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0 Notation

• “iff” means “if and only if.”

• “WLOG” means “without loss of generality”

• N is the set of natural numbers, including 0.

• Z,Q,R,C are the sets of integers, rational, real, and complex numbers respectively.

• Z+,Q+,R+ are the sets of positive integers, rational, and real numbers respectively.

• Z[X],Q[X],R[X],C[X] are the sets of polynomials in X with coefficients in Z,Q,R,C respectively.

• B(x, r) = {y | d(x, y) < r} is the open ball centered at x with radius r.

• sgn : R→ {−1, 0, 1} is the sign function. It is given by

sgn(x) =

{ x
|x| if x 6= 0

0 otherwise

• δij : Z→ {0, 1} is the Kronecker delta. It is given by

δij =

{
1 if i = j
0 otherwise

• The coordinates of vectors will be indexed by superscripts.

• For 1 ≤ j ≤ k, ej ∈ Rk are the standard basis vectors, each given by eij = δij.
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1 The Real and Complex Number Systems

1. If r is rational (r 6= 0) and x is irrational, prove that r + x and rx are irrational.

Solution: Let r ∈ Q, r 6= 0. If r + x ∈ Q, then x = −r + (r + x) ∈ Q. If rx ∈ Q, then
x = r−1(rx) ∈ Q. Take the contrapositive of both statements.

2. Prove that there is no rational number whose square is 12.

Solution: Suppose r ∈ Q and r2 = 12. Let n ∈ Z+ be least such that nr ∈ Z. Then

(nr)2 = 12n2. (1)

Since 3 divides the right side of (1), it must divide the left side as well. If nr gives remainder 1 or 2
when divided by 3, then (nr)2 gives remainder 1. Thus 3 divides nr. Cancel 3’s from each side of (1)
to get

3
(nr

3

)2
= 4n2. (2)

Since 3 divides the left side of (2), it must divide the right side as well. Since 3 does not divide 4, 3
divides n2, hence n. Thus n

3
∈ Z+ and n

3
r ∈ Z, which contradicts our choice of n.

3. Prove Proposition 1.15:
The axioms for multiplication imply the following statements.

(a) If x 6= 0 and xy = xz, then y = z.

(b) If x 6= 0 and xy = x, then y = 1.

(c) If x 6= 0 and xy = 1, then y = 1
x
.

(d) If x 6= 0 then 1

( 1
x)

= x.

Solution: Let x, y, z ∈ R, x 6= 0.

(a) If xy = xz, then

y = 1 · y =

((
1

x

)
x

)
y =

(
1

x

)
(xy) =

(
1

x

)
(xz) =

((
1

x

)
x

)
z = 1 · z = z

(b) If xy = x, then

y = 1 · y =

((
1

x

)
x

)
y =

(
1

x

)
(xy) =

(
1

x

)
x = 1

(c) If xy = 1, then

y = 1 · y =

((
1

x

)
x

)
y =

(
1

x

)
(xy) =

(
1

x

)
· 1 =

1

x

(d) Finally,

1(
1
x

) =

(
1(
1
x

)) · 1 =

(
1(
1
x

))((1

x

)
x

)
=

((
1(
1
x

))(1

x

))
x = 1 · x = x
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4. Let E be a nonempty subset of an ordered set; suppose that α is a lower bound of E and β is an
upper bound of E. Prove that α ≤ β.

Solution: Let γ ∈ E. Then α ≤ γ ≤ β implies α ≤ β.

5. Let A be a nonempty set of real numbers which is bounded below. Let −A be the set of all numbers
−x, where x ∈ A. Prove that

inf A = − sup(−A).

Solution: Let x ∈ A, then −x ≤ − inf A implies sup(−A) ≤ − inf A and − sup(−A) ≤ x implies
− sup(−A) ≤ inf A.

6. Fix b > 1.

(a) If m,n, p, q are integers, n > 0, q > 0, and r = m
n

= p
q
, prove that

(bm)
1
n = (bp)

1
q .

Hence is makes sense to define br = (bm)
1
n .

(b) Prove that br+s = brbs if r and s are rational.

(c) If x is real, define B(x) to be the set of all numbers bt, where t is rational and t ≤ x. Prove
that

br = supB(r)

when r is rational. Hence it makes sense to define

bx = supB(x)

for every real x.

(d) Prove that bx+y = bxby for all real x and y.

Solution:

(a) By hypothesis mq = pn, hence(
(bm)

1
n

)nq
=
((

(bm)
1
n

)n)q
= (bm)q = bmq = bpn = (bp)n =

((
(bp)

1
q

)q)n
=
(

(bp)
1
q

)nq
.

Thus (bm)
1
n , (bp)

1
q ∈ (0,∞) have the same nq-th power. Consequently, they are equal.

(b) Let m, p ∈ Z, n, q ∈ Z+, r = m
n
, s = p

q
. Then

(
br+s

)nq
=
(
b

m
n
+ p

q

)nq
=
(
b

mq+pn
nq

)nq
=
((
bmq+pn

) 1
nq

)nq
= bmq+pn

= bmqbpn =
(

(bm)
1
n

)nq (
(bp)

1
q

)qn
=
(

(bm)
1
n (bp)

1
q

)nq
= (brbs)nq

shows that br+s, brbs ∈ (0,∞) have the same nq-th power. Thus they are equal.

4



(c) Let m, p ∈ Z, n, q ∈ Z+ such that m
n
< p

q
. Then mq < pn, and(

(bm)
1
n

)nq
= bmq < bmqbpn−mq = bpn =

(
(bp)

1
q

)nq
.

If (bm)
1
n ≥ (bp)

1
q , then

(
(bm)

1
n

)nq
≥
(

(bp)
1
q

)nq
. Thus (bm)

1
n < (bp)

1
q .

Let r ∈ Q. br ∈ B(r) implies br ≤ supB(r). If bt ∈ B(r), then bt ≤ br. Hence, supB(r) ≤ br.

(d) Let x, y ∈ R, bs ∈ B(x), bt ∈ B(y). Then bsbt = bs+t ∈ B(x + y) implies bsbt ≤ bx+y.
Furthermore, bsby ≤ bx+y, because b−sbx+y is an upper bound of B(y). Since bx+y(by)−1 is an upper
bound of B(x), we get

bxby ≤ bx+y. (3)

Now, by = (b−y)−1 because br ∈ B(y) iff br = (b−r)−1 ≤ (b−y)−1 for every r ∈ Q. Substitute x+ y for
x and −y for y into (3) to get bx+yb−y ≤ bx. Thus

bx+y = bx+yb−y(b−y)−1 ≤ bx(b−y)−1 = bxby.

7. Fix b > 1, y > 0, and prove that there is a unique real x such that bx = y, by completing the following
outline. (This x is called the logarithm of y to the base b.)

(a) For any positive integer n, bn − 1 ≥ n(b− 1).

(b) Hence b− 1 ≥ n(b
1
n − 1).

(c) If t > 1 and n > b−1
t−1 , then b

1
n < t.

(d) If w is such that bw < y, then bw+
1
n < y for sufficiently large n; to see this, apply part (c)

with t = y · b−w.

(e) If bw > y, then bw−
1
n > y for sufficiently large n.

(f) Let A be the set of all w such that bw < y, and show that x = supA satisfies bx = y.

(g) Prove that this x is unique.

Solution:

(a) Since b > 1,

bn − 1 = (b− 1)(bn−1 + bn−2 + . . .+ b+ 1) ≥ n(b− 1). (4)

(b) b
1
n > 1 because 1

n
> 0. Thus

b− 1 =
(
b

1
n

)n
− 1 ≥ n(b

1
n − 1)

by (4).

(c) Using the hypothesis,

n(t− 1) >

(
b− 1

t− 1

)
(t− 1) = b− 1 ≥ n(b

1
n − 1). (5)

Divide both sides of (5) by n and add 1 to show b
1
n < t.
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(d) If n > b−1
yb−w−1 , then b

1
n < yb−w by (c).

(e) If n > b−1
bwy−1−1 , then b

1
n < bwy−1 by (c).

(f) If bx < y, then for sufficiently large n, we have bx+
1
n < y by part (d). In this case A has an

element, x + 1
n
, larger than x. If bx > y, then for sufficiently large n, we have bx−

1
n > y by part (e).

In this case A has an upper bound, x− 1
n
, that is less than x. Either case contradicts our choice of

x. Thus we have bx = y.

(g) Let r ∈ R such that br = 1. If r > 0, let q ∈ Q such that 0 < q < r. Then 1 = b0 < bq < br.
If r < 0, let q ∈ Q such that 0 > q > r. Then 1 = b0 > bq > br. Thus r = 0.

Let u ∈ R such that bu = y. Then bu−x = bub−x = yy−1 = 1. Thus u− x = 0, hence u = x.

8. Prove that no order can be defined in the complex field that turns it into an ordered field. Hint: −1
is a square.

Solution: Suppose that C can be made into an ordered field under the ordering >. Since i 6= 0,
−1 = i2 > 0 and 1 > 0. Thus

0 < 1 = 1 + 0 < 1 +−1 = 0,

a contradiction.

9. Suppose z = a + bi, w = c + di. Define z < w if a < c, and also if a = c but b < d. Prove
that this turns the set of all complex numbers into an ordered set. (This type of order relation is
called a dictionary order, or lexicographic order, for obvious reasons.) Does this ordered set have the
least-upper-bound property?

Solution: Let x, y, z ∈ C. If x 6< y and x 6> y, then <(x) = <(y) and =(x) = =(y), hence x = y.

Let x < y < z. Then <(x) ≤ <(y) ≤ <(z). If <(x) = <(y) = <(z), then =(x) < =(y) < =(z), hence
x < z. If <(x) < <(y) or <(y) < <(z), then <(x) < <(z). Thus x < z.

Let Y = iR. Observe that 1 is an upper bound of Y , 0 ∈ Y 6= ∅, and Y does not contain an upper
bound because ir < i(r + 1) for every r ∈ R. Let u + iv be an upper bound of Y . Then u > 0, and
u
2

+ iv is a strictly smaller upper bound of Y . Thus C does not have the least upper bound property
when given the lexicographic order.

10. Suppose z = a+ ib, w = u+ iv, and

a =

(
|w|+ u

2

) 1
2

, b =

(
|w| − u

2

) 1
2

.

