CPUs were added because only one
CPU could access the RAM at a time.

Multi-Channel Memory Architecture tries to resolve this by increasing the number of channels
between CPUs and RAM, to reduce contention during concurrent access.

A more practical solution is for each CPU to have its own local physical RAM, situated close
to each CPU socket. This configuration is called Non-Uniform Memory Access (NUMA). The
advantages are that each CPU can access its own RAM, making processing much faster. How-
ever, if a CPU needs more RAM than it has in its local set, it must request memory from one
of the other CPUs in the system (called foreign memory access), which carries a performance
penalty.

SQL Server is NUMA-aware. In other words, if the OS recognizes a NUMA configuration at the
hardware layer, where more than one CPU is plugged in, and each CPU has its own set of physi-
cal RAM (see Figure 2-2), SQL Server will split its internal structures and service threads across
each NUMA node.

Since SQL Server 2014 Service Pack 2, the Database Engine automatically configures NUMA
nodes at an instance level, using what it calls soft-NUMA. If more than eight CPU cores are
detected (including SMT cores), soft-NUMA nodes are created automatically in memory.

Figure 2-2 Two-socket NUMA configuration.

CH
A

PTER 2

 Storing your data 51

Inside OUT
Core counts and editions

SQL Server Standard edition has an artificial limit of 24 CPU physical cores that it can
use . For instance, if a system contains two 16-core CPUs, for a total of 32 cores, Stan-
dard edition will need to be licensed for all 32 cores, even though it won’t use eight
of them .

Additionally, the NUMA distribution will be unbalanced because SQL Server will use
the first 16 cores on the first CPU, and eight from the second CPU, unless you con-
figure the SQL Server CPU usage using the affinity settings (for more information on
how to do this, see the section “Configuration settings” in Chapter 3).

Be careful when choosing the hardware and edition for your SQL Server installation .
If you’re planning to install several VMs on one system, a better option would be
Enterprise edition, licensed for all cores on the hardware . This would automatically
cover all SQL Server VMs that you install on that hardware .

Disable power saving everywhere
Modern systems can use power saving settings to reduce the amount of electricity used by a
server. Although this is good for the environment, it is bad for query performance because the
CPU core speed might be reduced to save energy.

For all operating systems running SQL Server, turn on High Performance at the OS level, and
double-check that High Performance is set at the BIOS level, as well. For dedicated VM hosts,
this will require downtime to make the change.

Storing your data
When data is not in memory, it is at rest, and must be saved somewhere. Storage technology
has evolved rapidly over the past few years, so we no longer think of storage as a mechanical
hard drive containing one or more spinning metal disks with a magnetic surface. But, old habits
die hard, and colloquially we still refer to a nonvolatile storage subsystem as “the disk,” even if it
might take another form. In this book, however, we refer to it as a “drive.”

In the context of SQL Server, the storage subsystem should have low latency, so that when the
database engine accesses the drive to perform reads and writes, those reads and writes should
complete as quickly as possible. In the following list, we present some commonly used terms
with respect to storage devices.

CH
A

PT
ER

 2

52 Chapter 2 Introducing database server components

●● Drive. The physical storage device. This might be a mechanical drive, a solid-state drive
with the same form-factor as a mechanical drive, or a card that plugs directly into the
motherboard.

●● Volume. A logical representation of storage, as viewed by the OS. This might be one
drive, part of a drive, or a logical section of a storage array. On Microsoft Windows, a vol-
ume usually gets its own drive letter or mount point.

●● Latency. Measured in milliseconds, latency is how long it takes for data to be read from
a drive (seconds per read), and written to a drive (seconds per write).

●● IOPS. Input/output operations per second, or IOPS, is the number of reads and writes
per second. A storage device might have differing performance depending on whether
the IOPS are sequential or random. IOPS are directly related to latency by means of the
queue depth.

●● Queue depth. The number of outstanding read and write requests in a storage device’s
request queue. The deeper the queue depth, the faster the drive.

SQL Server performance is directly related to storage performance. The move toward virtualiza-
tion and shared storage arrays has placed more emphasis on random data access patterns. Low
latency and high random IOPS will thus benefit the average SQL Server workload.

In the next two chapters, we go into more detail about the preferred storage configuration for
SQL Server.

Types of storage
Nonvolatile storage can be split up into two main areas: mechanical and solid-state.

Mechanical hard drives

Traditional spinning disks have a built-in latency, called seek time, due to their shape and physi-
cal nature. The read/write head is mounted on an arm that must scan the surface of the disk as
it spins, seeking a particular area to perform the I/O operation. If the data on the spinning disk
is fragmented, it can take longer to access because the head must skip around, finding data or
free space.

The standard interface for mechanical drives is Serial ATA (SATA) or Serial Attached SCSI (SAS).

As spinning disks increase in capacity, the tracks between data become narrower, which causes
performance to decrease, and increases the likelihood of mechanical failure or data corruption.
The limits are pushed because of the rotational energy in the disk itself, so there is a physical
speed limit to the motor.

In other words, mechanical disks grow bigger but slower and more prone to failure.

CH
A

PTER 2

 Storing your data 53

Solid-state drives

Solid-state technology, which makes use of flash memory, eliminates seek time entirely because
the path to each cell where the data is stored is almost instantaneous. This is what makes solid-
state storage so much faster than mechanical storage.

Solid-state storage devices can take many different forms. The most common in consumer
devices is a 2.5-inch enclosure with a SATA interface, which was common with mechanical lap-
top drives. This accommodates a drop-in replacement of mechanical storage.

In server architecture, however, flash memory can take several forms. For local storage, they
make use of the Peripheral Component Interconnect Express (PCIe) interface and plug directly
into the motherboard. An example of this is Non-Volatile Memory Express (NVMe).

As the technology evolves, the performance will only improve as capacity grows. Solid state
is not perfect though; data can be written to a particular cell only a certain number of times
before it fails. You might have experienced this yourself with thumb drives, which tend to fail
after heavy usage. Algorithms to balance writes across cells, called wear-leveling, help to extend
the lifespan of a solid-state device.

Another problem with flash memory is write-amplification. On a mechanical drive, if a file is
overwritten, the previous file is marked for deletion, but is not actually deleted from the disk
surface. When the drive needs to write to that area again, it overwrites the location without
removing what was there before.

Solid-state drives must erase the location in question before writing the new data, which has a
performance impact. The size of the cells might also require a larger area to be erased than the
file itself (if it is a small file), which compounds the performance impact. Various techniques exist
to mitigate write amplification, but this does reduce the lifespan of flash memory.

The performance problems with mechanical disks, and the lifespan problems with both
mechanical and solid-state drives, can be mitigated by combining them into drive arrays, to
reduce the risk of failure by balancing the load and increase performance.

Configuring the storage layer
Nonvolatile storage can stand alone, in the form of Direct-Attached Storage, or be combined
in many ways to provide redundancy or consolidation, perhaps even offering different levels of
performance in order to manage costs better. For example, archive data might not need to be
stored on the fastest available drive if it is accessed infrequently.

CH
A

PT
ER

 2

54 Chapter 2 Introducing database server components

Direct-Attached Storage

Direct-Attached Storage (DAS) is plugged directly into the system accessing it. Also called local
storage, it can comprise independent mechanical hard drives, solid-state drives, tape drives for
backups, CD and DVD-ROM drives, or even enclosures containing storage arrays.

DAS has a lower latency than a Storage-Area Network or Network-Attached Storage (more on
these later in the chapter) because there is no network to traverse between the system and the
storage. However, it cannot be shared with other systems, unless the local file system is shared
across the network using a protocol such as Server Message Block (SMB) 3.0.

For SQL Server, DAS comprising flash storage (solid-state) is preferred for TempDB, which is also
supported (and recommended) in a Failover Cluster Instance. You can also use DAS for the buf-
fer pool extension.

 ➤ To see how you should best configure TempDB, see the section “Configuration settings” in
Chapter 3 .

Storage arrays and RAID

Combining drives in an enclosure with a controller to access each drive, without any thought to
redundancy or performance, is called JBOD (colloquially, “just a bunch of disks”). These drives
might be accessed individually or combined into a single volume.

When done correctly, combining drives into an array can increase overall performance and/or
lower the risk of data loss should one or more of the drives in the array fail. This is called Redun-
dant Array of Independent Disks (RAID).

RAID offers several levels of configuration, which trade redundancy for performance. More
redundancy means less raw capacity for the array, but this can reduce data loss. Faster perfor-
mance can bring with it data loss.

Striping without parity (RAID 0) uses multiple drives to improve raw read/write performance,
but with zero redundancy. If one drive fails, there is significant chance of catastrophic data loss
across the entire array. JBOD configurations that span across drives fall under this RAID level.

Mirroring (RAID 1) uses two drives that are written to simultaneously. Although there is a slight
write penalty because both drives must save their data at the same time, and one might take
longer than the other, the read performance is nearly double that of a single drive because both
drives can be read in parallel (with a small overhead caused by the RAID controller selecting the
drive and fetching the data). Usable space is 50 percent of raw capacity, and only one drive in
the array can be lost and still have all data recoverable.

CH
A

PTER 2

 Storing your data 55

Striping with parity (RAID 5) requires an odd number of three or more drives, and for every
single write, one of the drives is randomly used for parity (a checksum validation). There is a
larger write penalty because all drives must save their data and parity must be calculated and
persisted. If a single drive is lost from the array, the other drives can rebuild the contents of the
lost drive, based on the parity, but it can take some time to rebuild the array. Usable space is
calculated as the number of drives minus one. If there are three drives in the array, the usable
space is the sum of two of those drives, with the space from the third used for parity (which is
evenly distributed over the array). Only one drive in the array can be lost and still have full data
recovery.

Combinations of the base RAID configurations are used to provide more redundancy and per-
formance, including RAID 1+0 (also known as RAID 10), RAID 0+1, and RAID 5+0 (also known as
RAID 50).

In RAID 1+0, two drives are configured in a mirror (RAID 1) for redundancy, and then each mirror
is striped together (RAID 0) for performance reasons.

In RAID 0+1, the drives are striped first (RAID 0), and then mirrored across the entire RAID 0 set
(RAID 1). Usable space for RAID 0+1 and 1+0 is 50 percent of the raw capacity.

To ensure full recovery from failure in a RAID 1+0 or 0+1 configuration, an entire side of the mir-
ror can be lost, or only one drive from each side of the mirror can be lost.

In RAID 5+0, a number of drives (three or more) is configured in a RAID 5 set, which is then
striped (with no parity) with at least one other RAID 5 set of the same configuration. Usable
space is (x – 1) / y, where x is the number of drives in each nested RAID 5 set, and y is the number
of RAID 5 sets in this array. If there are nine drives, six of them are usable. Only one drive from
each RAID 5 set can be lost with full recovery possible. If more than one drive in any of the RAID
5 sets is lost, the entire 5+0 array is lost.

SQL Server requires the best performance from a storage layer as possible. When looking at
RAID configurations, RAID 1+0 offers the best performance and redundancy.

NOTE
Some database administrators tend to believe that RAID is an alternative to backups, but
it does not protect 100 percent against data loss . A common backup medium is digital
tape, due to its low cost and high capacity, but more organizations are making use of
cloud storage options, such as Microsoft Azure Archive Storage and Amazon Glacier, for
long-term, cost-effective backup storage solutions . Always make sure that you perform
regular SQL Server backups that are copied securely off-premises .

CH
A

PT
ER

 2

56 Chapter 2 Introducing database server components

Centralized storage with a Storage-Area Network

A Storage-Area Network (SAN) is a network of storage arrays that can comprise tens, hundreds,
or even thousands of drives (mechanical or solid-state) in a central location, with one or more
RAID configurations, providing block-level access to storage. This reduces wasted space, and
allows easier management across multiple systems, especially for virtualized environments.

Block-level means that the OS can read or write blocks of any size and any alignment. This offers
the OS a lot of flexibility in making use of the storage.

You can carve the total storage capacity of the SAN into logical unit numbers (LUNs), and each
LUN can be assigned to a physical or virtual server. You can move these LUNs around and resize
them as required, which makes management much easier than attaching physical storage to a
server.

The disadvantage of a SAN is that you might be at the mercy of misconfiguration or a slow
network. For instance, the RAID might be set to a level that has poor write performance, or the
blocks of the storage are not aligned appropriately.

Storage administrators might not understand specialized workloads like SQL Server, and choose
a performance model that satisfies the rest of the organization to reduce administration over-
head but which penalizes you.

Inside OUT
Fibre Channel versus iSCSI

Storage arrays might use Fibre Channel (FC) or Internet Small Computer Systems
Interface (iSCSI) to connect systems to their storage .

FC can support data transfer at a higher rate than iSCSI, which makes it better for
systems that require lower latency, but it comes at a higher cost for specialized
equipment .

iSCSI uses standard TCP/IP, which makes it potentially cheaper because it can run on
existing network equipment . You can further improve iSCSI throughput by isolating
the storage to its own dedicated network .

Network-Attached Storage

Network-Attached Storage (NAS), is usually a specialized hardware appliance connected to the
network, typically containing an array of several drives, providing file-level access to storage.

CH
A

PTER 2

 Connecting to SQL Server over the network 57

Unlike the SAN’s block-level support, NAS storage is configured on the appliance itself, and file
sharing protocols (such as SMB, Common Internet File System [CIFS] and Network File System
[NFS]) are used to share the storage over the network.

NAS appliances are fairly common because they provide access to shared storage at a much
lower monetary cost than a SAN. You should keep in mind security considerations regarding
file-sharing protocols.

Storage Spaces

Windows Server 2012 and later support Storage Spaces, which is a way to manage local storage
in a more scalable and flexible way than RAID.

Instead of creating a RAID set at the storage layer, Windows Server can create a virtual drive at
the OS level. It might use a combination of RAID levels, and you can decide to combine differ-
ent physical drives to create performance tiers.

For example, a server might contain 16 drives. Eight of them are spinning disks, and eight are
solid state. You can use Storage Spaces to create a single volume with all 16 drives, and keep the
active files on the solid-state portion, increasing performance dramatically.

SMB 3.0 file share

SQL Server supports storage located on a network file share that uses the SMB 3.0 protocol or
higher because it is now fast and stable enough to support the storage requirements of the
Database Engine (performance and resilience). This means that you can build a Failover Cluster
Instance (see the section on this later in the chapter) without shared storage such as a SAN.

Network performance is critically important, though, so we recommend a dedicated and iso-
lated network for the SMB file share, using network interface cards that support Remote Direct
Memory Access (RDMA). This allows the SMB Direct feature in Windows Server to create a low-
latency, high-throughput connection using the SMB protocol.

SMB 3.0 might be a feasible option for smaller networks with limited storage capacity and a
NAS, or in the case of a Failover Cluster Instance without shared storage. For more information,
read Chapter 12.

Connecting to SQL Server over the network
We have covered a fair amount about networking just discussing the storage layer, but there is
far more to it. In this section, we look at what is involved when accessing the Database Engine
over a network, and briefly discuss Virtual Local-Area Networks.

Unless a SQL Server instance and the application accessing it is entirely self-contained, data-
base access is performed over one or more network interfaces. This adds complexity with

CH
A

PT
ER

 2

58 Chapter 2 Introducing database server components

authentication, given that malicious actors might be scanning and modifying network packets
in flight.

CAUTION
Ensure that all TCP/IP traffic to and from the SQL Server is encrypted . For applications
that are located on the same server as the SQL Server instance, this is not required if
you’re using the Shared Memory Protocol .

SQL Server 2017 requires strict rules with respect to network security, which means that older
versions of the connectors or protocols used by software developers might not work as
expected.

Transport Security Layer and its forerunner, Secure Sockets Layer, (together known as TLS/SSL,
or just SSL), are methods that allow network traffic between two points to be encrypted. (For
more information, see Chapter 7.) Where possible, you should use newer libraries that support
TLS encryption. If you cannot use TLS to encrypt application traffic, you should use IPSec, which
is configured at the OS level.

Protocols and ports
Connections to SQL Server are made over the Transport Control Protocol (TCP), with port 1433
as the default port for a default instance. Some of this is covered in Chapter 1, and again in
Chapter 7. Any named instances are assigned random ports by the SQL Server Configuration
Manager, and the SQL Browser service coordinates any connections to named instances. It is
possible to assign static TCP ports to named instances by using the Configuration Manager.

There are ways to change the default port after SQL Server is installed, through the SQL
Server Configuration Manager. We do not recommend changing the port, however, because
it provides no security advantage to a port scanner, but some network administration policies
require it.

Networking is also the foundation of cloud computing. Aside from the fact that the Azure
cloud is accessed over the internet (itself a network of networks), the entire Azure infrastructure,
which underlies both infrastructure-as-a-service (virtual machines with Windows or Linux run-
ning SQL Server) and platform-as-a-service (Azure SQL Database) offerings, is a virtual fabric of
innumerable components tied together with networking.

Added complexity with Virtual Local-Area Networks
A Virtual Local-Area Network (VLAN) gives network administrators the ability to logically group
machines together even if they are not physically connected through the same network switch.

CH
A

PTER 2

 High availability concepts 59

It makes it possible for servers to share their resources with one another over the same physical
LAN, without interacting with other devices on the same network.

VLANs work at a very low level (the data link layer, or OSI Layer 2), and are configured on a net-
work switch. A port on the switch might be dedicated to a particular VLAN, and all traffic to and
from that port is mapped to a particular VLAN by the switch.

High availability concepts
With each new version of Windows Server, terminology and definitions tend to change or adapt
according to the new features available. With SQL Server now supported on Linux, it is even
more important to get our heads around what it means when we discuss high availability.

At its most basic, high availability (HA) means that a service offering of some kind (for example,
SQL Server, a web server, an application, or a file share) will survive an outage of some kind, or
at least fail predictably to a standby state, with minimal loss of data and minimal downtime.

Everything can fail. An outage might be caused by a failed hard drive, which could in turn be a
result of excessive heat, excessive cold, excessive moisture, or a datacenter alarm that is so loud
that its vibrational frequency damages the internal components and causes a head crash.

You should be aware of other things that can go wrong, as noted in the list that follows; this list
is certainly not exhaustive, but it’s incredibly important to understand that assumptions about
hardware, software, and network stability are a fool’s errand:

●● A failed network interface card

●● A failed RAID controller

●● A power surge or brownout causing a failed power supply

●● A broken or damaged network cable

●● A broken or damaged power cable

●● Moisture on the motherboard

●● Dust on the motherboard

●● Overheating caused by a failed fan

●● A faulty keyboard that misinterprets keystrokes

●● Failure due to bit rot

●● Failure due to a bug in SQL Server

CH
A

PT
ER

 2

60 Chapter 2 Introducing database server components

●● Failure due to poorly written code in a file system driver that causes drive corruption

●● Capacitors failing on the motherboard

●● Insects or rodents electrocuting themselves on components (this smells really bad)

●● Failure caused by a fire suppression system that uses water instead of gas

●● Misconfiguration of a network router causing an entire geographical region to be
inaccessible

●● Failure due to an expired SSL or TLS certificate

●● Running a DELETE or UPDATE statement without a WHERE clause (human error)

Why redundancy matters
Armed with the knowledge that everything can fail, you should build in redundancy where pos-
sible. The sad reality is that these decisions are governed by budget constraints. The amount of
money available is inversely proportional to the amount of acceptable data loss and length of
downtime. For business-critical systems, however, uptime is paramount, and a highly available
solution will be more cost effective than being down, considering the cost-per-minute to the
organization.

It is nearly impossible to guarantee zero downtime with zero data loss. There is always a trade-
off. The business decides on that trade-off, based on resources (equipment, people, money), and
the technical solution is in turn developed around that trade-off. The business drives this strat-
egy using two values called the Recovery Point Objective and Recovery Time Objective, which
are defined in a Service-Level Agreement (SLA).

Recovery Point Objective

A good way to think of Recovery Point Objective (RPO) is “How much data are you prepared
to lose?” When a failure occurs, how much data will be lost between the last transaction log
backup and the failure? This value is usually measured in seconds or minutes.

Recovery Time Objective

The Recovery Time Objective (RTO) is defined as how much time is available to bring the envi-
ronment up to a known and usable state after a failure. There might be different values for HA
and disaster recovery scenarios. This value is usually measured in hours.

Disaster recovery
HA is not disaster recovery (DR). They are often grouped under the same heading (HA/DR),
mainly because there are shared technology solutions for both concepts, but HA is about

CH
A

PTER 2

 High availability concepts 61

keeping the service running, whereas DR is what happens when the infrastructure fails entirely.
DR is like insurance: you don’t think you need it until it’s too late. HA costs more money, the
shorter the RPO.

NOTE
A disaster is any failure or event that causes an unplanned outage .

Clustering
Clustering is the connecting of computers (nodes) in a set of two or more nodes, that work
together and present themselves to the network as one computer.

In most cluster configurations, only one node can be active in a cluster. To ensure that this hap-
pens, a quorum instructs the cluster as to which node should be active. It also steps in if there is
a communication failure between the nodes.

Each node has a vote in a quorum. However, if there is an even number of nodes, to ensure a
simple majority an additional witness must be included in a quorum to allow for a majority vote
to take place.

Inside OUT
What is Always On?

Always On is the name of a group of features, which is akin to a marketing term . It
is not the name of a specific technology. There are two separate technologies that
happen to fall under the Always On label, and these are addressed a little later in this
chapter. The important thing to remember is that “Always On” does not mean “avail-
ability groups,” and there is a space between “Always” and “On.”

Windows Server Failover Clustering

As Microsoft describes it:

“Failover clusters provide high availability and scalability to many server workloads. These include
server applications such as Microsoft Exchange Server, Hyper-V, Microsoft SQL Server, and file
servers. The server applications can run on physical servers or virtual machines. [Windows Server
Failover Clustering] can scale to 64 physical nodes and to 8,000 virtual machines.” (https://
technet.microsoft.com/library/hh831579(v=ws.11).aspx).

The terminology here matters. Windows Server Failover Clustering is the name of the technol-
ogy that underpins a Failover Cluster Instance (FCI), where two or more Windows Server Failover

CH
A

PT
ER

 2

https://technet.microsoft.com/library/hh831579(v=ws.11).aspx
https://technet.microsoft.com/library/hh831579(v=ws.11).aspx

62 Chapter 2 Introducing database server components

Clustering nodes (computers) are connected together in a Windows Server Failover Clustering
resource group and masquerade as a single machine behind a network endpoint called a Virtual
Network Name (VNN). A SQL Server service that is installed on an FCI is cluster-aware.

Linux failover clustering with Pacemaker

Instead of relying on Windows Server Failover Clustering, SQL Server on a Linux cluster can
make use of any cluster resource manager. Microsoft recommends using Pacemaker because it
ships with a number of Linux distributions, including Red Hat and Ubuntu.

Inside OUT
Node fencing and STONITH on Linux

If something goes wrong in a cluster, and a node is in an unknown state after a set
time-out period, that node must be isolated from the cluster and restarted or reset .
On Linux clusters, this is called node fencing, following the STONITH principle (“Shoot
the Other Node in the Head”) . If a node fails, STONITH will provide an effective, if
drastic manner of resetting or powering-off a failed Linux node .

Resolving cluster partitioning with quorum

Most clustering technologies make use of the quorum model, to prevent a phenomenon called
partitioning, or “split brain.” If there is an even number of nodes, and half of these nodes go
offline from the view of the other half of the cluster, and vice versa, you end up with two halves
thinking that the cluster is still up and running, and each with a primary node (split brain).

Depending on connectivity to each half of the cluster, an application continues writing to one
half of the cluster while another application writes to the other half. A best-case resolution to
this scenario would require rolling back to a point in time before the event occurred, which
would cause loss of any data written after the event.

To prevent this, each node in a cluster shares its health with the other nodes using a periodic
heartbeat. If more than half do not respond in a timely fashion, the cluster is considered to have
failed. Quorum works by having a simple majority vote on what constitutes “enough nodes.”

In Windows Server Failover Clustering, there are four types of majority vote: Node, Node and
File Share, Node and Disk, and Disk Only. In the latter three types, a separate witness is used,
which does not participate in the cluster directly. This witness is given voting rights when there
is an even number of nodes in a cluster, and therefore a simple majority (more than half) would
not be possible.

CH
A

PTER 2

 High availability concepts 63

Always On FCIs

You can think of a SQL Server FCI as two or more nodes with shared storage (usually a SAN
because it is most likely to be accessed over the network).

On Windows Server, SQL Server can take advantage of Windows Server Failover Clustering to
provide HA (the idea being minimal downtime) at the server-instance level, by creating an FCI
of two or more nodes. From the network’s perspective (application, end users, and so on), the
FCI is presented as a single instance of SQL Server running on a single computer, and all con-
nections point at the VNN.

When the FCI starts, one of the nodes assumes ownership and brings its SQL Server instance
online. If a failure occurs on the first node (or there is a planned failover due to maintenance),
there are at least a few seconds of downtime, during which the first node cleans up as best it
can, and then the second node brings its SQL Server instance online. Client connections are
redirected to the new node after the services are up and running.

Inside OUT
How long does the FCI failover take?

During a planned failover, any dirty pages in the buffer pool must be written to the
drive; thus, the downtime could be longer than expected on a server with a large buffer
pool . You can read more about checkpoints in Chapter 3 and Chapter 4 .

On Linux, the principle is very similar. A cluster resource manager such as Pacemaker manages
the cluster, and when a failover occurs, the same process is followed from SQL Server’s perspec-
tive, in which the first node is brought down and the second node is brought up to take its place
as the owner. The cluster has a virtual IP address, just as on Windows. You must add the virtual
network name manually to the DNS server.

 ➤ You can read more about setting up a Linux cluster in Chapter 11 .

FCIs are supported on SQL Server Standard edition, but are limited to two nodes.

The versatility of Log Shipping
SQL Server Transaction Log Shipping is an extremely flexible technology to provide a relatively
inexpensive and easily managed HA and DR solution.

CH
A

PT
ER

 2

64 Chapter 2 Introducing database server components

The principle is as follows: a primary database is in either the Full or Bulk Logged recovery
model, with transaction log backups being taken regularly every few minutes. These transac-
tion log backup files are transferred to a shared network location, where one or more secondary
servers restore the transaction log backups to a standby database.

If you use the built-in Log Shipping Wizard in SQL Server Management Studio, on the Restore
tab, click Database State When Restoring Backups, and then choose the No Recovery Mode
or Standby Mode option (https://docs.microsoft.com/sql/database-engine/log-shipping/
configure-log-shipping-sql-server).

If you are building your own log shipping solution, remember to use the RESTORE feature with
NORECOVERY, or RESTORE with STANDBY.

If a failover occurs, the tail of the log on the primary server is backed up the same way (if
available—this guarantees zero data loss of committed transactions), transferred to the shared
location, and restored after the latest regular transaction logs. The database is then put into
RECOVERY mode (which is where crash recovery takes place, rolling back incomplete transac-
tions and rolling forward complete transactions).

As soon as the application is pointed to the new server, the environment is back up again with
zero data loss (tail of the log was copied across) or minimal data loss (only the latest shipped
transaction log was restored).

Log Shipping is a feature that works on all editions of SQL Server, on Windows and Linux. How-
ever, because Express edition does not include the SQL Server Agent, Express can be only a wit-
ness, and you would need to manage the process through a separate scheduling mechanism.
You can even create your own solution for any edition of SQL Server, using Azure Blob Storage
and AzCopy.exe, for instance.

Always On availability groups
As alluded to previously, this is generally what people mean when they incorrectly say “Always
On.” However, it’s official name is Always On availability groups. In shorthand, you can refer sim-
ply to these as availability groups (or AGs).

What is an availability group, anyway? In the past, SQL Server offered database mirroring and
failover clustering as two distinct HA offerings. However, with database mirroring officially dep-
recated since SQL Server 2012, coinciding with the introduction of availability groups, it is easier
to think of availability groups as a consolidation of these two offerings as well as Log Shipping
thrown in for good measure.

CH
A

PTER 2

https://docs.microsoft.com/sql/database-engine/log-shipping/configure-log-shipping-sql-server
https://docs.microsoft.com/sql/database-engine/log-shipping/configure-log-shipping-sql-server

 High availability concepts 65

Inside OUT
What was database mirroring?

Database mirroring worked at the database level by maintaining two copies of a
single database across two separate SQL Server instances, keeping them synchronized
with a steady stream of active transaction log records .

Availability groups provide us with the ability to keep a discrete set of databases highly available
across one or more nodes in a cluster. They work at the database level, as opposed to an entire
server-instance level, like FCIs do.

Unlike the cluster-aware version of SQL Server, when it installed as part of an FCI, SQL Server on
an availability group is installed as a standalone instance.

An availability group (on Windows Server through Windows Server Failover Clustering, and on
Linux through a cluster resource manager like Pacemaker) operates at the database level only.
As depicted in Figure 2-3, it is a set of one or more databases in a group (an availability replica)
that are replicated (using Log Shipping) from a primary replica (there can be only one primary
replica), to a maximum of eight secondary replicas, using synchronous or asynchronous data
synchronization. Let’s take a closer look at each of these:

●● Synchronous data synchronization. The log is hardened (the transactions are com-
mitted to the transaction log) on every secondary replica before the transaction is com-
mitted on the primary replica. This guarantees zero data loss, but with a potentially
significant performance impact. It can be costly to reduce network latency to a point at
which this is practical for highly transactional workloads.

●● Asynchronous data synchronization. The transaction is considered committed as
soon as it is hardened in the transaction log on the primary replica. If something were to
happen before the logs are hardened on all of the secondary replicas, there is a chance of
data loss, and the recovery point would be the most recently committed transaction that
made it successfully to all of the secondary replicas. With delayed durability turned on,
this can result in faster performance, but higher risk of data loss.

CH
A

PT
ER

 2

66 Chapter 2 Introducing database server components

Inside OUT
What is delayed durability?

Starting in SQL Server 2014, delayed durability (also known as lazy commit) is a stor-
age optimization feature that returns a successful commit before transaction logs
are actually saved to a drive . Although this can improve performance, the risk of data
loss is higher because the transaction logs are saved only when the logs are flushed
to a drive asynchronously . To learn more, go to https://docs.microsoft.com/sql/
relational-databases/logs/control-transaction-durability .

Figure 2-3 A Windows Server Failover Clustering cluster with four nodes.

You can use read-only secondary replicas for running reports and other operations that reduce
the load on the primary replica. This also includes backups and database consistency checks,
but you must also perform these on the primary replica when there is a low-usage period or
planned maintenance window.

If the primary replica fails, one of the secondary replicas is promoted to the primary, with a few
seconds of downtime while the databases run through crash recovery, and minimal data loss.

Read-scale availability groups
SQL Server 2017 introduces a new architecture that allows for multiple read-only secondary rep-
licas, but does not offer HA. The major difference is that a read-scale availability group does not
have a cluster resource manager.

CH
A

PTER 2

https://docs.microsoft.com/sql/relational-databases/logs/control-transaction-durability
https://docs.microsoft.com/sql/relational-databases/logs/control-transaction-durability

 High availability concepts 67

What this allows is reduced contention on a business-critical workload by using read-only
routing or connecting directly to a readable secondary replica, without relying on a clustering
infrastructure on Windows or Linux.

 ➤ For more information, go to Microsoft Docs at https://docs.microsoft.com/sql/
database-engine/availability-groups/windows/read-scale-availability-groups .

Distributed availability groups
Instead of having an availability group on one cluster, a distributed availability group can span
two separate availability groups, on two separate clusters (Windows Server Failover Clustering
or Linux, each cluster can run on a different OS) that are geographically separated. Provided
that these two availability groups can communicate with each other, you can configure them in
a distributed availability group. This allows a more flexible DR scenario, plus it makes possible
multisite replicas in geographically diverse areas.

The main difference from a normal availability group, is that the configuration is stored in SQL
Server, not the underlying cluster. With a distributed availability group, only one availability
group can perform data modification at any time, even though both availability groups have
a primary replica. To allow another availability group to write to its primary replica database
requires a manual failover, using FORCE_FAILOVER_ALLOW_DATA_LOSS.

