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Kévin Santugini-Repiquet ∗

Abstract

We study the solutions to the Landau-Lifshitz system in a bilayered ferromagnetic
body when super-exchange and surface anisotropy interactions are present at the
interface between the layers. We prove the existence of weak solutions in infinite
time and strong solutions in finite time.
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1 Introduction

Ferromagnetic materials have long been the subject of scientific studies. Nowa-
days, they play an important role in the industry. Optimizing the form of a
ferromagnetic body is an important goal since its magnetic macroscopic prop-
erties depend strongly on it. Among the possible configurations, multi-layers
have been the focus of research in recent years. Physicists [1] have modeled
short-range interactions, such as super-exchange and surface anisotropy that
are able to cross a nonferromagnetic interface that split two ferromagnetic
bodies. These interactions modify the Neumann boundary condition in a non-
linear way.
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Figure 1. Geometry of the problem

The magnetic state of a ferromagnetic body 1 can be represented by a vector
field over R

3 called the magnetization M . The local norm of M is constant
and equal toMs inside the ferromagnetic body and 0 outside. The value ofMs

depends only on the material and its temperature which will be considered
constant throughout this paper. We work with the dimensionless vector field
m =M/Ms with a local norm |m| = 1. The behavior of m may be modeled
by the Landau-Lifshitz equation

∂m

∂t
= −m× h− αm× (m× h),

where h is the magnetic excitation. This equation has been widely studied. The
existence of weak solutions over infinite time and of strong solutions over finite
time with the homogenous Neumann boundary condition has been established
in [4], [5], [6], [7], and [8]. Existence of weak solutions has also been established
with the surface anisotropy interaction in [9].

We prove here the existence of both strong and weak solutions to the Landau-
Lifshitz system with the nonhomogenous Neumann boundary conditions that
arise from the presence of super-exchange and surface anisotropy.

We work on a geometry similar to the one presented in figure 1. Let B be a reg-
ular convex bounded open set of R2. Let L+ and L− be two positive real num-
ber and l be a small given positive real number, such that l � min(L+, L−).
We now introduce some notations

• I+
l = (l, L+), I−

l = (−L−,−l), and Il = I+
l ∪ I−

l .
• Ω+ = B × I+

l , Ω
− = B × I−

l , and Ω = Ω+ ∪ Ω−.
• QT = Ω × (0, T ).
• Γ+ = B × {+l}, Γ− = B × {−l} and Γ± = Γ+ ∪ Γ−.
• γ is the map that sends m to its trace on Γ±.
• γ′ is the trace map that sends m to γ(m ◦ σ) where σ is the application
that sends (x, y, z, t) to (x, y,−z, t).

1 For an introduction to ferromagnetism, refer to [2] or [3].
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• Γ = B × {0}. γ+l is the trace map that sends m to (γm) ◦ τ−l on Γ where
τ−l(x, y, z, t) = (x, y, z+l, t). γ−l is the trace map that sendsm to (γm)◦τ+l

on Γ.
• ν is the extension of the unitary exterior normal to Ω on Γ±, thus ν(x) =
−ez if z > 0 or if x belongs to Γ+, and ν(x) = ez if z < 0 or if x belongs
to Γ−.

In section 2, we describe the mathematical model of micromagnetism in a
ferromagnetic body, introducing the physical interactions and their associated
energies and operators. In section 3, we state the theorems we establish in this
article. These theorems assert the existence of both weak and strong solutions
of the Landau-Lifshitz system with an uniqueness result for strong solutions.
We then proceed to prove these theorems in section 5 and 6. Both proofs use
Galerkin’s method. As the basis verifies the homogenous Neumann condition,
other methods are required to obtain a nonhomogenous Neumann condition on
the boundary. We proceed by penalization for weak solutions and by extension
results for strong solutions.

2 Energies and associated operators

There are some interactions associated with the magnetization state of a ferro-
magnetic body. To each interaction corresponds an energy Ep and an operator
Hp given by the formulae

Ep(0) = 0,

DEp(m) · v = −
∫
Ω
Hp(m) · v dx for all v ∈ H

1(Ω).

Conversely, to each operator, we can associate an energy by the same formu-
lae. In the frequent case of Hp being a self-adjoint linear operator, Ep(m) =
−1

2

∫
Ω Hp(m) ·mdx.

2.1 Volume interactions

2.1.1 The anisotropy interaction

The anisotropic energy is Ea(m) = 1
2

∫
Ω(Km) ·m dx, where K is a C1(Ω)

map onto the set of symmetric positive matrices. Thus, Ha(m) = −Km.
A most common form of anisotropy is the uniaxis anisotropy with Km =
Kv((m · u)m−m) where u is a R

3 vector field and Kv > 0.
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2.1.2 The exchange interaction

The exchange energy is Ee(m) = A
2

∫
Ω|∇m|2 dx, where A > 0. The exchange

operator is defined as He(m) = A�m.

