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Solving the Prisoner’s Dilemma

Abstract
A framework is proposed for analyzing various types of rational interaction. We

consider a variety of restrictions on participants’ moves; each leads to a different charac-
terization of rational behavior. Under an assumption of “common rationality,” it is proven
that participants will cooperate, rather than defect, in the Prisoner’s Dilemma.

$1. Definitions of rationality

We will follow the usual convention of representing a game as a payoff matrix. Here

is an example of the notation we will use for two-player games:

The first player, to whom we will generally refer as I, selects a move labeling one of the

two rows and the second, to be referred to as II, selects one of the two columns. A single

. number indicates an identical payoff for both players, while ‘3/l’, for example, represents

a payoff of 3 for the first player and 1 for the second. Thus if I selects move B in the above

game, and II selects move A, their payoffs are 2 and 5 respectively.

Before proceeding, however, we need to define some more formal notation as well: to

a game corresponds  a set P of players and, for each player i E P, a set 1Mi of possible

moves for i. For S c P, we denote P - S by S; WC will also write i instead of {i} where

* no confusion is possible. Thus T = P - {i}. We also write MS for l&ES Mi.

We will denote by mS an element of MS; this is a collective move for the players in

S. To ms E MS and rng‘ E MS correspond Can  element 7% of Mr. The payoff function for

a gganre  is a function

p:PxMp+IR

whose value at (i, &) is the payoff for player i if move 6 is made. For a fixed ms, we also

dehne  the restricted game given by
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Intuitively, this is the game where the players in S are assumed to make the move MS.

We also define a secondary payoff function pay(i,mi),  the set of possible payoffs to i

of making move mi:

pay&, 7%) = (P(C fiz) : rnF E allowed(i,mi)}. (2)

aZZowed(i,mJ  is the set of responses considered possible to i’s move m;. For nonempty

LN!ts  {W} and {Pj}, we write {cyi} < {pj} if cy; < @j for all i, j.

Of interest to us will be the rational moves available either to a single player or to

a group; for S c P, we will denote by R(p, S) the rational moves for the group S in the

game p. The crucial characterization of rationality for an individual player is given by:

-. PaY(G4) < PaY( i,ci) =$ d; +! R(p,i). (3)

In other words, if every possible payoff to i of making move di is less than every possible

payoff to i of making move ci, then di is irrational for i. Note that this does not imply

that ci is rational, since there may be still better moves available.

It would be possible to define R(p, ;) to be the maximal subset of Mi satisfying (3),

but we have not done this because we are willing to allow the eventual introduction of

additional constraints on the rationality of individuals if desired.

For a subset S of P, we assume:
-

R(P,QI)  = {@I

n(P,  s) c R(P,S’)  x MS-S for S’ C S.

The sccorrd of these states that no rational move for a set can rcquirc irrationality on the

part of a subset.

Lemma 1. R(p, S) c n,,, R(p,i). A move that is rational for a group of players is
.

rational for each &yer in the group.

Proof. For any i E S, R(p,S) c R(p,i) x MS-~.  The conclusion follows. o
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Lemma 2. R(p, S) c MS. Rational moves are legal.

Proof. R(p, S) c R(p, 0) x MS = MS. q

Once again, it would have been possible to define R(p, S) = niEs R(p,i),  but we have

not done so because lemmas 1 and 2 are strong enough for our purposes.

The power of the characterization (3) depends on the function allowed in (2). Here

are some possibilities:

1. Minimal rationality: allowed(i,mi) = MT. The effect of this is for each player to

assume that the others may well be moving randomly.

2. Separate rationality: allowed(i,  mi) c R(p, ?;). Each player assumes that the others

are moving rationally.

3. Unique rationality: allowed@, m;) = allowed(i,  m::> and 1 allowed& rni)l = 1 for all-.
rni and mi. Each player assumes that the others’ moves are fixed n advanced. This

may be combined with separate rationality.

4. Informed rationality: allowed(i,  m;) = R(plmi,T). Each player assumes that all

others will respond rationally to whatever move he makes.

It is clear that minimal rationality is entailed by any of the other conditions, in

the sense that a move which can be proven irrational under the assumption of minimal

rationality will be similarly irrational under the others.

