Spring Test 3 due 04/19/2013

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. What minimum size conductor is required for a 15 KW , single-phase, $120 / 240 \mathrm{~V}$ generator?
a. \#8
b. \#4
c. \#2
d. $1 / 0$
2. What is the individual conductor current-carrying capacity when twelve 12 AWG THHN/THWN copper conductors are installed in a raceway?
a. 30 amperes
b. 20 amperes
c. 21 amperes
d. 15 amperes

Figure 129.104
Both the schematic (near right) and the pictorial drawing (far right) are shown. The fixed resistance of EACH of the four elements in the furnace is 40 ohms.

\qquad 3. Refer to Figure 129.104. When connected to the circuit, the total current drawn by the furnace (all four heating elements together) is \qquad amps.
a. 48
b. 6
c. 12
d. 24
e. 40
\qquad 4. A $20-\mathrm{amp}$ circuit breaker opens very quickly (within 1 second) when subjected to \qquad .
I. a ground fault of 250 amps
II. an overload of 23 amps
III. a short circuit of 450 amps
a. I or II only
b. I or III only
c. II or III only
d. I, II, or III

CONDENSER

UNIT

The circuit to the condenser unit consists of two circuit conductors plus an EGC.

Figure 132.101
5. The disconnect switch shown in Figure 132.101 is fused with plug fuses and supplied from a 2-pole breaker in space $1-3$ in the $120 / 240$-volt, $3 \emptyset$, 4 -wire panel. This \qquad a Code violation.
a. is not
b. is

Figure 130.106

6. Refer to Figure 130.106. How many 1-pole, 15 -amp circuit breakers are contained in Panel A?
a. 11
b. 9
c. 10
d. 7

Figure 126.127

7. The two chimes shown in Figure 126.127 are connected in \qquad .
a. series
b. parallel
8. The green bonding screw that is shipped with and installed in a $120 / 240$-volt, single-phase circuit-breaker panel connects (bonds) the \qquad to the metal panel enclosure.
I. branch-circuit neutrals
II. branch-circuit "hots"
a. both I \& II
b. I only
c. II only
d. neither I nor II
9. It __ permitted to install Class 2 wiring in the same raceway or enclosure as electric light and power wiring.
a. is
b. is not
10. With the switch in the position shown below, the voltmeter will indicate a reading of \qquad volts.

a. 120
b. 0
c. 24
d. 12
11. In general, underwater swimming pool lighting fixtures should be positioned so that the top of the fixture lens is at least \qquad inches below the normal water level.
a. 12
b. 18
c. 24
d. 36

Figure 130.104

1	spare	4.8 KW load	2	Panel LC
3	spare	5.4 KW load	4	Schedule
5	spare		6	120/240 V
7	spare	spare	8	10, 3-wire
9	a 9.82 KW load	spare	10	The spare brea
11	~ 9.82 KW	spare	12	in space \#1 is
13	6.32 KW load	11.7 KW load	14	connected to $\mathbf{A} \varnothing$.

12. Refer to Figure 130.104. Circuit 2 will draw \qquad amps.
a. 25
b. 40
c. 32
d. 20
e. 4.8
13. Receptacles within ___ of the inside wall of a pool must be GFCI protected.
a. 20'
b. 5^{\prime}
c. 10^{\prime}
d. 1^{\prime}
14. When a ground fault occurs, the OCPD will trip very quickly if the fault current has a low resistance path (ground return path) to take through the equipment grounding conductor. The lower this resistance, the faster the OCPD opens. Which of these ground return paths has the least (or lowest) resistance where run between two metal boxes? The copper grounding conductor is bonded (or connected) to each box.
a. the 12 AWG copper equipment grounding conductor inside PVC
b. $\mathrm{a}^{3} / 4^{\prime \prime}$ EMT with a 12 AWG copper equipment grounding conductor
c. both a \& b have equal resistance
15. As used in NEC^{\circledR} Table 300.5, \qquad is defined as the shortest distance in millimeters (inches) measured between a point on the top surface of any direct-buried conductor, cable, conduit, or other raceway and the top surface of finished grade, concrete, or similar cover.
a. rise
b. backfill
c. depth
d. cover
16. For temporary installations, the NEC^{\circledR} requires that receptacles be \qquad .
a. made of thermoplastic
c. of the grounding type
b. protected at not less than 30 amperes
d. all of these

Complete the following verbatim Code statements or provide the NEC ${ }^{\oplus}$ reference.