Prove that z2 = w if v ≥ 0 and (z)2 = w if v ≤ 0. Conclude that every complex number(with one
exception!) has two complex square roots.

6



Solution:

(a+ sgn(v)ib)2 = (a2 − b2) + sgn(v)2iab

=

(( |w|+ u

2

) 1
2

)2

−

((
|w| − u

2

) 1
2

)2
+ sgn(v)2i

(
|w|+ u

2

) 1
2
(
|w| − u

2

) 1
2

=

(
|w|+ u

2
− |w| − u

2

)
+ sgn(v)2i

(
(|w|+ u)(|w| − u)

4

) 1
2

= u+ sgn(v)2i

(
|w|2 − u2

4

) 1
2

= u+ sgn(v)2i

(
v2

4

) 1
2

= u+ sgn(v)i(v2)
1
2 = u+ iv.

Let α, β ∈ C such that α2 = β2 = w. Then (α − β)(α + β) = 0. Thus β = ±α. If w 6= 0, then
α − (−α) = 2α 6= 0 and w has exactly two square roots. If w = 0, then α = 0 = −α is the only
square root.

11. If z is a complex number, prove that there exists an r ≥ 0 and a complex number w with |w| = 1
such that z = rw. Are w and r always uniquely determined by z?

Solution: Let r = |z| ≥ 0. If z = 0, let w = 1 so that rw = 0 · 1 = 0 = z. If z 6= 0, let w = z
|z| . Then

|w| =
∣∣∣∣ z|z|

∣∣∣∣ =
|z|
|z|

= 1 and rw = |z| z
|z|

= z.

Suppose 0 6= z = st with s ≥ 0 and |t| = 1. Then r
s

=
∣∣ r
s

∣∣ =
∣∣ t
w

∣∣ = 1 shows that r = s. Thus
w = z

r
= z

s
= t. If z = 0 then w may be any complex number with |w| = 1.

12. If z1, . . . , zn are complex, prove that

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn|.

Solution: Theorem 1.33(e) yields |z1 + z2| ≤ |z1| + |z2|. Suppose the inequality holds for n − 1
complex numbers. Then∣∣∣∣∣

n∑
i=1

zi

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
i=1

zi + zn

∣∣∣∣∣ ≤
∣∣∣∣∣
n−1∑
i=1

zi

∣∣∣∣∣+ |zn| ≤
n−1∑
i=1

|zi|+ |zn| =
n∑
i=1

|zi|.

Thus the inequality holds for all n ∈ Z+.

13. If x, y are complex, prove that
||x| − |y|| ≤ |x− y|.

Solution: From
|x| = |(x− y) + y| ≤ |x− y|+ |y|

we have
|x| − |y| ≤ |x− y|.
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By symmetry,
−(|x| − |y|) = |y| − |x| ≤ |y − x| = |x− y|.

Having established
−|x− y| ≤ |x| − |y| ≤ |x− y|,

we have ||x| − |y|| ≤ |x− y|.

14. If z is a complex number such that |z| = 1, that is, such that zz = 1, compute

|1 + z|2 + |1− z|2.

Solution:

|1 + z|2 + |1− z|2 = (1 + z)(1 + z) + (1− z)(1− z)

= 1 + 2<(z) + |z|2 + 1− 2<(z) + |z|2

= 4

15. Under what conditions does equality hold in the Schwarz inequality?

Solution: The proof of theorem 1.35 shows that equality holds in the Schwarz inequality when∑
|Baj −Cbj|2 = 0. Thus aj = C

B
bj for every j. Conversely, if aj = cbj for every j and a fixed c ∈ C,

then ∣∣∣∣∣
n∑
j=1

ajbj

∣∣∣∣∣
2

=

∣∣∣∣∣
n∑
j=1

cbjbj

∣∣∣∣∣
2

= |c|2
∣∣∣∣∣
n∑
j=1

|bj|2
∣∣∣∣∣
2

=

∣∣∣∣∣
n∑
j=1

|cbj|2
∣∣∣∣∣ ·
∣∣∣∣∣
n∑
j=1

|bj|2
∣∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

|aj|2
∣∣∣∣∣ ·
∣∣∣∣∣
n∑
j=1

|bj|2
∣∣∣∣∣ .

16. Suppose k ≥ 3,x,y ∈ Rk, |x− y| = d > 0, and r > 0. Prove:

(a) If 2r > d, there are infinitely many z ∈ Rk such that

|z− x| = |z− y| = r.

(b) If 2r = d, there is exactly one such z.

(c) If 2r < d, there is no such z.
How must these statements be modified if k is 2 or 1?

Solution: Let u = x− x+y
2

. Suppose w ∈ Rk such that

|w − u| = |w + u| = r.

Then

|w − u| = |w + u|
|w − u|2 = |w + u|2

|w|2 − 2w · u + |u|2 = |w|2 + 2w · u + |u|2

0 = w · u.
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For the other condition, we take

r2 = |w − u|2 = |w|2 + |u|2

to get
|w|2 = r2 − |u|2.

Since 2|u| = d > 0, we know that u 6= 0.

• If there is i ∈ {1, . . . , k} such that ui = 0, let p = ei.

• If there is also i 6= j ∈ {1, . . . , k} such that uj = 0, then let q = ej.

• If uj 6= 0 for all j 6= i, let j, l ∈ {1, . . . , k} \ {i}, j 6= l, and let q = ulej − ujel.

• If uj 6= 0 for all 1 ≤ j ≤ k, then let p = u2e1 − u1e2 and q = u3e1 − u1e3.

In each case, an = p + nq 6= 0 satisfies an · u = 0 for all n ∈ Z+. Furthermore, if m,n ∈ Z+,m 6= n,
then an 6= sam for all s ∈ R.

(a) If 2r > d, then r2 − |u|2 > 0. For each n ∈ Z+, define

wn =
an
|an|

√
r2 − |u|2.

By construction, wn · u = 0 and |wn|2 = r2 − |u|2. Thus

|wn − u| = |wn + u| = r.

Now define zn = wn + x+y
2

for every n ∈ Z+. The zn are distinct because the wn are. Furthermore,

|zn − x| = |zn − y| = r for every n ∈ Z+.

(b) If 2r = d, then |u| = r, and |w|2 = 0. Thus z = 1
2
(x + y) is the only solution of

|z− x| = |z− y| = r.

(c) If 2r < d, then any solution of

|z− x| = |z− y| = r

would provide w ∈ Rk such that 0 ≤ |w|2 < 0.

If k = 1, then 0 = w · u implies that w = 0 and z = x+y
2

. There is a solution iff 2r = d.

If k = 2, then 0 = w · u implies that w is a multiple of (−u2, u1). There are two multiples with the
required norm if 2r > d, and only one if 2r = d.

17. Prove that
|x + y|2 + |x− y|2 = 2|x|2 + 2|y|2

if x ∈ Rk and y ∈ Rk. Interpret this geometrically, as a statement about parallelograms.

Solution:

|x + y|2 + |x− y|2 =
(
|x|2 + 2x · y + |y|2

)
+
(
|x|2 − 2x · y + |y|2

)
= 2|x|2 + 2|y|2

The sum of the squares on the diagonals of a parallelogram equals the sum of the squares on the sides.
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18. If k ≥ 2 and x ∈ Rk, prove that there exists y ∈ Rk such that y 6= 0 but x · y = 0. Is this also true
if k = 1?

Soluion: If x1 = 0, let y = e1. If x1 6= 0, then let y = x2e1 − x1e2.

Let k = 1. If x = 0 and x · y = 0, then y can be any real number. If x 6= 0 and x · y = 0, then

y = x−1xy = x−10 = 0.

19. Suppose a ∈ Rk,b ∈ Rk. Find c ∈ Rk and r > 0 such that

|x− a| = 2|x− b|

iff |x− c| = r.
(Solution: 3c = 4b− a, 3r = 2|b− a|.)

Solution:

|x− a| = 2|x− b|
|x− a|2 = 4|x− b|2

|x|2 − 2x · a + |a|2 = 4|x|2 − 8x · b + 4|b|2

|a|2 − 4|b|2 = 3|x|2 + 2x · (a− 4b)

|a|2 − 4|b|2

3
+

1

9
|a− 4b|2 = |x|2 +

2

3
x · (a− 4b) +

1

9
|a− 4b|2

4

9
|b− a|2 =

∣∣∣∣x− 1

3
(4b− a)

∣∣∣∣2
2

3
|b− a| =

∣∣∣∣x− 1

3
(4b− a)

∣∣∣∣
Let c = 1

3
(4b− a) and r = 2

3
|b− a|.

20. With reference to the Appendix, suppose that property (III) were omitted from the definition of a
cut. Keep the same definitions of order and addition. Show that the resulting ordered set has the
least-upper-bound property, that addition satisfies axioms (A1) to (A4) (with a slightly different
zero-element!) but that (A5) fails.

Solution: Steps 1-3 work as in the appendix proof, omitting the statements related to (III). In step
4, define 0∗ as the set of non-positive rational numbers. The proofs for (A1)-(A3) go through as stated.

Proof of (A4): If r ∈ α and s ∈ 0∗, then r + s ≤ r, hence r + s ∈ α. Thus α+ 0∗ ⊆ α. If p ∈ α+ 0∗,
then p = r + s with r ∈ α and s ∈ 0∗. Thus p = r + s ≤ r, and we see that p ∈ α. So α + 0∗ ⊆ α.

Now we show that (A5) fails. Let β be the cut of negative rational numbers, and α any other cut.
If α contains some r > 0, then r

2
= r +

(
− r

2

)
∈ α + β shows that α + β 6= 0∗. If α has no positive

elements, then 0 /∈ α + β, and α + β 6= 0∗.
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2 Basic Topology

1. Prove that the empty set is a subset of every set.

Solution: Every element of ∅ belongs to every set.

2. A complex number z is said to be algebraic if there are integers a0, . . . , an, not all zero, such that

a0z
n + a1z

n−1 + · · ·+ an−1z + an = 0.

Prove that the set of all algebraic numbers is countable. Hint: For every positive integer N there
are only finitely many equations with

n+ |a0|+ |a1|+ · · · |an| = N.

Solution: For every p(X) =
∑n

i=0 aiX
n−i ∈ C[X] (a0 6= 0), let ‖p‖ = n +

∑n
i=0 |ai|. For every

algebraic number z, choose qz(X) ∈ Z[X] such that qz(z) = 0. The set of all algebraic numbers⋃
N≥0

{z | ‖qz‖ = N}

is a countable union of finite sets.