$2. Case analysis

In this section we will investigate some of the consequences of our definition of ratio-,

nality. None of the results is new [6] ; our intention is simply to recast them in terms of

the formalism introduced in the last section.

Consider the following game:

In analyzing this game, the first player notices that every payoff to him if he chooses

move A is greater  than any of the payoffs available  if hc chooses move B. Note that this
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is not true for the second player. If the second player chooses move B, his payoff will be 2

if the first chooses A; if the second player chooses move A, his payoff will be 3 if the first

selects B.

Even if the second player is both totally omniscient and purely malicious, the first

should still choose move A; the second player has no such analysis available. We will refer

to the first player’s analysis in this game ;ts restricted case analysis. Here is the general

result:

Lemma 3 (Restricted case analysis). Assuming minimal rationality, if for some ci

and d;, for all CT and dF,

P(G (f) < P(G q,

then di $ R(p,i).

Proof. pay@, di) = {p(i,  d) : dz E M,), so the definition can be applied directly. 0

An iterated version of this result applies for separate rationality. In the above game,

for example, the second player, realizing that the first will make move A, will himself make

move B.

Assuming both omniscience Cand maliciousness on the part of the other players may

be overly pessimistic. The example we used to introduce our notation is a bit more usual: .

Provided  that the second player’s choice is fixed in

if hc Tmakcs  move A: his payoff will bc 3 as opposed  to

A, and 2 as opposed to 0 if B is chosen. We will refer

analysis :

advance, the first will be better off

2 if the other  player chooses move

to this decision procedure as case

Lemva 4 (Case analysis). Assuming unique rationality, if for some ci and di, for all

CT and dr with CT = di,

P(G d) < P(C c’),
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then d; # R(p,i).

Proof. Let rn% be the unique element of allowed&, ci). Then if the hypothesis of the lemma

is satisfied, taking cr = dz = mr allows us to apply (3). 0

Again, an interated result can be applied for unique separate rationality. Thus the

second player chooses move B in the above example, relying on the first to choose A, and

receiving a payoff of 2 instead of 1.

The final result of this section is similar to the previous two, but deals with the case

where a group of players has to coordinate its actions in order to make the analysis effective.

Consider the following game:

Here, both players can ensure the maximum payoff of 7 by selecting move A. It is possible,

in games with three or more players, for a “clique” of players to obtain maximal results

by coordinating their moves in this fashion and then using case analysis to investigate the

possible moves of the remaining players.

Even separate rationality is not enough to generate this result, however. The basic

reason is that in order for the two players to cooperate in the game given above, it is not

enough for each to know that the other is rational. They have to know that the other

- knows they arc rational, that the other  knows they know they are rational, cand so on [3].

In order to formalize this, we will need to extend the notion of payoff to sets of players.

Let p(S,  ti) to be the n-tuplc whose components are the p(i, 6)‘s .for the i’s in S, and write

p(S,  d) < p(S,  c’) if p(i, d) 5 p(i,Z) for each i E S, with the inequality being strict in at

least one cast. (In other words, a move is Can  improvcmcnt  for a group of players if no

player in the group loses Cand at least one player benefits.) We now define

pay(S,  ms) = {p(S, 6%) : rns E allowed(S, ms)},

this being the set of possible payoffs to a group S of players if they make a collective
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move ms. The new function allowed might be defined as, for example; allowed(S,ms) =

R(Plna, 9 3).

Theorem 5 (Coordination). Assuming informed rationality, if there exists a cs such

that for all ds # CS, pay(S,ds) < pay(S,cs),  then R(p,S)  c {cs}.

Proof. By lemma 1, it suffices to show that, for each ds # CS, there exists an i E S such

that di $ R(p,i).

The proof proceeds by induction on the size of S. For S of size 1, the theorem is an

immediate consequence of the definition of rationality (3).