17. NEC^{\circledR} Section \qquad states the following. Conductors of dissimilar metals shall not be intermixed in a terminal or splicing connector where physical contact occurs between dissimilar conductors (such as copper and aluminum, copper and copper-clad aluminum, or aluminum and copper-clad aluminum), unless the device is identified for the purpose and conditions of use.
a. 210.52
b. 422.10
c. 310.15
d. 110.14
18. Article \qquad of the NEC^{\circledR} is the article that gives requirements for swimming pool installations.
a. 560
b. 680
c. 750
d. 860

Figure 124.109

19. Refer to the switch diagram shown in Figure 124.109. The FAN can be turned ON only when the LAMP is ON.
a. True
b. False

Figure 128.201

20. Refer to Figure 128.201. What is the voltage across Lamp 2?
a. 240
b. 0
c. 120
d. 480
21. A Signaling Circuit is defined in \qquad in the NEC^{\circledR}.
a. $\quad 800.3(\mathrm{~B})(2)$
b. 725.10 (C)
c. Article 100
d. 725.1

Figure 123.37

22. Refer to Figure 123.37. A grounded conductor should be connected to the \qquad terminal on this receptacle.
a. \mathbf{w}
b. $\quad \mathrm{x}$
c. Y
d. $\quad \mathrm{x}$ or y
e.
\square

Figure 121.212

23. A post light is located in the front yard of a house as shown in Figure 121.212. Schedule 40 PVC will be installed under the yard to get power to the 120 -volt light. In inches, what is the minimum depth from the top of the conduit to the top of the dirt in the yard?
a. 6
b. 24
c. 18
d. 12
e. 4
24. When a load calculation results in an ampere rating that does not match the ampacity of the conductor, which of the following is permitted?
a. Select an OCPD rated at not more than twice the ampacity of the conductor.
b. Select an OCPD of the next higher standard ampere rating.
c. Select an OCPD rated at not more than 125% of the ampacity of the conductor.
25. How much current does a 6,000 volt-ampere, 240 -volt clothes dryer draw?
a. 50 amperes
b. 40 amperes
c. 25 amperes
d. 30 amperes
26. On circuits supplying cord-and-plug-connected air conditioners, the branch-circuit overcurrent protective device rating is not permitted to exceed \qquad _.
a. the ampacity of the branch-circuit conductors
b. the rating of the receptacle to which the air conditioner is connected
c. 50 percent of the total load of the air conditioner plus other loads on the same circuit
d. either a or b, whichever is less

Figure 124.106

27. How many 12-2 cables enter the wall-mounted switch box shown in Figure 124.106?
a. 5
b. 3
c. 2
d. 4
e. none of these

Figure 128.525

28. Which of the diagrams shown in Figure 128.525 shows a 24 -volt charger correctly connected to the batteries? Each battery is rated for 12 volts.
a. III
b. I
c. II
d. IV
e. none of these

Figure 128.523

29. Refer to Figure 128.523. Each battery puts out 6 volts. The voltage applied to the load is \qquad volts.
a. 36
b. 48
c. 12
d. 24
e. 0
30. When conduits are installed through an exterior wall, the conduits must be sealed to prevent \qquad .
a. the entrance of small insects or animals
c. the installation of additional conductors
b. the exchange of warm air to cooler air
31. When calculating the size of the required service, you should consult household cooking equipment demand factors given in Table \qquad .
a. 220.56
b. 220.12
c. 220.42
d. 220.55
e. 220.54
32. A(n) __ shall be provided to disconnect each appliance from all ungrounded conductors
a. operator
b. means
c. circuit
d. terminal
33. According to NEC^{\circledR} Article 725, the outputs of two different Class 2 transformers can be connected together
\qquad
-.
a. if they have the same VA rating
c. if they are listed for interconnection
b. if they are power limited
d. under no condition of use
34. When installing any audio/video/data cables, the cable runs should \qquad _.
a. be secured with rounded or depth-stop staples
b. be bundled loosely with other cables
c. not be kinked or knotted
d. all of these
35. Trade size \qquad is the minimum size Schedule 80 PVC (rigid polyvinyl chloride conduit) that can contain fourteen each 8 AWG copper THHN/THWN conductors.
a. $1 / 2$
b. $3 / 4$
c. 1
d. $1 \frac{1}{4}$
e. $1 \frac{1}{2}$
36. According to $240.4(\mathrm{D})$ in the NEC^{\circledR}, the maximum rating of the overcurrent protection for a 10 AWG copper conductor is \qquad amps.
a. 20
b. 25
c. 30
d. 40
37. What special types of conduit fittings are required where connected to metal equipment enclosures? The conduits enter through concentric or eccentric knockouts (KOs) or poorly cut holes. The hole saw used to cut the holes was dull and resulted in elliptical-shaped holes.
a. set-screw connectors
c. bonding bushings
b. compression (weather tight) connectors
d. insulating (plastic) bushings
38. The Code section that addresses sensor (automatic) control of lighting in a residential bathroom is \qquad . Select N/A (not applicable) if there is not a Code reference for this.
a. 210.70(A)(1) Exc 2
c. $210.8(\mathrm{~B})(1)$
b. $210.8(\mathrm{~A})(1)$
d. $210.70(\mathrm{~A})(2)$
e. N/A