3. Prove that there exist real numbers which are not algebraic.

Solution: Subsets of the algebraic numbers are countable. The real numbers are uncountable. Thus
there are real numbers that are not algebraic.

4. Is the set of all irrational real numbers countable?

Solution Since R = Q ∪ (R \Q) is uncountable and Q is countable, R \Q is uncountable.

5. Construct a bounded set of real numbers with exactly three limit points.

Solution: Let Ei = {i+ 1
n
}∞n=2 for i = −1, 0, 1 and let E =

⋃
i=−1,0,1Ei.

Let x ∈ E. Then −2 < x < 2 shows that E is bounded.

Let i+ 1
n
∈ E, r ∈ R. If i = r = −1, 0, 1, then

∣∣(i+ 1
n

)
− r
∣∣ = 1

n
→ 0 as n→∞. So −1, 0, 1 are limit

points of E.

Suppose that r 6= −1, 0, 1. Then∣∣∣∣(i+
1

n

)
− r
∣∣∣∣ ≥ ∣∣∣∣|i− r| − 1

n

∣∣∣∣ ≥ |i− r|2
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for all n > N = bmax{ 2
|i−r| | i = −1, 0, 1}c. Thus

Sr = E ∩ (r −N−1, r +N−1) \ {r}

is finite. Define ρ = minx∈Sr d(x, r). Thus E∩(r−ρ, r+ρ)\{r} is empty, and r is not a limit point of E.

6. Let E ′ be the set of all limit points of a set E. Prove that E ′ is closed. Prove that E and E have
the same limit points. (Recall that E = E ∪ E ′.) Do E and E ′ always have the same limit points?

Solution: Let x /∈ E ′. Then there is r > 0 such that B(x, r) ∩ E = ∅. Let y ∈ B(x, r), z ∈ E, ρy =
r − d(x, y). Then

d(y, z) ≥ d(x, z)− d(y, x) ≥ ρy > 0

implies B(y, ρ) ∩ E = ∅. Thus y /∈ E ′. Since y was arbitrary, B(x, r) ∩ E ′ = ∅, and x is not a limit
point of E ′. Thus E ′ is closed.

If x ∈ E ′, then for all r > 0, ∅ 6= B(x, r) ∩ E ⊆ B(x, r) ∩ E implies x ∈ E ′. Suppose x ∈ E ′ and let
r > 0. By hypothesis, there is y ∈ B

(
x, r

2

)
∩ E. If y /∈ E, then there is z ∈ B

(
y, r

2

)
∩ E. Thus

d(x, z) ≤ d(x, y) + d(y, z) < r,

hence z ∈ B(x, r) ∩ E, and x ∈ E ′.

Let E be the set { 1
n
| n ∈ Z+}, then E ′ = {0}, and E ′′ is empty.

7. Let A1, A2, A3, . . . be subsets of a metric space.

(a) If Bn =
⋃n
i=1Ai, prove that Bn =

⋃n
i=1Ai, for n = 1, 2, 3, . . ..

(b) If B =
⋃∞
i=1Ai, prove that Bn ⊇

⋃∞
i=1Ai.

Show, by an example, that this inclusion can be proper.

Solution:

(a) x /∈ Bn iff there is r > 0 such that

∅ = B(x, r) ∩Bn = B(x, r) ∩

(
n⋃
i=1

Ai

)
=

n⋃
i=1

(B(x, r) ∩ Ai)

iff for each 1 ≤ i ≤ n there is an ri > 0 such that B(x, ri) ∩ Ai = ∅ (let r = min1≤i≤n ri) iff x /∈ Ai
for each 1 ≤ i ≤ n iff x /∈

⋃n
i=1Ai.

(b) If x /∈ B, then there is r > 0 such that ∅ = B(x, r) ∩ B =
⋃∞
i=1 (B(x, r) ∩ Ai). Thus

B(x, r) ∩ Ai = ∅ for all i ≥ 1, and x /∈
⋃∞
i=1Ai. For a counterexample to the opposite inclusion, let

the metric space be [0, 1] and define Ai =
{

1
i

}
. Thus 0 ∈ B \

⋃∞
i=1Ai.

8. Is every point of every open set E ⊆ R2 a limit point of E? Answer the same question for closed sets
in R2.
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Solution: Let x ∈ Eopen ⊆ R2 and let r > 0 be such that B(x, r) ⊆ E. For each r > s > 0, let ys
be a vector with 0 < |ys| < s (e.g. ys = s

2
e1). Then x 6= x + ys ∈ B(x, s) ∩ E shows that x ∈ E ′. If

E = ∅, then E = E ′.

Let E = {0} and x /∈ E. Then B(x, |x|) ∩ E = ∅ demonstrates that E is closed. Furthermore,
0 ∈ E \ E ′.

9. Let E◦ denote the set of all interior points of a set E. [See Definition 2.18(e); E◦ is called the interior
of E.]

(a) Prove that E◦ is always open.

(b) Prove that E is open iff E◦ = E.

(c) If G ⊆ E and G is open, prove that G ⊆ E◦.

(d) Prove that the complement of E◦ is the closure of the complement of E.

(e) Do E and E always have the same interiors?

(f) Do E and E◦ always have the same closures?

Solution:

(a) If x ∈ E◦, there is r > 0 such that B(x, r) ⊆ E. If y ∈ B
(
x, r

2

)
, then B

(
y, r

2

)
⊆ B(x, r) ⊆ E

shows that y ∈ E◦. Thus B
(
x, r

2

)
⊆ E◦. Since x was arbitrary, E◦ is open.

(b) By (a), E is open iff E ⊆ E◦.

(c) Let x ∈ Gopen ⊆ E. Then there is r > 0 such that B(x, r) ⊆ G ⊆ E. Thus x ∈ E◦.

(d) Ec ⊆ Ec implies E ⊇
(
Ec
)c

. Thus
(
Ec
)c ⊆ E◦.

E◦ ⊆ E implies (E◦)c ⊇ Ec. Thus Ec ⊆ (E◦)c.

(e) No. Let E = Q in R. Then E◦ = ∅ and
(
E
)◦

= R.

(f) No. Let E = Q in R. Then E = R and E◦ = ∅.

10. Let X be an infinite set. For p ∈ X and q ∈ X, define

d(p, q) =

{
1 (if p 6= q)
0 (if p = q).

Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed?
Which are compact?

Solution: The first two properties of a metric hold trivially. Let p, q, r ∈ X. If d(p, r) + d(r, q) = 0,
then p = r = q and d(p, q) = 0. If d(p, r) + d(r, q) ≥ 1, then d(p, q) ≤ 1 ≤ d(p, r) + d(r, q).
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Singleton sets are open because B
(
p, 1

2

)
= {p}. Every subset of X is open because arbitrary unions

of open sets are open. Hence every subset of X is closed.

Let ∅ 6= Kcompact ⊆ X. Then Uq = {q} with q ∈ K is an open cover of K. Since K is compact, there
is a finite subcover Uq1 , . . . , Uqn . Thus K ⊆

⋃n
i=1 Uqi = {q1, q2, . . . , qn} ⊆ K, and K is finite.

11. For x ∈ R1 and y ∈ R1, define

d1(x, y) = (x− y)2,

d2(x, y) =
√
|x− y|,

d3(x, y) = |x2 − y2|,
d4(x, y) = |x− 2y|,

d5(x, y) =
|x− y|

1 + |x− y|
.

Determine, for each of these, whether it is a metric or not.

Solution:

d1(x, y) is not a metric because

d1(1,−1) = 4 > 2 = d1(1, 0) + d1(0,−1).

d2(x, y) is a metric. The first two properties of a metric hold trivially. By the triangle inequality,(√
|x− y|

)2
= |x−y| ≤ |x−z|+|z−y| ≤ |x−z|+2

√
|x− z|

√
|z − y|+|z−y| =

(√
|x− z|+

√
|z − y|

)2
.

Taking square roots yields √
|x− y| ≤

√
|x− z|+

√
|z − y|.

d3(x, y) is not a metric because d3(1,−1) = 0, but 1 6= −1.

d4(x, y) is not a metric because d4(1, 1) = 1, but 1 = 1.

d5(x, y) is a metric. The first two properties of a metric hold trivially. Let 0 < s < r. Then
0 < 1

r
< 1

s
. Hence 0 < 1

r
+ 1 < 1

s
+ 1. Thus

0 <
s

1 + s
=

1
1
s

+ 1
<

1
1
r

+ 1
=

r

1 + r
. (6)

By the triangle inequality and (6),

|x− y|
1 + |x− y|

≤ |x− z|+ |z − y|
1 + |x− z|+ |z − y|

=
|x− z|

1 + |x− z|+ |z − y|
+

|z − y|
1 + |x− z|+ |z − y|

≤ |x− z|
1 + |x− z|

+
|z − y|

1 + |z − y|
.
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12. Let K ⊆ R1 consist of 0 and the numbers 1
n
, for n = 1, 2, 3, . . .. Prove that K is compact directly

from the definition (without using the Heine-Borel theorem).

Solution: Let {Uα}α∈I be an open cover of K. Let α0 be such that 0 ∈ Uα0 . There is ε > 0 such
that B(0, ε) ⊆ Uα0 . Let N = b1

ε
c + 1. Then n > N implies 1

n
∈ Uα0 . For 1 ≤ n ≤ N , there are αn

such that 1
n
∈ Uαn . Thus K ⊆

⋃N
n=0 Uαn .

13. Construct a compact set of real numbers whose limit points form a countable set.

Solution: Let K be the set consisting of 0, numbers of the form 1
n
, and numbers of the form(

1
mn

+ 1
)

1
n
, where m,n are positive integers and n ≥ 2. Notice that every element of K is non-

negative and that

0 <
1

n
<

(
1

mn
+ 1

)
1

n
≤
(

1

1 · 2
+ 1

)
1

2
=

3

4
< 1.

Furthermore, (n+ 1)(n− 1) = n2 − 1 < n2 shows that

1

n
<

(
1

mn
+ 1

)
1

n
≤
(

1

n
+ 1

)
1

n
=
n+ 1

n2
<

1

n− 1
.

Let r be a real number not in K. If r < 0, then r is not a limit point of K because B(r, |r|)∩K = ∅.
If r > 3

4
, then r is not a limit point of K because B

(
r,
∣∣r − 3

4

∣∣) ∩K = ∅.