Suppose, then, that the theorem is true for all S of cardinality less than n, and that

the hypotheses of the theorem are satisfied for some S of size n. With cs and ds as in the

statement of the theorem, so that di # ci for some fixed i E S, it follows from the inductive

hypothesis that R(plCi, S - i) c {CS-i}, so that R(pl&) c {CS-i}  x R(pl,,,S),  and

pay(&) c pay(i,cs). We also have that pay(i,di)  c Uds.-i puy(i,ds)  and therefore, since

baY(i,ds) c PaY(Gs) for any ds, that pay(i, d;) < pay(i, CS). Since pay@, ci) c pay(i,cs),

we get pay@, di) < pay(i, ci) and di $ R(p,i). Cl

Note that this theorem is much weaker than the earlier two, in the sense that it cannot

declare a joint move to be irrational if there is canother  joint move that is better. To see

why, consider the prisoner’s dilemma [6,7]:

Case canalysis  forces each player to choose move D (defection), although this is worse for

both than the move (C,C) (j oint cooperntioll).  What the thcorcm  does say is that if there

is a single  move that is preferable to all the others, it will be selected.

$3. Cooperation. and the prisoner’s dilemma.

The definition of informed rationality is our first attempt to understand  the consider-

ation one player may give to the analysts  of the others. Informed rationality is, .however,
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a bit too strong- it may not be to one player’s advantage to make a move if his opponents

know he will make it (witness the prisoner’s dilemma, where informed rationality forces

each player to defect).

What is required is some way to encode the concept of, “I would be willing to cooperate

if you didn’t make me regret it.” In order to do this, we modify our notion of move to

include a move which is provisional in the sense that the player considering it will retract

it if it works out badly.

Let i be a player, and suppose that S c Z. For rs c rns x MS, we will define a set

R(p, i, ms, rs), the set of rational moves for player i, under the assumption that group S

is willing to make move rns provided that the final outcome of the game is in rs. The set

R(p, i, rns, rs) consists not only of moves m;;, but of pairs (m;, r;) where ri is an additional

restriction put by Con the eventual outcome of the game.

The expressions (2) <and  (3) now become:

pay(~,mi,ri,w,rs)  = (P(G G) : mr E allowed(i,  m;, r;, rns, rs)) (4

pay(Gbwm,rs)  < pay(i,ci,r:,ms,rs) =+ (4~) $ R(~Am,rs)- (5)

The second of these says that a (move,dcal)  pair is irrational if either the move or the deal

can be improved.

If S if empty,  WC write pay(i, mi, ri) instead of pay@, mi, r;, mg, Mp).  With ri varying,

- the various sets pay@, m;,ri) are partially ordered under <; we denote the union of all of

those that arc not dominated by some other pay@, m;, ri) by pay(i, mi):

r f {Ti : 3 r: . pay(i,m;,T;) < pay&n;, 7:))

pUy(i,m;)  = u pay(i,mi,  ri).
ri Er

Intuitively, pay@, mi> is the set of possible payoffs to i if he makes both move rni and any

of.the best deals associated with it. The point of this definition is that rationality itself

still corresponds to

pay(i, di) < PUY(~, ci) * 4 4 R(P,~). (6)



In other words, if i’s “best deal” with move di is worse than his best deal with ci, then &

is irrational.

Finally, we need to define allowed(i,mi, r;,ms, rs). There are two possiblities, de-

-pending upon whether or not i has broken the tacit “understanding” he might have had

with the players in S. allowed is therefore defined as:

allowed(i,  mi, ri, rns, rs) = R(PJ- s, rni XWls,TinTs) ifrinrs f:S;
R(~,T,mi,ri) otherwise. (7)

The first case corresponds to i keeping the deal; the second to his breaking it. We will

refer to this definition as common rationality.

Theorem 5a. The coordination theorenl  holds for common rationality.

Proof. The proof is the same as that of theorem 5. The inductive step uses the fact that

if R(p, S - i) = {CS-i}, then pay(i,  ci,ri) = pay(S, cg,ri). o

The added power of common rationality can be seen in an example; we will use the

prisoner’s dilemma. Here is the payoff matrix again:

Evaluating the various payoffs, it is fairly clear that pay(1, C, {CC, CD}) * 0 and

Pay(l, a {DC, DD)) = 1, since II will surely defect if I is willing for him to do so. We also

have pay(1, C, {CD}) = 0 and pay(1, D, {DD}) = 1, since II has still not been “asked” to

cooperate. The other two casts carc more intcrcsting.

l&w pay@, V ,  { I X } ) , WC need to cvaluato R(p, II, D, {DC}). Turning  our attention to

II, we obviously have

PaY(K c, m, Q {DC)) = 0

for all +II, since II has gone along with I’s request to coopcrate while I defects.  But

~a~(14  Q {CD, DD}, D, {DC}) > {o},
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since II guarantees himself a payoff of at least 1 by defecting. Thus R(p, II, D, {DC}) =

{D}; in other words, II will respond to any deal involving I’s defection by defecting himslf.