Basic availability groups
SQL Server Standard edition supports a single-database HA solution, with a limit of two replicas.
The secondary replica does not allow backups or read access. Although these limits can be frus-
trating, they do make it possible to offer another kind of HA offering with Standard edition.

 ➤ For more information, go to Microsoft Docs at https://docs.microsoft.com/
sql/database-engine/availability-groups/windows/basic-availability-groups-
always-on-availability-groups.

Improve redundancy and performance with NIC teaming
NIC teaming, also known as link aggregation, uses two or more network interfaces to improve
redundancy (failover), or increase the available bandwidth (bandwidth aggregation). In the
Microsoft space, this is also called load balancing and failover support (LBFO). NIC teaming can
work at the network-card level, where two or more NICs are combined into a virtual NIC on a
server, or on a network switch level, where two or more network ports are aggregated.

When traffic encounters the aggregated network ports, the switch will know which port is the
least busy at that time, and direct the packet to one of the other ports. This is how network
load balancing works. There might be one or more servers behind each port, where the load

CH
A

PT
ER

 2

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/read-scale-availability-groups
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/read-scale-availability-groups
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/basic-availability-groups-always-on-availability-groups
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/basic-availability-groups-always-on-availability-groups
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/basic-availability-groups-always-on-availability-groups

68 Chapter 2 Introducing database server components

balancing is distributed to multiple servers. Otherwise they might just be connected to a single
server with multiple NICs, used just for redundancy, so that if one network interface card on the
server fails, the server remains available.

Securing SQL Server
Security is covered in more depth in Chapter 6, and Chapter 7, so what follows is a basic over-
view of server access security, not a discussion about permissions within SQL Server.

When connecting to SQL Server on Windows or Linux, or SQL Database in Azure, security is
required to keep everyone out except the people who need access to the database.

Active Directory, using Integrated Authentication, is the primary method for connecting to
SQL Server on a Windows domain. When you sign in to an Active Directory domain, you are
provided a token that contains your privileges and permissions.

This is different from SQL Server Authentication, however, which is managed directly on the
SQL Server instance and requires a user name and password to travel over the network.

Integrated authentication and Active Directory
Active Directory covers a number of different identity services, but the most important is Active
Directory Domain Services, which manages your network credentials (your user account) and
what you can do on the network (access rights). Having a network-wide directory of users and
permissions facilitates easier management of accounts, computers, servers, services, devices, file
sharing, and so on.

In this type of environment, SQL Server would be managed as just another service on the net-
work, and the Active Directory Domain Service would control who has access to that SQL Server
instance. This is much easier than having to manage per-server security, which is time consum-
ing, difficult to troubleshoot, and prone to human error.

Inside OUT
Linux and Active Directory

SQL Server 2017 on Linux supports integrated authentication using Active Direc-
tory. For more information, read the Microsoft Docs article titled “Active Directory
Authentication with SQL Server on Linux,” which is available at https://docs.microsoft.
com/sql/linux/sql-server-linux-active-directory-authentication .

CH
A

PTER 2

https://docs.microsoft.com/sql/linux/sql-server-linux-active-directory-authentication
https://docs.microsoft.com/sql/linux/sql-server-linux-active-directory-authentication

 Securing SQL Server 69

Authenticating with Kerberos

Kerberos is the default authentication protocol used in a Windows Active Directory domain; it is
the replacement of NT LAN Manager (NTLM).

Kerberos ensures that the authentication takes place in a secure manner, even if the network
itself might not be secure, because passwords and weak hashes are not being transferred over
the wire. Kerberos works by exchanging encrypted tickets verified by a Ticket Granting Server
(TGS; usually the domain controller).

A service account that runs SQL Server on a particular server, under an Active Directory service
account, must register its name with the TGS, so that client computers are able to make a con-
nection to that service over the network. This is called a Service Principal Name.

CAUTION
NTLM is the authentication protocol on standalone Windows systems and is used on
older operating systems and older domains . You can also use NTLM as a fallback on
Active Directory domains for backward compatibility .

The NTLM token created during the sign-in process consists of the domain name, the
user name, and a one-way hash of the user’s password . Unfortunately, this hash is con-
sidered cryptographically weak and can be cracked (decrypted) in a few seconds by
modern cracking tools . It is incumbent on you to use Kerberos where at all possible .

Understanding the Service Principal Name

As shown in Figure 2-4, when a client logs into a Windows domain, it is issued a ticket by the
TGS. This ticket is called a ticket-granting ticket (TGT), but it’s easier to think of it as the client’s
credentials. When the client wants to communicate with another node on the network (for
example, SQL Server), this node (or “principal”) must have a Service Principal Name (SPN)
registered with the TGS.

CH
A

PT
ER

 2

70 Chapter 2 Introducing database server components

Figure 2-4 How Kerberos authentication works.

It is this SPN that the client uses to request access. After a verification step, a ticket and session
key is sent from the TGS, to both the SQL Server and the client, respectively. When the client
uses the ticket and session key on the SQL Server, the connection is authenticated by the SQL
Server using its own copy of the session key.

For SQL Server to use Kerberos authentication instead of the older and less-secure NTLM, the
Windows domain account that runs the SQL Server service, must register the SPN with the
domain controller. Otherwise, the authentication will fall back to NTLM, which is far less secure.
The easiest way to achieve this is to give the service account Write ServicePrincipalName per-
mission in Active Directory Domain Service. To configure an SPN manually, you must use the
Setspn.exe tool (built in to Windows).

Accessing other servers and services with delegation

Kerberos delegation allows an application (such as SQL Server, or Internet Information Services)
to reuse end-user credentials to access a different server. This is intended to solve the so-called
“double-hop issue,” in which the TGS verifies only the first hop, namely the connection between
the client and the registered server. In normal circumstances, any additional connections (the
second hop) would require reauthentication.

Delegation impersonates the client by sending the client’s TGT on the client’s behalf. This in turn
causes the TGS to send tickets and session keys to the original server and the new server, allow-
ing authentication. Because the original connection is still authenticated using the same TGT,
the client now has access to the second server.

For delegation to work, the service account for the first server must be trusted for delegation,
and the second server must be in the same Active Directory forest or between forests with the
appropriate trust relationship.

CH
A

PTER 2

 Securing SQL Server 71

Azure Active Directory
Azure Active Directory (Azure AD) is concerned with identity management for internet-based
(and on-premises) services, which use HTTP and HTTPS to access websites and web services,
without the hierarchy associated with on-premises Active Directory.

You can use Azure AD for user and application authentication; for example, to connect to
Azure SQL Database or Microsoft Office 365. There are no Organizational Units or Group Policy
Objects. You cannot join a machine to an Azure AD domain, and there is no NTLM or Kerberos
authentication. Instead, protocols like OAuth, OpenID Connect (based on OAuth 2.0), SAML,
and WS-Federation are used.

You can authenticate (prove who you are), which then provides authorization (permission, or
claims) to access certain services, and these services might not even be controlled by the service
that authenticated you. Think back to network credentials. On an on-premises Active Directory,
your user credentials know who you are (authentication), and what you can do (authorization).

Protocols like OpenID Connect blur these lines, by extending an authorization protocol (what
you can do) into an authentication protocol, as well (who you are). Although this works in a
similar manner to Kerberos, whereby an authorization server allows access to certain internet
services and applications, permissions are granted with claims.

Asserting your identity by using claims

Claims are a set of “assertions of information about the subject that has been authenticated”
(https://docs.microsoft.com/azure/active-directory/develop/active-directory-authentication-
scenarios#claims-in-azure-ad-security-tokens).

Think of your user credentials as a security token that indicates who you are based on how you
were authenticated. This depends on the service you originally connected to (i.e., Facebook,
LinkedIn, Google, Office 365, or Twitter).

Inside that user object is a series of properties, or attributes, usually in the form of key–value
pairs. Each set of attributes, or claims, is dependent on the authentication service used.

Authentication services like Azure AD might restrict the amount of information permissible in
a user object, to provide the service or application just enough information about you to prove
who you are, and give you access to the service you’re requesting, without sharing too much
about you or the originating authentication service.

CH
A

PT
ER

 2

https://docs.microsoft.com/azure/active-directory/develop/active-directory-authentication-scenarios#claims-in-azure-ad-security-tokens
https://docs.microsoft.com/azure/active-directory/develop/active-directory-authentication-scenarios#claims-in-azure-ad-security-tokens

72 Chapter 2 Introducing database server components

Federation and single sign-on

Federation is a fancy word that means an independent collection of websites or services that
can share information between them using claims. An authentication service allows you to sign
in on one place (LinkedIn, Facebook, or Microsoft) and then use that identity for other services
controlled by other entities.

This is what makes claims extremely useful. If you use a third-party authentication service, that
third party will make certain information available in the form of claims (key–value pairs in your
security token) that another service to which you’re connecting can access, without needing to
sign in again, and without that service having access into the third-party service.

For example, suppose that you use LinkedIn to sign in to a blogging service so that you can
leave a comment on a post. The blogging service does not have any access to your LinkedIn
profile, but the claims it provides might include a URL to your profile image, a string containing
your full name, and a second URL back to your profile.

This way, the blogging service does not know anything about your LinkedIn account, includ-
ing your employment history, because that information is not in the claims necessary to leave a
blog post comment.

Logging in to Azure SQL Database

Azure SQL Database uses three levels of security to allow access to a database. First is the fire-
wall, which is a set of rules based on origin IP address or ranges and allows connections to only
TCP port 1433.

The second level is authentication (proving who you are). You can either connect by using SQL
Authentication, with a username and password (like connecting to a contained database on an
on-premises SQL Server instance), or you can use Azure AD Authentication.

Microsoft recommends using Azure AD whenever possible, because it does the following
(according to https://docs.microsoft.com/azure/sql-database/sql-database-aad-authentication):

●● Centralizes user identities and offers password rotation in a single place

●● Eliminates storing passwords by enabling integrated Windows authentication and other
forms of authentication supported by Azure AD

●● Offers token (claims-based) authentication for applications connecting to Azure SQL
Database

CH
A

PTER 2

https://docs.microsoft.com/azure/sql-database/sql-database-aad-authentication

 Abstracting hardware with virtualization 73

The third level is authorization (what you can do). This is managed inside the Azure SQL data-
base, using role memberships and object-level permissions, and works exactly the same way as
it would with an on-premises SQL Server instance.

 ➤ You can read more about SQL Server security in Chapters 6 and 7 .

Abstracting hardware with virtualization
Hardware abstraction has been around for many years, and, in fact, Windows NT was designed
to be hardware independent. Taking this concept even further, virtualization abstracts the entire
physical layer behind what’s called a hypervisor, or Virtual Machine Manager (VMM) so that
physical hardware on a host system can be logically shared between different VMs, or guests,
running their own operating systems.

To a guest OS, the VM looks like normal hardware and is accessed in the same way.

As of this writing, there are two main players in the virtualization market: Microsoft Hyper-V
and VMware.

Inside OUT
What is the cloud?

Cloud technology is just another virtualized environment, but on a much larger
scale . Millions of servers are sitting in datacenters all over the world, running tens or
hundreds of VMs on each server . The hypervisor and service fabric (the software that
controls and manages the environment) is what differentiates each cloud vendor .

The move to virtualization has come about because physical hardware in many organizations is
not being used to its full potential, and systems might spend hundreds of hours per year sitting
idle. By consolidating an infrastructure, namely putting more than one guest VM on the same
physical host, you can share resources between these guests, reducing the amount of waste and
increasing the usefulness of hardware.

Certain workloads and applications are not designed to share resources, and misconfiguration
of the shared resources by system administrators might not take these specialized workloads
into account. SQL Server is an excellent example of this, given that it is designed to make use of
all the physical RAM in a server by default.

If the resources are allocated incorrectly from the host level, contention between the guests
takes place. This phenomenon is known as the noisy neighbor, in which one guest monopolizes

CH
A

PT
ER

 2

74 Chapter 2 Introducing database server components

resources on the host, and the other guests are negatively affected. With some effort on the
part of the network administrators, this problem can be alleviated.

The benefits far outweigh the downsides, of course. You can move VMs from one host to
another in the case of resource contention or hardware failure, and some hypervisors can
orchestrate this without even shutting down the VM.

It is also much easier to take snapshots of virtualized file systems, which you can use to clone
VMs. This can reduce deployment costs and time when deploying new servers, by “spinning up”
a VM template, and configuring the OS and the application software that was already installed
on that virtual hard drive.

Over time, the cost benefits become more apparent. New processors with low core counts are
becoming more difficult to find. Virtualization makes it possible for you to move physical work-
loads to VMs (now or later) that have the appropriate virtual core count, and gives you the free-
dom to use existing licenses, thereby reducing cost.

 ➤ David Klee writes more on this in his article “Point Counterpoint: Why Virtualize a SQL
Server?” available at http://www.davidklee.net/2017/07/12/point-counterpoint-why-
virtualize-a-sql-server.

Resource provisioning for VMs
Setting up VMs requires understanding their anticipated workloads. Fortunately, as long as
resources are allocated appropriately, a VM can run almost as fast as a physical server on the
same hardware, but with all of the benefits that virtualization offers.

It makes sense, then, to overprovision resources for many general workloads.

Sharing more memory than you have (overcommit)

You might have 10 VMs running various tasks such as Active Directory Domain Controllers, DNS
servers, file servers, and print servers (the plumbing of a Windows-based network, with a low
RAM footprint), all running on a single host with 16 GB of physical RAM.

Each VM might require 4 GB of RAM to perform properly, but in practice, you have determined
that 90 percent of the time, each VM can function with 1 to 2 GB RAM each, leaving 2 to 3 GB
of RAM unused per VM. You could thus overcommit each VM with 4 GB of RAM (for a total of
40 GB), but still see acceptable performance, without having a particular guest swapping mem-
ory to the drive as a result of low RAM, 90 percent of the time.

For the remaining 10 percent of the time, for which paging unavoidably takes place, you might
decide that the performance impact is not sufficient to warrant increasing the physical RAM
on the host. You are therefore able to run 10 virtualized servers on far less hardware than they
would have required as physical servers.

CH
A

PTER 2

http://www.davidklee.net/2017/07/12/point-counterpoint-why-virtualize-a-sql-server
http://www.davidklee.net/2017/07/12/point-counterpoint-why-virtualize-a-sql-server

 Abstracting hardware with virtualization 75

CAUTION
Because SQL Server makes use of all the memory it is configured to use (limited by
edition), it is not good practice to overcommit memory for VMs that are running SQL
Server . It is critical that the amount of RAM assigned to a SQL Server VM is available for
exclusive use by the VM, and that the Max Server Memory setting is configured cor-
rectly (see Chapter 3) .

Provisioning virtual storage

In the same way that you can overcommit memory, so too can you overcommit storage. This is
called thin provisioning, in which the VM and guest OS are configured to assume that there is a
lot more space available than is physically on the host. When a VM begins writing to a drive, the
actual space used is increased on the host, until it reaches the provisioned limit.

This practice is common with general workloads, for which the space requirements grow pre-
dictably. An OS like Windows Server might be installed on a guest with 127 GB of visible space,
but there might be only 250 GB of actual space on the drive, shared across 10 VMs.

For specialized workloads like SQL Server and Microsoft SharePoint (which is underpinned by
SQL Server anyway), thin provisioning is not a good idea. Depending on the performance of
the storage layer and the data access patterns of the workload, it is possible that the guest will
be slow due to drive fragmentation or even run out of storage space (for any number of rea-
sons, including long-running transactions, infrequent transaction log backups, or a growing
TempDB).

It is therefore a better idea to use thick provisioning of storage for specialized workloads. That
way the guest is guaranteed the storage it is promised by the hypervisor, and is one less thing to
worry about when SQL Server runs out of space at 3 AM on a Sunday morning.

When processors are no longer processors
Virtualizing CPUs is challenging because the CPU works by having a certain number of clock
cycles per second (which we looked at earlier in this chapter). For logical processors (this refers
to the physical CPU core, plus any logical cores if SMT is turned on), every core shares time
slices, or time slots, with each VM. Every time the CPU clock ticks over, that time slot might be
used by the hypervisor or any one of the guests.

Just as it is not recommended to overprovision RAM and storage for SQL Server, you should not
overprovision CPU cores either. If there are four quad-core CPUs in the host (four CPU sockets
populated with a quad-core CPU in each socket), this means that there are 16 cores available for
use by the VMs (32 when accounting for SMT).

CH
A

PT
ER

 2

76 Chapter 2 Introducing database server components

Inside OUT
Virtual CPUs and SMT (Hyper-Threading)

Even though it is possible to assign as many virtual CPUs as there are logical cores,
we recommend that you limit the number of vCPUs to the number of physical cores
available (in other words, excluding SMT) because the number of execution resources
on the CPU itself is limited to the number of physical cores .

Virtual CPU

A virtual CPU (vCPU) maps to a logical core, but in practice, the time slots are shared evenly
over each core in the physical CPU. A vCPU will be more powerful than a single core because
the load is parallelized across each core.

One of the risks of mixing different types of workloads on a single host is that a business-critical
workload like SQL Server might require all the vCPUs to run a large parallelized query. If there
are other guests that are using those vCPUs during that specific time slot and the CPU is over-
committed, SQL Server’s guest will need to wait.

There are certain algorithms in hypervisors that allow vCPUs to cut in line and take over a time
slot, which results in a lag for the other guests, causing performance issues. Assume that a file
server has two logical processors assigned to it. Further assume that on the same host, a SQL
Server has eight logical processors assigned to it. It is possible for the VM with fewer logical pro-
cessors to “steal” time slots because it has a lower number of logical processors allocated to it.

There are several ways to deal with this, but the easiest solution is to keep like with like. Any
guests on the same host should have the same number of virtual processors assigned to them,
running similar workloads. That way, the time slots are more evenly distributed, and it becomes
easier to troubleshoot processor performance. It might also be practical to reduce the number
of vCPUs allocated to a SQL Server instance so that the time slots are better distributed.

CAUTION
A VM running SQL Server might benefit from fewer vCPUs. If too many cores are allo-
cated to the VM, it could cause performance issues due to foreign memory access
because SQL Server might be unaware of the underlying NUMA configuration. Remem-
ber to size your VM as a multiple of a NUMA node size .

You can find more information on VMware’s blog at https://blogs.vmware.com/
vsphere/2012/02/vspherenuma-loadbalancing.html .

CH
A

PTER 2

https://blogs.vmware.com/vsphere/2012/02/vspherenuma-loadbalancing.html
https://blogs.vmware.com/vsphere/2012/02/vspherenuma-loadbalancing.html

 Summary 77

The network is virtual, too
Whereas before, certain hardware devices might be used to perform discrete tasks, such as
network interface cards, routers, firewalls, and switches, these tasks can be accomplished exclu-
sively through a software layer, using virtual network devices.

Several VMs might share one or more physical NICs on a physical host, but because it’s all virtu-
alized, a VM might have several virtual NICs mapped to that one physical NIC.

This allows a number of things that previously might have been cumbersome and costly to set
up. Software developers can now test against myriad configurations for their applications with-
out having to build a physical lab environment using all the different combinations.

With the general trend of consolidating VMs, virtual networking facilitates combining and
consolidating network devices and services into the same environment as the guest VMs, lower-
ing the cost of administration and reducing the need to purchase separate hardware. You can
replace a virtualized network device almost immediately if something goes wrong, and down-
time is vastly reduced.

Summary
SQL Server now runs on Linux, but for all intents and purposes, it’s the same as the Windows
version, and many of the same rules apply.

Whether running on physical or virtual hardware, databases perform better when they can be
cached in memory as much as possible and are backed by persistent storage that is redundant,
and has low latency and high random IOPS.

As data theft becomes more prevalent, consider the security of the database itself, the underly-
ing OS and hardware (physical or virtual), the network, and the database backups, too.

When considering strategies for SQL Server HA and DR, design according to the organization’s
business requirements, in terms of the RPO and RTO. Chapter 11 and Chapter 12 cover this in
depth.

CH
A

PT
ER

 2

This page intentionally left blank

 291

CHAPTER 7

Securing the server and its data

In recent years, security has become incredibly important to organizations of all sorts, in all
industries and government entities, as well. All you need to do is to pay attention to the news
to see that the number of leaks and hacks of sensitive information is increasing almost daily.

IT organizations around the world—not just in Europe—should consider the implementation
of a European privacy law known as the General Data Protection Regulation (GDPR; effective
May 25, 2018) as a wake-up call to review how they handle and manage customer information.

Continuing on from Chapter 6, which focused on authorization, this chapter covers features in
SQL Server and the underlying operating system (OS) that help you to secure your server and
the databases that reside on it.

We begin with what it means to encrypt data. We then move on to understanding how net-
works transmit and secure data. We conclude with the different features in SQL Server and
Microsoft Azure SQL Database that can help you to achieve a secure environment.

Defense in depth means combining different features and strategies to protect your data as
much as possible. We show how this strategy can protect your data during regular operations
as well as minimize the fallout should your data be stolen.

At the OS level, the defensive strategies for Windows and Linux are similar. But because entire
books already have been written on securing these platforms, this chapter will look at OS secu-
rity only from a high level and focus mainly on securing your data with SQL Server 2017 and
Azure SQL Database.

Introducing security principles and protocols 292

Encryption in SQL Server .302

Securing data in motion . 314

Auditing with SQL Server and Azure SQL Database 319

Securing Azure infrastructure as a service 326

CH
A

PT
ER

 7

292 Chapter 7 Securing the server and its data

Introducing security principles and protocols
Security is about finding a balance between the value of your data and the cost of protecting it.
Ultimately, the organization makes this call, but at least you have the technical tools available to
undertake these measures to protect your data.

SQL Server implements a number of security principles through cryptography and other means,
which you can use to build up layers of security to protect your environment.

Computer cryptography is implemented through some intense mathematics that use very large
prime numbers. However, even if you’re wary of math, you need not be afraid in this chapter:
we don’t delve that deeply into it, although we do cover some terminology that might sound
scary.

This section explains various security principles and goes into some detail about encryption. It
also covers network protocols and how cryptography works. This will aid your understanding of
how SQL Server and network security protects your data.

Securing your environment with defense in depth
Securing a SQL Server environment (or for that matter, a cloud infrastructure, including Azure
SQL Database) requires a number of protections that work together to make it difficult for an
attacker to get in, snoop around, steal or modify data, and then get out.

Defense in depth is about building layers of protection around your data and environment.

Perimiter security should include logical and physical segmentation; for example, keeping sensi-
tive servers and applications on a separate part of the network, perhaps off-premises in a sepa-
rate datacenter or in the Azure cloud. You would then want to protect these connections; for
example, by using a Virtual Private Network (VPN).

You should have a firewall and other network defenses to protect against external network
attacks. From a physical aspect, don’t let just anyone plug a laptop into an unattended network
point, or allow them to connect to your corporate wireless network and have access to the pro-
duction environment.

From within the network, you need to implement authentication (who you are) and authoriza-
tion (what you can do), preferably through Active Directory.

NOTE
Integrated authentication with Active Directory is supported on Linux .

CH
A

PTER 7

 Introducing security principles and protocols 293

On the servers themselves, you should ensure that the file system is locked down, that SQL
Server permissions are set correctly, and that file shares (if any) are secured, and using the latest
sharing protocols.

On the application side, you can implement coding practices that protect against things like
SQL injection attacks, and you can implement encryption in your database (and backup files).

Inside OUT
What is SQL injection?

One of the most prevalent attack vectors for a database is to manipulate the software
application or website to attack the underlying database .

SQL injection is a technique that exploits applications that do not sanitize input
data. A carefully crafted Uniform Resource Identifier (URI) in a web application, for
example, can manipulate the database in ways that a naïve application developer is
not expecting .

If a web application exposes database keys in the Uniform Resource Locator (URL), for
example, an industrious person could carefully craft a URL to read protected infor-
mation from a table by changing the key value . An attacker might be able to access
sensitive data or modify the database itself by appending Transact-SQL (T-SQL) com-
mands to the end of a string to perform malicious actions on a table or database .

In a worst-case scenario, a SQL injection attack would take a few seconds, the entire
database could be exfiltrated (data removed without your knowledge), and you
might hear about it only when your organization is blackmailed or sensitive data is
leaked .

You can avoid SQL injection easily by ensuring that all data input is escaped, sanitized,
and validated . To be very safe, all SQL Server queries should use parameterization .

You can read more about defending against SQL injection attacks on Microsoft Docs
at https://docs.microsoft.com/sql/relational-databases/security/sql-injection .

The Open Web Application Security Project (OWASP) is also an excellent resource to
identify and defend against potential vulnerabilities, including SQL injection . You can
visit the OWASP website at https://www.owasp.org .

CH
A

PT
ER

 7

https://docs.microsoft.com/sql/relational-databases/security/sql-injection
https://www.owasp.org

294 Chapter 7 Securing the server and its data

The difference between hashing and encryption
In a security context, data that is converted in a repeatable manner to an unreadable, fixed-
length format using a cryptographic algorithm and that cannot be converted back to its origi-
nal form is said to be hashed.

Data that is converted to an unreadable form that can be converted back to its original form
using a cryptographic key is said to be encrypted.

Cryptographic algorithms can be defeated in certain ways, the most common being brute-force
and dictionary attacks. Let’s take a quick look at each one:

●● Brute-force attack. In a brute-force attack, the attacking code checks every possible
combination of a password, passphrase, or encryption key against the hashing or encryp-
tion service, until it finally arrives at the correct value. Depending on the type of algorithm
and the length of the password, passphrase, or key, this can take a few milliseconds, to as
long as millions of years (yes, you read that correctly).

●● Dictionary attack. A dictionary attack is a lot faster to perform, so a malicious actor
would attempt this first. Dictionary attacks take a list of words from a dictionary (which
can include common words, passwords, and phrases) and use these against the hashing
or encryption service. Dictionary attacks take advantage of the fact that human beings
are bad at remembering passwords and tend to use common words.

As computers become more powerful and parallelized, the length of time to run a brute-force
attack continues to decrease. Countermeasures do exist to protect against some of these
attacks, and some encryption systems cannot be defeated by a brute-force attack. These coun-
termeasures are beyond the scope of this book, but it is safe to say that sufficiently complex
algorithms and long encryption keys will take several years to compromise.

Hashing

A cryptographic hash function (an algorithm) takes variable-length data (usually a password)
and applies a mathematical formula to convert it to a fixed size, or hash value.

This is the recommended method of securing passwords. When a password has been hashed
correctly, it cannot be decrypted into its original form. Used with a random salt (a random string
applied along with the hash function), this results in passwords that are impossible to recon-
struct, even if the same password is used by different people.

To validate a password, it must be hashed using the same hash function again, with the same
salt, and compared against the stored hash value.

Because hash values have a fixed size (the length depends on the algorithm used), there is a
possibility that two sets of data (two different passwords) can result in the same hash value. This

CH
A

PTER 7

 Introducing security principles and protocols 295

is called a hash collision, and it is more likely to occur with shorter hash value lengths. This is
why longer hashes are better.

NOTE
Make sure that you use passwords that are at least 15 characters in length and, prefer-
ably, more than 20 characters . If you use a password manager, you don’t need to memo-
rize passwords, and brute-force attacks take exponentially longer for each additional
character you choose . Don’t be shy about using phrases or sentences either . The pass-
word length matters more than its complexity .

Inside OUT
Why should I use a salt, and what is a rainbow table?

If you don’t use a random salt, the same hash value will be created each time the hash
function is applied against a particular password . Additionally, if more than one per-
son uses the same password, the same hash value will be repeated .

Imagine that a malicious actor has a list of the most commonly used passwords and
knows which hash function you used to hash the passwords in your database . This
person could build a catalog of possible hash values for each password in that list .
This catalog is called a rainbow table .

It becomes very simple to just look up the hash values in your database against the
rainbow table and deduce which password was used . Thus, you should always use a
random salt when hashing passwords in your database . Rainbow tables become all
but useless in this case .

Encryption

Data encryption is the process of converting human-readable data, or plain text, into an
encrypted form by applying a cryptographic algorithm called a key (the cipher) to the data. This
process makes the encrypted data (the ciphertext) unreadable without the appropriate key to
unlock it. Encryption facilitates both the secure transmission and storage of data.

Over the years, many ciphers have been created and subsequently defeated (cracked) because
those algorithms were considered weak. In many cases, this is because both CPUs and Graphics
Processor Units (GPUs) have become faster and more powerful, reducing the length of time it
takes to perform brute-force and other attacks. In other cases, the implementation of the cryp-
tographic function was flawed, and attacks on the implementation itself have been successful.

CH
A

PT
ER

 7

296 Chapter 7 Securing the server and its data

Inside OUT
Why are GPUs used for cracking passwords?

A GPU is designed to process identical instructions (but not necessarily the same
data) in parallel across hundreds or thousands of cores, ostensibly for rendering
images on a display many times per second .

This coincides with the type of work required to crack passwords through brute force,
because those thousands of cores can each perform a single arithmetic operation per
clock cycle through a method called pipelining .

Because GPUs can operate at billions of cycles per second (GHz), this results in hun-
dreds of millions of hashes per second . Without a salt, many password hashes can be
cracked in a few milliseconds, regardless of the algorithm used .

A primer on protocols and transmitting data
Accessing data from an Azure SQL database or SQL Server database involves the transmission
of data over a network interface, which you need to do in a secure manner. A protocol is a set of
instructions for transmitting that information over a specific network port.

A Transmission Control Protocol (TCP) port is one of 65,535 possible connections to a networked
device; in this case, the device is a server running Windows or Linux. It is always associated with
an IP address and a protocol.

Official and unofficial standards over the years have resulted in a set of commonly used ports.
For instance, TCP ports 1433 and 1434 are reserved for SQL Server, whereas TCP ports 80 and
443 are reserved for HTTP and HTTPS, respectively. TCP port 22 is reserved for Secure Shell (SSH),
User Datagram Protocol (UDP) port 53 is used for Domain Name Services (DNS), and so on.

The internet protocol suite

To discuss security on a network, you need to understand cryptographic protocols. To discuss
the network itself, you need to discuss the biggest network of them all: the internet.

The internet is a network of networks (it literally means “between networks”) which transmits
data using a suite of protocols, including TCP, which sits on top of Internet Protocol (IP). TCP/IP is
the most common network protocol stack in use today. Most of the services on the internet, as
well as local networks, rely on TCP/IP.

CH
A

PTER 7

 Introducing security principles and protocols 297

NOTE
The full internet protocol suite comprises TCP, IP, Address Resolution Protocol (ARP),
Internet Control Message Protocol (ICMP), UDP, and Internet Group Management
Protocol (IGMP) . All of these are required to implement the full TCP/IP stack .

IP is a connectionless protocol, meaning that each individual unit of transfer, also known as a
network packet or datagram, contains the data itself—the payload—and a header that indicates
where it came from and where it needs to go (the routing information).

IP network packets are delivered using a “best effort” model, meaning that they might be deliv-
ered out of order, with no delivery guarantee at all. This low overhead makes the protocol fast
and allows packets to be sent to several recipients at once (multicast or broadcast).

TCP provides the necessary instructions for reliability, sequencing (the order of packets), and
data integrity. If a packet is not received by the recipient, or a packet is received out of order,
TCP can resubmit the data again, using IP as its delivery mechanism.

Versions of IP in use today Version 4 of the Internet Protocol (IPv4) has a 32-bit address
space, which provides nearly 4.3 billion addresses (232, or approximately 4.3 x 109). Unfortu-
nately, when this version was first proposed in September 1981, very few people predicted that
the internet would be as large and important as it is today. With billions of humans online, and
billions of devices connected, the available IPv4 address space is all but depleted.

 ➤ You can read the Internet Protocol, Version 4 Specification, known as Internet Engineering
Task Force Request For Comments #791, at https://tools.ietf.org/html/rfc791 .

Tricks like Network Address Translation (NAT), which uses private IP addresses behind a router
with a single valid public IP address representing that entire network, have held off the deple-
tion over the years, but time and address space has run out.

Version 6 of the Internet Protocol (IPv6), has an address space of 128 bits which provides more
than 340 undecillion addresses (2128, or approximately 3.4 x 1038). This number is so staggeringly
huge that, even with networks and devices being added every minute, including the upward
trend of the Internet of Things, each of these devices can have its own unique address on the
internet, without ever running out of addresses.