If 0 < r < 3
4
, let N = b1

r
c + 1 ≥ 2. So we have 1

N
< r < 1

N−1 . Now define M = b 1
N(Nr−1)c + 1 ≥ 1.

We get the following sequence of inequalities (disregard the division by zero if M = 1):

M − 1 ≤ 1

N(Nr − 1)
< M

(M − 1)N ≤ 1

Nr − 1
< MN

1

MN
<Nr − 1 ≤ 1

(M − 1)N(
1

MN
+ 1

)
1

N
<r <

(
1

(M − 1)N
+ 1

)
1

N
,

where the weak inequality is strict in the last line because r /∈ K. If M = 1, define

ε = min

{∣∣∣∣r − ( 1

MN
+ 1

)
1

N

∣∣∣∣ , ∣∣∣∣r − 1

N − 1

∣∣∣∣} ,
if M > 1, define

ε = min

{∣∣∣∣r − ( 1

MN
+ 1

)
1

N

∣∣∣∣ , ∣∣∣∣r − ( 1

(M − 1)N
+ 1

)
1

N

∣∣∣∣} .
In either case, B(r, ε) ∩K = ∅, and we conclude that no real numbers outside of K are limit points
of K.
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We have shown that K contains all of its limit points and that K is bounded. Thus K is compact.
The following will show that K has countably many limit points.

Let ε > 0. If n > 1
ε
, then 1

n
∈ B(0, ε). So 0 is a limit point of K. Let n ≥ 2. If m > 1

nε
, then(

1
mn

+ 1
)

1
n
∈ B

(
1
n
, ε
)
. So 1

n
is a limit point of K for all n ≥ 2.

If m ≥ 1, then the inequalities(
1

(m+ 1)n
+ 1

)
1

n
<

(
1

mn
+ 1

)
1

n
<

1

n− 1

demonstrate that there is a ball around
(

1
mn

+ 1
)

1
n

which contains no other points of K. Thus(
1
mn

+ 1
)

1
n

is not a limit point of K.

Consequently, the limit points of K are 0 and the reciprocals of the positive integers greater than 1.
We have given a compact set of real numbers with a countable number of limit points.

14. Give an example of an open cover of the segment (0, 1) which has no finite subcover.

Solution: Let x ∈ (0, 1), n > 1
x
. Then x ∈

(
1
n
, 1
)
. Thus

⋃∞
n=1

(
1
n
, 1
)
⊆ (0, 1) ⊆

⋃∞
n=1

(
1
n
, 1
)
, and{(

1
n
, 1
)}

n≥1 is an open cover of (0, 1).

Given of a finite collection
(

1
nk
, 1
)

with k = 1, 2, . . . , N , let n0 = max{nk | 1 ≤ k ≤ N}. Then

1
n0+1

∈ (0, 1) \
(

1
n0
, 1
)

= (0, 1) \
(⋃

1≤k≤N

(
1
nk
, 1
))

.

15. Show that Theorem 2.36 and its Corollary become false (in R1, for example) if the word “compact”
is replaced by “closed” or by “bounded.”

Solution:

Closed: Let Kα = [α,∞) for all α ∈ R. Let α1 < α2 < . . . < αn be any real numbers. Then
αn ∈ [αn,∞) =

⋂n
i=1Kαi

. However,
(⋂

α∈RKα

)c
=
⋃
α∈R(−∞, α) = R yields

⋂
α∈RKα = ∅. Replace

R by Z+ for a counterexample to the Corollary.

Bounded: Let Un =
(
0, 1

n

)
for all n ∈ Z+. Given a finite subcollection Un1 , . . . , Unk

, let

n0 = max{ni | 1 ≤ i ≤ k}. Then 1
n0+1

∈
(

0, 1
n0

)
=
⋂k
i=1 Uni

. However, if 1 > r > 0, let

N = b1
r
c+ 1. Then r ∈ (UN)c ⊆ (

⋂∞
n=1 Un)

c
. Since r was an arbitrary,

⋂∞
n=1 Un = ∅.

16. Regard Q, the set of all rational numbers, as a metric space, with d(p, q) = |p − q|. Let E be the
set of all p ∈ Q such that 2 < p2 < 3. Show that E is closed and bounded in Q, but that E is not
compact. Is E open in Q?

Solution: Let p, q ∈ E. Then

|p− q|2 ≤ (|p|+ |q|) = |p|2 + 2|pq|+ |q|2 ≤ 4 · 3 = 12.
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Thus E is bounded.

E is both open and closed by theorem 2.30 and E = Q ∩ [
√

2,
√

3] = Q ∩ (
√

2,
√

3).

E is not closed in R, hence not compact in R. Thus E is not compact.

17. Let E be the set of all x ∈ [0, 1] whose decimal expansion contains only the digits 4 and 7. Is E
countable? Is E dense in [0, 1]? Is E compact? Is E perfect?

Solution: The elements of E are in one to one correspondence with the sequences of 0’s and 1’s by
matching 4’s with 0’s and 7’s with 1’s. Thus E is uncountable.

Let r ∈ [0, 1] \E have decimal expansion 0.d1d2d3 . . ., and let n ∈ Z+ be least such that dn 6= 4, 7. If
there is N ≥ 1 such that dk = 0 for all k ≥ N , then

(
r − 10−(1+N), r + 10−(1+N)

)
∩E = ∅. Otherwise,

(10−n b10nrc , 10−n(b10nrc+ 1)) ∩ E = ∅. Thus E is closed and not dense.

Since E is closed and bounded, E is compact.

Let x ∈ E, 1 > ε > 0, and N = blog10

(
1
ε

)
c + 1. Let y be the number obtained from x by swapping

its N + 1th digit from 4 to 7, or visa versa. Then

|x− y| ≤ 3

10−(N+1)
< 10−N < ε.

Hence y ∈ B(x, ε) ∩ E, and E is perfect.

18. Is there a nonempty perfect set in R1 which contains no rational number?

Solution: Let a, b ∈ R \ Q, and let {qn}n≥1 be an enumeration of the rationals in (a, b). Let

a1, b1 ∈ (a, b) \Q such that q1 ∈ (a1, b1). For each k > 1, let nk be least such that qnk
/∈
⋃k−1
j=1(aj, bj),

and find ak, bk ∈ (a, b) \ Q such that qnk
∈ (ak, bk), and aj, bj /∈ [ak, bk] for j < k. Let E0 = [a, b],

Ek = Ek−1 \ (ak, bk) for k ≥ 1, and E =
⋂
k≥0Ek.

By construction, E is closed, E ∩Q = ∅, and E is not empty because it contains a and b. Further-
more, each of the sets (ak, bk) are disjoint by construction, so ak, bk ∈ E for all k ≥ 1.

Let p ∈ E, ε > 0. Then p ∈ Ek for all k ≥ 1. Each Ek is a disjoint union of finitely many
closed intervals, none of which are singletons. Let k be large enough that the interval Ik(p) of Ek
containing p is contained in B(p, ε). Let j be least such that qnj

∈ Ik(p). By construction of E,
[aj, bj] ( Ik(p) ⊆ B(p, ε). Thus, aj, bj ∈ B(p, ε)∩E shows that B(p, ε)∩E contains at least one point
besides p. Since p was arbitrary, every element of E is a limit point and E is a non-empty perfect
set containing no rationals.

19. (a) If A and B are disjoint closed sets in some metric space X, prove that they are separated.

(b) Prove the same for disjoint open sets.
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(c)Fix p ∈ X, δ > 0, define A to be the set of all q ∈ X for which d(p, q) < δ, define B similarly,
with > in place of <. Prove that A and B are separated.

(d) Prove that every connected metric space with at least two points is uncountable. Hint: Use
(c).

Solution:

(a) By hypothesis,
A ∩B = A ∩B = A ∩B = ∅.

(b) Let A,B be open with A ∩B = ∅. Then

A ∩B ⊆ Bc ∩B = ∅ and A ∩B ⊆ A ∩ Ac = ∅.

(c) By construction, A is open. Let q ∈ B. If r ∈ B(q, d(p, q)− δ), then

d(p, r) ≥ d(p, q)− d(q, r) > δ

implies r ∈ B. Thus B is open. Since A,B are open and disjoint, they are separated by (b).

(d) Let X be a connected metric space with at least two points p, q, and let A,B be as in (c). If
0 < δ < d(p, q), then A 6= ∅ 6= B, and there is rδ ∈ X such that d(p, rδ) = δ by (c). Thus there is a
family of distinct points in X indexed by [0, d(p, q)], which is uncountable.

20. Are closures and interiors of connected sets always connected? (Look at subsets of R2.)

Solution: Let E ⊆ X such that E is not connected. Then E = A ∪ B with A,B 6= ∅, separated.
Thus

E = (A ∩ E) ∪ (B ∩ E),

A ∩ E ∩ (B ∩ E) ⊆ A ∩B =∅, and

(A ∩ E) ∩B ∩ E ⊆ A ∩B =∅.

Hence E is not connected.

Define C = B(−1, 1) ∪ B(1, 1) ⊆ C. Exercise 2.21c demonstrates that B(−1, 1) and B(1, 1) are
connected. Let C = A ∪ B with A ∩ B = ∅,A 6= ∅ 6= B. WLOG, 0 ∈ A. Let x ∈ B. Then
0, x ∈ B(sgn<(x), 1) implies A ∩ B 6= ∅ or A ∩ B 6= ∅. However, C◦ = B(−1, 1) ∪ B(1, 1) is not
connected.

21. Let A and B be separated subsets of some Rk, suppose a ∈ A,b ∈ B, and define

p(t) = (1− t)a + tb

for t ∈ R1. Put A0 = p−1(A), B0 = p−1(B). [Thus t ∈ A0 iff p(t) ∈ A.]

(a) Prove that A0 and B0 are separated subsets of R1.

(b) Prove that there exists t0 ∈ (0, 1) such that p(t0) /∈ A ∪B.
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(c) Prove that every convex subset of Rk is connected.

Solution:

(a) WLOG, suppose A0 ∩B0 6= ∅. Let s ∈ A0 ∩B0 and ε > 0. There is r ∈ B(s, ε) ∩ A0. Thus

|p(r)− p(s)| = |(b− a)(r − s)| < |b− a| ε

with p(r) ∈ A,p(s) ∈ B. Hence p(s) ∈ A ∩B, contrary to hypothesis.