Figure 119.570

39. \qquad
a. 8,517
b. 8,661
c. 8,384
d. 8,453
e. 8,109

Figure 119.570 shows an equipment layout in a laundromat \qquad watts of power are consumed by the washing machine (PWM).
a. 1,800
b. 1,885
c. 1,584
d. 1,728
e. 1,960

For trade size 2 RMC, ___ is the maximum number of \#8 THWN/THHN copper conductors that can be installed.
a. 31
b. 25
c. 41
d. 29
e. 37

What is the minimum trade size FMC required to contain four 250 kcmil THHN/THWN copper conductors?
a. 2
b. $11 /^{2}$
c. 3
d. $21 /^{2}$
e. none of these

When temporary installations operate at over 600 volts, access shall be limited to
a. authorized personnel
d. authorized and qualified personnel
b. electricians only
e. any of these
c. full-time employees

The grounded conductor of an existing branch circuit is permitted to serve as the equipment grounding conductor for a replacement range or cooktop when which of the following conditions are met?
a. the grounded conductor is not smaller than 10 AWG copper or 8 AWG aluminum
b. the individual branch circuit is existing
c. the grounded conductor is insulated, unless it is part of Type SE cable
d. all of these
\qquad inches below the top of the driveway.
a. 6
b. 12
c. 18
d. 24
\qquad

The nameplate on a $1 \varnothing$ boiler indicates that it can be operated at either 240 or 480 volts. It contains two heating elements. Each element has a rating of 16.2 kW at 240 volts. A boiler is simply a large water heater.
50.
a. series
b. parallel

51.
a.
b. \widehat{w}
c.
.
d. or \widehat{w}
e. none of these

The term gigahertz means \qquad per second.
a. million cycles
b. million bytes
c. billion cycles
d. billion bytes

Spring Test 3 due 04/19/2013
Answer Section

1. ANS: B

\#4
2011 NEC: 445.13; T. 310.15(B)(16)
PTS: 1 REF: 2011 NEC: 445.13; T. 310.15(B)(16)
OBJ: Obj 135.2 Worksheet NAT: Obj 135.2 ABank
2. ANS: D
$-\quad 15$
2011 NEC: T. 310.15(B)(3)(a) | 2011 NEC: T. 310.15(B)(16)
PTS: $1 \quad$ REF: 2011 NEC: T. 310.15(B)(3)(a) | 2011 NEC: T. 310.15(B)(16)
NAT: Obj 129.3 ABank
3. ANS: B
$12=R_{34}=80 \Omega \quad \Rightarrow R_{T}=40 \Omega \quad \Rightarrow I=E_{a} \div R T=240 \div 40=6 A$
PTS: 1 REF: Gen Knowledge OBJ: Obj 129.1 Worksheet
NAT: Obj 129.1 ABank TOP: Current
4. ANS: B PTS: 1 REF: Gen Knowledge

NAT: Obj 132.3 ABank
5. ANS: B

2011 NEC: $240.50(\mathrm{~A})(2)$
PTS: 1 REF: 2011 NEC: 240.50(A)(2) OBJ: Obj 132.1 Worksheet
NAT: Obj 132.1 ABank
6. ANS: A PTS: 1 REF: Gen Knowledge

NAT: Obj 130.1 ABank
7. ANS: B PTS: 1 REF: Gen Knowledge

OBJ: Obj 126.1 Worksheet NAT: Obj 126.1 ABank
8. ANS: B

PTS: 1 REF: 2011 NEC: 250.24(B) OBJ: Obj 130.2 Worksheet
NAT: Obj 130.2 ABank
9. ANS: B

PTS: 1 REF: 2011 NEC: 725.136(A) NAT: Obj 126.1 ABank
10. ANS: B PTS: 1 REF: Open/Closed Sw Meter Reading

OBJ: Obj 122.3 Worksheet
MSC: EPS Dwg: ABank_122.3_Q6
11. ANS: B

PTS: 1 REF: 2011 NEC: 680.23(A)(5) OBJ: Obj 134.2 Worksheet
NAT: Obj 134.2 ABank
12. ANS: B PTS: 1 REF: Gen Knowledge