 ➤ You can read the Internet Protocol, Version 6 Specification, known as Internet Engineering
Task Force Request For Comments #8200, at https://tools.ietf.org/html/rfc8200 .

CH
A

PT
ER

 7

https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc8200

298 Chapter 7 Securing the server and its data

Inside OUT
What is the Internet of Things?

Until recently, computing devices such as servers, desktop computers, laptops, and
mobile devices have been the only devices connected to the internet .

Today, a huge variety of objects embedded with electronics are finding their way online,
including coffee machines, security cameras, home automation systems, vehicle track-
ers, heart monitors, industrial measurement devices, and many, many more .

Ignoring the fact that many of these devices should not have publicly accessible
internet addresses in the first place, the growth trend is exponential, and IPv6 is mak-
ing this massive growth possible .

Cloud platforms such as Azure have services dedicated to managing the communication
and data requirements of these devices, including an Azure SQL database .

Making sense of an IP address An IP address is displayed in a human-readable notation but is
binary under the hood:

●● IPv4. The address is broken up into four subclasses of decimal numbers, each subclass
ranging from 0 to 255, and separated by a decimal point. For example, 52.178.167.109 is a
valid IPv4 address.

●● IPv6. The address is broken up into eight subclasses of hexadecimal numerals, each
subclass being four digits wide, and separated by a colon. If a subclass contains all zeroes,
it can be omitted. For example, 2001:d74f:e211:9840:0000:0000:0000:0000 is a valid IPv6
address that can be simplified to 2001:d74f:e211:9840:: with the zeroes omitted (note the
double-colon at the end to indicate the omission).

Adoption of IPv6 across the internet is taking decades, so a hybrid solution is currently in place
by which IPv4 and IPv6 traffic is shared across IPv6 and IPv4 devices, respectively. If that doesn’t
sound like enough of a headache, let’s add routing into the mix.

Finding your way around the internet

Routing between networks on the internet is performed by the Border Gateway Protocol (BGP),
which sits on top of TCP/IP.

BGP is necessary because there is no map of the internet. Devices and entire networks appear
and disappear all the time. BGP routes billions of network packets through millions of routers
based on a best guess scenario. Packets are routed based on trust: routers provide information
to one another about the networks they control, and BGP implicitly trusts that information.

CH
A

PTER 7

 Introducing security principles and protocols 299

BGP is thus not secure, because it was designed solely to fix the scalability of the internet, which
was (and still is) growing exponentially. It was a “quick fix” that became part of the fabric of the
infrastructure long before security was a concern.

Efforts to secure BGP have been slow. It is therefore critical to assume that your own internet
traffic will be hijacked at some point. If this happens, proper cryptography can prevent third
parties from reading your data.

A brief overview of the World Wide Web

A lot of people conflate the World Wide Web (the web) with the internet, but the web is a single
component of the greater internet, along with email (and other services that have seemingly
faded into obscurity but are still in use today, such as File Transfer Protocol and Voice over IP).

NOTE
Based on publicly available information, Microsoft processes around 500 billion emails
per month through its various services, including Microsoft Office 365 and Outlook Mail
(the web version) .

The web uses the Hypertext Transport Protocol (HTTP), which sits on top of TCP/IP. A web server
provides mixed media content (text, graphics, video, and other media) in Hypertext Markup
Language (HTML) format, which is transmitted using HTTP and then interpreted and rendered
by a web browser.

The web grew quickly for two reasons. First, the internet became commercialized after origi-
nally being an academic and military project for several decades. The web itself then became
wildly popular because of the introduction of the first graphical web browser, NCSA Mosaic, in
the 1990s. The spiritual successors to Mosaic were Netscape Navigator and Microsoft Internet
Explorer, during a period of internet history known as the “browser wars.”

 ➤ You can learn more about the commercial beginnings of the web and the so-called
“Internet Era,” by listening to the Internet History Podcast, available at
http://www.internethistorypodcast.com .

Modern web browsers include Microsoft Edge, Google Chrome, Mozilla Firefox, and Apple
Safari.

NOTE
The modern web browser is hugely complex, doing a lot more than rendering HTML,
but for the purposes of this discussion and in the interest of brevity, we gloss over those
extras .

CH
A

PT
ER

 7

http://www.internethistorypodcast.com

300 Chapter 7 Securing the server and its data

How does protocol encryption fit into this?

The explosive adoption of the web in the 1990s created the need for secure transactions as
public-facing organizations began to transition their sales online into electronic commerce, or
e-commerce, ventures. Consumers wanted to use their credit cards safely and securely so that
they could shop and purchase goods without leaving the comfort of their homes.

Remember that the internet is built on the Internet Protocol, which is stateless and has routing
information in the header of every single packet. This means that anyone can place a hardware
device (or software) in the packet stream, do something with the packet, and then pass it on
(modified or not) to the destination, without the sender or recipient having any knowledge of
this interaction. Because this is a fundamental building block of a packet-switching network, it’s
very difficult to secure properly.

As we discussed earlier, encryption transforms data into an unreadable format. Now, if someone
connected to the same network were to intercept encrypted packets, that person couldn’t see
what you’re doing. The payload of each packet would appear garbled and unreadable, unless
this person has the key to decrypt it.

A secure version of HTTP was created by Netscape Communications in 1994, which was dubbed
HTTPS (HTTP Secure, or HTTP over Secure Sockets Layer [SSL]). Over the years, the moniker
of HTTPS has remained, but it has come to be known as HTTP over Transport Layer Security
(TLS) as standards improved.

When we talk about data moving over the network, that usually means TCP/IP is involved, and
we need to transmit that data securely.

Symmetric and asymmetric encryption
You can encrypt data in two ways: symmetric and asymmetric. Each has its advantages and
disadvantages.

Symmetric encryption (shared secret)

A secret key, which is usually a password, passphrase, or random string of characters, is used to
encrypt data with a particular cryptographic algorithm. This secret key is shared between the
sender and the recipient, and both parties can encrypt and decrypt all content by using this
secret key.

If the key is accidentally leaked to a third party, the encrypted data could be intercepted,
decrypted, modified, and reencrypted again, without either the sender or recipient being aware
of this. This type of attack is known as a man-in-the-middle attack.

CH
A

PTER 7

 Introducing security principles and protocols 301

Asymmetric encryption (public key)

Also known as public key encryption (PKE). A key–pair is generated, comprising a private key
and a public key, and the public key can be widely distributed. The public key is used to encrypt
data, and the private key is used to decrypt that data.

The advantage is that the private key never needs to be shared, which makes this method far
more secure because only you can use your private key to decrypt the data. Unfortunately,
asymmetric encryption does require a lot more processing power, plus both parties need their
own key–pairs.

Inside OUT
What encryption method should I use for SQL Server?

For practical purposes, SQL Server manages the keys internally for both symmetric
and asymmetric encryption .

Owing to the much larger overhead of asymmetric encryption, however, you should
encrypt any data in SQL Server that you want you protect by using symmetric key
encryption .

Using the encryption hierarchy, layers above the data can be protected using pass-
words or asymmetric keys (we discuss this in the next section) .

Digital certificates
Public keys require discoverability, which means that they need to be made publicly available. If
a sending party wants to sign a message for the receiving party, the burden is on the sender to
locate the recipient’s public key in order to sign a message.

For small-scale communications between two private entities, this might be done by sharing
their public keys between each other.

For larger-scale communications with many senders and one recipient (such as a web or data-
base server, for example), a certificate authority can provide the public key through a digital
certificate, which the recipient (the website or database administrator) can install on the server
directly.

This certificate serves as an electronic signature for the recipient, which includes its public key.
The authority, known as a Certification Authority, is trusted by both the sender and the recipi-
ent, and the sender can verify that the recipient is indeed who it claims to be.

CH
A

PT
ER

 7

302 Chapter 7 Securing the server and its data

Digital certificates, also known as Public Key Certificates, are defined by the X.509 standard.
Many protocols use this standard, including TLS and its predecessor, SSL.

 ➤ You can read more about how digital certificates and TLS relate to SQL Server and Azure
SQL Database later in this chapter .

Certification Authority

A Certification Authority (CA) is an organization or entity that issues digital certificates, which
include the name of the owner, the owner’s public key, and start and expiration dates.

The certificate is automatically revoked after it expires, and the CA can revoke any certificate
before then.

For the certificate to be trusted, the CA itself must be trustworthy. It is the responsibility of the
CA to verify the owner’s identity so that any certificates issued in that owner’s name can be
trusted.

In recent months, several CAs have lost their trustworthy status, either because their verification
process was flawed or their signing algorithms were weak. Take care when choosing a CA for
your digital certificates.

Encryption in SQL Server
Encryption is but one part of securing your environment. SQL Server provides a full encryption
hierarchy, starting at the OS layer (including the network stack and file system), working all the
way down the levels of the database, through to individual cells in a table.

Figure 7-1 shows this hierarchy.

Figure 7-1 The SQL Server encryption hierarchy.

CH
A

PTER 7

 Encryption in SQL Server 303

Data protection from the OS
At the top of the hierarchy, protecting everything below it, is the OS. Windows Server provides
an Application Programming Interface (API) for system- and user-level processes to take advan-
tage of data protection (encryption) on the file system.

In other words, SQL Server and other applications can make use of this data protection API to
have Windows automatically encrypt data on the drive without having to encrypt data through
other means.

SQL Server Enterprise edition uses the Data Protection API (DPAPI) for Transparent Data
Encryption (TDE).

Inside OUT
How does data protection work for SQL Server on Linux?

The mechanism that Microsoft created for getting SQL Server to run on Linux and
Docker containers, is called the Platform Abstraction Layer (PAL) . It aligns all code
specific to the OS in one place, forming a bridge with the underlying platform.

All APIs, including file system and DPAPIs, are included in the PAL. This makes SQL
Server 2017 entirely platform agnostic .

To read more about the PAL, visit the official SQL Server Blog at https://blogs.technet.
microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/ .

The encryption hierarchy in detail
Each layer of the hierarchy protects the layer below it by using a combination of keys (asymmet-
ric and symmetric) and certificates (refer to Figure 7-1).

Each layer in the hierarchy can be accessed by a password at the very least, unless an Extensible
Key Management (EKM) module is being used. The EKM module is a standalone device that
holds symmetric and asymmetric keys outside of SQL Server.

The Database Master Key (DMK) is protected by the Service Master Key (SMK), and both of
these are symmetric keys. The SMK is created when you install SQL Server and is protected by
the DPAPI.

If you want to use TDE on your database (see the section “Configuring TDE on a user database”
later in this chapter), it requires a symmetric key called the Database Encryption Key (DEK), which
is protected by an asymmetric key in the EKM module or by a certificate through the DMK.

CH
A

PT
ER

 7

https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/
https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/

304 Chapter 7 Securing the server and its data

This layered approach helps to protect the data from falling into the wrong hands.

There are two considerations when deciding how to secure a SQL Server environment, which
you can implement independently.

●● Data at rest. In the case of TDE, this is decrypting the data on a drive as it is read into
the buffer pool, and encrypting the data as it is flushed to a drive from the buffer pool.
(You could also encrypt your storage layer independently from SQL Server, but this does
not form part of the encryption hierarchy.)

●● Data in motion. Protecting the data during transmission over a network connection.
Any network protocols and APIs involved must support encrypting and decrypting the
data as it moves in and out of the buffer pool.

Data is in motion from the moment it is read from or written to the buffer pool in SQL Server
or Azure SQL Database. Between the buffer pool and the underlying storage, data is considered
to be at rest.

NOTE
TDE encrypts database backup files along with the data and transaction log files. How-
ever, the TDE feature is available only with the SQL Server Enterprise edition and Azure
SQL Database .

Using EKM modules with SQL Server
Organizations might choose to take advantage of a separate security appliance called a Hard-
ware Security Module (HSM) or EKM device to generate, manage, and store encryption keys for
the network infrastructure outside of a SQL Server environment.

SQL Server can make use of these keys for internal use. The HSM/EKM device can be a hardware
appliance, a USB device, a smart card, or even software, as long as it implements the Microsoft
Cryptographic Application Programming Interface (MCAPI) provider.

EKM is an advanced SQL Server setting and is turned off by default. To use the key or keys from
an HSM/EKM device, you need to turn on EKM by using the sp_execute 'EKM provider
enabled' command with the appropriate parameter. Then, the device must be registered as
an EKM module for use by SQL Server.

After the HSM/EKM device creates a key for use by SQL Server (for TDE, for instance), the device
exports it securely into SQL Server via the MCAPI provider.

The module might support different types of authentication (Basic or Other), but only one of
these types can be registered with SQL Server for that provider.

CH
A

PTER 7

 Encryption in SQL Server 305

If the module supports Basic authentication (a user name and password combination), SQL
Server uses a credential to provide transparent authentication to the module.

Inside OUT
What is a credential?

In SQL Server, a credential is a record of authentication information that the Database
Engine uses to connect to external resources .

These credentials provide security details for processes to impersonate Windows
users on a network, though they can also be used to connect to other services like
Azure Blob Storage and, of course, an HSM/EKM device .

Credentials that will be used by all databases can be created in the master database
by using the CREATE CREDENTIAL command, or per individual database using the
CREATE DATABASE SCOPED CREDENTIAL command .

Chapter 6 contains more information on logins, and Chapter 13 goes into more detail
about credentials .

 ➤ To read more about EKM in SQL Server, go to https://docs.microsoft.com/sql/
relational-databases/security/encryption/extensible-key-management-ekm .

Cloud security with Azure Key Vault

You can use Azure Key Vault in addition to, or as a drop-in replacement of, a traditional HSM/
EKM device. SQL Server can use Key Vault on-premises or running in a VM in the cloud.

Key Vault is implemented as an EKM provider inside SQL Server, using the SQL Server Connector
(a standalone Windows application) as a bridge between Key Vault and the SQL Server instance.

To make use of Key Vault, you must create the vault, along with a valid Azure Active Directory
(Azure AD) first.

Begin by registering the SQL Server service principal name in Azure AD. After the service princi-
pal name is registered, you can install the SQL Server Connector and turn on EKM in SQL Server.

 ➤ You can read more about service principal names and Kerberos in Chapter 2 .

CH
A

PT
ER

 7

https://docs.microsoft.com/sql/relational-databases/security/encryption/extensible-key-management-ekm
https://docs.microsoft.com/sql/relational-databases/security/encryption/extensible-key-management-ekm

306 Chapter 7 Securing the server and its data

You must then create a login that SQL Server will use for accessing Key Vault, and then map that
login to a new credential that contains the Key Vault authentication information.

 ➤ A step-by-step guide for this process is available on Microsoft Docs at
https://docs.microsoft.com/sql/relational-databases/security/encryption/
setup-steps-for-extensible-key-management-using-the-azure-key-vault .

Master keys in the encryption hierarchy
Since SQL Server 2012, both the SMK and DMK are symmetric keys encrypted using the
Advanced Encryption Standard (AES) cryptographic algorithm. AES is faster and more secure
than Triple Data Encryption Standard (3DES), which was used in SQL Server prior to 2012.

Note, however, that when you upgrade from an older version of SQL Server—those that were
encrypted using 3DES—you must regenerate both the SMK and DMK to upgrade them to AES.

The SMK

The SMK is at the top of the encryption hierarchy in SQL Server. It is automatically generated
the first time the SQL Server instance starts, and it is encrypted by the DPAPI in combination
with the local machine key (which itself is created when Windows Server is installed). The key
is based on the Windows credentials of the SQL Server service account and the computer
credentials. (On Linux, the local machine key is likely embedded in the PAL when SQL Server
is installed.)

Inside OUT
What is the difference between DES, 3DES, and AES?

Data Encryption Standard (DES) was a symmetric key algorithm developed in the
1970s, with a key length of 56 bits (256 possible combinations) . It has been considered
cryptographically broken since 1998 . In 2012 it was possible to recover a DES key in
less than 24 hours if both a plain-text and cipher-text pair were known .

Its successor, 3DES, applies the DES algorithm three times (each time with a different
DES key) to each block of data being encrypted . However, with current consumer hard-
ware, the entire 3DES keyspace can be searched, making it cryptographically weak .

AES (Advanced Encryption Standard) uses keys that are 128, 192, or 256 bits in length .
Longer keys are much more difficult to crack using brute-force methods, so AES is con-
sidered safe for the foreseeable future . It also happens to be much faster than 3DES .

CH
A

PTER 7

https://docs.microsoft.com/sql/relational-databases/security/encryption/setup-steps-for-extensible-key-management-using-the-azure-key-vault
https://docs.microsoft.com/sql/relational-databases/security/encryption/setup-steps-for-extensible-key-management-using-the-azure-key-vault

 Encryption in SQL Server 307

If you need to restore or regenerate an SMK, you first must decrypt the entire SQL Server
encryption hierarchy, which is a resource-intensive operation. You should perform this activ-
ity only in a scheduled maintenance window. If the key has been compromised, however, you
shouldn’t wait for that maintenance window.

CAUTION
It is essential that you back up the SMK to a file and then copy it securely to an off-
premises location . Losing this key will result in total data loss if you need to recover a
database or environment .

To back up the SMK, you can use the T-SQL script shown that follows, but be sure to choose a
randomly generated password. The password will be required for restoring or regenerating the
key at a later stage. Keep the password separate from the SMK backup file so that they cannot
be used together if your secure backup location is compromised. Ensure that the folder on the
drive is adequately secured. After you back up the key, transfer and store it securely in an off-
premises location.

BACKUP SERVICE MASTER KEY TO FILE = 'c:\SecureLocation\service_master_key'
 ENCRYPTION BY PASSWORD = '<UseAReallyStrongPassword>';
GO

The DMK

(Refer back to Figure 7-1 to see how the DMK is protected by the SMK.)

The DMK is used to protect asymmetric keys and private keys for digital certificates stored in
the database. A copy of the DMK is stored in the database for which it is used as well as in the
master database. The copy is automatically updated by default if the DMK changes. This allows
SQL Server to automatically decrypt information as required. A DMK is required for each user
database that will make use of TDE.

CAUTION
Don’t forget to back up the DMK to a file, as well, and copy it securely to an off-premises
location .

It is considered a security best practice to regenerate the DMK periodically to protect the server
from brute-force attacks. The idea is that it will take longer for a brute-force attack to break the
key than the length of time for which the key is in use.

For example, suppose that you encrypt your database with a DMK in January of this year. In July,
you regenerate the DMK, which will cause all keys for digital certificates to be reencrypted with
the new key. If anyone had begun a brute-force attack on data encrypted with the previous
DMK, all results from that attack will be rendered useless by the new DMK.

CH
A

PT
ER

 7

308 Chapter 7 Securing the server and its data

You can back up the DMK by using the T-SQL script that follows. The same rules apply as with
backing up the SMK (choose a random password, store the file off-premises, and keep the pass-
word and backup file separately). This script assumes that the master key exists.

USE WideWorldImporters;
GO
BACKUP MASTER KEY TO FILE = 'c:\SecureLocation\wwi_database_master_key'
 ENCRYPTION BY PASSWORD = '<UseAReallyStrongPassword>';
GO

 ➤ You can read more about the SMK and DMK on Microsoft Docs at https://
docs.microsoft.com/sql/relational-databases/security/encryption/
sql-server-and-database-encryption-keys-database-engine .

Encrypting data by using TDE
Continuing with our defense-in-depth discussion, an additional way to protect your environ-
ment is to encrypt data at rest, namely the database files (and when TDE is turned on, all back-
ups of that database).

There are third-party providers, including storage vendors, that provide excellent on-disk
encryption for your Direct-Attached Storage (DAS) or Storage-Area Network (SAN), as a file sys-
tem solution or at the physical storage layer. Provided that your data and backups are localized
to this particular solution, and no files are copied to machines that are not encrypted at the file-
system level, this might be an acceptable solution for you.

However, if you have the Enterprise edition of SQL Server, you can use TDE, which encrypts the
data, transaction log, and backup files at the file-system level by using a DEK.

If someone manages to acquire these files via a backup server, Azure Blob Storage archive, or
by gaining access to your production environment, that person will not be able to simply attach
the files or restore the database without the DEK.

The DEK is a symmetric key (shared secret) that is secured by a certificate stored in the master
database. If using HSM/EKM or Key Vault, the DEK is protected by an asymmetric key in the
EKM module, instead. The DEK is stored in the boot record of the protected database (page 0
of file 1) so that it is easily available during the recovery process.

NOTE
TDE is invisible to any applications that use it . No changes are required in those applica-
tions to take advantage of TDE for the database .

In the data file, TDE operates at the page level, because all data files are stored as 8-KB pages.
Before being flushed from the buffer pool, the contents of the page are encrypted, the check-
sum is calculated, and then the page is written to the drive. When reading data, the 8-KB page
is read from the drive, decrypted, and then the contents are placed into the buffer pool.

CH
A

PTER 7

https://docs.microsoft.com/sql/relational-databases/security/encryption/sql-server-and-database-encryption-keys-database-engine
https://docs.microsoft.com/sql/relational-databases/security/encryption/sql-server-and-database-encryption-keys-database-engine
https://docs.microsoft.com/sql/relational-databases/security/encryption/sql-server-and-database-encryption-keys-database-engine

 Encryption in SQL Server 309

NOTE
Even though encryption might to some degree increase the physical size of the data it
is protecting, the size and structure of data pages is not affected . Instead, the number of
pages in the data file might increase.

For log files, the contents of the log cache are also encrypted before writing to and reading
from the drive.

 ➤ To read more about checkpoint operations and active virtual log files (VLFs) in the transac-
tion log, refer to Chapter 3 .

Backup files are simply the contents of the data file, plus enough transaction log records to
ensure that the database restore is consistent (redo and undo records of active transactions
when the backup is taken). In other words, the contents of new backup files are encrypted by
default after TDE is turned on.

Configuring TDE on a user database

To use TDE on SQL Server Enterprise edition, you need to create a DMK if you don’t already
have one.

Verify that it is safely backed up and securely stored off-premises. If you have never backed
up the DMK, you will be warned by the Database Engine after using it that it has not yet been
backed up. If you don’t know where that backup is, back it up again. This is a crucial detail to
using TDE (or any encryption technology).

Next, you will create a digital certificate or use one that you have acquired from a CA. In the
next example, the certificate is created on the server directly.

Then, you create the DEK, which is signed by the certificate and encrypted using a crypto-
graphic algorithm of your choice.

Although you do have a choice of algorithm, we recommend AES over 3DES for performance
and security reasons, and you have a choice of three AES key sizes: 128, 192, or 256 bits. Remem-
ber that larger keys are more secure but will add additional overhead when encrypting data.
If you plan to rotate your keys every few months, you can safely use 128-bit AES encryption
because no brute-force attack (using current computing power) should be able to attack a
128-bit key in the months between key rotations.

After you create the DEK, you turn on encryption on the database. The command completes
immediately, but the process will take place in the background because each page in the data-
base will need to be read into the buffer pool, encrypted, and flushed to the drive.

CH
A

PT
ER

 7

310 Chapter 7 Securing the server and its data

CAUTION
Turning on TDE on a user database will automatically turn on TDE for TempDB, as well, if
it is not already on . This can add overhead that adversely affects performance for unen-
crypted databases that make use of TempDB . If you want to turn off TDE on TempDB, all
user databases must have it turned off first.

The script that follows provides a summary of the steps to turn on TDE:

USE master;
GO
-- Remember to back up this Database Master Key once it is created
CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<UseAReallyStrongPassword>';
GO
CREATE CERTIFICATE WideWorldServerCert WITH SUBJECT = 'WWI DEK Certificate';
GO
USE WideWorldImporters;
GO
CREATE DATABASE ENCRYPTION KEY
 WITH ALGORITHM = AES_128
 ENCRYPTION BY SERVER CERTIFICATE WideWorldServerCert;
GO
ALTER DATABASE WideWorldImporters SET ENCRYPTION ON;
GO

Verifying whether TDE is turned on for a database

To determine which databases are encrypted with TDE, you can issue the following command:

SELECT name, is_encrypted FROM sys.databases;

If a user database is encrypted, the is_encrypted column value for that database will be set
to 1. TempDB will also show a value of 1 in this column.

Protecting sensitive columns with Always Encrypted
Although TDE is really useful for encrypting the entire database at the file-system level, it
doesn’t prevent database administrators and other users from having access to sensitive infor-
mation within the database.

The first rule of storing sensitive data is that you should avoid storing it altogether when pos-
sible. Credit card information makes sense in a banking system, but not in a sales database, for
instance.

CH
A

PTER 7

 Encryption in SQL Server 311

NOTE
Many third-party systems can encrypt your data securely, as well, but are beyond the
scope of this chapter . It is good to keep in mind that there is a small but inherent risk in
storing encryption keys with data, as SQL Server does . Your organization must balance
that risk against the ease of managing and maintaining those keys .

If you must store sensitive data, Always Encrypted protects how data is viewed at the column
level. It works with applications that use particular connection types (client drivers; see the next
section) to interact with SQL Server. These client drivers are protected by a digital certificate so
that only specific applications can view the protected data.

Always Encrypted was introduced in SQL Server 2016 and has been available on all editions
since SQL Server 2016 Service Pack 1. To use this feature, the database makes use of two types of
keys: column encryption keys and column master keys (dicussed shortly).

The encryption used by Always Encrypted is one of two types:

●● Deterministic encryption. This is the same as generating a hash value without a salt.
The same encrypted value will always be generated for a given plain-text value. This is
useful for joins, indexes, searching, and grouping, but it makes it possible for people to
guess what the hash values represent.

●● Randomized encryption. This is the same as generating a hash value with a salt. No
two of the same plain-text values will generate the same encrypted value. Although this
does improve security of the data, it does not permit joins, indexes, searching, and group-
ing for those encrypted columns.

For values that are not expected to participate in joins or searches, you can safely use random-
ized encryption. Choose deterministic encryption for values like social security numbers and
other government-issued values because it helps for searching and grouping.

Because the whole intention of Always Encrypted is to prevent unauthorized persons from view-
ing data (including database administrators), you should generate the keys elsewhere and store
them in a trusted key store (in the the operating system’s key store for the database server and
the application server, or an EKM module such as Key Vault), away from the database server.
The person who generates the keys should not be the same person who is administering the
database.

Client application providers that support Always Encrypted

The following providers currently support Always Encrypted:

●● .NET Framework 4.6 or higher

CH
A

PT
ER

 7

312 Chapter 7 Securing the server and its data

●● Microsoft JDBC Driver 6.0 or higher

●● ODBC Driver 13.1 for SQL Server or higher

It is anticipated that .NET Standard will be supported in the near future.

The connection between the Database Engine and application is made by using a client-side
encrypted connection. Each provider has its own appropriate method to control this setting:

●● .NET Framework. Set the Column Encryption Setting in the connection string to
enabled, or configure the SqlConnectionStringBuilder.ColumnEncryption
Setting property to SqlConnectionColumnEncryptionSetting.Enabled.

●● JDBC. Set the columnEncryptionSetting to Enabled in the connection string,
or configure the SQLServerDataSource() object with the setColumnEncryption
Setting("Enabled") property.

●● ODBC. Set the ColumnEncryption connection string keyword to Enabled, use the
SQL_COPT_SS_COLUMN_ENCRYPTION preconnection attribute, or through the Data
Source Name (DSN) using the SQL_COLUMN_ENCRYPTION_ENABLE setting.

Additionally, the application must have the VIEW ANY COLUMN MASTER KEY DEFINITION and
VIEW ANY COLUMN ENCRYPTION KEY DEFINITION database permissions in order to view the
Column Master Key and Column Encryption Key.

The Column Master Key and Column Encryption Key

The Column Master Key (CMK) protects one or more Column Encryption Keys (CEK).

The CEK is encrypted using AES encryption and is used to encrypt the actual column data. You
can use the same CEK to encrypt multiple columns, or you can create a CEK for each column
that needs to be encrypted.

Metadata about the keys (but not the keys themselves) is stored in the database’s system cata-
log views:

●● sys.column_master_keys

●● sys.column_encryption_keys

This metadata includes the type of encryption and location of the keys, plus their encrypted
values. Even if a database is compromised, the data in the protected columns cannot be read
without access to the secure key store.

CH
A

PTER 7

 Encryption in SQL Server 313

 ➤ To read more about considerations for key management, go to https://
docs.microsoft.com/sql/relational-databases/security/encryption/
overview-of-key-management-for-always-encrypted .

Using the Always Encrypted Wizard

The easiest way to configure Always Encrypted is by using the Always Encrypted Wizard in
SQL Server Management Studio. As noted previously, you need to have the following permis-
sions before you begin:

●● VIEW ANY COLUMN MASTER KEY DEFINITION

●● VIEW ANY COLUMN ENCRYPTION KEY

If you plan on creating new keys, you also need the following permissions:

●● ALTER ANY COLUMN MASTER KEY

●● ALTER ANY COLUMN ENCRYPTION KEY

In SQL Server Management Studio, in Object Explorer, right-click the name of the database that
you want to configure. In the Always Encrypted Wizard, in the pane on the left, click Tasks, and
then, on the Tasks page, click Encrypt Columns.

On the Column Selection page, choose the a column in a table that you want to encrypt, and
then select the encryption type (deterministic or randomized). If you want to decrypt a previ-
ously encrypted column, you can choose Plaintext here.

On the Master Key Configuration page, you can create a new key by using the local OS certifi-
cate store or by using a centralized store like Key Vault or an HSM/EKM device. If you already
have a CMK in your database, you can use it, instead.

NOTE
Memory-optimized and temporal tables are not supported by this wizard, but you can
still encrypt them by using Always Encrypted .

 ➤ You can read more about Always Encrypted on Microsoft Docs at https://docs.microsoft.com/
sql/relational-databases/security/encryption/always-encrypted-database-engine .

CH
A

PT
ER

 7

https://docs.microsoft.com/sql/relational-databases/security/encryption/overview-of-key-management-for-always-encrypted
https://docs.microsoft.com/sql/relational-databases/security/encryption/overview-of-key-management-for-always-encrypted
https://docs.microsoft.com/sql/relational-databases/security/encryption/overview-of-key-management-for-always-encrypted
https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine

314 Chapter 7 Securing the server and its data

Securing data in motion
Data in motion is data that SQL Server provides over a network interface. Protecting data in
motion requires a number of considerations, from the perimeter security, to cryptographic pro-
tocols for the communication itself, and the authorization of the application or process access-
ing the data.

This section first goes into more detail about network encryption with TLS, which operates on
the network itself, and then dives into row-level security and data masking. The latter features
do not make use of encryption, but form part of your defense-in-depth strategy to protect data
in motion from prying eyes.

Unlike Always Encrypted, which encrypts data at rest and only decrypts it when being read,
row-level security and data masking hide or show data depending on who’s asking for it and
how it is queried.

Securing network traffic with TLS
We touched briefly on TLS earlier in this chapter in the discussion about TCP/IP, but we did not
go into much detail. Now, it’s time we look at it more closely.

So, what is TLS, and how does it affect SQL Server and Azure SQL Database? The name is reveal-
ing. TLS is a security layer on top of a transport layer, or in technical terms, a cryptographic pro-
tocol. As we pointed out at the beginning of this chapter, most networks use the TCP/IP protocol
stack. In other words, TLS is designed to secure the traffic on TCP/IP-based networks.

How does TLS work?

With TLS protection, before two parties can exchange information, they need to mutually agree
on the encryption key and the cryptographic algorithm to use, which is called a key exchange or
handshake. TLS works with both symmetric and asymmetric encryption, which means that the
encryption key could be a shared secret or a public key (usually with a certificate).

After the key exchange is done, the handshake is complete, and a secured communication
channel allows traffic between the two parties to flow. This is how data in motion is protected
from external attacks.

NOTE
Remember that longer keys mean better security . Public keys of 1,024 bits (128 bytes) are
considered short these days, so some organizations now prefer 2,048-bit, or even 4,096-bit
public key certificates for TLS.

CH
A

PTER 7

 Securing data in motion 315

A brief history of TLS

Just as earlier cryptographic protocols have been defeated or considered weak enough that
they will eventually be defeated, so too have SSL and its successor, TLS, had their challenges:

●● The prohibition of SSL 2.0 is covered at https://tools.ietf.org/html/rfc6176.