(b) Since (0, 1) is connected, (0, 1) * A0 ∪B0. Let t0 ∈ (0, 1) \ (A0 ∪B0). Then p(t0) /∈ A ∪B.

(c) Let A,B ⊆ Rk be separated and nonempty, a ∈ A,b ∈ B. Then (b) shows that there is
λ ∈ (0, 1) such that

(1− λ)a + λb /∈ A ∪B.

Thus A ∪B is not convex. Take the contrapositive.

22. A metric space is called separable if it contains a countable dense subset. Show that Rk is separable.
Hint: Consider the set of points which have only rational coordinates.

Solution: Let r ∈ Rk, ε > 0. For each i = 1, 2, . . . , k, let qi ∈ Q such that |ri − qi| < ε√
k
, and let

q = (q1, q2, . . . , qk) ∈ Qk. Then

|r− q| =

√√√√ k∑
i=1

(ri − qi)2 <
√
k · ε

2

k
< ε.

Thus q ∈ B(r, ε).

23. A collection {Vα} of open subsets of X is said to be a base for X if the following is true: For every
x ∈ X and every open set G ⊆ X such that x ∈ G, we have x ∈ Vα ⊆ G for some α. In other words,
every open set in X is the union of a subcollection of {Vα}.
Prove that every separable metric space has a countable base. Hint: Take all neighborhoods with
rational radius and center in some countable dense subset of X.

Solution: Let D be a countable dense subset of the metric space X. The collection {B(d, q) | d ∈
D, q ∈ Q} is countable. Let x ∈ Gopen ⊆ X. Let ε > 0 such that B(x, ε) ⊆ G, ρ ∈ Q such that
0 < ρ < ε

2
, and δ ∈ D ∩ B (x, ρ). If y ∈ B(δ, ρ), then

d(x, y) ≤ d(x, δ) + d(δ, y) < 2ρ < ε.

Thus x ∈ B(δ, ρ) ⊆ B(x, ε) ⊆ G.

24. Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable.
Hint: Fix δ > 0, and pick x1 ∈ X. Having chosen x1, . . . , xj ∈ X, choose xj+1 ∈ X, if possible,
so that d(xi, xj+1) ≥ δ for i = 1, . . . , j. Show that this process must stop after a finite number
of steps, and that X can therefore be covered by finitely many neighborhoods of radius δ. Take
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δ = 1
n
(n = 1, 2, 3, . . .), and consider the centers of the corresponding neighborhoods.

Solution: Let δ > 0, x1 ∈ X. Suppose that for every j ∈ Z+ there is xj+1 ∈ X such that
d(xi, xj+1) ≥ δ for 1 ≤ i ≤ j. Let x ∈ X be a limit point of {xj}j∈Z+ . Then there is N ∈ Z+ such
that d(x, xj) <

δ
2

for all j ≥ N . If i, j ≥ N ,

d(xi, xj) ≤ d(xi, x) + d(x, xj) < δ,

a contradiction.

Consequently, there are x1, . . . , xN such that y ∈ X implies d(y, xj) < δ for some j ∈ {1, . . . , N}.
For k ∈ Z+, let Nk ∈ Z+ such that {B

(
xkj ,

1
k

)
}Nk
j=1 covers X. Let ε > 0, y ∈ X, k > 2

ε
. There is

j ∈ {1, . . . , Nk} such that y ∈ B
(
xkj ,

1
k

)
. Hence, xkj ∈ B(y, ε).

25. Prove that every compact metric space K has a countable base, and that K is therefore separable.
Hint: For every positive integer n, there are finitely many neighborhoods of radius 1

n
whose union

covers K.

Solution: For each n ∈ Z+, let xn1 , x
n
2 , . . . , x

n
Nn
∈ K such that K ⊆

⋃Nn

i=1 B
(
xni ,

1
n

)
. Let

x ∈ Gopen ⊆ K, ε > 0, B(x, ε) ⊆ G.

If n > 2
ε
, then

x ∈ B

(
xni ,

1

n

)
⊆ B(x, ε) ⊆ G

for some 1 ≤ i ≤ Nn. Thus
{

B
(
xni ,

1
n

)
| 1 ≤ i ≤ Nn, n ∈ Z+

}
is a countable base. K is separable

because xni ∈ G.

26. Let X be a metric space in which every infinite subset has a limit point. Prove that X is compact.
Hint: By Exercises 23 and 24, X has a countable base. It follows that every open cover of X has
a countable subcover {Gn}, n = 1, 2, 3, . . .. If no finite subcollection of {Gn} covers X, then the
complement Fn of G1 ∪ G · · · ∪ Gn is nonempty for each n, but ∩Fn is empty. If E is a set which
contains a point from each Fn, consider a limit point of E, and obtain a contradiction.

Solution: Let {Uk}k∈N be a countable base and Gα be an open cover for X. For each x ∈ X, let
β(x) be an index such that x ∈ Gβ(x), define κ(x) = min{k ∈ N | x ∈ Uk ∈ Gα(x)}, and let I ⊆ N
be the image of κ. By construction, {Uk}k∈I is an open cover of X, and for each k ∈ I there is γ(k)
such that Uk ⊆ Gγ(k). Thus, {Gγ(k)}k∈I is a countable subcover of Gα.

Using the countability of I, reindex {Gγ(k)}k∈I as {Gk}k∈N, and define Fn = (
⋃n
k=1Gk)

c
. Suppose

that Fn 6= ∅ for all n ∈ N. Let xn ∈ Fn be a sequence in X. It is non-constant because {Gk}k∈N
covers X. Let x be a limit point of {xn}n∈N. Then for every n ∈ N, x ∈ Fn because Fn is closed.
Thus x ∈

⋂
n∈N Fn =

(⋃
k∈NGk

)c
= ∅, a contradiction. Consequently, there is n ∈ N such that

X = ∅c = F c
n =

⋃n
k=1Gk.
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27. Define a point p in a metric space X to be a condensation point of a set E ⊆ X if every neighborhood
of p contains uncountably many points of E.
Suppose E ⊆ Rk, E is uncountable, and let P be the set of all condensation points of E. Prove that
P is perfect and that at most countably many points of E are not in P . In other words, show that
P c ∩ E is at most countable. Hint: Let {Vn} be a countable base of Rk, let W be a union of those
Vn for which E ∩ Vn is at most countable, and show that P = W c.

Solution: Let E be an uncountable set in a separable metric space X, {Vn}n∈N be a countable base
for X, I = {n ∈ N | E ∩ Vn is at most countable}, W =

⋃
n∈I Vn, and P be the set of condensation

points of E. First, E ∩W =
⋃
n∈I E ∩ Vn is countable because it is a countable union of at most

countable sets. Second, if x ∈ P , then E∩Vn is uncountable for every Vn containing x. Hence, x /∈ W .
Third, let x /∈ W , x ∈ Gopen, and x ∈ Vn ⊆ G. Then E ∩ Vn is uncountable. Thus E ∩G ⊇ E ∩ Vn is
uncountable, and x ∈ P . Thus P = W c is closed. Finally, let x ∈ P . If G is an open neighborhood
of x, then G ∩ E is uncountable and at most countably many elements of G ∩ E are in W . Thus P
is perfect, E \ P is at most countable, and E ⊆ P ∪ (E \ P ) ⊆ E.

28. Prove that every closed set in a separable metric space is the union of a (possibly empty) perfect
set and a set which is at most countable. (Corollary: Every countable closed set in Rk has isolated
points.) Hint: Use Exercise 27.

Solution: Let E be closed. If E is at most countable, then E = ∅ ∪E is the desired union. If E is
uncountable, the solution to exercise 27 yields E = P ∪ (E \ P ).

If E ⊆ Rk is a closed, countable set, then E is not perfect. Hence E \ E ′ 6= ∅.

29. Prove that every open set in R1 is the union of an at most countable collection of disjoint segments.
Hint: Use Exercise 22.

Solution: Let ∅ 6= U open ⊆ R1. For each q ∈ U ∩Q, let Vq =
⋃
q∈(a,b)⊆U(a, b). By construction, each

Vq = (inf Vq, supVq). If q ∈ Vq1 ∩ Vq2 , then

q ∈ (min
i=1,2

inf Vqi ,max
i=1,2

supVqi) ⊆ U

demonstrates that Vq1 = Vq2 .

Let {qn}n∈N be an enumeration of the rationals and define U0 = Vq0 . For each k ∈ Z+, let

nk = min

{
n ∈ N | qn /∈

k−1⋃
j=0

Uj

}
,

and define Uk = Vqnk
. If r ∈ U , then r ∈ Vq = Uk for some q ∈ U ∩ Q, k ∈ N. Thus each Uk is an

interval, U =
⋃
k∈N Uk, and the Uk are disjoint.

30. Imitate the proof of Theorem 2.43 to obtain the following result:

If Rk =
⋃∞
n=1 Fn, where each Fn is a closed subset of Rk, then at least one Fn has a nonempty interior.
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Equivalent statement: If Gn is a dense open subset of Rk, for n = 1, 2, 3, . . ., then ∩∞n=1Gn is not
empty (in fact, it is dense in Rk).

(This is a special case of Baire’s theorem; see Exercise 22, Chap. 3, for the general case.)

Solution: For each n ∈ N, let Fn ⊆ Rk be closed such that F ◦n = ∅. LetN ∈ N and U =
(⋃N

n=1 Fn

)◦
.

Then

U ⊆
N⋃
n=1

U ∩ Fn = ∅.

Let f0 ∈ F c
0 and r0 > 0 such that B(f0, 2r0) ⊆ F c

0 . For each N ≥ 1, let fN ∈ B(fN−1, rN−1) and
rN−1 > 2rN > 0 such that B(fN , 2rN) ⊆ B(fN−1, rN−1) ∩ F c

N . Then

B(fN , rN) ⊆ B(fN , 2rN) ⊆ B(fN−1, rN−1) ⊆ B(fN−1, rN−1)

and

B(fN , rN) ⊆

(
N⋃
n=1

Fn

)c

for every N ≥ 1. Since {B(fN , rN)}N∈N is a family of compact sets with nonempty finite intersections,

∅ 6=
⋂
N∈N

B(fN , rN) ⊆

(⋃
n∈N

Fn

)c

.