It follows from this that pay(1, D, q) = { 1) for all q.

It remains to evaluate pay(1, C, {CC}). Here I is willing to cooperate if II does. To

evaluate R(p,II,C,  {CC}), we have

PaYp, D, VI, c, {CC)> = 111

for all rrI, since pay(I1,  D, rrr, C, {CC)) = pay(I1,  D, rII> (II breaks the deal), and we eval-

uated this (albeit for I) in the last paragraph. We also have

PaY(II, c, w, c, {CC)) = w

It follows that R(p, II, C, {CC}) = {C}, so that pay(1, C, {CC}) = 3.

We therefore have pay(1, D) = (1) and pay(1, C) = {3}, so that D 4 R(p, I). D $

R(p, II) is of course similar and the players therefore cooperate.

Theorem 6 (Cooperation). Assume common rationality, and Iet cs be fixed. For any

alternative ds to CS, Iet T be the set of all i E S with di # ci. Assume that for all such

ds and T, either

s = T md PaY(s, ds) < PaY(S,cs),

or there exists some i E S - T and mi # ci such that

PaY(i, mi) > PaY(i,  &UT)*

TllCll R(p,S)  c {cs}.

Before proving this result, let us consider its content. What it says is that any set of

phayers  will cooperate if the attempted defection  of cany subset forces the defection of at

least one additional player outside the subset, and if the defection  of the entire set damages

every mcmbcr of it.
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A stronger result would be that

PaY(Ws) < PaY(s, cs) =+ ds 4 R(P,S),

f-.

but this cannot be obtained without some way for the players to communicate with each

other. If we imagine the prisoner’s dilemma to be changed so that the payoff for both

players is 5 if either one cooperates while the other defects, there is no way to ensure this

payoff without some form of communication on the part of the players.

This should not lead us to underestimate the power of theorem 6; it includes both the

coordination theorem and the prisoner’s dilemma as special cases. .Turning to the proof:

Proof. We will show that for any ds # cs and rs,

PaY(St ds, rs) < PaY(S, cs)* (8)

After this, an inductive proof such as that used in the coordination theorem can be applied.

Suppose that (8) does not hold for all ds. Then we can consider the collection of

counterexamples to it for which R(p, p, dT, rT) C rT; in other words, the counterexamples

for which the “deal” offered by the defectors is accepted by the other players. Let ds be

an element of this collection which is maximal in the sense that ITI is as small as possible.

Clearly ITI # 0, since this would involve defection of all of S, and this is guaranteed

not to be an improvement by the hypotheses  of the theorem.  But if ITI # 0, we know that

there is an i E S - T and mi with pay(i,mi)  > pay(i,d;vT),  SO that i will defect as well,
-
contradicting the assumption that ds was mcaximal. 0

$4. Conclusion

WC have prcscntcd a uuificd  framework for considering  various types of interactions

that occur without communication. Using <assumptions about what types of moves  other

agents will make, a participant is able to reason about what constitutes rational behavior

on its .own part. Several of the characterizations of rationality have parallels in existing

game theory literature,  and lead to familiar results such as case analysis and iterated case

analysis.
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The power of our approach is seen in the (‘common rationality” assumption, which

forces both participants to cooperate in the prisoner’s dilemma (the formal result parallels

previous informal arguments [2,4]). Game theory and philosophy [8] have generally defined

rationality in such a way as to require mutual defection in this game, and have looked to

changes in the interaction (such as its iteration [l] or explicit agreements) to motivate

cooperation.

While our approach does not require communication (or meta-game analysis [5]),

there is a sort of deal-making that is implicit in our formalism and its results. The agents.
reason about the best deal they could extract from the other player, and come to a com-

mon conclusion as to what move is warranted by this deal. Reasoning usurps the role of

communication. There is also no need for a “binding agreement” to be reached among

the participants, since each is constrained by its own definition of rationality and these

common constraints are appreciated by all.
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