●● Known attacks on TLS are available at https://tools.ietf.org/html/rfc7457.

TLS 1.2 was defined in 2008, and is the latest public version. It is vulnerable to certain attacks,
like its predecessors, but as long as older encryption algorithms are not used (for instance 3DES,
RC4, and IDEA), it is good enough for the moment.

Where possible, you should be using TLS 1.2 everywhere. SQL Server ships with TLS 1.0, 1.1, and
1.2 support out of the box, so you will need to turn off 1.0 and 1.1 at the OS level to ensure that
you use TLS 1.2.

 ➤ You can see how to turn off older versions of TLS in the Microsoft Knowledge Base article at
https://support.microsoft.com/help/3135244 .

As of this writing, TLS 1.3 is a draft specification.

NOTE
Although we do not recommend 3DES for TLS, you can still use 3DES lower in the SQL
Server security hierarchy for securing DEKs because these are protected by the SMK, the
DMK, and a Certificate, or entirely by an HSM/EKM module like Key Vault.

Row-level security
Protecting the network itself is good and proper, but this does not protect assets within the
network from, for example, curious people snooping on salaries in the HR database. Or, suppose
that your database contains information for many customers, and you want only customers to
view their own data, without having knowledge of other data in the same tables.

Row-level security performs at the database level to restrict access through a security policy,
based on group membership or execution context. It is functionally equivalent to a WHERE
clause.

Access to the rows in a table is protected by an inline table-valued function, which is invoked
and enforced by the security policy.

The function checks whether the user is allowed to access a particular row, while the security
policy attaches this function to the table. So, when you run a query against a table, the security
policy applies the predicate function.

CH
A

PT
ER

 7

https://tools.ietf.org/html/rfc6176
https://tools.ietf.org/html/rfc7457
https://support.microsoft.com/help/3135244

316 Chapter 7 Securing the server and its data

There are two types of security policies supported by row-level security, both of which you can
apply simultaneously:

●● Filter predicates, which limit the data that can be seen

●● Block predicates, which limits the actions a user can take on data

Hence, a user might be able to see rows, but cannot insert, update, or delete rows that look like
rows they can see. This concept is covered in more detail in the next section.

CAUTION
There is a risk of information leakage if an attacker writes a query with a specially crafted
WHERE clause and, for example, a divide-by-zero error, to force an exception if the
WHERE condition is true . This is known as a side-channel attack . It might be wise to limit
the ability of users to run ad hoc queries when using row-level security .

Filtering predicates for read operations

You can silently filter rows that are available through read operations. The application has no
knowledge of the other data that is filtered out.

Filter predicates affect all read operations (this list is taken directly from the official documenta-
tion at https://docs.microsoft.com/sql/relational-databases/security/row-level-security):

●● SELECT. Cannot view rows that are filtered.

●● DELETE. Cannot delete rows that are filtered.

●● UPDATE. Cannot update rows that are filtered. It is possible to update rows that will be
subsequently filtered. (The next section covers ways to prevent this.)

●● INSERT. No effect (inserting is not a read operation). Note, however, that a trigger
could cause unexpected side effects in this case.

Blocking predicates for write operations

These predicates block access to write (or modification) operations that violate the predicate.
Block predicates affect all write operations:

●● AFTER INSERT. Prevents inserting rows with values that violate the predicate. Also
applies to bulk insert operations.

●● AFTER UPDATE. Prevents updating rows to values that violate the predicate. Does not
run if no columns in the predicate were changed.

●● BEFORE UPDATE. Prevents updating rows that currently violate the predicate.

●● BEFORE DELETE. Blocks delete operations if the row violates the predicate.

CH
A

PTER 7

https://docs.microsoft.com/sql/relational-databases/security/row-level-security

 Securing data in motion 317

Dynamic data masking
Data masking works on the premise of limiting exposure to data by obfuscation. Without
requiring too many changes to the application or database, it is possible to mask portions of
columns to prevent lower-privilege users from seeing, for example, full credit card numbers and
other sensitive information.

The mask is defined in the column definition of the table, using MASKED WITH (FUNCTION
= [type]) syntax (and you can add masking after table creation by using ALTER COLUMN
syntax).

There are four types of masks that are available:

●● Default. The column is masked according to the data type (not its default value).
Strings will use “XXXX” (fewer if the length is less than four characters); numerics will use
a zero value; dates will use midnight on January 1st, 1900; and binary will use a single byte
binary equivalent of zero.

●● Email. Only the first letter and the trailing domain suffix is not masked; for example,
“aXXX@XXXXXXX.com”.

●● Random. This replaces a numeric data type with a random value between a range you
specify.

●● Custom String. Only the first and last letters are not masked. There is a custom pad-
ding string in the middle, which you specify.

 ➤ You can read more about dynamic data masking, including samples of how to set it up, at
https://docs.microsoft.com/sql/relational-databases/security/dynamic-data-masking .

Limitations with masking data

Dynamic data masking has some significant limitations. It does not work on Always Encrypted
columns, nor FILESTREAM or COLUMN_SET column types. Additionally, GROUP BY and WHERE
clauses are excluded, as are INSERT and UPDATE statements. Computed columns are also
excluded, but if the computed column depends on a masked column, the computed column
inherits that mask and returns masked data. Finally, a masked column cannot be a used as a
FULLTEXT index key.

CAUTION
It is possible to expose masked data with carefully crafted queries . This can be per-
formed by using a brute-force attack or using inference based on the results . If you are
using data masking, you should also limit the ability of the user to run ad hoc queries
and ensure that their permissions are sound .

CH
A

PT
ER

 7

mailto:$$$�aXXX@XXXXXXX.com�
https://docs.microsoft.com/sql/relational-databases/security/dynamic-data-masking

318 Chapter 7 Securing the server and its data

Azure SQL Database
All of the security features discussed thus far work equally on SQL Server and Azure SQL
Database, namely TDE, Always Encrypted, row-level security and dynamic data masking.

That’s great if you’re just comparing SQL Server to Azure SQL Database, but there are some
features unique to Azure SQL Database that are worth looking at, which we’ll do in the next
section. But keep in mind that because Azure features and products are always changing, this
is only a brief overview.

Azure SQL Database Threat Detection

The risks of having a publicly accessible database in the cloud are numerous. To help protect
against attacks, you can activate Threat Detection, which runs 24 hours per day on each of your
Azure SQL Database servers (called nodes) for a monthly fee. This service notifies you by email
whenever atypical behavior is detected.

Some of the interesting threats include SQL injection attacks and potential vulnerabilities as well
as unfamiliar database access patterns, including unfamiliar logins or access from unusual loca-
tions. Each notification includes possible causes and recommendations to deal with the event.

Threat Detection ties into the Azure SQL Audit log (discussed in the next section); thus, you can
review events in a single place and decide whether each one was expected or malicious.

Although this does not prevent malicious attacks (over and above your existing protections),
you are given the necessary tools to mitigate and defend against future events. Given how
prevalent attacks like SQL injection are, this feature is very useful in letting you know if that type
of event has been detected.

You can turn on Threat Detection through the Azure portal, or through PowerShell.

 ➤ To read more on configuring Azure SQL Database Threat Detection with
PowerShell, go to https://docs.microsoft.com/azure/sql-database/scripts/
sql-database-auditing-and-threat-detection-powershell .

Built-in firewall protection

Azure SQL Database is secure by default. All connections to your database environment pass
through a firewall. No connections to the database are possible until you add a rule to the fire-
wall to allow access.

To provide access to all databases on an Azure SQL server, you must add a server-level firewall
rule through the Azure portal or through PowerShell with your IP address as a range.

 ➤ To read more about protecting your Azure SQL Database, see Chapter 5 .

CH
A

PTER 7

https://docs.microsoft.com/azure/sql-database/scripts/sql-database-auditing-and-threat-detection-powershell
https://docs.microsoft.com/azure/sql-database/scripts/sql-database-auditing-and-threat-detection-powershell

 Auditing with SQL Server and Azure SQL Database 319

Auditing with SQL Server and Azure SQL Database
Auditing is the act of tracking and recording events that occur in the Database Engine.

Since SQL Server 2016 Service Pack 1, the Audit feature is available in all editions, as well as in
Azure SQL Database. Chapter 5 covers configuring auditing in Azure SQL Database in depth.

SQL Server Audit
There is a lot going on in the Database Engine. SQL Server Audit uses extended events to give
you the ability to track and record those actions at both the instance and database level.

NOTE
Although extended events carry minimal overhead, it is important that you carefully
balance auditing against performance impact . Use targeted auditing by only capturing
the events that are necessary to fulfil your audit requirements.

 ➤ You can read more about extended events in Chapter 13 .

Audits are logged to event logs or audit files. An event is initiated and logged every time
the audit action is encountered, but for performance reasons, the audit target is written to
asynchronously.

The permissions required for SQL Server auditing are complex and varied, owing to the different
requirements for reading from and writing to the Windows Event Log, the file system, and SQL
Server itself.

Requirements for creating an audit

To keep track of events (called actions), you need to define a collection, or audit. The actions
you want to track are collected according to an audit specification. Recording those actions is
done by the target (destination).

●● Audit. The SQL Server audit object is a collection of server actions or database actions
(these actions might also be grouped together). Defining an audit creates it in the off
state. After it is turned on, the destination receives the data from the audit.

●● Server audit specification. This audit object defines the actions to collect at the
instance level or database level (for all databases on the instance). You can have multiple
Server Audits per instance.

●● Database audit specification. You can monitor audit events and audit action groups.
Only one database audit can be created per database per audit. Server-scoped objects
must not be monitored in a database audit specification.

CH
A

PT
ER

 7

320 Chapter 7 Securing the server and its data

●● Target. You can send audit results to the Windows Security event log, the Windows
Application event log, or an audit file on the file system. You must ensure that there is
always sufficient space for the target. Keep in mind that the permissions required to read
the Windows Application event log are lower than the Windows Security event log, if
using the Windows Application event log.

An audit specification can be created only if an audit already exists.

 ➤ To read more about audit action groups and audit actions, go to https://docs.microsoft.com/
sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions .

Inside OUT
What if an audit shuts down the instance or prevents SQL Server from starting?

SQL Server can be shut down by a failure in the audit. You will find an entry in the
log saying MSG_AUDIT_FORCED_SHUTDOWN . You can start SQL Server in single-user
mode using the -m option at the command line, which will write an entry to the log
saying MSG_AUDIT_SHUTDOWN_BYPASSED .

An audit initiation failure also can prevent SQL Server from starting . In this case, you
can use the -f command-line option to start SQL Server with minimal configuration
(which is also single-user mode) .

In minimal configuration or single-user mode, you will be able to remove the offend-
ing audit that caused the failure .

Creating a server audit in SQL Server Management Studio

Verify that you are connected to the correct instance in SQL Server Management Studio. Then,
in Object Explorer, expand the Security folder. Right-click the Audits folder, and then, on the
shortcut menu that opens, select New Audit.

In the Create Audit dialog box that opens, configure the settings to your requirements, or you
can leave the defaults as is. Just be sure to enter in a valid file path if you select File in the Audit
Destination list box. We also recommend that you choose an appropriate name to enter into
the Audit Name box (the default name is based on the current date and time).

CH
A

PTER 7

https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions

 Auditing with SQL Server and Azure SQL Database 321

Figure 7-2 Creating an audit in SQL Server Management Studio.

Remember to turn on the audit after it is created. It will appear in the Audit folder, which is
within the Security folder in Object Explorer. To do so, right-click the newly created audit, and
then, on the shortcut menu, click Enable Audit.

Create a server audit by using T-SQL

The server audit creation process can be quite complex, depending on the destination, file
options, audit options, and predicates. As just demonstrated, you can configure a new audit by
using SQL Server Management Studio, and then create a script of the settings before clicking
OK, which produces a T-SQL script, or you can do it manually.

 ➤ To read more about creating a server audit in T-SQL visit https://docs.microsoft.com/
sql/t-sql/statements/create-server-audit-transact-sql .

To create a server audit in T-SQL, verify that you are connected to the appropriate instance, and
then run the code in Listing 7-4. (You’ll need to change the audit name and file path accord-
ingly.) Note that the next example also sets the audit state to ON. It is created in the OFF state by
default.

CH
A

PT
ER

 7

https://docs.microsoft.com/sql/t-sql/statements/create-server-audit-transact-sql
https://docs.microsoft.com/sql/t-sql/statements/create-server-audit-transact-sql

322 Chapter 7 Securing the server and its data

This audit will not have any effect until an audit specification and target are also created.

USE master;
GO
-- Create the server audit.
CREATE SERVER AUDIT Sales_Security_Audit
 TO FILE (FILEPATH = 'C:\SalesAudit');
GO
-- Enable the server audit.
ALTER SERVER AUDIT Sales_Security_Audit
 WITH (STATE = ON);
GO

Create a server audit specification in SQL Server Management Studio

In Object Explorer, expand the Security folder. Right-click the Server Audit Specification folder,
and then, on the shortcut menu, click New Server Audit Specification.

In the Create Server Audit Specification dialog box (Figure 7-3), in the Name box, type a name
of your choosing for the audit specification. In the Audit list box, select the previously created
server audit. If you type a different value in the Audit box, a new audit will be created by that
name.

Now you can choose one or more audit actions, or audit action groups.

 ➤ A full list of audit actions and audit action groups is available at https://docs.microsoft.com/
sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions .

NOTE
If you have selected an audit group action, you cannot select Object Class, Object
Schema, Object Name, and Principal Name, because the group represents multiple
actions .

CH
A

PTER 7

https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions
https://docs.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions

 Auditing with SQL Server and Azure SQL Database 323

Figure 7-3 Creating a Server Audit Specification in SQL Server Management Studio.

Remember to turn on the server audit specification after you create it, by using the context
menu.

Create a server audit specification by using T-SQL

In much the same way as you create the audit itself, you can create a script of the configuration
from a dialog box in SQL Server Management Studio, or you can create the specification manu-
ally, as shown in the script that follows. Note that the server audit specification refers to a previ-
ously created audit.

USE [master];
GO
-- Create the server audit specification.
CREATE SERVER AUDIT SPECIFICATION Server_Audit
FOR SERVER AUDIT Sales_Security_Audit
 ADD (SERVER_OPERATION_GROUP),
 ADD (LOGOUT_GROUP),
 ADD (DATABASE_OPERATION_GROUP),
WITH (STATE = ON);
GO

CH
A

PT
ER

 7

324 Chapter 7 Securing the server and its data

Creating a database audit specification in SQL Server Management Studio

As you would expect, the location of the database audit specification is under the database
security context.

In Object Explorer, expand the database on which you want to perform auditing, and then
expand the Security folder. Right-click the Database Audit Specifications folder, and then, on
the shortcut menu, click New Database Audit Specification. Remember again to use the context
menu to turn it on.

Figure 7-4 shows an example of capturing SELECT and INSERT operations on the
Sales.CustomerTransactions table by the dbo user.

Figure 7-4 Creating a database audit specification in SQL Server Management Studio.

Creating a database audit specification by using T-SQL

Again, verify that you are in the correct database context. Create the database audit specifica-
tion by referring to the server audit that was previously created, and then specify which data-
base actions you want to monitor, as demonstrated in the next example.

The destination is already specified in the server audit, so as soon as this is turned on, the desti-
nation will begin logging the events as expected.

USE WideWorldImporters;
GO
-- Create the database audit specification.
CREATE DATABASE AUDIT SPECIFICATION Sales_Tables
 FOR SERVER AUDIT Sales_Security_Audit

 ADD (SELECT, INSERT ON Sales.CustomerTransactions BY dbo)
 WITH (STATE = ON);
GO

CH
A

PTER 7

 Auditing with SQL Server and Azure SQL Database 325

Viewing an audit log

You can view audit logs either in SQL Server Management Studio or in the Security Log in the
Windows Event Viewer. This section describes how to do it by using SQL Server Management
Studio.

NOTE
To view any audit logs, you must have CONTROL SERVER permission .

In Object Explorer, expand the Security folder, and then expand the Audits folder. Right-click the
audit log that you want to view, and then, on the shortcut menu, select View Audit Logs.

Note that the Event Time is in UTC format. This is to avoid issues regarding time zones and day-
light savings.

Figure 7-5 shows two audit events that have been logged. In the first, the audit itself has been
changed (it was turned on). The second event is a SELECT statement that was run against the
table specified in the database audit specification example presented earlier.

Figure 7-5 File Viewer dialog box for viewing a SQL Server audit.

There are many columns in the audit that you cannot see in Figure 7-5, notable among them
are Server Principal ID (SPID), Session Server Principal Name (the logged-in user), and the
Statement (the command that was run). The point here being that you can capture a wealth of
information.

CH
A

PT
ER

 7

326 Chapter 7 Securing the server and its data

NOTE
You can also view the audit log in an automated manner by using the built-in T-SQL
system function sys.fn_get_audit_file, though the data is not formatted
the same way as it is through the File Viewer in SQL Server Management Studio .
See more at https://docs.microsoft.com/sql/relational-databases/system-functions/
sys-fn-get-audit-file-transact-sql .

Auditing with Azure SQL Database
With Azure SQL Database auditing, you can track database activity and write it to an audit log
in an Azure Blob storage container, in your Azure Storage account (you are charged for storage
accordingly).

This helps you to remain compliant with auditing regulations as well as see anomalies (as dis-
cussed earlier in the section “Azure SQL Database Threat Detection”) to give you greater insight
into your Azure SQL Database environment.

Auditing gives you the ability to retain an audit trail, report on activity in each database, and
analyze reports, which includes trend analysis and security-related events. You can define
server-level and database-level policies. Server policies automatically cover new and existing
databases.

If you turn on server auditing, that policy applies to any databases on the server. Thus, if you
also turn on database auditing for a particular database, that database will be audited by both
policies. You should avoid this unless retention periods are different or you want to audit for dif-
ferent event types.

 ➤ You can read more about Azure SQL Database auditing in Chapter 5 .

Securing Azure infrastructure as a service
Infrastructure as a service (IaaS), or SQL Server running on an Azure VM, is secured in much
the same way as the on-premises product. Depending on the edition, you can use TDE, Always
Encrypted, row-level security, and dynamic data masking.

With Azure IaaS, setting up a VM in a resource group is secure by default. If you want to allow
connections from outside of your Azure virtual network, you need to allow not only the connec-
tion through the OS firewall (which is on by default in Windows Server), but you also can control
connections through a Network Security Group.

In addition to that, you can control access through a network appliance, such as a firewall or
NAT device. This provides finer-grained control over the flow of network traffic in your virtual
network, which is needed to set up Azure ExpressRoute, for example (Chapter 3 covers this in
some detail).

CH
A

PTER 7

https://docs.microsoft.com/sql/relational-databases/system-functions/sys-fn-get-audit-file-transact-sql
https://docs.microsoft.com/sql/relational-databases/system-functions/sys-fn-get-audit-file-transact-sql

 Securing Azure infrastructure as a service 327

Network Security Group
A Network Security Group (NSG) controls the flow of traffic in and out of the entirety (or part) of
an Azure virtual network subnet.

Inside OUT
What is a subnet?

A subnet, short for subnetwork, is a logical separation of a larger network into smaller
sections, making the network easier to manage and secure .

Subnetting can be vastly complex and is definitely beyond the scope of this book.
There are subnet calculators online that you should refer to if you’re doing this
yourself . Because Azure Virtual Networks make use of subnets, here is a high-level
overview .

Subnets are identified by a network ID, which is rendered in network prefix notation
(also known as CIDR, or Classless Interdomain Routing) . You will recognize this as a
network address in IPv4 format followed by a prefix of /8, /16, or /24, and so on. The
lower (shorter) the prefix, the more addresses are available.

This is a shorthand for the IP addresses that are available in that subnet, with the net-
work address as the starting value . For example, 192 .168 .1 .0/24 means that there are
256 possible addresses, starting at 192 .168 .1 .1, up to and including 192 .168 .1 .254 . All
subnets reserve the first address (in this case, 192.168.1.0) for the network identifier,
and the last address (in this case, 192 .168 .1 .255) for the broadcast address .

In the Azure classic deployment model, an NSG would provide security for an individual virtual
machine. With the Azure Resource Manager deployment model, an NSG can provide security
for an entire subnet, which affects all the resources in that subnet (see Figure 7-6). If you require
more control, you can associate the NSG with an individual network interface card (NIC), thus
restricting traffic further.

NOTE
When creating a VM using the Azure Resource Manager, it will come with at least one
virtual NIC, which in turn, you manage through an NSG . This is an important distinction
from the classic provider (in which the NSG worked at the VM level) because individual
NICs can belong to different NSGs, which provides finer control over the flow of network
traffic on individual VMs.

CH
A

PT
ER

 7

328 Chapter 7 Securing the server and its data

Figure 7-6 A typical virtual network, with each subnet secured by a security group.

As with typical firewalls, the NSG has rules for incoming and outgoing traffic. When a packet hits
a port on the virtual network or subnet, the NSG intercepts the packet and checks whether it
matches one of the rules. If the packet does not qualify for processing, it is discarded (dropped).

Rules are classified according to source address (or range) and destination address (or range).
Depending on the direction of traffic, the source address could refer to inside the network or
outside on the public internet.

This becomes cumbersome with more complex networks, so to simplify administration and
provide flexibility, you can use service tags to define rules by service name instead of IP address.
Storage, SQL and Traffic are currently supported, with more to come in the future.

You can also use default categories, namely VirtualNetwork (the IP range of all addresses
in the network), AzureLoadBalancer (the Azure infrastructure load balancer), and Internet
(IP addresses outside the range of the Azure Virtual Network).

 ➤ You can read more about Azure Virtual Network security and service tags at https://docs.
microsoft.com/azure/virtual-network/security-overview .

User-defined routes and IP forwarding
As a convenience to Azure customers, all VMs in an Azure Virtual Network are able to com-
municate with one another by default, irrespective of the subnet in which they reside. This also
holds true for virtual networks connected to your on-premises network by a VPN, and for Azure
VMs communicating with the public internet (including those running SQL Server).

 ➤ You can read more about Virtual Private Networks in Chapters 2 and 3 .

In a traditional network, communication across subnets like this requires a gateway to control
(route) the traffic. Azure provides these system routes for you automatically.

CH
A

PTER 7

https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/virtual-network/security-overview

 Securing Azure infrastructure as a service 329

You might decide that this free-for-all communication is against your network policy and that
all traffic from your VMs should first be channeled through a network appliance (such as a fire-
wall or NAT device). Virtual appliances are available in the Azure Marketplace at an additional
cost, or you could configure a VM yourself to run as a firewall.

A user-defined route with IP forwarding makes this happen. With a user-defined route, you
create a subnet for the virtual appliance and force traffic from your existing subnets or VMs
through the virtual appliance.

In Microsoft’s own words:

“[t]o allow a VM to receive traffic addressed to other destinations, you must enable IP
Forwarding for the VM. This is an Azure setting, not a setting in the guest operating system.”
(https://docs.microsoft.com/azure/virtual-network/virtual-networks-udr-overview)

CAUTION
With user-defined routes, you cannot control how traffic enters the network from the
public internet. They only control how traffic leaves a subnet, which means that your
virtual appliance must be in its own subnet. If you want to control traffic flow from the
public internet as it enters a subnet, use a Network Security Group, instead .

Until you create a routing table (by user-defined route), subnets in your Virtual Network rely
on system routes. A user-defined route adds another entry in the routing table, so a technique
called Longest Prefix Match (LPM) kicks in to decide which is the better route to take, by select-
ing the most specific route (the one with the longest prefix). As seen earlier in Figure 7-6, a /24
prefix is longer than a /16 prefix, and a route entry with a higher prefix takes precedence.

If two entries have the same LPM match, the order of precedence is as follows:

●● User-defined route

●● BGP route

●● System route

Remember BGP? It’s used for ExpressRoute. As we mentioned in Chapter 3, ExpressRoute is
a VPN service by which you can connect your Azure Virtual Network to your on-premises
network, without going over the public internet. You can specify BGP routes to direct traffic
between your network and the Azure Virtual Network.

CH
A

PT
ER

 7

https://docs.microsoft.com/azure/virtual-network/virtual-networks-udr-overview

330 Chapter 7 Securing the server and its data

Additional security features in Azure networking
There are additional features for improving the management and security of an Azure Virtual
Network, as it relates to SQL Server or Azure SQL Database, which are worth discussing here. As
of this writing, some of these features are still in preview.

Virtual network service endpoints

Service endpoints make it possible for you to restrict access to certain Azure services that were
traditionally open to the public internet so that they are available only to your Azure Virtual
Network, as illustrated in Figure 7-7.

Figure 7-7 A service endpoint protecting an Azure Storage account.

Configurable through the Azure portal (or PowerShell), you can block public internet access
to your Azure Storage and Azure SQL Database accounts. Additional service endpoints will be
introduced in the future.

 ➤ To read more about Virtual Network service endpoints, go to https://docs.microsoft.com/
azure/virtual-network/virtual-network-service-endpoints-overview .

CH
A

PTER 7

https://docs.microsoft.com/azure/virtual-network/virtual-network-service-endpoints-overview
https://docs.microsoft.com/azure/virtual-network/virtual-network-service-endpoints-overview

 Securing Azure infrastructure as a service 331

Distributed-denial-of-service protection

Azure’s protection against distributed-denial-of-service (DDoS) attacks for Virtual Networks
has been improved, which is timely, given that attacks against publicly accessible resources are
increasing in number and complexity. The basic service included in your subscription provides
real-time protection by using the scale and capacity of the Azure infrastructure to mitigate
attacks (see Figure 7-8).

For an additional cost, you can take advantage of built-in machine learning algorithms to pro-
tect against targeted attacks, with added configuration, alerting, and telemetry.

Figure 7-8 Azure DDoS protection defending a virtual network against attacks.

You also can use the Azure Application Gateway web application firewall to help protect against
more sophisticated attacks.

Combined with Azure SQL Database auditing and NSGs, these features provide a comprehen-
sive suite of protection against the latest threats.

 ➤ To read more about Azure DDoS protection, go to https://azure.microsoft.com/services/
ddos-protection .

CH
A

PT
ER

 7

https://azure.microsoft.com/services/ddos-protection
https://azure.microsoft.com/services/ddos-protection

This page intentionally left blank

 383

CHAPTER 9

Performance tuning SQL Server

In this chapter, we review the database concepts and objects most commonly associated with
performance tuning the performance of objects within the Microsoft SQL Server database. We
begin with a fundamental exploration of database isolation and its practical effects on queries.
We then review the concepts of delayed durability and delayed durability transactions. Then, we
explore execution plans, including ways to use them with the Query Store feature. We discuss
execution plans in detail, what to look for when performance tuning, and how to control when
they go parallel.

Entire books have been written on some of the sections in this chapter—we obviously can’t go
into that degree of detail here in a single chapter, but we do provide a deep enough discussion
to jumpstart and accelerate your learning toward SQL Server performance tuning, including
features added in SQL Server 2016 and 2017.

Understanding isolation levels and concurrency
It is important to have a fundamental understanding of isolation levels. These aren’t just arcane
keywords you study only when it is certification test time; they can have a profound effect on
application performance, stability, and data integrity.

Understanding the differing impact of isolation levels on locking and blocking, and therefore
on concurrency, is the key to understanding when you should use an isolation level different
from the default of READ COMMITTED. Table 9-1 presents all of the isolation levels available in
SQL Server.

Understanding isolation levels and concurrency 383

Understanding delayed durability .400

Understanding execution plans . 401

Using the Query Store feature . 413

Understanding automatic plan correction 418

Understanding execution plan operators 419

Understanding parallelism .425

CH
A

PT
ER

 9

384 Chapter 9 Performance tuning SQL Server

Table 9-1 Isolation levels

Transaction isolation
level

Allows dirty
reads

Allows nonrepeatable
reads

Allows phantom
rows

Update conflicts
possible

READ
UNCOMMITTED

X X X

READ COMMITTED X X

REPEATABLE READ X

SERIALIZABLE

READ COMMITTED
SNAPSHOT (RCSI)

X X

SNAPSHOT X

Inside OUT
What about READPAST?

READPAST is a table hint, not an isolation level, and you cannot set it at the session
level . We discuss more about how and where you can set isolation levels later in this
chapter .

But, READPAST can be useful in very specific circumstances, limited to when there
are SQL Server tables used as “stack” or “queue,” with “first in, first out” architecture.
READPAST does not place row-level locks on a table, and instead of being blocked by
rows that are locked, it skips them. User transactions can fetch the “first” row in the
stack that isn’t already being accessed .

In this way, a multithreaded process that is regularly looping through a table can read
rows, afford to skip the rows currently being written to, and read them on the “next
pass .” Outside of these limited scenarios, READPAST is not appropriate because it will
likely return incomplete data .

CH
A

PTER 9

 Understanding isolation levels and concurrency 385

When you are choosing an isolation level for a transaction in an application, you should
consider primarily the transactional safety and business requirements of the transaction in a
multiuser environment. The performance of the transaction should be a distant second prior-
ity when choosing an isolation level. Locking is not bad, it is the way that every transaction in
SQL Server cooperates with others when dealing with disk-based tables. READ COMMITTED
is generally a safe isolation level because it allows updates to block reads. In the default READ
COMMITTED isolation level, reads cannot read uncommitted data and must wait for a transac-
tion to commit or rollback. In this way, READ COMMITTED prevents a SELECT statement from
accessing uncommitted data, a problem known as a dirty read. This is especially important dur-
ing multistep transactions, in which parent and child records in a foreign key relationship must
be created in the same transaction. In that scenario, reads should not access either table until
both tables are updated.

READ COMMITTED does not ensure that row data and row count won’t change between
two SELECT queries in a multistep transaction. For some application scenarios, this might be
acceptable or desired, but not for others. To avoid these two problematic scenarios (which we
talk more about soon), you need to increase the transaction’s isolation.

For scenarios in which transactions must have a higher degree of isolation from other transac-
tions, escalating the isolation level of a transaction is appropriate. For example, if a transaction
must process multistep writes and cannot allow other transactions to change data during the
transaction, escalating the isolation level of a transaction is appropriate. Here are two examples:

In this example, REPEATABLE READ would block other transactions from changing or deleting
rows needed during a multistep transaction. This phenomenon is called nonrepeatable reads. A
nonrepeatable read returns different or fewer rows of data when attempting to read the same
data twice, which is problematic to multistep transactions. Nonrepeatable reads can affect
transactions with less isolation than REPEATABLE READ.

However, if the transaction in this example would need to ensure that the same number of
rows in a result set is returned throughout a multistep transaction, the SERIALIZABLE isolation is
necessary. It is the only isolation level that prevents other transactions from inserting new rows
inside of a range of rows, a problem known as phantom rows.

The behavior just described is consistent with transactions affecting only a few rows. In these
cases, the Database Engine is performing row and page-level locks to provide protection for
transaction isolation. It is possible that REPEATABLE READ transactions could access a large
number of rows and then escalate to use table locks, and then protect the transaction against
phantom rows.

 ➤ For more on monitoring database locking and blocking, see Chapter 13 .

CH
A

PT
ER

 9

386 Chapter 9 Performance tuning SQL Server

Inside OUT
SQL Server doesn’t have a time-out? Really?

That’s correct, by default there is no time-out for a local request that is being blocked
in SQL Server, although applications can report a “SQL time-out” if query run time
surpasses their own time-out limitations .

By default, SQL Server will not cancel a request that is being blocked, but you
can change this behavior for individual sessions . The value of the global variable
@@LOCK_TIMEOUT is -1 by default, indicating that there is no time-out . You can
change this for the current session by using the following statement:

SET LOCK_TIMEOUT n;

Where n is the number of milliseconds before a request is cancelled by SQL Server,
returning error 1222, “Lock request time out period exceeded. The statement has
been terminated .” Take caution in implementing this change to SQL’s default lock
time-out, and try to fully understand the cause of the blocking first. If you change the
lock time-out in code, ensure that any applications creating the sessions are prepared
to handle the errors gracefully and retry .

SQL Server does have a configuration setting for a lock time-out for outgoing remote
connections called Remote Query Timeout (s), which defaults to 600 seconds . This
time-out applies only to connections to remote data providers, not to requests run
on the SQL Server instance .