Take the contrapositive.
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3 Numerical Sequences and Series

1. Prove that convergence of {sn} implies convergence of {|sn|}. Is the converse true?

Solution: Let limn→∞ sn = s, let ε > 0, and let N ∈ N such that n ≥ N implies |sn − s| < ε. Then
||sn| − |s|| ≤ |sn − s| < ε for all n ≥ N . Thus limn→∞ |sn| = |s|.

Let sn = (−1)n. Then |sn| = 1 is a convergent sequence. On the other hand, |sn+1 − sn| = 2 (for all
n ∈ N) shows that sn is not convergent because it is not a Cauchy sequence.

2. Calculate limn→∞(
√
n2 + n− n).

Solution: Let r ∈ R and n ∈ N such that 0 < r < 1
2

and r2

1−2r < n. Then 2rn+ r2 < n yields

r =

√
(n+ r)2 − n

=
√
n2 + 2rn+ r2 − n

<
√
n2 + n− n

<

√
n2 + n+

1

4
− n

=
1

2
.

Thus limn→∞(
√
n2 + n− n) = 1

2
.

3. If s1 =
√

2, and

sn+1 =
√

2 +
√
sn (n = 1, 2, 3, . . .),

prove that {sn} converges, and that sn < 2 for n = 1, 2, 3, . . ..

Solution: The identity
s2n+1 − s2n =

√
sn −

√
sn−1

demonstrates that sn is monotone. Since

s22 = 2 +
4
√

2 > 2 = s21,

sn is increasing. If sn < 2 then sn+1 < 2 is shown by

4− s2n+1 = 2−
√
sn > 0.

Thus sn is a bounded increasing sequence, hence convergent.

4. Find the upper and lower limits of the sequence {sn} defined by

s1 = 0; s2m =
s2m−1

2
; s2m+1 =

1

2
+ s2m.
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Solution: Suppose that s2m = 1
2
− 2−m. Then

s2(m+1) =
1

2

(
1

2
+ s2m

)
=

1

2

(
1− 2−m

)
=

1

2
− 2−(m+1).

Suppose that s2m−1 = 1− 21−m. Then

s2(m+1)−1 =
1

2
(1 + s2m−1) =

1

2
(2− 21−m) = 1− 21−(m+1).

By induction s2m = 1
2
−2−m and s2m−1 = 1−21−m for all m ∈ Z+. If n > 2m, then 1

2
−2−m < sn < 1.

Thus
1

2
≤ lim inf sn ≤ lim sup sn ≤ 1

yields
lim sup
n→∞

sn = lim
m→∞

(1− 21−m) = 1

and

lim inf
n→∞

sn = lim
m→∞

(
1

2
− 2−m

)
=

1

2
.

5. For any two real sequences {an}, {bn}, prove that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn,

provided the sum on the right is not of the form ∞−∞.

Solution: Let {nk} be a sequence in N such that

lim
k→∞

(ank
+ bnk

) = lim sup (an + bn) .

Let A and B be the sets of subsequential limits of {ank
} and {bnk

} respectively. Then

lim sup (an + bn) = lim
k→∞

(ank
+ bnk

) ≤ supA+ supB ≤ lim sup an + lim sup bn.

6. Investigate the behavior (convergence or divergence) of
∑
an if

(a) an =
√
n+ 1− n;

(b) an =
√
n+1−n
n

;

(c) an = ( n
√
n− 1)

n
;

(d) an = 1
1+zn

, for complex values of z.

Solution:

(a)
∑N

n=0

√
n+ 1− n =

√
N + 1→∞ as N →∞. Thus the sum diverges.

(b)
∑N

n=1

√
n+1−n
n

=
∑N

n=1
1

n(
√
n+1+

√
n)
≤ 1

2

∑N
n=1

1
n3/2 . The latter sum converges. Thus the former

does as well.
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(c) Let ε > 0 and K ∈ N such that 2K > 2
ε

and n
√
n− 1 < 1

2
for n ≥ K. If N ≥M ≥ K, then

N∑
n=M

(
n
√
n− 1

)n ≤ 2−M
N−M∑
n=0

2−n ≤ 21−K < ε.

Thus the sum converges by the Cauchy criteriion.

(d) If 1
1+zn

→ 0, as n→∞, then |z| > 1. Now,

1

z
− 1 + zn

1 + zn+1
=
z−(n+1) − z−n

z−n + z
→ 0

as n→∞, if |z| > 1. Finally, the ratio test yields

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1 + zn

1 + zn+1

∣∣∣∣ =

∣∣∣∣1z
∣∣∣∣ < 1

iff |z| > 1. Thus the sum converges iff |z| > 1.

7. Prove that the convergence of
∑
an implies the convergence of∑ √

an
n

,

if an ≥ 0.

Solution: Let x, y ≥ 0. Then

4xy ≤ (x− y)2 + 4xy = (x+ y)2

yields the arithmetic-geometric mean inequality:

√
xy ≤ x+ y

2
.

If N ∈ Z+, then
N∑
n=1

√
an
n

=
N∑
n=1

√
an ·

1

n2
≤ 1

2

N∑
n=1

an +
1

2

N∑
n=1

1

n2
.

The sums on the right converge, thus the sum on the left does as well.

8. If
∑
an converges, and if {bn} is monotonic and bounded, prove that

∑
anbn converges.

Solution: Let An =
∑n

k=1 ak, limn→∞ bn = b, βn = |bn − b|. Since {An} converges, it is bounded.
Furthermore, {βn} is a decreasing sequence converging to 0. By theorem 3.42,

∑
anβn converges.

Thus
N∑
n=1

anbn = sgn(b1 − b)
N∑
n=1

anβn + b

N∑
n=1

an

converges as well.
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9. Find the radius of convergence of each of the following power series:

(a)
∑
n3zn,

(b)
∑

2n

n!
zn,

(c)
∑

2n

n2 z
n,

(d)
∑

n3

3n
zn.

Solution:

(a)

lim
n→∞

n
√
n3 = lim

n→∞

(
n
√
n
)3

= 1.

By the root test, R = 1.

(b)

lim
n→∞

(
n!

(n+ 1)!
· 2n+1

2n

)
= lim

n→∞

2

n+ 1
= 0.

By the ratio test, R =∞.

(c)

lim
n→∞

n

√
2n

n2
= lim

n→∞
2

(
1
n
√
n

)2

= 2.

By the root test, R = 1
2
.

(d)

lim
n→∞

n

√
n3

3n
= lim

n→∞

1

3

(
n
√
n
)3

=
1

3
.

By the root test, R = 3.

10. Suppose that the coefficients of the power series
∑
anz

n are integers, infinitely many of which are
distinct from zero. Prove that the radius of convergence is at most 1.

Solution: Since 1 ≤ n
√
|an| infinitely often, lim supn→∞

n
√
|an| ≥ 1. Thus the radius of convergence

is at most 1.

11. Suppose an > 0, sn = a1 + · · ·+ an, and
∑
an diverges.

(a) Prove that
∑

an
1+an

diverges.

(b) Prove that
aN+1

sN+1

+ · · ·+ aN+k

sN+k

≥ 1− sN
sN+k

and deduce that
∑

an
sn

diverges.

(c) Prove that
an
s2n
≤ 1

sn−1
− 1

sn

and deduce that
∑

an
s2n

converges.
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(d) What can be said about ∑ an
1 + nan

and
∑ an

1 + n2an
?

Solution: Since
∑
an is a series of positive terms that diverges, its partial sums are unbounded.

(a) If an ≥ 1 for infinitely many n, let ank
be a subsequence such that ank

≥ 1 for all k ∈ N.
Then

N∑
n=1

an
1 + an

≥
∑

1≤nk≤N

1

2

for all N ∈ N. As N →∞, the sum on the right is unbounded, thus
∑

an
1+an

diverges.

If there is N ∈ N such that an < 1 for n ≥ N , then

N+M∑
n=N

an
1 + an

≥ 1

2

N+M∑
n=N

an

for all M ∈ N. The sum on the right is unbounded as M →∞, thus
∑

an
1+an

diverges.

(b)
k∑
j=1

aN+j

sN+j

≥
k∑
j=1

aN+j

sN+k

=
sN+k − sN
sN+k

= 1− sN
sN+k

.

Since the partial sums of
∑
an are increasing and unbounded, for every N ∈ N there is k ∈ N such

that 1− sN
sN+k

> 1
2
. Hence,

∑k
j=1

aN+j

sN+j
> 1

2
, and

∑
an
sn

fails the Cauchy criterion.

(c)
1

sn−1
− 1

sn
=

an
sn · sn−1

≥ an
s2n
.

If N ∈ N, then
N∑
n=2

an
s2n
≤

N∑
n=2

(
1

sn−1
− 1

sn

)
=

1

s1
− 1

sN
≤ 1

s1
.

Thus
∑

an
s2n

converges.

(d) The divergence of
∑
an does not solely determine the divergence of

∑
an

1+nan
:

• If an = 1
n
, then

∑
an

1+nan
= 1

2

∑
1
n

is divergent.

• If

an =

{
1 if n = 2k

2−n if n 6= 2k
,

then ∑ an
1 + nan

≤ 2 ·
∑

2−n = 4.
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If N ∈ N, then
N∑
n=1

an
1 + n2an

=
N∑
n=1

1
1
an

+ n2
≤

N∑
n=1

1

n2
.

Thus
∑

an
1+n2an

converges.

12. Suppose an > 0 and
∑
an converges. Put

rn =
∞∑
m=n

am.

(a) Prove that
am
rm

+ · · ·+ an
rn

> 1− rn
rm

if m < n, and deduce that
∑

an
rn

diverges.

(b) Prove that
an√
rn

< 2 (
√
rn −

√
rn+1)

and deduce that
∑

an√
rn

converges.

Solution:

(a) For fixed m and sufficiently large n, rn
rm

< 1
2
. Thus

n∑
k=m

ak
rk

>
n∑

k=m

ak
rm

> 1− rn
rm

shows that
∑

an
rn

fails the Cauchy criterion.

(b)

an√
rn
· (
√
rn +

√
rn+1) = an

(
1 +

√
rn+1

rn

)
< 2an = 2 (

√
rn −

√
rn+1) · (

√
rn +

√
rn+1) .

Thus
N∑
n=1

an√
rn

< 2
N∑
n=1

(
√
rn −

√
rn+1) =

√
r1 −

√
rN+1 <

√
r1,

shows that
∑

an√
rn

is a bounded series of positive terms. Hence, it converges.