OBJ: Obj 130.1 Worksheet NAT: Obj 130.1 ABank
13. ANS: A

PTS: 1 REF: 2011 NEC: 680.22(A)(4) OBJ: Obj 134.5 Worksheet NAT: Obj 134.5 ABank
4. ANS: B
PTS: 1 REF: 2011 NEC: 250.4(A)(5) OBJ: Obj 121.1 Worksheet

NAT: Obj 121.1 ABank
15. ANS: D

PTS: 1 REF: 2011 NEC: T. 300.5 Note $1 \quad$ OBJ: Obj 121.2 Worksheet NAT: Obj 121.2 ABank
16. ANS: C

PTS: 1 REF: 2011 NEC: 590.4(D) OBJ: 131 NEC Worksheet
NAT: 131 NEC ABank
17. ANS: D

```
PTS: 1 REF: 2011 NEC: 110.14 OBJ: 122 NEC Worksheet
```

NAT: 122 NEC ABank
18. ANS: B
PTS: 1 REF: 2011 NEC: 680 NAT: Obj 134.1 ABank
19. ANS: B PTS: 1 REF: Gen Knowledge

NAT: Obj 124.1 ABank
20. ANS: C PTS: 1 REF: Gen Knowledge

NAT: Obj 128.2 ABank TOP: Voltage
21. ANS: C

PTS: 1 REF: 2011 NEC: 100 NAT: Obj 126.1 ABank
22. ANS: A PTS: 1 REF: Gen Knowledge

NAT: Obj 123.3 ABank MSC: EPS Dwgs: 123.37a-d
23. ANS: C

PTS: 1 REF: 2011 NEC: T. 300.5 OBJ: Obj 121.2 Worksheet
NAT: Obj 121.2 ABank
24. ANS: B

PTS: 1 REF: 2011 NEC: 240.4(B) OBJ: Obj 132.2 Worksheet
NAT: Obj 132.2 ABank
25. ANS: C
$\div 240 \mathrm{~V}=25 \mathrm{~A}$
PTS: 1 REF: Gen Knowledge OBJ: Obj 120.1 Worksheet
NAT: Obj 120.1 ABank
26. ANS: D

PTS: 1 REF: 2011 NEC: 440.62(A)(4) NAT: Obj 125.4 ABank
27. ANS: A PTS: 1 REF: Gen Knowledge

OBJ: Obj 124.1 Worksheet NAT: Obj 124.1 ABank
28. ANS: B PTS: 1

OBJ: Obj 128.5 Worksheet
REF: Gen Knowledge
NAT: Obj 128.5 ABank
29. ANS: C PTS: 1

OBJ: Obj 128.5 Worksheet
REF: Gen Knowledge
NAT: Obj 128.5 ABank
30. ANS: B

PTS: 1 REF: 2011 NEC: 300.7(A) OBJ: Obj 130.1 Worksheet
NAT: Obj 130.1 ABank
31. ANS: D

| PTS: | 1 | REF: 2011 NEC: | T. $220.55 \quad$ OBJ: |
| :--- | :--- | :--- | :--- | :--- |
| NAT: | Obj 133.1 ABank | | |

32. ANS: B

PTS: 1 REF: 2011 NEC: 422.30 OBJ: 120 NEC Worksheet
NAT: 120 NEC ABank
33. ANS: C

PTS: 1 REF: 2011 NEC: 725.121(B) OBJ: 126 NEC Worksheet
NAT: 126 NEC ABank
34. ANS: D PTS: 1

REF: Gen Knowledge
OBJ: Obj 135.1 Worksheet
NAT: Obj 135.1 ABank
35. ANS: E

PTS: $1 \quad$ REF: 2011 NEC: Anx C: T. C. 9 OBJ: Obj 120.1 Worksheet NAT: Obj 120.1 ABank TOP: Conduit Fill
36. ANS: C

PTS: 1 REF: 2011 NEC: 240.4(D)(7) OBJ: 120 NEC Worksheet
NAT: 120 NEC ABank
37. ANS: C

PTS: 1 REF: 2011 NEC: 250.90; 250.92(B); 250.96(A)
OBJ: Obj 130.2 Worksheet NAT: Obj 130.2 ABank
38. ANS: A