NOTE
You can declare isolation levels for transactions that read and write to both memory-
optimized tables and disk-based tables . Memory-optimized tables do not use locks
or latches; instead, they use row versioning to achieve the isolation and concurrency .
Chapter 8 covers memory-optimized tables, and we discuss their use in high-transaction
volume scenarios in Chapter 10 .

Understanding how concurrent sessions become blocked
In this section, we review a series of realistic examples of how concurrency works in a multiuser
application interacting with SQL Server tables. First, let’s discuss how to diagnose whether a
request is being blocked or blocking another request.

CH
A

PTER 9

 Understanding isolation levels and concurrency 387

How to observe blocking

It’s easy to find out live whether a request is being blocked. The dynamic management view
sys.dm_db_requests, when combined with sys_dm_db_sessions on the session_id
column, provides similar data plus much more information than the legacy sp_who or sp_who2
commands, including the blocked_by column, as demonstrated here:

SELECT * FROM
sys.dm_exec_sessions s
LEFT OUTER JOIN sys.dm_exec_requests r ON r.session_id = s.session_id;

Now, let’s review some example scenarios to detail exactly why and how requests can block
one another in the real world. This is the foundation of concurrency in SQL Server and helps
you understand the reason why NOLOCK appears to make queries perform faster. The examples
that follow behave identically in SQL Server instances and databases in Microsoft Azure SQL
Database

Understanding concurrency: two requests updating the same rows

Consider the following steps involving two writes, with each transaction coming from a dif-
ferent session. The transactions are explicitly declared by using the BEGIN/COMMIT TRAN
syntax. In this example, the transactions are not overriding the default isolation level of READ
COMMITTED:

1. A table contains only rows of Type = 0 and Type = 1. Transaction 1 begins and updates all
rows from Type = 1 to Type = 2.

2. Before Transaction 1 commits, Transaction 2 begins and issues a statement to update
Type = 2 to Type = 3. Transaction 2 is blocked and will wait for Transaction 1 to commit.

3. Transaction 1 commits.

4. Transaction 2 is no longer blocked and processes its update statement. Transaction 2 then
commits.

The result: The resulting table will contain records of Type = 3, and the second transaction will
have updated records. This is because when Transaction 2 started, it waited, too, for committed
data until after Transaction 1 committed.

Understanding concurrency: a write blocks a read

Next, consider the following steps involving a write and a read, with each transaction com-
ing from a different session. In this scenario, an uncommitted write in Transaction 1 blocks a
read in Transaction 2. The transactions are explicitly declared using the BEGIN/COMMIT TRAN

CH
A

PT
ER

 9

388 Chapter 9 Performance tuning SQL Server

syntax. In this example, the transactions are not overriding the default isolation level of READ
COMMITTED:

1. A table contains only records of Type = 0 and Type = 1. Transaction 1 begins and updates
all rows from Type = 1 to Type = 2.

2. Before Transaction 1 commits, Transaction 2 begins and issues a SELECT statement for
records of Type = 2. Transaction 2 is blocked and waits for Transaction 1 to commit.

3. Transaction 1 commits.

4. Transaction 2 is no longer blocked, and processes its SELECT statement. Rows are
returned. Transaction 2 then commits.

The result: Transaction 2 returns records of Type = 2. This is because when Transaction 2
started, it waited for committed data until after Transaction 1 committed.

Understanding concurrency: a nonrepeatable read

Consider the following steps involving a read and a write, with each Transaction coming
from a different session. In this scenario, Transaction 1 suffers a nonrepeatable read, as READ
COMMITTED does not offer any protection against phantom rows or nonrepeatable reads. The
transactions are explicitly declared using the BEGIN/COMMIT TRAN syntax. In this example,
the transactions are not overriding the default isolation level of READ COMMITTED:

1. A table contains only records of Type = 0 and Type = 1. Transaction 1 starts and selects
rows where Type = 1. Rows are returned.

2. Before Transaction 1 commits, Transaction 2 starts and issues an Update statement, setting
records of Type = 1 to Type = 2. Transaction 2 is not blocked, and process immediately.

3. Transaction 1 again selects rows where Type = 1, and is blocked.

4. Transaction 2 commits.

5. Transaction 1 is immediately unblocked. No rows are returned. (No committed rows exist
where Type=1.) Transaction 1 commits.

The result: The resulting table contains records of Type = 2, and the second transaction has
updated records. This is because when Transaction 2 started, Transaction 1 had not placed any
exclusive locks on the data, allowing for writes to happen. Because it is doing only reads, Trans-
action 1 would never have placed any exclusive locks on the data. Transaction 1 suffered from
a nonrepeatable read: the same SELECT statement returned different data during the same
multistep transaction.

CH
A

PTER 9

 Understanding isolation levels and concurrency 389

Understanding concurrency: preventing a nonrepeatable read

Consider the following steps involving a read and a write, with each transaction coming from a
different session. This time, we protect Transaction 1 from dirty reads and nonrepeatable reads
by using the REPEATABLE READ isolation level. A read in the REPEATABLE READ isolation level
will block a write. The transactions are explicitly declared by using the BEGIN/COMMIT TRAN
syntax:

1. A table contains only records of Type = 0 and Type = 1. Transaction 1 starts and selects
rows where Type = 1 in the REPEATABLE READ isolation level. Rows are returned.

2. Before Transaction 1 commits, Transaction 2 starts and issues an UPDATE statement,
setting records of Type = 1 to Type = 2. Transaction 2 is blocked by Transaction 1.

3. Transaction 1 again selects rows where Type = 1. Rows are returned.

4. Transaction 1 commits.

5. Transaction 2 is immediately unblocked and processes its update. Transaction 2 commits.

The result: The resulting table will contain records of Type = 2. This is because when Transac-
tion 2 started, Transaction 1 had placed read locks on the data it was selecting, blocking writes
to happening until it had committed. Transaction 1 returned the same records each time and did
not suffer a nonrepeatable read. Transaction 2 processed its updates only when it could place
exclusive locks on the rows it needed.

Understanding concurrency: experiencing phantom reads

Consider the following steps involving a read and a write, with each transaction coming from a
different session. In this scenario, we describe a phantom read:

1. A table contains only records of Type = 0 and Type = 1. Transaction 1 starts and selects
rows where Type = 1 in the REPEATABLE READ isolation level. Rows are returned.

2. Before Transaction 1 commits, Transaction 2 starts and issues an INSERT statement,
adding rows of Type = 1. Transaction 2 is not blocked by Transaction 1.

3. Transaction 1 again selects rows where Type = 1. More rows are returned compared to the
first time the select was run in Transaction 1.

4. Transaction 1 commits.

5. Transaction 2 commits.

CH
A

PT
ER

 9

390 Chapter 9 Performance tuning SQL Server

The result: Transaction 1 experienced a phantom read when it returned a different number of
records the second time it selected from the table inside the same transaction. Transaction 1 had
not placed any locks on the range of data it needed, allowing for writes in another transaction
to happen within the same dataset. The phantom read would have occurred to Transaction 1 in
any isolation level, except for SERIALIZABLE. Let’s look at that next.

Understanding concurrency: preventing phantom reads

Consider the following steps involving a read and a write, with each transaction coming from a
different session. In this scenario, we protect Transaction 1 from a phantom read.

1. A table contains only records of Type = 0 and Type = 1. Transaction 1 starts and selects
rows where Type = 1 in the SERIALIZABLE isolation level. Rows are returned.

2. Before Transaction 1 commits, Transaction 2 starts and issues an INSERT statement,
adding rows of Type = 1. Transaction 2 is blocked by Transaction 1.

3. Transaction 1 again Selects rows where Type = 1. The same number of rows are returned.

4. Transaction 1 commits.

5. Transaction 2 is immediately unblocked and processes its insert. Transaction 2 commits.

The result: Transaction 1 did not suffer from a phantom read the second time it selected form
the table, because it had placed a lock on the range of rows it needed. The table now con-
tains additional records for Type = 1, but they were not inserted until after Transaction 1 had
committed.

Stating the case against READ UNCOMMITTED (NOLOCK)
Many developers and database administrators consider the NOLOCK table hint and the equiva-
lent READ UNCOMMITTED isolation level nothing more than the turbo button on their 486DX.
“We had performance problems, but we’ve been putting NOLOCK in all our stored procedures
to fix it.”

The effect of the table hint NOLOCK or the READ UNCOMMITTED isolation level is that no locks
are taken inside the database, save for schema locks. (A query using NOLOCK could still be
blocked by Data Definition Language [DDL] commands.) The resulting removal of basic integ-
rity of the mechanisms that retrieve data can result in uncommitted data, obviously, but that is
not usually enough to scare away developers. There are more good reasons to avoid the READ
UNCOMMITTED isolation level, however.

The case against using the READ UNCOMMITTED isolation level is deeper than the performance
and deeper than “data that has yet to be committed.” Developers might counter that data is
rarely ever rolled back or that the data is for reporting only. In production environments, these

CH
A

PTER 9

 Understanding isolation levels and concurrency 391

are not sufficient grounds to justify the potential problems. The only situations in which READ
UNCOMMITTED are an acceptable performance shortcut involve nonproduction systems, esti-
mate-only counts, or estimate-only aggregations.

A query in READ UNCOMMITTED isolation level could return invalid data in the following real-
world, provable ways:

●● Read uncommitted data (dirty reads)

●● Read committed data twice

●● Skip committed data

●● Return corrupted data

●● Or, the query could fail altogether: “Could not continue scan with NOLOCK due to data
movement.”

One final caveat: in SQL Server you cannot apply NOLOCK to tables when used in modification
statements, and it ignores the declaration of READ UNCOMMITTED isolation level in a batch
that includes modification statements; for example:

INSERT INTO dbo.testnolock1 WITH (NOLOCK)
SELECT * FROM dbo.testnolock2;

The preceding code will return the error:

Msg 1065, Level 15, State 1, Line 17
The NOLOCK and READUNCOMMITTED lock hints are not allowed for target tables of INSERT,
UPDATE, DELETE or MERGE statements.

However, this protection doesn’t apply to the source of any writes, hence the danger.

This following code is allowed and is dangerous because it could write invalid data:

INSERT INTO testnolock1
SELECT * FROM testnolock2 WITH (NOLOCK);

Changing the isolation level within transactions
In addition to using the SET TRANSACTION ISOLATION LEVEL command, you can use table
hints to override previously set behavior. Let’s review the two ways by which you can change the
isolation level of queries.

Using the transaction isolation level option

The SET TRANSACTION ISOLATION LEVEL command changes the isolation level for the cur-
rent session, affecting all future transactions until the connection is closed.

CH
A

PT
ER

 9

392 Chapter 9 Performance tuning SQL Server

But, you can change the isolation level of an explicit transaction after it is created, as long as you
are not changing from or to the SNAPSHOT isolation level.

For example, the following code snippet is technically valid:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED
BEGIN TRAN
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
SELECT...

However, this snippet is invalid:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED
BEGIN TRAN
SET TRANSACTION ISOLATION LEVEL SNAPSHOT
SELECT...

Doing so results in the following error:

Msg 3951, Level 16, State 1, Line 4

Transaction failed in database 'databasename' because the statement was run under snap-
shot isolation but the transaction did not start in snapshot isolation. You cannot
change the isolation level of the transaction after the transaction has started.

In .NET applications, you should change the isolation level of each transaction when it is created.
In Transact-SQL (T-SQL) code and stored procedures, you should change the execution plan of
the session before creating an explicit transaction.

Using table hints to change isolation

You also can use isolation level hints to change the isolation level at the individual object level.
This is an advanced type of troubleshooting that you shouldn’t use commonly, because it
increases the complexity of maintenance and muddies architectural decisions with respect to
enterprise concurrency.

For example, you might have seen developers use NOLOCK at the end of a table, effectively (and
dangerously) dropping access to that table into the READ COMMITTED isolation level:

SELECT col1 FROM dbo.Table (NOLOCK)

Aside from the unadvisable use of NOLOCK in the preceding example, using a table hint without
WITH is deprecated syntax (since SQL Server 2008).

Aside from the cautionary NOLOCK, there are 20-plus other table hints that can have utility,
including the ability for a query to use a certain index, to force a seek or scan on an index, or
to override the query optimizer’s locking strategy. We look at how to use UPDLOCK later in this
chapter; for example, to force the use of the SERIALIZABLE isolation level.

CH
A

PTER 9

 Understanding isolation levels and concurrency 393

All table hints should be considered for temporary and/or highly situational troubleshooting.
They could make maintenance of these queries problematic in the future. For example, using
the INDEX or FORCESEEK table hints could result in poor query performance or even cause the
query to fail if the table’s indexes are changed.

 ➤ For detailed information on all possible table hints, see the SQL Server documentation at
https://docs.microsoft.com/sql/t-sql/queries/hints-transact-sql-table .

Understanding the enterprise solution to concurrency:
SNAPSHOT
In the interest of performance, however, application developers too often seek to solve concur-
rency issues (reduce blocking) by using READ UNCOMMITTED. At first and at scale, the perfor-
mance gains are too vast to consider other alternatives. But there is a far safer option, without
the significant drawbacks and potential for invalid data and errors. Using row versioning with
READ_COMMITTED_SNAPSHOT (RCSI) and/or the SNAPSHOT isolation level is the enterprise
solution to performance issues related to concurrency.

SNAPSHOT isolation allows queries to read from the same rows that might be locked by other
queries by using row versioning. The SQL Server instance’s TempDB keeps a copy of committed
data, and this data can be served to concurrent requests. In this way, SNAPSHOT allows access
only to committed data but without blocking access to data locked by writes. By increasing
the utilization and workload of TempDB for disk-based tables, performance is dramatically
increased by increasing concurrency without the dangers of accessing uncommitted data.

Although row versioning works silently in the background, you access it at the statement level,
not at the transaction or session levels. Each statement will have access to the latest committed
row version of the data. In this way, RCSI is still susceptible to nonrepeatable reads and phantom
rows. SNAPSHOT isolation uses row versions of affected rows throughout a transaction; thus, it
is not susceptible to nonrepeatable reads and phantom rows.

As an example of SNAPSHOT in use internally, all queries run against a secondary readable
database in an availability group are run in the SNAPSHOT isolation level, by design. The trans-
action isolation level and any locking table hints are ignored. This removes any concurrency
conflicts between a read-heavy workload on the secondary database and the transactions arriv-
ing there from the primary database.

Understanding concurrency: accessing SNAPSHOT data

Consider the following steps involving a read and a write, with each transaction coming from a
different session. In this scenario, we see that Transaction 2 has access to previously committed
row data, even though those rows are being updated concurrently.

CH
A

PT
ER

 9

https://docs.microsoft.com/sql/t-sql/queries/hints-transact-sql-table

394 Chapter 9 Performance tuning SQL Server

1. A table contains only records of Type = 1. Transaction 1 starts and updates rows where
Type = 1 to Type = 2.

2. Before Transaction 1 commits, Transaction 2 sets its session isolation level to SNAPSHOT.

3. Transaction 2 issues a SELECT statement WHERE Type = 1. Transaction 2 is not blocked by
Transaction 1. Rows where Type = 1 are returned. Transaction 2 commits.

4. Transaction 1 commits.

5. Transaction 2 again issues a SELECT statement WHERE Type = 1. No rows are returned.

The result: Transaction 2 was not blocked when it attempted to query rows that Transaction 1
was updating. It had access to previously committed data, thanks to row versioning.

Implementing SNAPSHOT isolation

You can implement SNAPSHOT isolation level in a database in two different ways. Turning on
SNAPSHOT isolation simply allows for the use of SNAPSHOT isolation and begins the process
of row versioning. Alternatively, turning on RCSI changes the default isolation level to READ
COMMITTED SNAPSHOT. You can implement both or either. It’s important to understand the
differences between these two settings, because they are not the same:

●● READ COMMITTED SNAPSHOT configures optimistic concurrency for reads by overriding
the default isolation level of the database. When turned on, all queries will use RCSI unless
overridden.

●● SNAPSHOT isolation mode configures optimistic concurrency for reads and writes. You
must then specify the SNAPSHOT isolation level for any transaction to use SNAPSHOT
isolation level. It is possible to have update conflicts with SNAPSHOT isolation mode that
will not occur with READ COMMITTED SNAPSHOT.

The statement to implement SNAPSHOT isolation in the database is simple enough, but is not
without consequence. Even if no transactions or statements use the SNAPSHOT isolation level,
behind the scenes, TempDB begins storing row version data for disk-based tables. (Memory-
optimized tables have row-versioning built in and don’t need TempDB.) The Database Engine
maintains previous versions for changing data in TempDB regardless of whether that data is cur-
rently being accessed by user queries. Here’s how to implement SNAPSHOT isolation:

ALTER DATABASE databasename SET ALLOW_SNAPSHOT_ISOLATION ON;

All transactions will continue to use the default READ COMMITTED isolation level, but you now
can specify the use SNAPSHOT isolation at the session level or in table hints, as shown in the fol-
lowing example:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

CH
A

PTER 9

 Understanding isolation levels and concurrency 395

Alternatively, or in conjunction with ALLOW_SNAPSHOT_ISOLATION, you can turn on RCSI as
the new default isolation level in a database. Here’s how to turn on RCSI:

ALTER DATABASE databasename SET READ_COMMITTED_SNAPSHOT ON;

You can set both of the preceding database settings independently of each other. Setting
ALLOW_SNAPSHOT_ISOLATION is not required to turn on READ_COMMITTED_SNAPSHOT,
and vice versa. Similarly, these settings are not tied to the MEMORY_OPTIMIZED_ELEVATE_
TO_SNAPSHOT database setting to promote memory-optimized table access to SNAPSHOT
isolation.

 ➤ We discuss memory-optimized tables in greater detail in Chapter 10 .

For either of the previous ALTER DATABASE statements to succeed, no other transactions can
be open in the database. It might be necessary to close other connections manually or to put
the database in SINGLE_USER mode. Either way, we do not recommend that you perform this
change during production activity.

NOTE
Do not change the READ_COMMITTED_SNAPSHOT database option if you have any
memory-optimized tables set to DURABILITY = SCHEMA_ONLY . All rows in the table
will be lost . You should move the contents of the table to a more durable table before
changing READ_COMMITTED_SNAPSHOT to ON or OFF .

Be aware and prepared for the increased utilization in the TempDB, both in the demand and
space requirements. To avoid autogrowth events, increase the size of the TempDB data and log
files and monitor their size. Although you should try to avoid autogrowth events by growing
the TempDB data file(s) yourself, you should also verify that your TempDB file autogrowth set-
tings are appropriate.

 ➤ For more information on file autogrowth settings, see Chapter 4.

Should the TempDB exhaust all available space on its drive volume, SQL will be unable to row-
version records for transactions, and will terminate them with SQL Server error 3958. SQL Server
will also issue errors 3967 and 3966 as the oldest row versions are removed from the TempDB to
make room for new row versions needed by newer transactions.

NOTE
Prior to SQL Server 2016, READ COMMITTED SNAPSHOT and SNAPSHOT isolation
levels were not supported with Columnstore indexes . Beginning with SQL Server 2016,
SNAPSHOT isolation and Columnstore indexes are fully compatible .

CH
A

PT
ER

 9

396 Chapter 9 Performance tuning SQL Server

Understanding updates in SNAPSHOT isolation level

Transactions that read data in SNAPSHOT isolation or RCSI will have access to previously com-
mitted data instead of being blocked, when data needed is being changed. This is important
to understand and could result in an update statement experiencing a concurrency error. The
potential for update conflicts is real and you need to understand it. In the next section, we
review ways to mitigate the risk.

For example, consider the following steps, with each transaction coming from a different ses-
sion. In this example, Transaction 2 fails due to a concurrency conflict or “write-write error”:

1. A table contains many records, each with a unique ID. Transaction 1 begins a transaction
in the READ COMMITTED isolation level and performs an update on the row where ID = 1.

2. Transaction 2 sets its session isolation level to SNAPSHOT and issues a statement to
update the row where ID = 1.

3. Transaction 1 commits first.

4. Transaction 2 immediately fails with SQL error 3960.

The result: Transaction 1’s update to the row where ID = 1 succeeded. Transaction 2 immedi-
ately failed with the following error message:

Msg 3960, Level 16, State 2, Line 8

Snapshot isolation transaction aborted due to update conflict. You cannot use snap-
shot isolation to access table 'dbo.AnyTable' directly or indirectly in database
'WideWorldImporters' to update, delete, or insert the row that has been modified or
deleted by another transaction. Retry the transaction or change the isolation level
for the update/delete statement.

The transaction for Transaction 2 was rolled back, marked uncommittable. Let’s try to under-
stand why this error occurred, what to do, and how to prevent it.

In SQL Server, SNAPSHOT isolation uses locks to create blocking but doesn’t block updates
from colliding for disk-based tables. It is possible to error when committing an update state-
ment, if another transaction has changed the data needed for an update during a transaction
in SNAPSHOT isolation level.

For disk-based tables, the update conflict error will look like the Msg 3960 that we saw a
moment ago. For queries on memory-optimized tables, the update conflict error will look like
this:

Msg 41302, Level 16, State 110, Line 8

The current transaction attempted to update a record that has been updated since this
transaction started. The transaction was aborted.

CH
A

PTER 9

 Understanding isolation levels and concurrency 397

The preceding error can occur with ALLOW_SNAPSHOT_ISOLATION turned on if transactions
are run in SNAPSHOT isolation level.

Even though optimistic concurrency of snapshot isolation level (and also memory-optimized
tables) increases the potential for update conflicts, you can mitigate these by doing the
following:

●● When running a transaction in SNAPSHOT isolation level, it is crucial to avoid using
any statements that place update locks to disk-based tables inside multistep explicit
transactions.

Similarly, always avoid multistep transactions with writes when working with memory-
optimized tables, regardless of isolation level.

●● Specifying the UPDLOCK table hint can have utility at preventing update conflict errors
for long-running SELECT statements. The UPDLOCK table hints places pessimistic locks
on rows needed for the multistep transaction to complete. The use of UPDLOCK on
SELECT statements with SNAPSHOT isolation level is not a panacea for update conflicts,
and it could in fact create them. Frequent select statements with UPDLOCK could increase
the number of update conflicts with updates. Regardless, your application should handle
errors and initiate retries when appropriate.

If two concurrent statements use UPDLOCK, with one updating and one reading the same
data, even in implicit transactions, an update conflict failure is possible if not likely.

●● Avoid writes altogether while in SNAPSHOT isolation mode. Change the transaction iso-
lation level back to READ COMMITTED before running an UPDATE statement, and then
back to SNAPSHOT if desired.

Specifying table granularity hints such as ROWLOCK or TABLOCK can prevent update conflicts,
although at the cost of concurrency. The second update transaction must be blocked while the
first update transaction is running—essentially bypassing SNAPSHOT isolation for the write. If
two concurrent statements are both updating the same data in SNAPSHOT isolation level, an
update conflict failure is likely for the statement that started second.

Using memory-optimized tables in SNAPSHOT isolation level

SNAPSHOT isolation is supported for memory-optimized tables, but not with all of the differ-
ent ways to place a query in SNAPSHOT isolation. There are only ways to ensure that memory-
optimized tables use SNAPSHOT isolation:

●● Turn on the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT database option. This pro-
motes access to all memory-optimized tables in the database up to SNAPHOT isolation
level if the current isolation level is not REPEATABLE READ or SERIALIZABLE. It will pro-
mote the isolation level to SNAPSHOT from isolation levels such as READ UNCOMMITTED

CH
A

PT
ER

 9

398 Chapter 9 Performance tuning SQL Server

and READ COMMITTED. This option is off by default, but you should consider it because
you otherwise cannot use the READ UNCOMMITTED or SNAPSHOT isolation levels for a
session including memory-optimized tables.

●● You can specify SNAPSHOT isolation with table hints (see the section “Using table hints to
change isolation” earlier in this chapter). Note that only for memory-optimized tables can
use this SNAPSHOT table hint, not disk-based tables.

You cannot, for example, include memory-optimized tables in a session that begins with
SET TRANSACTION ISOLATION LEVEL SNAPSHOT, even if MEMORY_OPTIMIZED_
ELEVATE_TO_SNAPSHOT = ON or you specify the SNAPSHOT table hint.

Inside OUT
Which isolation level does my .NET application use?

Be aware that by default the .NET System .Transaction infrastructure uses the
SERIALIZABLE isolation level, the safest but least practical choice . SERIALIZABLE pro-
vides the most isolation for transactions, so by default .NET transactions do not suffer
from dirty reads, nonrepeatable reads, or phantom rows .

You might find, however, that SERIALIZABLE transactions are being frequently blocked
and at the source of blocking, and that reducing the isolation of certain transactions
would result in better performance . Evaluate the potential risk of nonrepeatable
reads and phantom rows for each new .NET transaction, and reduce the isolation level
to REPEATABLE READ or READ COMMITTED only where appropriate, and following
guidance throughout this chapter, do not use the READ UNCOMMITTED isolation
level in any production code .

For applications with high transactional volume, consider also using SNAPSHOT isola-
tion level to increase concurrency .

You can set the isolation level of any transaction when it is begun by setting the
IsolationLevel property of the TransactionScope class . You can also default
a new database connection’s isolation level upon creation . Remember, however, that
you cannot change the isolation level of a transaction after it has begun .

Understanding on-disk versus memory-optimized concurrency
Queries using memory-optimized tables (initially called Project Hekaton prior to the release of
SQL 2014) can perform significantly faster than queries based on the same data in disk-based
tables. Memory-optimized tables can improve the performance of frequently written-to tables
by up to 40 times over disk-based tables.

CH
A

PTER 9

 Understanding isolation levels and concurrency 399

When in the aforementioned scenarios we use the words “prevents” or “protection,” we mean
locking, and this applies only to on-disk tables, not memory-optimized tables. When a transac-
tion has rows or a range of rows locked, any other transaction’s writes in that range are blocked
and wait patiently, queueing up to proceed as soon as the locks are released. Although SQL
Server allows requests to wait and be blocked forever, the applications generating the request
might easily time out under a minute of waiting.

In the case of memory-optimized tables, locking isn’t the mechanism that ensures isolation.
Instead, the in-memory engine uses row versioning to provide row content to each transaction.
In the in-memory engine, update operations create new rows in the in-memory data structure
(actually a heap), that supplant older row versions. Similarly, delete operations create rows in
a delta file, marking the row as deleted. Periodically, cleanup is done to merge the in-memory
data structure and delta files to reduce the space used in memory, and in the case of tables
with durable data, on a drive. If you are familiar with the data warehousing concept of a Slowly
Changing Dimension (SCD), this is similar to an SCD Type II.

If two transactions attempt to update the same data at the same time, one transaction will
immediately fail due to a concurrency error. Only one transaction can be in the process of
updating or deleting the same row at a time. The other will fail with a concurrency conflict
(SQL error 41302).

This is the key difference between the behavior of pessimistic and optimistic concurrency.
Pessimistic concurrency uses locks to prevent write conflict errors, whereas optimistic concur-
rency uses row versions with acceptable risk of write conflict errors. On-disk tables offer isola-
tion levels that use pessimistic concurrency to block conflicting transactions, forcing them to
wait. Memory-optimized tables offer optimistic concurrency that will cause a conflicting trans-
action to fail.

In the case of a nonrepeatable read, SQL error 41305 will be raised. In the case of a phantom
read, a SQL error 41325 will be raised. Because of these errors, applications that write to
memory-optimized tables must include logic that gracefully handles and automatically retries
transactions. They should already handle and retry in the case of deadlocks or other fatal data-
base errors.

 ➤ For more information on configuring memory-optimized tables, see Chapter 8.

 ➤ We discuss more about indexes for memory-optimized tables in Chapter 10 .
CH

A
PT

ER
 9

400 Chapter 9 Performance tuning SQL Server

Understanding delayed durability
Delayed durability is a set of transaction features first introduced in SQL Server 2014. It allows
for transactions to avoid synchronously committing to a disk; instead, committing only to mem-
ory and asynchronously committing to a disk. If this sounds dangerous to you, and opens the
possibility to losing records in the event of a server shutdown, you are correct!

However, unless your SQL Server instance’s databases are running in a synchronous availability
group (and even then, chance exists for the databases to drop into asynchronous under pres-
sure), you already face the likelihood in your database of losing recently written records in the
event of a sudden server or drive failure.

So perhaps delayed durability’s danger isn’t so unfamiliar after all. Databases in Azure SQL
Database also support delayed durability transactions, with the same caveat and expectations
for data recovery. Some data loss is possible.

NOTE
Any SQL Server instance service shutdown, whether it be a planned restart or sudden
failure, could result in delayed durability transactions being lost . This also applies to the
failover of a failover cluster instance (FCI), availability group, or database mirror . Transac-
tion log backups and log shipping will similarly contain only transactions made durable .
You must be aware of this potential when implementing delayed durability .

NOTE
Distributed (DTC) and cross-database transactions are always durable .

A delayed durable transaction will be flushed to the disk whenever a threshold of delayed dura-
bility transactions builds up, or, whenever any other durable transaction commits in the same
database. You also can force a flush of the transaction log with the system stored procedure
sp_flush_log. Otherwise, the transactions are written to a buffer in-memory and kept away
from using I/O resources until a log flush event. SQL Server manages the buffer, but makes no
guarantees as to the amount of time a transaction can remain in buffer.

The delayed durability options, implemented either at the database level or at the transaction
level, have application in very-high-performance workloads for which the bottleneck to write
performance is the transaction log itself. By trading the possibility for new records to be written
only to memory and lost in the event of a shutdown, you can gain a significant performance
increase, especially with write-heavy workloads.

It’s important to note that delayed durability is simply about reducing the I/O bottleneck of
committing a massive quantity of writes to the transaction log. This has no effect on isolation
(locking, blocking) or access to any data in the database that must be read to perform the write.
Otherwise, delayed durability transactions follow the same rules as other transactions.

CH
A

PTER 9

 Understanding execution plans 401

NOTE
Aside from the basic concept of an in-memory buffer, this topic is not related to
memory-optimized tables . The DELAYED_DURABILITY database option is not related
to the DURABILITY option when creating optimized tables .

Delayed durability database options
At the database level, you can set the DELAYED_DURABILITY option to DISABLED (default),
ALLOWED, or FORCED.

The FORCED option obviously has implications on the entirety of the database, and you should
consider it carefully with existing applications and databases. The ALLOWED option permits
delayed durability transactions but has no effect on other transactions.

Delayed durability transactions
In the end, delayed durability is a transaction option with simple syntax. This syntax is necessary
only when DELAYED_DURABILITY = ALLOWED in the current database.

It is supported for explicit transactions at the time they are committed by using the following
sample syntax:

BEGIN TRAN
COMMIT TRAN WITH (DELAYED_DURABILITY=ON);

In the case of a natively compiled procedure, you can specify DELAYED_DURABILITY in the
BEGIN ATOMIC block. Take, for example, this procedure in the WideWorldImporters database:

CREATE PROCEDURE [Website].[RecordColdRoomTemperatures_DD]
@SensorReadings Website.SensorDataList READONLY
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER
AS
BEGIN ATOMIC WITH
(
 TRANSACTION ISOLATION LEVEL = SNAPSHOT,
 LANGUAGE = N'English',
 DELAYED_DURABILITY = ON
)
 BEGIN TRY
...

Understanding execution plans
Execution plans are a detailed explanation of the query optimizer’s plan for processing any
statement. Each time you run a statement, including batches with multiple statements, an exe-
cution plan is generated.

CH
A

PT
ER

 9

402 Chapter 9 Performance tuning SQL Server

Execution plans inform the developer of the steps the Database Engine will take to retrieve
data, from the tables, through the various transformation steps to sort, join, and filter data, and
finally return or affect data. All statements create execution plans, including Data Manipulation
Language (DML) and DDL.

Execution plans contain the cost and other metadata of each piece that it takes to process a
query—from the data retrieval steps, joins, sorts, and more, and finally the DML or DDL opera-
tion itself. This data can be invaluable to developers and database administrators for tuning
query performance.

The Procedure Cache, stored in the memory that SQL Server uses, contains query plans for
statements that have been run. The Query Store is a powerful built-in repository in each data-
base to track and trend runtime statistics over time.