13. Prove that the Cauchy product of two absolutely convergent series converges absolutely.

Solution: Let A =
∑
|an| , B =

∑
|bn|. Let C =

∑
cn be the Cauchy product of A and B. Since A

and B converge, so does C. Let ε > 0 and N ∈ N such that m ≥ n ≥ N implies 0 ≤
∑m

k=n ck < ε.
Then

m∑
k=n

∣∣∣∣∣
k∑
j=0

ajbk−j

∣∣∣∣∣ ≤
m∑
k=n

k∑
j=0

|aj| |bk−j| =
m∑
k=n

ck < ε.

Thus the Cauchy product of
∑
an and

∑
bn converges absolutely.
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14. If {sn} is a complex sequence, define its arithmetic means σn by

σn =
s0 + s1 + · · ·+ sn

n+ 1
(n = 0, 1, 2, . . .).

(a) If lim sn = s, prove that limσn = s.

(b) Construct a sequence {sn} which does not converge, although limσn = 0.

(c) Can it happen that sn > 0 for all n and that lim sup sn =∞, although limσn = 0?

(d) Put an = sn − sn−1, for n ≥ 1. Show that

sn − σn =
1

n+ 1

n∑
k=1

kak.

Assume that lim(nan) = 0 and that {σn} converges. Prove that {sn} converges. [This gives a
converse of (a), but under the additional assumption that nan → 0.]

(e) Derive the last conclusion from a weaker hypothesis: Assume M < ∞, |nan| ≤ M for all n,
and limσn = σ. Prove that lim sn = σ, by completing the following outline:

If m < n, then

sn − σn =
m+ 1

n−m
(σn − σm) +

1

n−m

n∑
i=m+1

(sn − si).

For these i,

|sn − si| ≤
(n− i)M
i+ 1

≤ (n−m− 1)M

m+ 2
.

Fix ε > 0 and associate with each n the integer m that satisfies

m ≤ n− ε
1 + ε

< m+ 1.

Then (m+ 1)/(n−m) ≤ 1/ε and |sn − si| < Mε. Hence

lim sup |sn − σ| ≤Mε.

Since ε was arbitrary, lim sn = σ.

Solution:

(a) Let ε > 0 and N ∈ N such that n ≥ N implies |sn − s| < ε. Then

|σn − s| =

∣∣∣∣∣ 1

n+ 1

N∑
k=0

sk +
1

n+ 1

n∑
k=N+1

sk − s

∣∣∣∣∣ ≤ 1

n+ 1

N∑
k=0

|sk − s|+
n−N
n+ 1

ε.

Thus lim sup |σn − s| ≤ ε for every ε > 0.

(b) Let s2m = 1, s2m−1 = −1 for m ∈ N. Then σ2m = 1
2m+1

and σ2m−1 = 0 for all m ∈ N. Thus
limσn = 0.

(c) Let sn =

{
k if n = 2k,
1
n!

otherwise.
Since sn is unbounded, lim sup sn = ∞. On the other hand, let

k = blog2 nc. Then

σn <
e

n+ 1
+

1

n+ 1
(1 + . . .+ k) < e · 2−k +

k(k + 1)

21+k
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As n→∞, k →∞. Thus limσn = 0.

(d)

sn − σn =
(n+ 1)sn −

∑n
j=0 sj

n+ 1

=
1

n+ 1

n∑
j=0

(sn − sj)

=
1

n+ 1

n∑
j=0

n∑
k=j+1

(sk − sk−1)

=
1

n+ 1

∑
0≤j<k≤n

ak

=
1

n+ 1

n∑
k=1

kak

Let limσn = σ, ε > 0, and N ∈ N such that n > N implies |σn − σ| < ε
2

and nan <
ε
2
. Then

|sn − σn| =

∣∣∣∣∣ 1

n+ 1

N∑
k=1

kak +
1

n+ 1

n∑
k=N+1

kak

∣∣∣∣∣ ≤
∑N

k=1 k |ak|
n+ 1

+
n−N
n+ 1

ε

2
.

Thus
lim sup |sn − σ| ≤ lim sup |sn − σn|+ lim sup |σn − σ| ≤ ε.

Since ε was arbitrary, lim sn = σ.

(e) If m < n, then

sn − σn = sn −
1

n+ 1

m∑
i=0

si −
1

n+ 1

n∑
i=m+1

si

= sn −
1

n+ 1

m∑
i=0

si −
(

1

n−m

)(
1− m+ 1

n+ 1

) n∑
i=m+1

si

=
m+ 1

n−m

[−(n−m)
∑m

i=0 si + (m+ 1)
∑n

i=m+1

(n+ 1)(m+ 1)

]
+ sn −

1

n−m

n∑
i=m+1

si

=
m+ 1

n−m

[
(m+ 1)

∑n
i=0 si − (n+ 1)

∑m
i=0 si

(n+ 1)(m+ 1)

]
+

1

n−m

(
(n−m)sn −

n∑
i=m+1

si

)

=
m+ 1

n−m

[
1

n+ 1

n∑
i=0

si −
1

m+ 1

m∑
i=0

si

]
+

1

n−m

n∑
i=m+1

(sn − si)

=
m+ 1

n−m
(σn − σm) +

1

n−m

n∑
i=m+1

(sn − si).
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If i > m, then

|sn − si| ≤

∣∣∣∣∣
n∑

j=i+1

sj − sj−1

∣∣∣∣∣ ≤
n∑

j=i+1

|aj| ≤M

n∑
j=i+1

1

j
≤ (n− i)M

i+ 1
≤ (n−m− 1)M

m+ 2
.

Let 1 > ε > 0 and m = bn−ε
1+ε
c. Then

m ≤n− ε
1 + ε

< m+ 1

m+ εm = (1 + ε)m ≤n− ε < (m+ 1)(1 + ε) = m+ 1 + εm+ ε

ε(m+ 1) ≤n−m < ε(m+ 2) + 1.

Thus
m+ 1

n−m
≤ 1

ε
and

(n−m− 1)M

m+ 2
< Mε.

Putting the above together yields

|sn − σn| ≤
∣∣∣∣m+ 1

n−m

∣∣∣∣ · |σn − σm|+ 1

n−m

n∑
i=m+1

|sn − si| ≤
1

ε
|σn − σm|+Mε.

Let N ∈ N such that i, j ≥ N implies that |σi − σj| < ε2. If n ≥ 2N + 3, then

m >
n− ε
1 + ε

− 1 >
n− 3

2
≥ N

and 1
ε
|σn − σm| < ε. Hence,

|sn − σ| ≤ |sn − σn|+ |σn − σ| ≤ (2 +M)ε,

if n ≥ 2N + 3. Since ε was arbitrary, lim sn = σ.

15. Definition 3.21 can be extended to the case in which the an lie in some fixed Rk. Absolute conver-
gence is defined as convergence of

∑
|an|. Show that Theorems 3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42,

3.45, 3.47, and 3.55 are true in this more general setting. (Only slight modifications are required in
any of the proofs.)

Solution:

• The statement and proof of 3.22, 3.23, 3.25(a), 3.33, 3.45, 3.47, and 3.55 are identical to the text.

• In the statement and proof of 3.34, replace
∣∣∣an+1

an

∣∣∣ with |an+1|
|an| .

• In the statement and proof of 3.42, an ∈ Rk, bn ∈ R1.

16. Fix a positive number α. Choose x1 >
√
α, and define x2, x3, x4, . . . , by the recursion formula

xn+1 =
1

2

(
xn +

α

xn

)
.
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(a) Prove that {xn} decreases monotonically and that limxn =
√
α.

(b) Put εn = xn −
√
α, and show that

εn+1 =
ε2n

2xn
<

ε2n
2
√
α

so that, setting β = 2
√
α,

εn+1 < β

(
ε1
β

)2n

(n = 1, 2, 3, . . .).

(c) This is a good algorithm for computing square roots, since the recursion formula is simple
and convergence is extremely rapid. For example, if α = 3 and x1 = 2, show that ε1/β <

1
10

and that
therefore

ε5 < 4 · 10−16, ε6 < 4 · 10−32.

Solution:

(a) By the arithmetic-geometric mean inequality,

xn+1 =
1

2

(
xn +

α

xn

)
>

√
xn ·

α

xn
=
√
α.

Consequently,

xn+1 =
1

2

(
x2n + α

xn

)
<

1

2
· 2x2n
xn

= xn.

Since {xn} is decreasing and bounded, it converges.

Let lim xn = x. Then x = 1
2

(
x+ α

x

)
implies x2 = α. Thus x =

√
α, because x ≥

√
α > 0.

(b)

εn+1 =
1

2

(
xn +

α

xn

)
−
√
α =

x2n − 2xn
√
α + (

√
α)2

2xn
=

ε2n
2xn

<
ε2n

2
√
α
.

If εn < β
(
ε1
β

)2n−1

, then

εn+1 <
ε2n
β

= β

(
εn
β

)2

< β

((
ε1
β

)2n−1
)2

= β

(
ε1
β

)2n

.

(c) Let α = 3, x1 = 2. Then

25 < 27

5 < 3
√

3

10 < 6
√

3

10√
3
− 5 < 1.

Thus 10 · ε1
β

= 10 ·
(

1√
3
− 1

2

)
= 10√

3
− 5 < 1. This gives ε1

β
< 1

10
.

Since 12 < 16, we know that β = 2
√

3 < 4. Therefore the bounds on ε5 and ε6 follow.
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17. Fix α > 1. Take x1 >
√
α, and define

xn+1 =
α + xn
1 + xn

= xn +
α− x2n
1 + xn

.

(a) Prove that x1 > x3 > x5 > · · · .
(b) Prove that x2 < x4 < x6 < · · · .
(c) Prove that limxn =

√
α.

(d) Compare the rapidity of convergence of this process with the one described in Exercise 16.

Solution:

• If xn >
√
α, then

xn+2 =
(1 + α)xn + 2(

√
α)2

2xn + (1 + α)
<

(1 +
√
α)2xn

(1 +
√
α)2

= xn. (7)

• If xn <
√
α, then

xn+2 =
(1 + α)xn + 2(

√
α)2

2xn + (1 + α)
>

((1 + α) + 2xn)xn
2xn + (1 + α)

= xn. (8)

•
xn+1 −

√
α = xn −

√
α +

α− x2n
1 + xn

=
(xn −

√
α)(1−

√
α)

xn + 1
. (9)

Thus xn 6=
√
α for all n and

xn+1 −
√
α

xn −
√
α

< 0. (10)

(a) Since x1 >
√
α, (7) and (10) show that

s2n+1 > s2(n+1)+1 >
√
α

for all n ∈ N.