PTS: 1 REF: 2011 NEC: 210.70(A)(1) Exc $2 \quad$ OBJ: Obj 120.2 Worksheet
NAT: Obj 120.2 ABank
39. ANS: D
$\mathrm{Wm}=\mathrm{E}_{\text {rated }} \div$ Irated $=220 \div 7.2=30.5556 \Omega \Rightarrow \operatorname{lwm}=E_{w m} \div R w m=240 \div 30.5556=7.8545 \mathrm{~A}$ Pwm $=\left[\mathrm{E}_{\mathrm{wm}}\right]_{2} \div$ Rwm $=(240)_{2} \div 30.5556=1,885.0882$ watts
$\operatorname{Rsp}=\left[E_{\text {rated }}\right]_{2} \div$ Prated $=(230)_{2} \div 1,800=29.3889 \Omega \Rightarrow \operatorname{sp}=E_{s p} \div \operatorname{Rsp}=240 \div 29.3889=8.1663 \mathrm{~A}$
$\mathrm{Psp}=\left[I_{\mathrm{sp}}\right]_{2} \times \mathrm{Rsp}=(8.1663)_{2} \times 29.3889=1,959.9004$ watts
$R^{c d}=\left[E_{\text {rated }}\right]_{2} \div$ Prated $=(250)_{2} \div 5,000=12.5 \Omega \Rightarrow \operatorname{lcd}=E_{c d} \div \operatorname{Rcd}=240 \div 12.5=19.2 \mathrm{~A}$
$P c d=E_{c d} \times I c d=240 \times 19.2=4,608$ watts
$I_{T}=I_{w m}+I_{s p}+I_{c d}=35.2208 \mathrm{~A}$ and $R_{T}=1 \div\left[1 /^{30.5556}+{ }_{1} /^{29.3889}+{ }_{1} /^{12.5}\right]=6.8141 \Omega$
$P_{T}=P_{w m}+P_{s p}+P_{c d}=1,885.0882+1,959.9004+4,608=8,452.9886$ or 8,453 watts
or $\mathrm{PT}=\left[\mathrm{E}_{\mathrm{a}}\right]_{2} \div \mathrm{RT}=(240)_{2} \div 6.8141=8,453.0606$ or 8,453 watts
PTS: 1 REF: Gen Knowledge OBJ: Obj 120.3 Worksheet
NAT: Obj 120.3 ABank TOP: Parallel Circuits
KEY: Find: PT given NP ratings
40. ANS: B
$\mathrm{Wm}=\mathrm{E}_{\text {rated }} \div$ Irated $=220 \div 7.2=30.5556 \Omega$
$\mathrm{Pwm}=\left[\mathrm{E}_{\mathbf{w m}}\right]_{2} \div \mathrm{Rwm}=(240)_{2} \div 30.5556=\mathbf{1 , 8 8 5 . 0 8 8 2}$ watts
PTS: 1 REF: Gen Knowledge OBJ: Obj 120.3 Worksheet
NAT: Obj 120.3 ABank TOP: Parallel Circuits
KEY: Find: P given NP rating
41. ANS: E

PTS: 1 REF: 2011 NEC: Anx C: T. C. 8 NAT: Obj 129.2 ABank
TOP: Conduit Fill
TOP: Conduit Fill

REF: 2011 NEC: Anx C: T. C. 3 OBJ:
Obj 129.2 Worksheet
PTS: 1
TOP: Conduit Fill
43. ANS: D

PTS: 1 REF: 2011 NEC: 590.7 OBJ: 131 NEC Worksheet NAT: 131 NEC ABank
44. ANS: A

PTS: 1
REF: Gen Knowledge

OBJ: Obj 125.4 Worksheet
NAT: Obj 125.4 ABank
45. ANS: D

PTS: 1 REF: 2011 NEC: 250.140 Exc OBJ: Obj 123.1 Worksheet
NAT: Obj 123.1 ABank
46. ANS: C

PTS: 1 REF: 2011 NEC: T. $300.5 \quad$ OBJ: Obj 121.2 Worksheet
NAT: Obj 121.2 ABank
47. ANS: D

PTS: 1 REF: 2011 NEC: 240.6(A) NAT: Obj 132.2 ABank
48. ANS: C

PTS: 1 REF: 2011 NEC: 680.43(C) OBJ: Obj 134.3 Worksheet
NAT: Obj 134.3 ABank
49. ANS: B

PTS: 1 REF: 2011 NEC: 210.12(A) OBJ: Obj 121.1 Worksheet
NAT: Obj 121.1 ABank
50. ANS: B PTS: 1 REF: Gen Knowledge

NAT: Obj 125.3 ABank
51. ANS: B PTS: 1

OBJ: Obj 123.3 Worksheet
MSC: EPS Dwgs: 123.35a-c
52. ANS: C PTS: 1

OBJ: Obj 126.1 Worksheet

TOP: Parallel Circuits
REF: Gen Knowledge
NAT: Obj 123.3 ABank
REF: Gen Knowledge
NAT: Obj 126.1 ABank