Execution plans are generated for a query and reused when that exact same query text is called
again. (The query text is first and always subjected to simplification, which removes redundan-
cies, including using a code reduction technique called Constant Folding.) Queries will reuse
the same plan only if every character of the query statement matches, including capitalization,
whitespace, line breaks, and text in comments. There is one exception to this rule of query
reuse, and that is when SQL Server parameterizes a query or stored procedure statement.

SQL Server does a smart job at sniffing for parts of a statement that could be parameterized
to make a query’s cached plan reusable. For example, a query that has a WHERE clause on a
LastName field should be able to use the same execution plan whether it is searching for
“Smith” or “Green.”

Understanding parameterization and “parameter sniffing”
SQL Server parameterization occurs when the query optimizer detects values (such as the
search criteria of a WHERE clause statement) that can be parameterized.

With parameterization, it’s possible that two potentially helpful or potentially problematic
conditions can occur:

●● You can reuse a query plan for multiple queries for which the query text is exactly the
same, except for parameterized values.

●● The same query could use the same execution plan for two different values of a WHERE
clause, resulting in vastly different performance.

For example, the following two query statements in the WideWorldImporters database will
be parameterized and use the same query plan. (This also means that both queries could

CH
A

PTER 9

 Understanding execution plans 403

be affected by the same Query Store forced plan; more on that later.) The first query returns
13 rows, the second returns 1,055 rows:

SELECT ppo.OrderDate, ppo.PurchaseOrderID, pol.PurchaseOrderLineID, ppo.[SupplierID]
 FROM [Purchasing].[PurchaseOrders] AS ppo
 INNER JOIN [Purchasing].[PurchaseOrderLines] AS pol
 ON ppo.PurchaseOrderID = pol.PurchaseOrderID
 INNER JOIN [Purchasing].[Suppliers] AS s ON s.SupplierID = ppo.SupplierID
 WHERE ppo.SupplierID = 5

SELECT ppo.OrderDate, ppo.PurchaseOrderID, pol.PurchaseOrderLineID, ppo.[SupplierID]
 FROM [Purchasing].[PurchaseOrders] AS ppo
 INNER JOIN [Purchasing].[PurchaseOrderLines] AS pol
 ON ppo.PurchaseOrderID = pol.PurchaseOrderID
 INNER JOIN [Purchasing].[Suppliers] AS s ON s.SupplierID = ppo.SupplierID
 WHERE ppo.SupplierID = 4

In the WideWorldImporters database, we might see the same query plan for both statements
results in quick performance for the smaller rowcount SupplierID and horrible performance
for the larger rowcount.

If the larger rowcount query (SupplierID = 4) is run first and has its query plan cached,
there isn’t likely to be a problem. Both versions of the query will run well enough. If the smaller
rowcount query (SupplierID = 5) is run first, its version of the plan will be cached. In this
case, the plan is different, less efficient for very large row counts, and will be used for all versions
of the parameterized statement.

Here are a few advanced troubleshooting avenues to alleviate this scenario:

●● You can use the OPTIMIZE FOR query hint to demand that the query analyzer use a
cached execution plan that substitutes a provided value for the parameters. You also can
use OPTIMIZE FOR UNKNOWN, which instructs the query analyzer to optimize for the
most common value, based on statistics of the underlying data object.

●● The RECOMPILE query hint or procedure option does not allow the reuse of a cached
plan, forcing a fresh query plan to be generated each time the query is run.

●● You can use the Plan Guide feature (implemented via stored procedures) to guide the
query analyzer to a plan currently in cache. You identify the plan via its plan_handle.
For information on identifying and analyzing plans in sys.dm_exec_cached_plans,
see the upcoming section, which contains a plan_handle.

●● You can use the Query Store feature (implemented with a GUI in SQL Server Management
Studio, and via stored procedures behind the scenes) to visually look at plan performance
and force a query to use a specific plan currently in cache.

CH
A

PT
ER

 9

404 Chapter 9 Performance tuning SQL Server

 ➤ For more information, see the section “Using the Query Store feature” later in this chapter.

●● You could use the USE PLAN query hint to provide the entire XML query plan for any
statement execution. This obviously is the least convenient option, and like other
approaches that override the query analyzer, you should consider it an advanced and
temporary performance tuning technique.

Understanding the Procedure Cache
New execution plans enter the Procedure Cache only when a new statement is run. If a proce-
dure cache already contains a plan matching a previous run of the current statement, the execu-
tion plan is reused, saving valuable time and resources.

This is why complex statements can appear to run faster the second time they are run.

The Procedure Cache is empty when the SQL Server service starts and grows from there. SQL
Server manages plans in the cache, removing them as necessary under memory pressure. The
size of the Procedure Cache is managed by SQL Server and is inside the memory space config-
ured for the server in the Max Server Memory configuration setting. Plans are removed based
on their cost and how recently it has been used. Smaller, older plans and single-user plans are
the first to be cleared.

Inside Out
If I run a statement only once, does SQL Server remember its plan?

By default, SQL Server adds an execution plan to the Procedure Cache the first time
it is generated . You can view the number and size of cached execution plans with the
dynamic management view sys.dm_exec_cached_plans. You might find that a
large amount of space in the Procedure Cache is dedicated to storing execution plans
that have been used only once . These single-use plans can be referred to as ad hoc
execution plans, from the Latin, meaning “for this situation.”

If you find that a SQL Server instance is storing many single-use plans, as many do,
selecting the server configuration option Optimize For Ad Hoc Queries will benefit
performance . This option does not optimize ad hoc queries; rather, it optimizes SQL
Server memory by storing an execution plan in memory only after the same query
has been detected twice. Queries might then benefit from the cached plan only upon
the third time they are run .

CH
A

PTER 9

 Understanding execution plans 405

The following query provides the number of single-use versus multiuse query plans,
and the space used to store both:

SELECT
 PlanUse = CASE WHEN p.usecounts > 1 THEN '>1' ELSE '1' END
, PlanCount = COUNT(1)
, SizeInMB = SUM(p.size_in_bytes/1024./1024.)
FROM sys.dm_exec_cached_plans p
GROUP BY CASE WHEN p.usecounts > 1 THEN '>1' ELSE '1' END;

Analyzing cached execution plans in aggregate
You can analyze execution plans in aggregate starting with the dynamic management view
sys.dm_exec_cached_plans, which contains a plan_handle.

The plan_handle column contains a system-generated varbinary(64) string that can be
joined to a number of other dynamic management views. As seen in the code example that fol-
lows, you can use the plan_handle to gather information about aggregate plan usage, plan
statement text, and to retrieve the graphical execution plan itself. You might be used to viewing
the graphical execution plan only after a statement is run in SQL Server Management Studio,
but you can also analyze and retrieve plans by using the following query against a handful of
dynamic management views (DMVs). These DMVs return data for all databases in SQL Server
instances, and for the current database in Azure SQL Database.

Query cached plan stats

SELECT
 UseCount = p.usecounts
, PlanSize_KB = p.size_in_bytes / 1024
, CPU_ms = qs.total_worker_time/1000
, Duration_ms = qs.total_elapsed_time/1000
, ObjectType = p.cacheobjtype + ' (' + p.objtype + ')'
, DatabaseName = db_name(convert(int, pa.value))
, txt.ObjectID
, qs.total_physical_reads
, qs.total_logical_writes
, qs.total_logical_reads
, qs.last_execution_time
, StatementText = SUBSTRING (txt.[text], qs.statement_start_offset/2 + 1,
 CASE WHEN qs.statement_end_offset = -1 THEN LEN
(CONVERT(nvarchar(max), txt.[text]))
 ELSE qs.statement_end_offset/2 - qs.statement_start_offset/2 + 1 END)

CH
A

PT
ER

 9

406 Chapter 9 Performance tuning SQL Server

, QueryPlan = qp.query_plan
FROM sys.dm_exec_query_stats AS qs
INNER JOIN sys.dm_exec_cached_plans p ON p.plan_handle = qs.plan_handle
OUTER APPLY sys.dm_exec_plan_attributes (p.plan_handle) AS pa
OUTER APPLY sys.dm_exec_sql_text (p.plan_handle) AS txt
OUTER APPLY sys.dm_exec_query_plan (p.plan_handle) AS qp
WHERE pa.attribute = 'dbid' --retrieve only the database id from sys.dm_exec_plan_
attributes
ORDER BY qs.total_worker_time + qs.total_elapsed_time DESC;

Note that the preceding query orders by a sum of the CPU time and duration, descending,
returning the longest running queries first. You can adjust the ORDER BY and WHERE clauses in
this query to hunt, for example, for the most CPU-intensive or most busy execution plans. Keep
in mind that the Query Store feature, as detailed later in this chapter, will help you visualize the
process of identifying the most expensive and longest running queries in cache.

As you can see in the previous query, you can retrieve a wealth of information from these five
DMVs, including the statement within a batch that generated the query plan. The query plan
appears as blue hyperlink in SQL Server Management Studio’s Results To Grid mode, opening
the plan as a new .sqlplan file. You can save and store the .sqlplan file for later analysis.

Permissions required to access cached plan metadata

The only permission needed to run the previous query in SQL Server is the server-level VIEW
SERVER STATE permissions, which might be appropriate for developers to have access to in a
production environment because it does not give them access to any data in user databases.

In Azure SQL Database, because of the differences between the Basic/Standard and Premium
tiers, different permissions are needed. In the Basic/Standard tier, you must be the server admin
or Azure Active Directory Admin to access objects that would usually require VIEW SERVER
STATE. In Premium tier, you can grant VIEW DATABASE STATE in the intended database in Azure
SQL Database to a user who needs permission to view the above DMVs.

Clearing the Procedure Cache

You might find that manually clearing the Procedure Cache is useful when performance testing
or troubleshooting. Typically, you want to reserve this activity for nonproduction systems. There
are a few strategies to clearing out cached plans in SQL Server.

To compare two versions of a query or the performance of a query with different indexes, you
could clear the cached plan for the statement to allow for proper comparison. You can manu-
ally flush the entire Procedure Cache, or individual plans in cache, with the following database-
scoped configuration command. The following command affects only the current database
context, as opposed to the entire instance’s procedure cache:

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

CH
A

PTER 9

 Understanding execution plans 407

CAUTION
Avoid clearing the Procedure Cache in a live production environment during normal
business hours . Doing so will cause all new statements to have their execution plans
compiled, dramatically increasing processor utilization and potentially dramatically
slowing performance .

This command was introduced in SQL Server 2016 and is effectively the same as the command
DBCC FREEPROCCACHE within the current database context. It works in both SQL Server and
Azure SQL Database. DBCC FREEPROCCACHE is not supported in Azure SQL Database.

You can use DBCC FREEPROCCACHE to clear the procedure cache of the SQL Server instance.

You can also remove a single plan from cache by identifying its plan_handle and then pro-
viding it as the parameter to the DBCC FREEPROCCACHE function. Perhaps this is a plan you
would like to remove for testing or troubleshooting purposes that you have identified with the
script in the previous section:

DBCC FREEPROCCACHE (0x06000700CA920912307B86
7DB70100000100);

You could alternatively flush the cache by object type. This command clears cached execution
plans that are the result of ad hoc statements and prepared statements (from applications):

DBCC FREESYSTEMCACHE ('SQL Plans');

The advantage of this statement is that it does not wipe the cached plans from “Programmability”
database objects such as stored procedures, multistatement table-valued functions, scalar user-
defined functions, and triggers. The following command clears the cached plans from those
type of objects:

DBCC FREESYSTEMCACHE ('Object Plans');

Note that DBCC FREESYSTEMCACHE is not supported in Azure SQL Database.

You can also use DBCC FREESYSTEMCACHE to clear cached plans association to a specific
Resource Governor Pool, as follows:

DBCC FREESYSTEMCACHE ('SQL Plans', 'poolname');

NOTE
Execution plans are not removed from cache for a database that is OFFLINE . Plan data
is cleared from the Procedure Cache for databases dropped or detached from the SQL
Server instance .

CH
A

PT
ER

 9

408 Chapter 9 Performance tuning SQL Server

Retrieving execution plans in SQL Server Management Studio
There are three basic types of graphical execution plans to retrieve for a statement: Estimated,
Actual, and Live. Let’s review the differences, and how you can view them.

Estimate the execution plan

You can generate the estimated execution plan quickly and view it graphically from within SQL
Server Management Studio by choosing the Display Estimated Execution Plan option in the
Query menu, or pressing Ctrl+L. An estimated execution plan will return for the highlighted
region, or for the entire file if no text is selected.

You can also retrieve an estimated graphical execution plan in T-SQL code by running the fol-
lowing statement:

SET SHOWPLAN_XML ON

The actual execution plan is returned as an XML string. In SQL Server Management Studio, in
Grid mode, the results are displayed as a link. Click the link to open the plan graphically in SQL
Server Management Studio. You can save the execution plan as a .sqlplan file by right-clicking
in the neutral space of the plan window.

You can also configure the estimated text execution plan in code by running one of the follow-
ing statements, which return the execution plan in one result set or two, respectively:

SET SHOWPLAN_ALL ON
SET SHOWPLAN_TEXT ON

NOTE
Be aware that when any of the aforementioned three options are turned on, SQL Server
will not run statements, only return estimated execution plans . Remember to turn off
the SET SHOWPLAN_ option before you reuse the same session for other queries .

As expected, the estimated execution plan is not guaranteed to match the actual plan used
when you run the statement, but it is a very reliable approximation. The query optimizer uses
the same information for the estimate as it does for the actual plan when you run it.

One cause for any differences between the estimate and actual execution plans would be any
reason for the plan to be recompiled between the estimate and actual plan generation, includ-
ing if the plan was removed from the Procedure Cache.

CH
A

PTER 9

 Understanding execution plans 409

To display information for individual steps, hover over a step in the execution plan. You can also
click an object, and then open the Properties window by pressing F4 or, in the View menu, click-
ing Properties Window. You’ll notice the estimated execution plan is missing some information
that the actual plan returns. The missing fields are self-explanatory; for example, Actual Number
Of Rows, Actual Number Of Batches, and Number of Executions.

Displaying the actual execution plan

You can generate the actual execution plan along with the statement’s result set from within
SQL Server Management Studio by choosing the Include Actual Execution Plan option in the
Query menu, or pressing Control+M to turn on the setting. After turning on this setting, when
you run a statement, you will see an additional tab along with the execution results.

You’ll notice that returning the actual graphical execution plan adds some additional time to
the execution. The actual execution plan will return as an additional tab in Management Studio.

You can also configure the actual graphical execution plan in T-SQL code, returning XML
that can be viewed graphically in SQL Server Management Studio, by running the following
statement:

SET STATISTICS XML ON

The actual execution plan is returned as an XML string. In SQL Server Management Studio, in
Grid mode, the results display as a link.

Remember to turn off the SET STATISTICS option before you reuse the same session, if you
don’t want to get back the actual plan for every query you run on this connection.

You can save both the estimated and actual execution plans as a .sqlplan file by right-clicking
the neutral space of the plan window.

Displaying live query statistics

You can generate and display a “live” version of the execution plan by using SQL Server Man-
agement Studio 2016. You can access live statistics on versions of SQL Server starting with SQL
Server 2014. You turn on the Live Execution Statistics option in the Query menu of SQL Server
Management Studio, as demonstrated in Figure 9-1.

CH
A

PT
ER

 9

410 Chapter 9 Performance tuning SQL Server

Figure 9-1 The Query menu in SQL Server Management Studio, with the Include Live
Query Statistics option highlighted.

The Live Query Statistics window displays a hybrid version of the Estimated and Actual execu-
tion plans while the query is processing. If your query runs too quickly, you’ll miss the dotted,
moving lines and the various progress metrics including duration for each step and overall per-
centage completion. The percentage is based on the Actual rows processed currently incurred
versus a total number of rows processed for that step.

CH
A

PTER 9

 Understanding execution plans 411

The Live Query Statistics contains more information than the Estimated query plan, such as
Actual Number Of Rows and Number Of Executions, but less than the Actual query plan. The
Live Query Statistics does not display some data from the Actual Execution Plan, Actual Execu-
tion Mode, Number Of Rows Read, Actual Rebinds, and Actual Rebinds.

Notice in Figure 9-2 that returning the execution plan slows down the query, so be aware that
the individual and overall execution durations measured will often be longer than when the
query is run without the option to display Live Query Statistics.

Figure 9-2 Three different screenshots of the Live Query Statistics, moments apart.

You might see that the total rows to be processed does not match total Estimated Number Of
Rows for that step; rather, the multiple of that step’s Estimated Number Of Rows and a preced-
ing step’s Estimated Number Of Rows. In Figure 9-2, the number of rows Estimated is less than
the number of rows actually read.

CH
A

PT
ER

 9

412 Chapter 9 Performance tuning SQL Server

Inside OUT
What’s the difference between “Number Of Rows Read” and “Actual Number Of
Rows”?

This is an important distinction, and it can tip you off to a significant performance
issue .

Both are “Actual” values, but Actual Number Of Rows contains the number of values
in the range of rows we expect to retrieve, and Number Of Rows Read contains the
number of rows that were actually read. The difference could be significant to perfor-
mance, and the solution is likely to change the query so that the predicate is narrower
and/or better aligned with indexes on the table . Alternatively, you could add indexes
to better fit the query predicates and make for more efficient searches.

One of the easiest ways to reproduce this behavior is with a wildcard search, for
example in the WideWorldImporters sample database:

SELECT i.InvoiceID
FROM [Sales].[Invoices] as i
WHERE i.InvoiceID like '1%'

In the XML, in the node for the Index Scan, you will see:

<RunTimeInformation>
<RunTimeCountersPerThread Thread="0" ActualRows="11111" ActualRowsRead="70510"
...

Defined as “ActualRowsRead” in the XML of the plan, this value is displayed as “Num-
ber of Rows Read” in SQL Server Management Studio. Similarly, “ActualRows” is dis-
played as “Actual Number of Rows.”

Permissions necessary to view execution plans

The user must have permissions to actually run the query, even if they are generating only an
Estimated execution plan.

Retrieving the Estimated or Actual execution plan requires the SHOWPLAN permission in each
database referenced by the query. The Live Query Statistics feature requires SHOWPLAN in each
database, plus the VIEW SERVER STATE permission to see live statistics.

It might be appropriate in your environment to grant SHOWPLAN and VIEW SERVER STATE
permissions to developers. However, the permission to execute queries against the production

CH
A

PTER 9

 Using the Query Store feature 413

database may not be appropriate in your regularly environment. If that is the case, there are
alternatives to providing valuable execution plan data to developers without production access:

●● Consider providing database developers with saved execution plan (.sqlplan) files for
offline analysis.

●● Consider also configuring the dynamic data masking feature, which may already be
appropriate in your environment for hiding sensitive or personally identifying informa-
tion for users who are not sysadmins on the server. Do not provide UNMASK permission to
developers; assign that only to application users.

 ➤ For more information on dynamic data masking, see Chapter 7 .

Using the Query Store feature
First introduced in SQL Server 2016, the Query Store provides a practical history of execution
plan performance. It can be invaluable for the purposes of investigating and troubleshooting
sudden negative changes in performance, by allowing the administrator or developer to iden-
tify high-cost queries and the quality of their execution plans.

The Query Store is most useful for looking back in time toward the history of statement execu-
tion. The Query Store can also assist in identifying and overriding execution plans by using a
feature similar to but different from the legacy plan guides feature.

Inside OUT
How should I force a statement to use a certain execution plan?

Your options for forcing a statement to follow a certain execution plan are either
the older plan guides stored procedures or the newer Query Store interface (and its
underlying stored procedures) to force an execution plan .

Both options are advanced options for temporary or diagnostic use only . Overriding
the query optimizer’s execution plan choice is an advanced performance tuning tech-
nique. It is most often necessitated by query parameter sniffing.

It is possible to create competing plan guides or Query Store forced plans . This is
certainly not recommended because it could be extremely confusing . If you create
compete plan guides or Query Store forced plans, it’s likely you’ll see the Query Store
forced plan “win.”

CH
A

PT
ER

 9

414 Chapter 9 Performance tuning SQL Server

In case you are troubleshooting competing plan guides and Query Store forced plans,
you can view any existing plan guides and forced query plans with the following
DMV queries:

SELECT * FROM sys.plan_guides

SELECT *
FROM sys.query_store_query AS qsq
JOIN sys.query_store_plan AS qsp
 ON qsp.query_id = qsq.query_id
WHERE qsp.is_forced_plan = 1;

Finally, you could use the USE PLAN query hint to provide the entire XML query
plan for any statement execution . This obviously is the least convenient option, and
like other approaches that override the query analyzer, should be considered an
advanced and temporary performance tuning technique .

Plan guides are used to override an otherwise complicated manual scripting exercise.

You see live Query Store data as it happens from a combination of both memory-optimized and
on-disk sources. Query Store minimizes overhead and performance impact by capturing cached
plan information to in-memory data structure. The data is “flushed” to disk at an interval
defined by Query Store, by default 15 minutes. The Disk Flush Interval setting defines how much
Query Store data could be lost in the event of an unexpected system shutdown.

NOTE
Cross-database queries are captured according to the query database context . In the fol-
lowing code example, the query’s execution would be captured in the Query Store of the
WideWorldImporters database .

USE WideWorldImporters;
GO
SELECT * FROM
AdventureWorks.[Purchasing].[PurchaseOrders];

The Query Store is a feature that Microsoft delivered to the Azure SQL Database platform first,
and then to the SQL Server product. In fact, Query Store is at the heart of the Azure SQL Data-
base Advisor feature which provides automatic query tuning. The Query Store feature’s over-
head is quite manageable, tuned to avoid performance hits, and is already in place on millions
of databases in Azure SQL Database.

The VIEW DATABASE STATE permission is all that is needed to view the Query Store data.

CH
A

PTER 9

 Using the Query Store feature 415

Initially configuring the query store
The Query Store feature is identical between the two platforms, except for its default activation.
Query Store is turned on automatically on Azure SQL Database, but it is not automatically on
for new databases in SQL Server 2017, and it is not a setting that can be inherited by the model
database.

You should turn on the Query Store on new production databases in SQL Server 2017 when you
anticipate doing any performance tuning. You can turn on Query Store via the database Proper-
ties dialog box, in which Query Store is a page on the menu on the left. Or, you can turn it on via
T-SQL by using the following command:

ALTER DATABASE [DatabaseOne] SET QUERY_STORE = ON;

Keep in mind that Query Store begins collecting when you activate it. You will not have any
historical data when you first turn on the feature on an existing database, but you will begin to
immediately see data for live database activity.

The Query Store Capture Mode default setting of All includes all queries. You might soon realize
that this setting does not filter out ad hoc queries, even if you selected the Optimize For Ad Hoc
Queries option in the system configuration. Change this setting to Auto because the additional
data of one-use plans might not be useful, and can reduce the amount of historical data can be
retained.

NOTE
The Query Store data is stored in the user database . It is backed up and restored along
with the database .

The Query Store retains data up to two limits: a Max Size (500 MB by default), and a “Stale
Query Threshold” time limit of Days (30 by default). If Query Store reaches its Max Size, it will
clean up the oldest data. Because Query Store data is saved on a drive, its historical data is not
affected by the commands we looked at earlier in this chapter to clear the Procedure Cache,
such as DBCC FREEPROCACHE.

You should keep the Size Based Cleanup Mode set to the default Auto. If not, when the Max Size
is reached, Query Store will stop collecting data and enter “Read Only” mode, which does not
collect new data. If you find that the Query Store is not storing more historical days of data than
your Stale Query Threshold setting in days, increase the Max Size setting.

NOTE
Starting with SQL Server Management Studio 17 .3, you can also see wait stats on existing
reports .

CH
A

PT
ER

 9

416 Chapter 9 Performance tuning SQL Server

Using query store data in your troubleshooting
Query Store has several built-in dashboards, shown in Figure 9-3, to help you examine query
performance and overall performance over recent history.

Figure 9-3 The SQL Server Object Explorer list of built-in dashboards available for Query Store in
SQL Server Management Studio 2017.

With SQL Server Management Studio 2017, you can view more dashboards in SQL Server 2016
databases than you could in SQL Server Management Studio 2016, including Queries With
Forced Plans and Queries With High Variation.

You can also write your own reports against the collection of system DMVs that present Query
Store data to administrators and developers by using the VIEW DATABASE STATE permission.
You can view the six-view schema of well-documented views and their relationships at https://
docs.microsoft.com/sql/relational-databases/performance/how-query-store-collects-data#views.

CH
A

PTER 9

https://docs.microsoft.com/sql/relational-databases/performance/how-query-store-collects-data#views
https://docs.microsoft.com/sql/relational-databases/performance/how-query-store-collects-data#views

 Using the Query Store feature 417

On many of the dashboards, there is a button with a crosshairs symbol, as depicted in Fig-
ure 9-4. If a query seems interesting, expensive, or is of high value to the business, you can click
this button to view a new screen that tracks the query when it’s running as well as various plans
identified for that query.

Figure 9-4 The Query Store tool bar at the top of the screen on many of the dashboards, in this
example, the tool bar for the Regressed Queries report.

You can also review the various plans for the same statement, compare the plans, and if neces-
sary, force your chosen plan into place. Compare the execution of each plan by CPU Time, Dura-
tion, Logical Reads, Logical Writes, Memory Consumption, and Physical Reads.

Most of all, the Query Store can be valuable by informing you when a query started using a
new plan. You can see when a plan was generated and the nature of the plan; however, the
cause of the plan’s creation and replacement is not easily answered, especially when you cannot
correlate to a DDL operation. Query plans can become invalidated automatically due to large
changes in statistics due to data inserts or deletes, changes made to other statements in the
stored procedure, changes to any of the indexes used by the plan, or manual recompilation due
to the RECOMPILE option.

Forcing a statement (see Figure 9-5) to use a specific execution plan via the Query Store is not a
recommended common activity. You should use this only for specific performance cases, prob-
lematic queries demanding unusual plans, workarounds for other unresolvable index or per-
formance scenarios. Note that if the forced plan is invalid, such as an index changing or being
dropped, SQL Server will move on without the forced plan without warning or error, though
Query Store will still show that the plan is being forced for that statement.

CH
A

PT
ER

 9

418 Chapter 9 Performance tuning SQL Server

Figure 9-5 The Query Store has recorded the execution results of the query. Note that one plan
has been Forced (using the Force Plan button) for this statement and is displayed with
a check mark.

Understanding automatic plan correction
SQL Server 2017 introduces a new feature called Automatic Plan Tuning, originally developed
for the Azure SQL Database platform. It is capable of detecting and reverting plan regression.

You could use Query Store in 2016 to identify a query that has regressed in performance, and
manually force a past execution plan into use. Now in SQL Server 2017, the database can be
configured to detect plan regression and take this action automatically. The sample syntax for
enabling automatic plan correction is below:

ALTER DATABASE [WideWorldImporters] SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON);

Currently, FORCE_LAST_GOOD_PLAN is the only option for automatic plan tuning.

The DMV sys.dm_db_tuning_recommendations captures plan recommendations based
on query performance regression. This doesn’t happen immediately – the feature has an algo-
rithm that requires several executions before regression is identified. When a recommenda-
tion appears in sys.dm_db_tuning_recommendations, it includes a large amount of diagnostic
data, including a plain-language “reason” explanation for the recommendation to be gener-
ated, and a block of JSON data containing diagnostic information. A sample query to parse
this data is available at https://docs.microsoft.com/sql/relational-databases/automatic-tuning/
automatic-tuning.

CH
A

PTER 9

https://docs.microsoft.com/sql/relational-databases/automatic-tuning/automatic-tuning
https://docs.microsoft.com/sql/relational-databases/automatic-tuning/automatic-tuning

 Understanding execution plan operators 419

Understanding execution plan operators
After you have a graphical execution plan in front of you, you can begin to understand how the
statement is processed.

To display information for individual steps, position your pointer over a step in the execution
plan. You can also click an object, and then open the Properties window by pressing F4 or, in the
View menu, clicking Properties Window. You’ll notice that the information returned estimate
and actual values for some metrics, including Number of Rows and Executions. Look for differ-
ences here; they can indicate an inefficient execution plan and the source of a poor perform-
ing query. Your query might be suffering from a poorly chosen plan because of the impact of
parameter sniffing or stale, inaccurate index statistics. (We discussed parameter sniffing earlier
in this chapter, and discuss index statistics in Chapter 10.)

However, notice that some values, like Cost information, contain only Estimated values, even
when you are viewing the Actual execution plan. This is because the operator costs aren’t
sourced separately, they are generated the same way for both Estimated and Actual plans, and
do not change based on statement execution. Furthermore, cost is not just comprised entirely
of duration. You might find that some statements far exceed others in terms of duration, but not
in cost.

There are even known plan presentation issues (as recent as SQL Server Management
Studio 17.1) that might sometimes result in a sum of Operator Costs that do not add up to
100 percent, specifically in the presence of the concatenation operator.

Interpreting graphical execution plans
In the next list, we review some of the most common things to look for as you review execu-
tion plans in SQL Server Management Studio. You can also choose to review execution
plans with a well-known third-party tool called Plan Explorer, which is a free download from
https://www.sentryone.com/.

In this section, it is assumed that you will have access to the Actual execution plan, as not all the
information within will exist in the Estimated plan.

CH
A

PT
ER

 9

https://www.sentryone.com/

420 Chapter 9 Performance tuning SQL Server

Start in the upper left

The upper-left operator will reflect the basic operation that the statement performed. For
example, Select, Delete, Update, or Insert for DML statements. This operator might contain
warnings or other items that require your immediate attention. These might show up with a
small yellow triangle warning icon, with additional detail when you position your pointer on
the operator.

Click the upper-left operator, and then press F4 to open the Properties window, or open the
Properties window from the View menu in SQL Server Management Studio. In this list are a
couple other things to look for. You’ll see warnings repeated in here, along with additional
aggregate information.

ATTENTION
Yellow triangles () indicate something that should grab your attention . The alert
could tip you off to an implicit conversion—a data type mismatch that could be costly!
Investigate any warnings reported before moving on .

Look also for the Optimization Level, which ideally says FULL. If the Optimization Level was
TRIVIAL, the plan bypassed the query optimizer altogether because it was too straightforward.
The plan contained only a simple Scan or Seek operation the only other operator, perhaps. If
not FULL or TRIVIAL, this is something to investigate.

Look next for the presence of a value for Reason For Early Termination, which indicates the
query optimizer spent too long on attempting to build the perfect execution plan, and gave up,
sometimes literally returning the self-explanatory value, Good Enough Plan Found. If the reason
is Time Out, the optimizer tried as many times as it could to find the best plan before deciding,
taking the best plan available, which might not be “good enough.” If you see this case, consider
simplifying the query, especially reducing the use of functions, and by potentially modifying the
underlying indexes. Finally, if you see the reason is Memory Limit Exceeded, this is a rare and
critical error indicating severe memory pressure on the SQL Server instance.

In the Query Cached Plan Stats script sample shown in the section "Analyzing cached execu-
tion plans in aggregate" earlier in this chapter, in which we queried the procedure cache for
plan statistics, you can add some code to search only for queries that have a Reason For Early
Termination. In the execution plan XML, the Reason For Early Termination will show in a node
StatementOptmEarlyAbortReason. Before the WHERE clause, add this line:

CROSS APPLY sys.dm_exec_text_query_plan(p.plan_handle, qs.statement_start_offset,
qs.statement_end_offset) AS tqp

And before the ORDER BY in the script, add this line:

and tqp.query_plan LIKE '%StatementOptmEarlyAbortReason%'

CH
A

PTER 9

 Understanding execution plan operators 421

Next, scroll right, then read from right to left

Graphical execution plans build from sources (rightmost objects), and apply operators to join,
sort, and filter data from right to left, eventually arriving at the leftmost operator. In the right-
most objects, you’ll see Scans, Seeks, and Lookups of different types. You might find some quick,
straightforward insight into how the query is using indexes.