(b) By (10), x2 <
√
α. By (8),

s2n < s2(n+1) <
√
α

for all n ∈ N.

(c) By (7) and (8), limx2n+1 =
√
α = limx2n. (If either equality failed to hold then (7) or (8)

would provide a contradiction.)

(d) Let N ∈ N such that n > N implies |xn −
√
α| < 1. By (9),

|εn+1| =
√
α− 1

xn + 1
· |εn|

= (x1 −
√
α)

n∏
k=1

√
α− 1

xn + 1

< (x1 −
√
α)

(
N∏
k=1

√
α− 1

xn + 1

)(
1− 1√

α

)n−N
.
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This process converges slowly if α is close to 1.

18. Replace the recursion formula of Exercise 16 by

xn+1 =
p− 1

p
xn +

α

p
x−p+1
n

where p is a fixed positive integer, and describe the behavior of the resulting sequences {xn}.

Solution: Let α > 0, x1 > p
√
α. By the arithmetic-geometric mean inequality,

xn+1 =
(p− 1)xn + αx−p+1

n

p
≥ p
√
xp−1n αx−p+1

n = p
√
α.

If xn > p
√
α, then

xn+1 =
p− 1

p
xn +

α

p
x−p+1
n <

p− 1

p
xn +

xpn
p
x−p+1
n = xn.

Thus {xn} is a convergent sequence with limit x ≥ p
√
α.

The recursion formula yields

x =
p− 1

p
x+

α

p
x1−p

1 = 1− 1

p
+
α

p
x−p

xp = α

x = p
√
α.

Furthermore,

19. Associate to each sequence a = {αn}, in which αn is 0 or 2, the real number

x(a) =
∞∑
n=1

αn
3n
.

Prove that the set of all x(a) is precisely the Cantor set described in Sec. 2.44.

Solution: Using the notation of 2.44, suppose that left endpoint of each interval of En has only 0’s
and 2 in its ternary expansion. Let [a, b] be one of the intervals in En+1. Then there is an interval
[c, d] in En such that [a, b] ⊆ [c, d] and c = a or b = d. If c = a, then the left endpoint of [a, b] has
only 0’s and 2’s in its ternary expansion. If b = d, then

a = b− 3−(n+1) = d− 3−(n+1) = c+ 3−n − 3−(n+1) = c+ 2 · 3−(n+1).

By induction, every interval in the construction of the Cantor set has only 0’s and 2’s in its ternary
expansion. Since there are 2n intervals in En,

En =
⋃

[r, r + 3−n]

where the union is over all r ∈ [0, 1] such that 3nr ∈ N and r’s ternary expansion contains no 1’s.
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Given a sequence a,

x(a) ∈

[
n∑
k=1

αk
3k
,

n∑
k=1

αk
3k

+ 3−n

]
⊆ En

for every n ≥ 1. Thus x(a) is in the Cantor set.

Conversely, let x be an element of the cantor set. Since x ∈ E1, there is α1 ∈ {0, 2} such that
x ∈

[
α1

3
, α1

3
+ 3−1

]
. Given x ∈

[∑n
k=1

αk

3k
,
∑n

k=1
αk

3k
+ 3−n

]
, there is αn+1 ∈ {0, 2} such that

x ∈

[
n+1∑
k=1

αk
3k
,

n∑
k=1

αk
3k

+ 3−(n+1)

]
⊆ En+1.

Thus

x(a) = lim
n→∞

n∑
k=1

αk
3k
≤ x ≤ lim

n→∞

(
n∑
k=1

αk
3k

+ 3−n

)
= x(a).

20. Suppose {pn} is a Cauchy sequence in a metric space X, and some subsequence {pni
} converges to

a point p ∈ X. Prove that the full sequence {pn} converges to p.

Solution: Let ε > 0, N ∈ N such that m,n, i ≥ N implies that d(pn, pm) < ε
2

and d(pni
, p) < ε

2
.

Note that ni ≥ i for all i ∈ N. If k ≥ N , then

d(pk, p) ≤ d(pk, pnk
) + d(pnk

, p) < ε.

21. Prove the following analogue of Theorem 3.10(b): If {En} is a sequence of closed nonempty and
bounded sets in a complete metric space X, if En ⊇ En+1, and if

lim
n→∞

diamEn = 0,

then
⋂∞
n=1En consists of exactly one point.

Solution: Choose xn ∈ En for each n ∈ Z+. Let ε > 0, N ∈ Z+ such that diamEN < ε. If m,n ≥ N ,
then d(xm, xn) < ε. Thus {xn} is a Cauchy sequence with limit x. For each n ∈ Z+, {xk}∞k=n ⊆ En
and En is closed. Thus x ∈ En for all n, and x ∈

⋂∞
n=1En. Furthermore, if y ∈

⋂∞
n=1En, then

d(x, y) ≤ diamEn for all n. Thus d(x, y) = 0, and y = x.

22. Suppose X is a nonempty complete metric space, and {Gn} is a sequence of dense open subsets of
X. Prove Baire’s theorem, namely, that

⋂∞
n=1Gn is not empty. (In fact, it is dense in X.) Hint:

Find a shrinking sequence of neighborhoods En such that En ⊆ Gn, and apply Exercise 21.

Solution: Let x1 ∈ G1, 0 < r1 such that B (x1, r1) ⊆ G1. Given x1, . . . , xn, let

xn+1 ∈ B
(
xn,

rn
2

)
∩Gn+1, 0 < rn+1 <

rn
2

such that
B (xn+1, rn+1) ⊆ B

(
xn,

rn
2

)
∩Gn+1.
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Then B
(
xn,

rn
2

)
⊆ Gn for all n, and {B

(
xn,

rn
2

)
} satisfy the hypothesis of exercise 21. Thus

∅ 6=
∞⋂
n=1

B
(
xn,

rn
2

)
⊆
∞⋂
n=1

Gn.

Given an open set U , restrict x1, r1 such that B (x1, r1) ⊂ U ∩G1. In this case, limxn ∈ U ∩
⋂∞
n=1Gn.

23. Suppose {pn} and {qn} are Cauchy sequences in a metric space X. Show that the sequence {d(pn, qn)}
converges. Hint: For any m,n,

d(pn, qn) ≤ d(pn, pm) + d(pm, qm) + d(qm, qn);

it follows that
|d(pn, qn)− d(pm, qm)|

is small if m and n are large.

Solution: For any m,n ∈ N,

d(pn, qn) ≤ d(pn, pm) + d(pm, qm) + d(qm, qn).

Thus
d(pn, qn)− d(pm, qm) ≤ d(pn, pm) + d(qm, qn).

Swapping the roles of m,n gives

|d(pn, qn)− d(pm, qm)| ≤ d(pm, pn) + d(qm, qn).

Let N ∈ N be such that m,n ≥ N implies d(pm, pn) < ε
2

and d(qm, qn) < ε
2
. Then

|d(pn, qn)− d(pm, qm)| < ε.

Consequently, {d(pn, qn)} is a Cauchy sequence in R. Since R is complete, {d(pn, qn)} converges.

24. Let X be a metric space.

(a) Call two Cauchy sequences {pn},{qn} in X equivalent if

lim
n→∞

d(pn, qn) = 0.

Prove that this is an equivalence relation.

(b) Let X∗ be the set of all equivalence classes so obtained. If P ∈ X∗, Q ∈ X∗, {pn} ∈ P, {qn} ∈
Q, define

∆(P,Q) = lim
n→∞

d(pn, qn);

by Exercise 23, this limit exists. Show that the number ∆(P,Q) is unchanged if {pn} and {qn} are
replaced by equivalent sequences, and hence that ∆ is a distance function in X∗.

(c) Prove that the resulting metric space X∗ is complete.

(d) For each p ∈ X, there is a Cauchy sequence all of whose terms are p; let Pp be the element
of X∗ which contains this sequence. Prove that

∆(Pp, Pq) = d(p, q)
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for all p, q ∈ X. In other words, the mapping φ defined by φ(p) = Pp is an isometry (i.e. distance-
preserving mapping) of X into X∗.

(e) Prove that φ(X) is dense in X∗, and that φ(X) = X∗ if X is complete. By (d), we may
identify X and φ(X) and thus regard X as embedded in the complete metric space X∗. We call X∗

the completion of X.

Solution:

(a) The following bullets show that this is an equivalence relation:

• lim d(pn, pn) = 0,

• lim d(pn, qn) = lim d(qn, pn), and

• lim d(pn, qn) ≤ lim [d(pn, rn) + d(rn, qn)] = lim d(pn, rn) + lim d(rn, qn).

(b) Let {pn} and {qn} be equivalent to {p′n} and {q′n}, respectively. Then

lim d(pn, qn) ≤ lim [d(pn, p
′
n) + d(p′n, q

′
n) + d(q′n, qn)] = lim d(p′n, q

′
n).

By symmetry, lim d(p′n, q
′
n) = lim d(pn, qn).

Let P,Q,R ∈ X∗, and {pn} ∈ P, {qn} ∈ Q, {rn} ∈ R. The following bullets show that ∆ is a metric:

• ∆(P,Q) = lim d(pn, qn) ≥ 0. In the case of equality, {pn} is equivalent to {qn}. Hence P = Q.

• ∆(P,Q) = lim d(pn, qn) = lim d(qn, pn) = ∆(Q,P ).

• ∆(P,Q) = lim d(pn, qn) ≤ lim d(pn, rn) + lim d(rn, qn) = ∆(P,R) + ∆(R,Q).

(c) Let {Pn} be a Cauchy sequence in X∗, and {pnk} ∈ Pn for each n. Let ε > 0, N1 ∈ N such
that m,n ≥ N1 implies

∆(Pm, Pn) <
ε

3
.

(d)

(e)

25. Let X be the metric space whose points are the rational numbers, with the metric d(x, y) = |x− y|.
What is the completion of this space? (Compare Exercise 24.)
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4 Continuity
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5 Differentiation
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6 The Riemann-Stieltjes Integral
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7 Sequences and Series of Functions
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8 Some Special Functions
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9 Functions of Several Variables
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10 Integration of Differential Forms
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11 The Lebesgue Theory

45