Seek operations are best for when you’re looking for a needle or needles in a much larger
haystack. They are generally the most efficient operators to see, and can rarely be improved
by additional indexes. Keep an eye out for Seeks that are accompanied by Lookups, however.
They’ll likely appear one on top of the other in the graphical execution plan. Row Lookups indi-
cate that although the optimizer used a seek, it needed a second pass at the table in the form
of a Lookup on another object, perhaps the clustered index. Key Lookups (on clustered indexes)
and RID Lookups (on heaps) are expensive and inefficient, and likely can be eliminated from the
execution plan with the modification to an existing nonclustered index. Lookups are very effi-
cient when looking up a small number of rows, but very inefficient for larger number of rows. In
high-cost or high-importance queries, Key Lookups can represent a significant cost, one that is
easily resolvable with a nonclustered index.

 ➤ For an example, see the section “Designing nonclustered indexes” in Chapter 10.

Scan operations aren’t great unless your query is intentionally performing a query that returns
most of the rows out of a table. Scans are in fact that most efficient option for when an index
does not provide an ordered dataset, but keep in mind, they do read all rows from the index.
Without a nonclustered index with a well-designed key to enable a seek for the query, a scan
might be the query optimizer’s only option. Scans on nonclustered indexes are often better
than scans of clustered indexes, in part due to what is likely a smaller key size. Test and compare
the performance of a new or updated nonclustered index, created based on the predicates and
outputs of Index Scans and Clustered Index Scans.

NOTE
Again, very few queries are important enough to deserve their own indexes. Think “big
picture” when creating indexes. More than one query should benefit from any nonclus-
tered indexes you create . Avoid redundant or overlapping nonclustered indexes . See
Chapter 10 for more information on creating nonclustered indexes, including “missing”
indexes .

Other types of scans include the following:

●● Table Scans. These indicate that the table has no clustered index. We discuss why this is
probably not a good idea in Chapter 10.

CH
A

PT
ER

 9

422 Chapter 9 Performance tuning SQL Server

●● Remote Scans. This includes any object that is preceded by “remote,” which is the same
operation but over a linked server connection. Troubleshoot them the same way, but
potentially by making changes to the remote server instead.

●● Constant Scans. These appear when the query optimizer deals with scalar values,
repeated numbers, and other “constants.” These are necessary operators for certain tasks
and generally not actionable from a performance standpoint.

●● Columnstore Index Scans. These are incredibly efficient operators, and likely will out-
perform a Clustered Index Scan or Index Seek where millions of rows, for example, must
be aggregated. No need to create a nonclustered index to replace this operator.

NOTE
Since SQL Server 2016, Columnstore indexes are a viable option for read-write tables in
a transactional system . In previous versions of SQL Server, nonclustered Columnstore
indexes did not allow writes to the table, and so couldn’t easily be adopted in transac-
tional databases . If you aren’t using them already to optimize large row count queries,
considering adding them to your toolbelt .

Furthermore, since SQL Server 2016 SP1, Columnstore indexes are even avail-
able to all edition licenses of SQL Server, even Express edition, though editions
below Enterprise edition have limits to the amount of Columnstore cache in
memory . For more information, visit https://docs.microsoft.com/sql/sql-server/
editions-and-components-of-sql-server-2017.

The weight of the lines connecting operators isn’t the full story

SQL Server dynamically changes the thickness of the gray lines to reflect the Actual Number Of
Rows. You can get a visual idea of where the bulk of data is coming from by observing the pipes,
drawing your attention to the places where performance tuning could have the biggest impact.

The visual weight and the sheer number of rows does not directly translate to cost, however.
Look for where the pipe weight changes from light to heavy, or vice versa. Be aware of when
thick pipes are joined or sorted.

Operator cost share isn’t the full story either

When you run multiple queries, the cost of the query relative to the batch is displayed in the
Query Execution Plan header, and within each plan, the batch cost relative to the rest of the
operators in the statement is displayed. SQL Server uses a cost-based process to decide which
query plan to use. Deciding to address only the highest-cost single operator in the execution
plan might be a dead end, but generally you will find the highest cost operators on the right-
most side of the execution plan.

CH
A

PTER 9

https://docs.microsoft.com/sql/sql-server/editions-and-components-of-sql-server-2017
https://docs.microsoft.com/sql/sql-server/editions-and-components-of-sql-server-2017

 Understanding execution plan operators 423

In Figure 9-6, we can see that operator cost might not align with the amount of data. You
should investigate performance tuning this execution plan using all of the information
provided.

Figure 9-6 In this snippet from an execution plan, much of the cost is associated with the top
operator, but more rows are moving on from the bottom operator.

Look for Join operators and understand the different algorithms

As you read from right to left, in a query of any complexity, you’ll likely see the paths meet at
a join operator. Two tables can be joined, obviously, but different indexes on the table can also
meet in a join operator. If you find that a large portion of the cost of an execution plan spent in
a Hash Match, Hash Join, Merge Join, or Nested Loop, take a look at what is being joined.

The Hash operators have the most overhead, with a temporary hash table created to bucketize
and match rowdata. Merge Joins are the best for ordered data that streams processed data
as it receives it. Nested Loops aren’t as bad as they sound, but they are essentially the row-by-
row comparison of one rowset against another. This can be very efficient for small, indexed
datasets.

Each of the following could reduce the cost of a Join operator.

●● There may be an opportunity to improve the indexing on the columns being joined, or
perhaps, you have a join on a compound key that is incompletely defined. Perhaps you
are unintentionally omitting part of the join key in the ON or WHERE clause of the query.

CH
A

PT
ER

 9

424 Chapter 9 Performance tuning SQL Server

●● In the case of a Merge Join, you may see a preceding Sort operator. This could be an
opportunity to present the data already sorted according to how the Merge Join requires
the data to be sorted. Perhaps changing the ASC/DESC property or the order of index key
columns could remove the Sort operator.

●● Make sure you that are filtering at the lowest level possible. Perhaps a WHERE clause could
exist in a subquery instead of at the top level of the query, or in the definition of a com-
mon table expression (CTE) instead of in the lower query.

●● Hash Match and Hash Join operators are the most expensive, but are the typically the
most efficient for joining two large row sets, especially large unsorted datasets. Reducing
the row counts going into the Hash Match or Hash Join could allow the query optimizer
to use a less memory-intensive and less costly join operator. You could accomplish this
perhaps by adding or modifying nonclustered indexes to eliminate Scan operators in
favor of Seek operators.

●● Nested Loops are often necessitated by Key Lookups and sometimes quite costly. They
too are no longer necessary if a new nonclustered index is added to address the Key
Lookup and make an accompanying Index Seek more capable.

Look for Parallel icons

The left-pointing pair of arrows in a yellow circle shown in Figure 9-7 indicate that your query
has been run with a parallel-processing execution plan. We talk more about Parallelism later in
this chapter, but the important thing here is to be aware that your query has gone parallel.

Figure 9-7 the parallel indicator on a Clustered Index Scan operator.

This doesn’t mean that multiple sources or pipes are being read in parallel; rather, the work for
individual tasks has been broken up behind the scenes. The query optimizer decided it was
faster if your workload was split up and run into multiple parallel streams of records.

You might see one of the three different Parallelism operators—the distribute streams, gather
streams, and repartition streams operators—each of which appear only for parallel execution
plans.

CH
A

PTER 9

 Understanding parallelism 425

Forcing a parallel execution plan
New to SQL Server 2017 (and also implemented in SQL Server 2016 CU2) is a query hint that
can force a statement to compile with a parallel execution plan. This can be valuable in trouble-
shooting, or to force a behavior in the query optimizer, but is not usually a necessary or recom-
mended option.

Appending the following hint to a query will force a parallel execution plan, which you can see
using the Estimate or Actual execution plan output options:

OPTION(USE HINT('ENABLE_PARALLEL_PLAN_PREFERENCE'));

NOTE
The presence of certain system variables or functions can force a statement to compile
to be serial, that is, without any parallelism . This behavior will override the new ENABLE_
PARALLEL_PLAN_PREFERENCE option .

The @@TRANCOUNT system variable will force a serial plan, as will any of the built-in error
reporting functions, including ERROR_LINE(), ERROR_MESSAGE(), ERROR_NUMBER(),
ERROR_PROCEDURE(), ERROR_SEVERITY(), or ERROR_STATE() . Note that this per-
tains only to using these objects in a query . Using them in the same batch, such as in a
TRY … CATCH handler, will not affect the execution plans of other queries in the batch .

Understanding parallelism
We mentioned parallelism in execution plans earlier in this chapter. When SQL Server decides to
split and stream data needed for requests into multiple threads, it uses more than one proces-
sor to get the job done. The number of different parallel threads used for the query is called the
degree of parallelism. Because parallelism can never exceed the number of logical processors,
naturally the maximum degree of parallelism (MAXDOP) is capped.

The default MAXDOP setting of 0 (allowing all processors to be used in a single statement)
allows SQL Server to “go parallel” at will, and, sometimes, to a fault. Although queries may per-
form fastest in a vacuum going massively parallel, at scale the overuse of parallelism creates a
multithreaded bottleneck. Split into too many different parts, queries slow down en masse as
CPU utilization rises and SQL Server records increasing values in the CXPACKET wait type.

 ➤ We talk about CXPACKET here, but for more about wait type statistics, see Chapter 13 .
CH

A
PT

ER
 9

426 Chapter 9 Performance tuning SQL Server

Until SQL Server 2016, MAXDOP was a server-level setting, or a setting enforced at the query
level, or a setting enforced to sessions selectively via the Resource Governor, an Enterprise edi-
tion feature. Since SQL server 2016, the MAXDOP setting is now available as a database-scoped
configuration. You can also use the MAXDOP query hint in any statement to override the data-
base or server level MAXDOP setting.

Another limit to parallelism, called the Cost Threshold for Parallelism (CTFP), enforces a mini-
mum bar for query cost before a query can use a parallel execution plan. The higher the thresh-
old, the fewer queries go parallel. This setting is fairly low by default, but its proper setting in
your environment is quite dependent on the workload and processor count. More expensive
queries usually benefit from parallelism more than simpler queries, so limiting the use of paral-
lelism to the worst queries in your workload can help. Similarly, setting the CTFP too high could
have an opportunity impact, as performance is limited, queries are executed serially, and CPU
cores go underutilized. The CTFP is a server-level setting only.

If large queries are already a problem for performance and multiple large queries regularly run
simultaneously, raising the CTFP might not solve the problem. In addition to the obvious solu-
tions of query tuning and index changes, including the introduction of Columnstore indexes,
use MAXDOP instead to limit very large queries.

When the CXPACKET wait is the predominant wait type experienced over time by your SQL
Server, both MAXDOP and CTFP are dials to turn when performance tuning. You can also view
the live and last wait types for a request using sys.dm_exec_requests. Make these changes
in small, measured gestures, and don’t overreact to performance problems with a small number
of queries. Use the Query Store to benchmark and trend the performance of high-value and
high-cost queries as you change configuration settings.

Another flavor of CPU pressure, and in some ways the opposite of the CXPACKET wait type, is
the SOS_SCHEDULER_YIELD wait type. The SOS_SCHEDULER_YIELD is an indicator of CPU
pressure, indicating that SQL Server had to share time or “yield” to other CPU tasks, which may
be normal and expected on busy servers. Whereas CXPACKET is the SQL Server complaining
about too many threads in parallel, the SOS_SCHEDULER_YIELD is the acknowledgement
that there were more runnable tasks for the available threads. In either case, first take a strategy
of reducing CPU-intensive queries and rescheduling or optimizing CPU-intense maintenance
operations. This is more economical than simply adding CPU capacity.

CH
A

PTER 9

 Understanding parallelism 427

Inside OUT
How can I reduce the processor utilization during maintenance operations?

If processor utilization spikes and during maintenance operations such as index
maintenance or integrity checks, you can force these to run serially . Although this
can increase the duration of maintenance, other queries should be less negatively
affected .

You can use the MAXDOP query hint at the end of index maintenance to force index
rebuild steps to run serially . Combined with the ONLINE hint, an Enterprise edi-
tion feature, your scripted index maintenance might run longer but have a minimal
impact of concurrent queries . You can also specify MAXDOP when creating indexes .
You cannot specify a MAXDOP for the reorganize step .

ALTER INDEX ALL ON WideWorldImporters.Sales.Invoices REBUILD
WITH (MAXDOP = 1, ONLINE = ON);

You can also turn on trace flag 2528 to disable parallelism server-wide for DBCC
CHECKDB, DBCC CHECKFILEGROUP, and DBCC CHECKTABLE operations . Keep in
mind these operations can take hours to complete on large databases, and might run
longer if single-threaded .

CH
A

PT
ER

 9

This page intentionally left blank

 665

A
ABORT_AFTER_WAIT parameter 566
access control

role-based 223
single sign-on (SSO) 222

actions 585
Active Directory Organizational

Unit (OU) 507
Activity Monitor

Active Expensive Queries section 36
Data File I/O section 36
overview of 33
Processes section 34
Recent Expensive Queries section 36
Resource Waits section 35

actual execution plans 408
ad hoc queries 105
Advanced Encryption Standard (AES)

306, 478
affinity masks 105
alerts

performance conditions 620
recommendations for 618
SQL Server events 619
WMI event alert conditions 621

alphanumeric data types 334
ALTER ANY EVENT SESSION permis-

sion 262
ALTER ANY USER permission 257
ALTER AUTHORIZATION 266
ALTER TABLE statements 352
ALTER TRACE permission 262
Always Encrypted 310
Always On availability groups 64, 255,

515, 636
AlwaysOn_health event session 555,

586
antivirus software, configuring 159
approximate numeric types 335
articles 497
artificial intelligence 138
AS clause 353

asymmetric keys 244, 477
ASYNC_NETWORK_IO 580
AT TIME ZONE function 337
auditing and threat detection

auditing defined 319
Azure SQL Database 224, 331
SQL Server Audit 319
threat detection feature 318

authentication
authentication to SQL Server on Linux

245
Certificate-Based Authentication 244
integrated authentication and Active-

Directory 68
Kerberos authentication 69
mixed mode 141
two-factor authentication 243
types of 242

authorization, vs . ownership 265
autoclose 184
autocreate statistics 184
autogrowth events 572, 590
automatic checkpoints 188
automatic failovers 524
Automatic Plan Tuning feature 418
automation

administering multiple SQL Servers
638

components of automated administra-
tion 607

maintaining SQL Server 623
SQL Server Agent 612
SQL Server Maintenance Plans 625
using PowerShell 648

autoshrink database setting 185, 575,
627

availability groups (AGs) 64
alerting 556
availability group administration 548
backups on secondary replicas in 636
basic availability groups 517
capabilities of 503
checklist 529

configuring 513
creating WSFC for use with 519
database mirroring endpoint 520
distributed availability groups 518
failovers in 524
full database and log backup 528
hybrid availability group topology 537
load balanced read-only routing 536
managing multiserver administration

in 641
minimum synchronized required

nodes 520
None option (clusterless) 517
ownership of 514
Powershell module and 656
RegisterAllProvidersIP and MultiSub-

NetFailover 535
secondary replica availability mode

521, 531
seeding options when adding replicas

525
SQL Server Agent automation and 621

Available Memory 599
Average Disk seconds per Read or

Write 597
Azure Active Directory (Azure AD)

authentication, integrated 244
authentication, password 244
authentication, universal 243
benefits of 71
hybrid cloud with 121
integrated authentication and 68
Kerberos authentication 69
Linux and 68
security offered by 72

Azure Analysis Services 217
Azure Automation 216
Azure Backup 237
Azure Blob Storage 111, 138, 231, 472
Azure CLI, creating databases using

212
Azure Cloud Shell 199
Azure Data Factory 217

Index

666 Azure Data Lake

Azure Data Lake 218
Azure ExpressRoute 125
Azure Key Vault 305
Azure portal

creating databases using 210
creating servers using 205
PowerShell and 199, 206

Azure Resource Manager 327, 660
Azure Role-Based Access Control (RBAC) 224
Azure SQL Database

auditing 319
Azure governance 200
Azure management 199
benefits of 116, 197
cloud-first approach 202
compared to SQL Server 117
database as a service concept 198
database corruption handling 561
Database Transaction Units (DTUs) 202
disaster recovery preparation 229
elastic database pools 118
firewall protection 318
hybrid availability group topology 537
hybrid cloud with Azure 121
limitations of 117, 215
logical SQL Servers 201
managed instances 218
migrating logins from one server to another 289
moving to 239
other SQL Server services 216
pricing tiers and service objectives 213
provisioning, considerations for 197
provisioning databases 209
provisioning elastic pools 214
provisioning logical SQL servers 204
recovery strategies 491
scalability 203, 214
securing 326
security considerations 218
service tiers 118
sharding databases with Split-Merge 121
sign in security 72
Threat Detection 318
using PowerShell module with 660

Azure SQL Database Import Service 239
Azure SQL Data Warehouse, benefits of 117
Azure Stack 124
Azure Storage 114
Azure Virtual Machines (Azure VMs) 111
Azure Virtual Network (VNet) 124

B
Back Up Database task 632
backup disks 470

backups . See also high availability (HA)
Azure Backup 237
backup chains 466, 476
backup creation and verification 478
backup types 472
backup vs. restore strategies 459
DBCC CHECKDB and 558
encrypting 478
fundamentals of data recovery 460
manual (Azure SQL Database) 230
on secondary replicas in availability groups 636
physical backup devices 470
post-installation configuration settings 161
RAID and 55
recovery strategies 487
restore strategies 459
restoring 175
scheduling 623, 631

backup sets 471
Backup-SQLDatabase cmdlet 653
BACPAC files 177, 230, 239
base table elimination . See partition elimination
basic availability groups 67, 517
Batch Mode execution 447
Batch Requests 599
bigint data type 336
binary data type 339
binary large objects (BLOBs) 367
blocked_by column 387
blocking 386 . See also isolation levels and concurrency
boot page 83
Border Gateway Protocol (BGP) 298
bring-your-own-license (BYOL) VM 135
broadcast 297
broken recovery chains 638
brute-force attacks 294
B-tree structure 437
Buffer Cache Hit Ratio (BCHR) 598
Buffer Manager 46
buffer pools 46, 479
buffer pool extension 47
BUILTIN\Administrators group 254
bulkadmin server role 275
Bulk Changed Map (BCM) 83
Bulk Copy Program (BCP) 6, 9
bulk-logged recovery model 464, 469
Business Intelligence edition, appropriate use of 132

C
capital expenditures (CapEx) 198
cascading 346
Central Management Server (CMS) 26
Central Processing Unit (CPU)

core counts and affinity masks 105

 databases 667

core counts and editions 51
core speed 49
multiple 49
Non-Uniform Memory Access 50
power saving disablement 51
simultaneous multithreading (SMT)

49, 75
virtualizing CPUs 75

Certificate-Based Authentication 244
Certification Authority (CA) 302
change data capture 380
CHANGETABLE function 380
change tracking 378
char column 335
check constraints 347
CHECKDB 558
checkpoint process 89, 188
CHECK_POLICY option 251
checksum verification 84, 174, 187, 480,

557, 632
claims 71
classification 99
cloud computing

cloud-first approach 202
hybrid cloud with Azure 121
key features of 198
networking as foundation of 58
scalability 203
virtualization and 73

clustered indexes
case against intentionally designing

heaps 433
choosing proper clustered index keys

429
design choices 432
function of 429

clustering 61
Code Snippets Manager 29
collation 181, 335
colocation constraint 548
Column Encryption Keys (CEK) 312
Column Master Key (CMK) 312
Columnstore 48, 102
Columnstore indexes

architecture of 447
Batch Mode execution 447
benefits of 446
clustered and nonclustered Column-

store indexes 447
compression delay 449
key improvements to 447
power of 448
reorganizing 571

command-line interface 9
Common Language Runtime (CLR) 339

compatibility mode 170, 182
components . See database infrastructure
Compress Backup 632
compression delay 449
compression information (CI) structure

95
computed columns 352
concurrency, optimistic vs . pessimistic

342, 399 . See also isolation
levels and concurrency

Configuration Checker 3, 136
configuration settings

affinity masks 105
file system 107
memory settings 102
page file (Windows) 99
parallelism 100
post-installation checklist 151
using Resource Governor 98

CONNECT ALL DATABASE permission
264

constraints 346
contained databases 183, 256
CONTAINMENT 256
CONTROL SERVER/DATABASE permis-

sion 265
COPY_ONLY option 474
corruption

detecting 557
recovering transaction log files 560
repairing 560

Cost Threshold for Parallelism (CTFP)
426

crash recovery . See recovery
create custom server roles 277
CREATE SEQUENCE command 348
CREATE TABLE statement 351
CREATE TYPE statement 350
credentials 305, 612
credit card information 310
Cumulative Updates (CUs) 604
CXPACKET 581
CXPACKET wait 426

D
data analytics 138
database as a service (DBaaS) 116, 198
database availability groups (DAG) 503
database checkpoints 88
Database Encryption Key (DEK) 303
Database Engine 24
Database Engine Tuning Advisor 12
database infrastructure 45–78, 79–126

Azure and the data platform 110
Central Processing Unit (CPU) 49

configuration settings 98
connecting to SQL Server over net-

works 57
data storage 51
high availability concepts 59
hybrid cloud 121
memory 45
physical database architecture 79–126
server access security 68
virtualization 73

Database Mail
configuration options 609
email history 610
key features 607
set up 608
test email 609
troubleshooting 610

database management
capturing Windows performance

metrics 592
detecting database corruption 557
maintaining database file sizes 571
maintaining indexes and statistics 561
monitoring databases by using DMVs

575
Policy-Based Management (PBM) 643
product life cycle model 604
protecting important workloads 600

Database Master Key (DMK) 303, 307
database mirroring 64, 505, 520
database ownership 265
database properties and options

autoclose 184
autocreate statistics 184
collation 181
compatibility level 182
containment type 183
Database-Scoped Configurations 187
indirect checkpoints 188
page verify 187
Query Store 188
read-only 187
recovery model 182
reviewing database settings 181
single-user mode 195
Snapshot Isolation mode 186
Trustworthy setting 187

database roles 278
databases

considerations for migrating existing
169

contained databases 183, 256
creating 177
migrating master database 290
moving and removing 189

668 Database-Scoped Configurations

moving existing 175
physical database architecture 79
properties and options 181
provisioning Microsoft Azure SQL

databases 197–240
provisioning Microsoft SQL Server

databases 127–196
setting default for logins 250

Database-Scoped Configurations 173,
187

database snapshots 473
Database Transaction Units (DTUs) 117,

202
Datacenter edition, appropriate use

of 132
data collectors 592
data compression

backup compression 96
dictionary compression 95
leaf-level vs. non-leaf-level pages 94
page compression 94
prefix compression 95
purpose of 93
row compression 93
Unicode compression 96

Data Control Language (DCL) 259, 378
Data Definition Language (DDL) 257, 378
Data Definition Language (DDL) events

555
Data Encryption Standard (DES) 306
data files and filegroups

backups 477
checkpoint process 89
checksum verification 84
data page types 82
extents, mixed and uniform 81
file unit allocation size 130
locating SQL Server files 190
maintaining database file sizes 571
memory-optimized objects 84
MinLSN and the active log 91
multiple instances of 80
partial recovery and 81
primary filegroup 80
restarting with recovery 91
separating SQL Server files 130
shrinking database files 574

datagrams 297
data in motion, securing 314
Data Manipulation Language (DML)

230, 257
data masking 317
Data Migration Assistant 4, 136
Data Platform

Azure Blob Storage 111

Azure VMs, performance optimiza-
tion 111

Azure VMs, locating TempDB files
on 116

bandwidth considerations 113
drive caching 114
infrastructure as a service (IaaS) 110
platform as a service (PaaS) 116
SQL Server data files 114
virtual hard drives (VHDs) 112
virtual machine sizing 115

Data Profiling Task 43
Data Protection API (DPAPI) 303
Data Quality Client 8
Data Quality Server 8
Data Quality Services 7
data recovery

backup creation and verification 478
backup types 472
backup vs. restore strategies 459
fundamentals of 460
physical backup devices 470
recovery strategies 487

data storage 51–57. See also data files
and filegroups

commonly used terms 51
drives 52
Fibre Channel vs. iSCSI 56
IOPS (input/output operations per

second) 52
latency 52
Network-Attached Storage (NAS) 56
nonvolatile storage disks vs. drives 51
overcommitting 75
queue depth 52
SMB 3.0 file share 57
Storage-Area Network (SAN) 56
storage arrays and RAID 54
storage layer configuration 53
Storage Spaces 57
types of 52
volumes 52

date and time data types 336
date data type 337
datetime2 data type 336
datetime data type 336
datetimeoffset data type 337
Daylight Saving Time (DST) 337
day-to-day maintenance 623
db_accessadmin role 280
db_backupoperator role 280
DBCC CHECKDB 481, 558, 624, 626
DBCC CHECKDB REPAIR_ALLOW_

DATA_LOSS 560
DBCC SHRINKFILE 575

dbcreator server role 275
db_datareader role 280
db_datawriter permission 280
db_ddladmin role 281
db_denydatareader role 281
db_denydatawriter role 281
db_owner database role 279
db_securityadmin role 281
deadlocks 589
decimal-point numbers 336
Dedicated 99
Dedicated Administrator Connection

(DAC) 283
default constraints 347
defense-in-depth

defined 291
securing your environment with 292

delayed durability 65, 85, 400
deprecated features, identifying 5, 44
Developer edition, appropriate use

of 132
dictionary attacks 294
differential backups 475, 483
differential bitmap 474
Differential Changed Map (DCM) 83
digital certificates 301
Direct-Attached Storage (DAS) 53
dirty reads 385
disaster recovery (DR) . See also data

recovery
Azure SQL Database preparations 229
compared to high availability (HA) 60,

494, 506
configuring failover cluster instances

for 502
overview of 493
typical scenario 460, 488

diskadmin server role 275
Disk Usage report 572
distributed availability groups 67
distributed-denial-of-service (DDoS)

attacks 331
distributors 497
DML statements 365
DMV (dynamic management views)

548, 575, 592
domain security groups 261
double-byte character sets (DBCS) 335
double-hop issue 70
drives 52 . See also data storage

mechanical hard drives 52
solid-state drives 53
types of 52

drive starting offset 131
dynamic data masking 317

 globally unique identifier (GUID) 669

dynamic management
function (DMF) 563

dynamic quorum management 509

E
e-commerce 300
Edition Upgrade Wizard 136
elastic database pools

benefits of 118
best use case for 119
database consolidation 119
elastic database jobs 120
elastic database query 120
multitenant architecture 119

elastic DTUs (eDTUs) 118
elasticity 198
emails 607, 632
emojis 335
encryption

Always Encrypted 310
backup encryption 478
defined 294
deterministic vs. randomized 311
in SQL Server 302
network security and 58
process of 295
symmetric and asymmetric 300
transparent data encryption (TDE) 308

Enforce Password Policy 250
Enterprise edition, appropriate use

of 131
Entity Framework 342
error logs 32
estimated execution plans 408
ESTIMATEONLY parameter 559
ETW (Event Tracing for Windows) 588
event counter 589
event forwarding 642
event-handling, extended events

GUI 13
events 585
exact numeric types 335
execution plan operators

Clustered Index Scans 421
Columnstore Index Scans 422
Constant Scans 422
displaying individual steps 419
Good Enough Plan Found 420
Index Scans 421
interpreting graphical execution plans

419
Join operators 423
Key Lookups 421
lookup operations 421
Memory Limit Exceeded 420

operator cost share 422
Optimization Level 420
ORDER BY 420
Parallel icons 424
Query Cached Plan Stats 420
Reason For Early Termination 420
Remote Scans 422
RID Lookups 421
rightmost objects 421
Row Lookups 421
scan operation 421
seek operations 421
Table Scans 421
thickness of gray connector lines 422
upper-left operator (basic operation)

420
yellow triangles 420

execution plans
analyzing cached execution plans in

aggregate 405
clearing the Procedure Cache 406
enforcing 413
parameterization and “parameter

sniffing” 402
permissions necessary to view execu-

tion plans 412
permissions required to access cached

plan metadata 406
Procedure Cache 404
purpose of 401
retrieving 408

Export Registered Servers Wizard 25
Express edition, appropriate use of 132
ExpressRoute 125
Express with Advanced Services,

appropriate use of 132
extended events

AlwaysOn_health session 555
autogrowth event detection 590
benefits of 584
deadlock detection 589
page_split event identification 563,

591
securing 591
targets 587
terminology used 585
viewing event data 586
XEvent Profiler tool 584

Extended Events GUI 13
Extensible Key Management (EKM) 303
external tables 361, 457
Extract, Transform, and Load (ETL) 378

F
FacetDomainControllerCheck 3

FacetWOW64PlatformCheck 3
Failover Cluster Instance (FCI) 57, 61,

500, 505, 507
failover groups 235
feature parity, identifying 5
Feature Selection page

Machine Learning Services 139
Oracle SE Java Runtime Environment

(JRE) 138
PolyBase Query Service 138

federation 72
fencing agents 539, 546
Fibre Channel (FC) 56
File Allocation Table (FAT) 107
file backups 477
filegroups. See data files and filegroups
file header page 83
FILEPROPERTY function 572
files. See data files and filegroups
file sharing protocols 57 . See also data

storage
FILESTREAM 339, 346, 367
file system, configuration settings 107
FileTable 369
File Transfer Protocol 299
Fill Factor property 561
filter drivers 481
filtered unique index 347
firewalls 219, 318, 328
flash memory 53
float data type 336
fn_hadr_backup_is_preferred_replica

function 517
forced failovers 525
foreign keys 345
full database backups 473, 483
full recovery model 464, 468, 487
full-text indexes 452
Full-Text Search feature 452
function permissions 267

G
General Availability (GA) release 604
General Data Protection Regulation

(GDPR) 291
General Distribution Releases (GDRs)

604
generic data types 333
geography data type 339
geometry data type 339
geo-replication 232
geo-restore 230, 492
Get-ChildItem cmdlet 654
Global Allocation Map (GAM) 83
globally unique identifier (GUID) 343

670 GO statement

GO statement 351
Grant Perform Volume Maintenance

Task Privileges 139
graphical execution plans 419
graph tables 362
GUID Partition Table (GPT) 130

H
Hadoop nonrelational data 138
hard drives 52 . See also data storage
HardMemoryLimit 154
Hardware Security Module (HSM) 304
hash indexes 450
hashing 294
headers 297
heap structures 433
hierarchical data 363
hierarchyid data type 339, 344
high availability (HA) 59–68

availability group administration 548
availability group alerting 556
availability group checklist 529
availability group configuration 513
availability group endpoints 520
availability groups and failovers 524
availability groups and WSFC 519
availability group seeding options 525
availability groups (AGs) 64, 503
clustering 61
defined 59
disaster recovery (DR) and 60, 494
effort and investment required for

493
failover clustering 500
full database and log backup 528
hybrid availability group topology 537
importance of redundancy 60
Linux failover clustering with Pace-

maker 62
load balanced read-only routing 536
log shipping feature 494
NIC teaming 67
overview of 493
potential failure points 59
reading secondary database copies

531
Red Hat Enterprise Linux (RHEL) con-

figuration 538
replication 497
secondary replica availability mode

521, 636
SQL Server Transaction Log Shipping

63

Windows Server Failover Clustering
61, 507

High Performance settings 51
historic data and values 122, 354
HISTORY_RETENTION_PERIOD option

357
horizontal partitioning 92, 371
HTTP over Transport Layer Security

(TLS) 300, 314
HTTPS (HTTP Secure/HTTP over Secure

Sockets Layer [SSL]) 300
hybrid cloud

automated backups 123
benefits of 121
keeping cold data online and

queryable 122
private cloud 124
private networking 124
recovery strategies 490

Hypertext Markup Language (HTML)
299

Hypertext Transport Protocol (HTTP)
299

Hyper-Threading . See simultaneous
multithreading (SMT)

I
IMPERSONATE permission 264
Import Registered Servers Wizard 25
INCLUDE list 437
Index Allocation Map (IAM) 83
indexes

clustered index design 429
Columnstore indexes 446
filtered unique index 347
full-text indexes 452
hash indexes 450
hierarchyid data type and 344
index statistics 453
index usage statistics 445
locating hypothetical 13
maintaining indexes and statistics 561,

627
memory-optimized tables 449
Missing Indexes feature 441
monitoring index fragmentation 563
nonclustered index design 434
rebuilding 564
reorganizing 568
reorganizing Columnstore indexes 571
spatial indexes 452
updating index statistics 569
XML indexes 453

index maintenance 161, 624
indirect checkpoint 188
infrastructure as a service (IaaS) 110, 326
In-Memory OLTP 48
Insert Snippet option 29
installation

adding databases to SQL Servers
169

Installation Center 2, 135
Installation Tab 6
installing a new instance 134
installing or upgrading SQL Server 6
installing tools and services 7, 164
minimizing footprint 128
moving and removing databases 189
performance and reliability monitor-

ing tools 12
platforms supported 1
post-installation server configura-

tion 151
pre-installation considerations 3, 127,

134
smart setup 146

int data type 336
integrity checks 161, 624
integrity, guaranteeing 346
IntelliSense 29
interconnected data 362
Internet of Things 298
Internet Protocol (IP) 300
Internet Protocol (IPv4) 297
Internet Protocol (IPv6) 297
internet protocol suite 296
Internet Small Computer Systems

Interface (iSCSI) 56
Invoke-Sqlcmd cmdlet 655
IO_COMPLETION 583
IOPS (input/output operations per

second) 52
IP addresses 298
IP forwarding 328
isolation levels and concurrency

blocking of concurrent sessions 386
blocking, observing 387
default level 398
experiencing phantom reads 389
isolation levels, changing with table

hints 392
isolation levels, changing within trans-

actions 391
isolation levels, choosing 385
levels available 383, 384
nonrepeatable reads 388
nonrepeatable reads, preventing 389

 Microsoft Assessment and Planning (MAP) Toolkit 671

on-disk vs. memory-optimized con-
currency 398

preventing phantom reads 390
READ UNCOMMITTED (NOLOCK)

390
SNAPSHOT isolation level 393
two requests updating the same

rows 387
writes blocks reads 387

J
JBOD (just a bunch of disks) 54
Join operators 423
JSON-formatted data 341

K
Kerberos 69
keys, primary and foreign 345

L
large object (LOB) data types 83, 339,

367
latency 52
LCK_M_* 581
leaf-level pages 94, 562
licensing 131, 135
life cycle model 604
link aggregation . See NIC teaming
Linux

affinity masks on 107
authentication to SQL Server on 245
availability group configuration 538

Live Data window 586
live execution plan 409
load balanced read-only routing 536
load balancing and failover support

(LBFO) . See NIC teaming
Local Server Groups 24
local storage . See Direct-Attached

Storage (DAS)
Lock pages in memory (LPIM) 47, 100,

105, 160
log backup chain 466, 483
logging

Maintenance Plan report options
632

setting up 147
transaction log backups 474
viewing Azure SQL Database audit

logs 227
logical SQL Servers 201, 204
logical unit numbers (LUNs) 56

logins and users
authentication to SQL Server on Linux

245
authentication types 242
BUILTIN\Administrators group 254
contained database 256
DBA team logins 252
login types 244
moving SQL Server logins 285
NT AUTHORITY\SYSTEM account 255
orphaned SIDs 246
sa login 254
securing logins 249
service accounts 255
terminology 241

Log Sequence Number (LSN) 86
log shipping feature 494
Log Shipping Wizard 64
log truncation 87
LowMemoryLimit 154

M
Machine Learning Server, limiting

memory usage by 156
Machine Learning Services 7, 139
maintenance, day-to-day 623
Maintenance Plans

Back Up Database task 631
backups on secondary replicas in avail-

ability groups 636
benefits of 625
Check Database Integrity task 626
covering databases with 633
Execute SQL Server Agent Job task 631
Execute T-SQL Statement task 632
History Cleanup task 630
Maintenance Cleanup task 630
new database detection 633
Rebuild Index task 628
Reorganize Index task 627
report options 632
scheduling options 625
Shrink Database task 627
SQL Server Management Studio and

634
Update Statistics 629
when not to use 635

Maintenance Plan Wizard 478, 623,
625

Maintenance tab (Installation Center)
136

managed instance 218
management data warehouse 15–18

accessing reports 18
data collection set up 17
installing 15

Management/Error Logs node 32
many-to-many relationships 363
Master Boot Record (MBR) 130
Master server (MSX) 638
Master Server Wizard 640
max degree of parallelism (MAXDOP)

101, 425
MAXDOP option 566
MAX_DURATION parameter 566
Maximum Server Memory 152
Max Server Memory 102
Max Worker Threads 104
mechanical hard drives 52
MediaPathLength 3
memory 45–49

buffer pool cache 46
Central Processing Unit (CPU) issues

49
competition for among various ser-

vices 154
configuration settings 102
editions and memory limits 48
Lock pages in memory (LPIM) 47, 100,

105
Non-Uniform Memory Access 50
optimize for ad hoc workloads 105
OS reservation calculation 103
overcommitting 74
post-installation settings 152
procedure cache 47
thread consumption 104
upper limit available 45
working set 46

MEMORYCLERK_XE 584
memory-optimized objects 84, 102
memory-optimized tables 357, 397,

449, 456, 478, 629
Memory Pages 598
MemorySafetyMargin 156
MemoryThreshold 156
merge replication 499
metrics

key performance metrics 596
Performance Monitor (perfmon.exe)

application 592
querying using Performance Monitor

595
querying with DMVs 592

Microsoft Assessment and Planning
(MAP) Toolkit 136

672 Microsoft Cryptographic Application Programming Interface (MCAPI)

Microsoft Cryptographic Applica-
tion Programming Interface
(MCAPI) 304

Microsoft Data Migration Assistant
(DMA) 240

Microsoft Hyper-V 73
Microsoft Management Console 11
Microsoft Power BI 217
migration readiness, assessing 4, 169 .

See also databases
Minimum Recovery LSN (MinLSN) 89,

91
Minimum Server Memory setting 154
minimum synchronized required nodes

520
Missing Indexes feature 441
mixed extents 81
mixed mode authentication 141, 249
monetary data 336
money data type 336
MSX/TSX feature 638
multicast 297
Multi-Channel Memory Architecture

50
Multi Server Administration options

639
MultiSubNetFailover 535
MUST_CHANGE option 251

N
Network Address Translation (NAT) 297
Network-Attached Storage (NAS) 56
networking

complexities created by 57
network security 58
protocols and ports 58
Virtual Local-Area Network (VLAN) 58

network interface card (NIC) 343
network packets 297
network routing 298
Network Security Groups (NSG) 327
NEWID() function 343
NEWSEQUENTIALID() function 343
NEXT VALUE FOR 349
NIC teaming 67
node-level fencing 546
NOINDEX parameter 559
NO_INFOMSGS parameter 559
noisy neighbor phenomenon 73
NOLOCK 387, 390
nonclustered indexes

benefits of 434
choosing proper nonclutered index

keys 435
creating “missing” nonclustered

indexes 441

designing 434
INCLUDE list 437
index usage statistics 445
memory-optimized tables 451
properties of good 434
purpose of 434
redundant indexes 436

non-leaf-level pages 94
Non-Uniform Memory Access (NUMA)

50
Non-Volatile Memory Express (NVMe)

53
NoRebootPackage 3
NORECOVERY option 482
normalization 345
NT AUTHORITY\SYSTEM account 255
NT File System (NTFS) 107, 130, 368
NT LAN Manager (NTLM) 69
nullable sparse columns 341, 352
numeric data types 334, 335
NVARCHAR(100) 350
NVARCHAR(4000) 345

O
Object Explorer 23, 27
object-relational mappers (ORMs) 342
on-disk concurrency 399
ONLINE keyword 564
Online Transaction Processing (OLTP)

102
Open Database Connectivity (ODBC) 9
Open Geospatial Consortium (OGC)

339
operational expenditures (OpEx) 198
optimistic concurrency 342, 399
Optimize For Ad Hoc Workloads 105,

160
OPTIMIZE FOR query hint 403
OPTIMIZE FOR UNKNOWN query hint

403
Oracle SE Java Runtime Environment

(JRE) 138
Organizational Unit (OU) 507
overcommitting 74
ownership 265
ownership chains 265

P
Pacemaker 62, 546
package managers 540
Page Faults 599
page file (Windows) 99
Page Free Space (PFS) 83
PAGEIOLATCH_* 582
PAGELATCH_* 582

page-level corruption 84
Page Life Expectancy (PLE) 597
Page Reads 598
page splits 562, 591, 593
page verify option 84, 174, 557
parallelism

benefits and drawbacks of 100
Cost Threshold for Parallelism (CTFP)

100, 426
defined 425
forcing parallel execution plans 425
max degree of parallelism (MAXDOP)

101, 425
parallel plan operations 100

parameterization 402
parameter sniffing 402
PARTIAL . See CONTAINMENT
partial backups 477, 486
partial-restore sequence 486
partitioned views 93
partition elimination 92
partition switching 92
partitioning key 92
partitioning, preventing 62
passwords 250, 294
patches 152, 198
payloads 297
peer-to-peer replication 497
performance and reliability monitor-

ing tools
Database Engine Tuning Advisor 12
Extended Events GUI 13
management data warehouse 15

Performance Monitor 592, 595
performance tuning

Automatic Plan Tuning feature 418
capturing metrics with DMVs and data

collectors 592
delayed durability 400
execution plan operators 419
execution plans 401
isolation levels and concurrency 383
parallelism 425
Query Store feature 413

Peripheral Component Interconnect
Express (PCIe) 53

permissions
authorization vs. ownership 265
database roles 278
Data Definition and Data Manipulation

languages 257
Dedicated Administrator Connection

(DAC) 283
granting commonly needed 261
logins and users 241
modifying 259

 row identifier (RID) 673

moving logins and permissions 285
necessary to view execution plans 412
overlapping 260
required to access cached plan meta-

data 406
securing permissions to interact with

jobs 614
server roles 273
SQL Server 257, 285
views, stored procedures, and function

permissions 267
worst practices 281

pessimistic concurrency 342, 399
phantom rows 385
physical backup devices 472
physical database architecture 79–98

data compression 93
data files and filegroups 80
file types 79
table partitioning 92
temporary database (TempDB) 96

piecemeal databases 486
plan cache . See procedure cache
Plan Guide feature 403
plan_handle column 405
planned failovers 524
Planning tab (Installation Center)

Configuration Checker tool 3, 136
Data Migration Assistant 4
Upgrade Advisor link 4

Platform Abstraction Layer (PAL) 303
platform as a service (PaaS) 116, 198
point-in-time recovery 468, 485
Policy-Based Management (PBM) 643
PolyBase external tables 361
PolyBase Query Engine 138
Power BI 217
power options 159
power saving 51
PowerShell module 199, 206

automation using 648
availability group automation 656
Backup-SQLDatabase cmdlet 653
cmdlets for 649
creating databases using 211
Get-ChildItem cmdlet 654
help information 650
installing 651
installing offline 652
Invoke-Sqlcmd cmdlet 655
Remove-Item cmdlet 654
using with Azure 660

PowerShell Provider for SQL 11
predicates 585
Premium Storage 112
preproduction environments 252
primary keys 345

principal, defined 241
proactive maintenance 623
procedure cache 47, 402, 404
processadmin server role 276
production environments 252
product life cycle model 604
Product Updates page 146
Profiler tool 13
Project Hekaton 398
protocols

Border Gateway Protocol (BGP) 298
defined 296
File Transfer Protocol 299
HTTP over Transport Layer Security

(TLS) 300, 314
Hypertext Transport Protocol (HTTP)

299
Internet Protocol (IP) 296, 300
internet protocol suite 296
protocol encryption 300
Transmission Control Protocol (TCP)

ports 296
versions of IP in use today 297
Voice over IP 299
X.509 standard 302

Proxies 612
public database role 281
Public Key Certificates 302
public key encryption (PKE) 301
public server role 276
publishers 497
Pull subscriptions 497
Push subscriber models 497

Q
Query Optimizer 47
Query Store feature

examining execution plans using 403
initially configuring 415
purpose of 413
turning on 188
using query store data in your trouble-

shooting 416
queue depth 52
quorum model 62, 508

R
rainbow tables 295
Random Access Memory (RAM) 45 .

See also memory
random salts 295
READ COMMITTED 385
READ_COMMITTED_ SNAPSHOT (RCSI)

isolation level 393
READ_ONLY mode 174, 187
read-scale availability groups 66

READ UNCOMMITTED (NOLOCK) 390
real data type 336
RebootRequiredCheck 4
RECOMPILE query hint 403
recovery . See also data recovery

checkpoint system 88
Grant Perform Volume Maintenance

Task Privilege 139
Minimum Recovery LSN 89
recovery chains, preventing broken

638
recovery interval, setting 90
recovery model setting 174, 182, 464
restarting with recovery 91
strategies for 487

Recovery Point Objective (RPO) 60,
460, 462

Recovery Time Objective (RTO) 60, 90,
460, 463

Red Hat Enterprise Linux (RHEL), avail-
ability group configuration
538

redundancy 60
Redundant Array of Independent Disks

(RAID) 54, 57
redundant indexes 436
referential integrity 346
RegisterAllProvidersIP setting 535
regular maintenance 623
Remote Desktop Protocol (RDP) 463
Remote Direct Memory Access (RDMA)

57
Remove-Item cmdlet 654
REPAIR_ALLOW_DATA_LOSS parameter

559
Repair feature 136
REPAIR_REBUILD parameter 559
REPEATABLE READ 385
replication 229, 240, 497, 636
Report Services Configuration

Manager 20
Resilient File System (ReFS) 368
Resource Governor 98, 600
resource pools 98, 602
RESOURCE_SEMAPHORE 582
restart recovery . See recovery
restore strategies 459, 482
RESTORE VERIFYONLY 632
RESUMABLE index rebuilds 628
RESUMABLE parameter 566
retention policy 624
ring_buffer data collection 584, 588,

589, 594, 595
Role-Based Access Control 223
routing 298
ROWGUIDCOL property 499
row identifier (RID) 433

674 row-level security

row-level security 315
rowversion data type 341
run books 463

S
sa login 254
salts 295
scalability 203
schemas 341
scientific notation 335
secret keys 300
Secure Sockets Layer (SSL) 58
security admin permission 276
security groups 261
security identifier (SID) 172, 242, 246,

266
security issues

auditing 319
Azure SQL Database 218
Border Gateway Protocol (BGP) 298
brute-force attacks 294
Certification Authorities (CA) 302
data transmission protocols 296
defense-in-depth 292
dictionary attacks 294
digital certificates 301
distributed-denial-of-service (DDoS)

attacks 331
encryption in SQL Server 302
General Data Protection Regulation

(GDPR) 291
hashing vs. encryption 294
logins and users 241
moving security objects from one

server to another 289
moving SQL Server logins and permis-

sions 285
network security 58
permissions in SQL Server 257
permissions worst practices 281
securing Azure infrastructure as a

service 326
securing data in motion 314
security principles and protocols 292
server access security 68
SQL injection 293
symmetric and asymmetric encryp-

tion 300
seek time 52
SELECT ALL USER SECURABLES permis-

sion 264
SELECT INTO syntax 343
SELECT statements 385
sensitive data 311

sequences 347
Serial ATA (SATA) 52
Serial Attached SCSI (SAS) 52
SERIALIZABLE isolation 385, 398
serveradmin server role 276
server components . See database

infrastructure
Server Configuration page

Grant Perform Volume Maintenance
Task Privilege 139

SQL Server PolyBase Engine service
138

server editions 131, 169
Server Message Block (SMB) 54
Server Registration feature 24
server roles 273
server volume alignment 127
Service accounts 255
Service Broker feature 244
service endpoints 330
Service-Level Agreement (SLA) 460
Service Master Key (SMK) 303, 306
Service Packs (SPs) 604
Service Principal Name (SPN) 69
servicing model 604
session_id column 387
sessions 576, 585
SET TRANSACTION ISOLATION LEVEL

command 391
setupadmin server role 277
SetupCompatibilityCheck 4
Setup .exe 135, 150
sharding 121
Shared Global Allocation Map (SGAM)

83
SHOWPLAN permission 263
Shrink Database task 627
Simple Mail Transfer Protocol (SMTP)

608
simple recovery model 464, 469, 487
simultaneous multithreading (SMT)

49, 75
single sign-on (SSO) 72, 222
single-user mode 195
sliding window partition strategy 375
Slowly Changing Dimension (SCD) 399
smalldatetime data type 336
smallint data type 336
smallmoney data type 336
smart setup 146
SMB 3 .0 protocol 57
SNAPSHOT isolation level 393
Snapshot Isolation mode 186
snapshot replication 473, 498

snippets 29
soft-NUMA 50
solid-state drives 53
SORT_IN_TEMPDB option 565
SOS_SCHEDULER_YIELD 582
sparse columns 341, 352
SPARSE keyword 352
spatial data types 339
spatial indexes 452
spatial queries 340
spatial reference ID (SRID) 340
specialized data types 339
special table types

graph tables 362
memory-optimized tables 357, 397
PolyBase external tables 361
system-versioned temporal tables 354

split brain . See partitioning
Split-Merge tool 121
sp_sequence_get_range stored proce-

dure 349
sp_who2 command 387
sp_who command 387
SQL-authenticated logins 172
SQLCMD 9
SQL injection attacks 293
SQL Server

administering multiple 638
auditing 319
compared to Azure SQL Database 117
databases, adding 169
databases, moving and removing 189
encryption in 301, 302
failover cluster instance configura-

tion 510
installing and configuring features 164
installing new instances 134
maintaining 623
Maintenance Plans 625
managed backups 123
minimizing installation footprint 128
new servicing model 604
post-installation server configura-

tion 151
pre-installation considerations 127
server editions 131, 169
timeouts 386
upgrading 505
volume usage and settings 127

SQL Server Agent
administering SQL Server Agent op-

erators 618
availability group environment 621
Azure alternative to 216

 table partitioning 675

event forwarding 642
Job Activity Monitor 38
job, scheduling and monitoring 614
job history, configuring and viewing

615
job step security 612
jobs, configuring 612
notifying operators with alerts 39, 618
operators 40
overview of 37
securing permissions to interact with

jobs 614
setting up 158

SQL Server Analysis Services
Azure alternatives to 217
configuration and setup 168
installing 142
limiting memory usage by 154

SQL Server Authentication 243
SQL Server Configuration Manager 11
SQL Server Data Tools

database deployment using 181
installing 137
tools included in 41

SQL Server Import And Export Wizard
42

SQL Server Integration Services
Azure alternatives to 217
benefits of 41
installing 143
moving logins by using 286

SQL Server Management Studio 21–41
Activity Monitor tool 33
customizing menus and shortcuts 31
database creation using 180
download size 22
error logs 32
features of 23
filtering objects 27
installing 22, 137
IntelliSense tools 29
Maintenance Plans and 634
releases and versions 21
Server 478
Server Registration feature 24
snippets 29
SQLCMD mode 9
SQL Server Agent 37
upgrading 22

SQL Server memory manager 46
SQL Server platform

editions 131
performance and reliability monitor-

ing tools 12

server editions 169
SQL Server Data Tools 41
SQL Server Management Studio 21
SQL Server Reporting Services 18
SQL Server setup 1–44
tools and services included with 7

SQL Server Profiler 13
SQL Server Reporting Services

Azure alternatives to 217
configuration and setup 165
installing 18, 137, 145
limiting memory usage by 155
Report Services Configuration Man-

ager 20
SQL Server Setup

automating 147
changing decisions after 134
Grant Perform Volume Maintenance

Tasks feature 139
initiating 135
installing core features 142
logging setup 147
Mixed Mode authentication 141
smart setup 146
TempDB database 140

SQL Server Surface Area Configura-
tion 157

SQL Server Transaction Log Shipping
63

sql_variant data type 345
SSISDB Database

configuration and setup 164
SSISDB Wizard 41

SSMS_IsInternetConnected 4
Standard edition, appropriate use of

132
Standard Storage 112
statistics

autocreate database statistics 184
index statistics 453
index usage statistics 445
updating index statistics 569, 624

STGeomFromText method 339
STONITH 546
STOPAT option 485
STOPBEFOREMARK option 485
storage . See data storage
Storage-Area Network (SAN) 56, 128
Storage Spaces 57
stored procedures 267
Stretch Database 122
subnets 327
subscribers 497
Surface Area Configuration 157

Surround With Snippets option 29
swap file. See page file (Windows)
sysadmin server role 274
sys . dm_db_requests 387
sys_dm_db_sessions 387
sys .dm_exec_requests 576
sys .dm_exec_sessions 576
sys .dm_os_performance_counters 592
sys . server_principals 242
sys .sp_ cdc_enable_db stored proce-

dure 380
system_health 586
system-versioned temporal tables 354
SYSTEM_VERSIONING option 357

T
table design

alphanumeric data types 334
binary data types 338
binary large objects (BLOBs) 367
capturing modifications to data 377
cascading 346
computed columns 352
constraints 346
data type selection 333
external tables 361, 457
graph tables 362
hierarchyid data type 339, 344
keys and relationships 345
memory-optimized tables 357, 397
numeric data types 334
numeric types 335
PolyBase external tables 361
referential integrity 346
rowversion data type 341
sequences 347
sparse columns 341, 352
spatial data types 339
specialized data types 339
special table types 354
sql_variant data type 345
string data and collation 335
system-versioned temporal tables

354, 381
table partitioning 370
temporal tables 381
Unicode support 335
uniqueidentifier data type 343
user-defined data types (UDTs) 350
user-defined types 350
XML data type 341

table partitioning
defined 370
defining partitions 372

676 tail-of-the-log backups

horizontal 92, 371
partition design guidelines 374
sliding window partition strategy 375
vertical partitioning 357, 377

tail-of-the-log backups 474
targets 585
Target Server Memory 600
Target server (TSX) 638
TCP/IP protocol

TCP/IP stack 297
turning on post-installation 158

telemetry_xevent 586
TempDB

buffer pool usage of 47
default settings for 140
locating files on VMs 116
managing 96

temporal tables 354, 381
thin provisioning 75
ThreadHasAdminPrivilegeCheck 4
threat detection . See auditing and

threat detection
Threat Detection feature 318
ticket-granting ticket (TGT) 69
time data type 337
time-outs 386
timestamp data type 342
time zones 337
tinyint data type 336
TORN_PAGE option 480, 557
TotalMemoryLimit 154
Total Server Memory 599
Trace Flag 3226 163
Trace Flag 8002 107
Trace Flags 1118/1117 97
transactional replication 499
transaction log

backups 474
checkpoint system 88
delayed durability 85
file extension 85
file size and performance 91
incomplete transactions 86
log files required 85
Log Sequence Number (LSN) 86
log truncation 87
Minimum Recovery LSN (MinLSN) 89
MinLSN and active log 91
purpose of 85
recovering corrupt 560
recovery interval, setting 90
restarting with recovery 91

space issues 88
successful vs. unsuccessful transac-

tions 85
virtual log files (VLFs) 86
Write-Ahead Logging (WAL) 85

Transmission Control Protocol (TCP)
port 296

transparent data encryption (TDE) 174,
219, 303, 308

Transport Control Protocol (TCP) 58,
158, 207

Transport Security Layer (TSL) 58
tree structures 344
Triple Data Encryption Standard (3DES)

306
troubleshooting

error 1225 245
error 11732 350
error 41305 399
error 41325 399
using query store data in 416

TRUNCATE TABLE command 258
Trustworthy setting 174, 187
T-SQL

creating databases using 213
moving server permissions by using

288
moving server roles by using 288
moving SQL Server–authenticated

logins by using 287
moving Windows-authenticated logins

by using 287
T-SQL statements 632

two-way synchronization 378

U
Unicode, table design and 335
uniform extents 81
unique constraints 347
uniqueidentifier data type 343
Universal Authentication 243
unsigned integers 336
updates 152, 604
UPDATE STATISTICS operation 564
Upgrade Advisor 4, 136
upgrading 133, 198, 505
USE PLAN query hint 404
user 99
user-defined data types (UDTs) 350
user-defined routes 328
user-defined types 350
users . See logins and users

V
VARBINARY(MAX) columns 368
varchar colum 335
Verify Backup Integrity 632
vertical partitioning 357, 377
VertiPaqMemoryLimit 155
vi editor 540
VIEW DEFINTION permission 263
VIEW SERVER STATE permission 263
virtual CPU (vCPU) 76
virtual hard drives (VHDs) 112
virtual IP resource 547
Virtual Local-Area Network (VLAN) 58
virtual log files (VLFs) 86
virtual machines (VMs)

Azure VMs, performance optimiza-
tion 111

Azure VMs, sizing 115
benefits of 73
main players 73
purpose of 73
resource provisioning for 74
simultaneous multithreading and 49

Virtual Network Name (VNN) 62, 507
virtual network service endpoints 330
Virtual Private Network (VPN) 124
VMware 73
Voice over IP 299
volumes

defined 52
server volume alignment 127

W
WAIT_AT_LOW_PRIORITY option 566
wait types 554, 577
WAIT_XTP_RECOVERY 583
Watch Live Data 586
wear-leveling 53
Web edit, appropriate use of 132
Windows authentication 243
Windows Management Instrumenta-

tion (WMI) alerts 40
Windows Server Failover Clustering 61,

500, 507, 516, 519
Windows Server Power Options 159
Windows Server Update Services 146
WITH CHANGE_TRACKING_CONTEXT

clause 380
WITH RECOVERY option 482
WmiServiceStateCheck 4

 XML indexes 677

worker threads 104
working set 46
WorkingSetMaximum 156
WorkingSetMinimum 156
workload groups 98
workloads, protecting important 600
World Wide Web (the web 299
Write-Ahead Logging (WAL) 85
write-amplification 53
write conflict error 399
WRITELOG 583

X
X .509 standard 302
XE_FILE_TARGET_TVF 583
XE_LIVE_TARGET_TVF 583
XEvent Profiler 13
XEvent Profiler tool 584
XML data type 341, 453
XML indexes 453

This page intentionally left blank

About the authors

William Assaf

William Assaf, MCSE, is a Microsoft SQL Server consultant and manager and blogs about
SQL at sqltact.com. William has been a designer, database developer, and admin on applica-
tion and data warehousing projects for private and public clients. He has helped write the
last two generations of Microsoft SQL Server certification exams since 2012 and has been a
Regional Mentor for PASS since 2015. William and fellow author Patrick Leblanc worked
together on SQL Server 2012 Step by Step (Microsoft Press, 2015), having met at and together

led the SQL Server User Group and SQLSaturday in Baton Rouge. William and his high school sweetheart
enjoy travelling to speak at SQLSaturdays around the south, and hope to see to see you there, too.

Randolph West

Randolph West is a Data Platform MVP from Calgary, Alberta, Canada. He is coorganizer of
the Calgary SQL Server User Group and Calgary SQLSaturday. He speaks at various confer-
ences around the world, and acts on stage and screen. Randolph specializes in implementing
best practices, performance tuning, disaster recovery, and cloud migrations, through his
company Born SQL. You can read his blog at bornsql.ca.

Sven Aelterman

Sven Aelterman started with SQL Server when he first deployed version 2000 in a failover
cluster scenario. Since then, he has worked as IT manager, principal consultant, and IT direc-
tor. He currently serves the Trojans (students) of Troy University as a lecturer in information
systems in the Sorrell College of Business and as director of IT for the College. In addition, he
is cloud software architect for Sorrell Solutions, a business services nonprofit through which
Trojans can gain real-world business and IT experience. In a fledgling attempt to give back

to the community, he has spoken at many SQLSaturdays and code camps in the southeastern United States
since 2005. He spoke about SSIS 2012 at Microsoft TechEd 2011. In 2012, he coauthored a book dedicated
to SQL Server FILESTREAM. His involvement with Microsoft Azure resulted in the organization of two Global
Azure Bootcamp events at Troy University. Sven blogs about a variety of Microsoft technologies at
svenaelterman.wordpress.com and tweets and retweets about technology @svenaelterman.

http://sqltact.com
http://bornsql.ca
http://svenaelterman.wordpress.com

Mindy Curnutt

Mindy Curnutt, an independent consultant, is 4X Microsoft Data Platform MVP and Idera
ACE. She has been actively involved in the SQL Server Community for more than a decade,
presenting at various User Group Meetings, SQLPASS Summits, as well as SQLSaturdays
across North America. For two years, she was a team lead for the SQLPASS Summit Abstract
Review Process and since 2015 has served as one of the three SQLPASS Summit program
managers. She was a SME for a couple of the SQL 2012 and 2014 Microsoft SQL Server

Certification Exams and helped to author SQL Server 2014 Step by Step. Mindy currently serves on the board
of directors for the North Texas SQL Server User’s Group. She also serves as a mentor to others, helping to
educate and promote scalable and sustainable SQL Server architecture and design. She is passionate about
Data Security, Accessibility, Usability, Scalability and Performance. You can follow Mindy at her blog,
mindycurnutt.com and on Twitter where she’s known as @sqlgirl.

About the Foreword author

Patrick LeBlanc

Patrick LeBlanc is a data platform technical solution professional at Microsoft, working
directly with customers on the business value of SQL Server. He coauthored SharePoint 2010
Business Intelligence 24-Hour Trainer (Wrox, 2011) and Knight’s Microsoft Business Intelligence
24-Hour Trainer (Wrox, 2010), and founded www.sqllunch.com, a website devoted to teach-
ing SQL Server technologies.

http://mindycurnutt.com
http://www.sqllunch.com

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Foreword
	Introduction
	Who this book is for
	Assumptions about you

	How this book is organized
	About the companion content
	Acknowledgments
	Support and feedback
	Errata & support
	Stay in touch

	Chapter 2 Introducing database server components
	Memory
	Understanding the working set
	Caching data in the buffer pool
	Caching plans in the procedure cache
	Lock pages in memory
	Editions and memory limits

	Central Processing Unit
	Simultaneous multithreading
	Non-Uniform Memory Access
	Disable power saving everywhere

	Storing your data
	Types of storage
	Configuring the storage layer

	Connecting to SQL Server over the network
	Protocols and ports
	Added complexity with Virtual Local-Area Networks

	High availability concepts
	Why redundancy matters
	Disaster recovery
	Clustering
	The versatility of Log Shipping
	Always On availability groups
	Read-scale availability groups
	Distributed availability groups
	Basic availability groups
	Improve redundancy and performance with NIC teaming

	Securing SQL Server
	Integrated authentication and Active Directory
	Azure Active Directory

	Abstracting hardware with virtualization
	Resource provisioning for VMs
	When processors are no longer processors
	The network is virtual, too

	Summary

	Chapter 7 Securing the server and its data
	Introducing security principles and protocols
	Securing your environment with defense in depth
	The difference between hashing and encryption
	A primer on protocols and transmitting data
	Symmetric and asymmetric encryption
	Digital certificates

	Encryption in SQL Server
	Data protection from the OS
	The encryption hierarchy in detail
	Using EKM modules with SQL Server
	Master keys in the encryption hierarchy
	Encrypting data by using TDE
	Protecting sensitive columns with Always Encrypted

	Securing data in motion
	Securing network traffic with TLS
	Row-level security
	Dynamic data masking
	Azure SQL Database

	Auditing with SQL Server and Azure SQL Database
	SQL Server Audit
	Auditing with Azure SQL Database

	Securing Azure infrastructure as a service
	Network Security Group
	User-defined routes and IP forwarding
	Additional security features in Azure networking

	Chapter 9 Performance tuning SQL Server
	Understanding isolation levels and concurrency
	Understanding how concurrent sessions become blocked
	Stating the case against READ UNCOMMITTED (NOLOCK)
	Changing the isolation level within transactions
	Understanding the enterprise solution to concurrency: SNAPSHOT
	Understanding on-disk versus memory-optimized concurrency

	Understanding delayed durability
	Delayed durability database options
	Delayed durability transactions

	Understanding execution plans
	Understanding parameterization and “parameter sniffing”
	Understanding the Procedure Cache
	Analyzing cached execution plans in aggregate
	Retrieving execution plans in SQL Server Management Studio

	Using the Query Store feature
	Initially configuring the query store
	Using query store data in your troubleshooting

	Understanding automatic plan correction
	Understanding execution plan operators
	Interpreting graphical execution plans
	Forcing a parallel execution plan

	Understanding parallelism

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	About the authors
	About the Foreword author