2.1.3 The demagnetization field interaction

We use here the quasi-static approximation of Maxwell’s system. We define
Hd as the operator that sends any m to the solution hd of the system

div(hd) = −div(m),

rot(hd) = 0,

m = 0 on R
3 \ Ω,

in the sense of distributions. The demagnetization field energy is Ed(m) =
−1

2

∫
Ω hd ·m dx = 1

2

∫
Ω|hd|2 dx.

Regarding the regularity of operator Hd, we have the following result

Theorem 1 For all 1 ≤ p < +∞, Hd is a continuous operator from L
p(Ω)

to L
p(Ω), and from W

1,p(Ω) to W
1,p(Ω).

PROOF. See [10] or [11].

2.2 Interaction on the boundary

2.2.1 The surface anisotropy interaction

We use the model described in [1]. The surface anisotropy energy and the
associated operator are

Esa =
Ks

2

∫
Γ−∪Γ+

(1− (γm · ν)2) dx,
Hsa = Ks((γm · ν)ν − γm)δΓ± on Γ− ∪ Γ+.

This operator has the same form as the volume anisotropy uniaxis operator
but with u = ν.

2.2.2 The super-exchange interaction

This interaction has its roots in quantum mechanics, see [2]. We use the math-
ematical model described in [1]. In this model, the energy and the operator
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associated with the super-exchange operator are

Ese(m) = J1

∫
Γ
(1− γ+l m · γ−l m) dx+ J2

∫
Γ
(1− |γ+l m · γ−l m|2) dx,

Hse = J1(γ
′m− γm) + 2J2((γm · γ′m)γ′m− |γ′m|2γm)δΓ±,

where J1, J2 are positive numbers.

2.2.3 Modification of the boundary condition

The boundary conditions verified by m are

∂m

∂ν
= 0 on ∂Ω \ Γ, (2.1a)

∂m

∂ν
=
Ks

A
(ν · γm)(ν − (ν · γm)γm) +

J1
A
(γ′m− (γm · γ′m)γm)

+ 2
J2
A
(γm · γ′m)(γ′m− (γm · γ′m)γm) on Γ+,

(2.1b)

∂m

∂ν
=
Ks

A
(ν · γm)(ν − (ν · γm)γm) +

J1
A
(γ′m− (γm · γ′m)γm)

+ 2
J2
A
(γm · γ′m)(γ′m− (γm · γ′m)γm) on Γ−.

(2.1c)

These are obtained from the stationary conditions on the boundary, see [1].

2.3 Some notations on the interaction operators and energies

We introduce the following notations,

Hd,a ≡ Hd +Ha, Ed,a ≡ Ed + Ea, (2.2a)

Hv ≡ Hd +Ha +He, Ev ≡ Ea + Ed + Ee, (2.2b)

Es ≡ Ese + Esa, Hs ≡ Hse +Hsa. (2.2c)

The total energy is

E ≡ Ev + Es. (2.2d)
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3 Definitions of solutions and main theorems

Formally, the solutions verify the following system of equations

∂m

∂t
= −m×Hv(m)− αm× (m×Hv(m)) in Ω × (0, T ), (3.1a)

|m| = 1, (3.1b)

m(·, 0) =m0, (3.1c)

in Ω × (0, T ), with the Neumann boundary conditions, such as in (2.1).

Throughout this article, the notation Hs(Ω) represents the classical Sobolev
spaces as defined in [12] or in [13]. We denote by H

s(Ω) the vector Sobolev
spaces (Hs(Ω))3. We also use the notation L

p(Ω) to represent (Lp(Ω))3.

3.1 Weak solutions: definitions and main theorem

We study the system (3.1), with boundary conditions (2.1). First, we define
the concept of weak solutions of the Landau-Lifshitz system, see [4].

Definition 2 Givenm0 in H
1(Ω), with |m0| = 1 a.e. in Ω, we callm a weak

solution to Landau-Lifshitz system if

(1) For all T > 0, m belongs to H
1(Ω × (0, T )), and |m| = 1 almost every-

where in Ω × (0, T ).
(2) For all φ in H

1(Ω × (0, T )),

∫
QT

∂m

∂t
· φ dx dt− α

∫
QT

(
m× ∂m

∂t

)
· φ dx dt

= (1 + α2)A
∫
QT

3∑
i=1

(
m× ∂m

∂xi

)
· ∂φ
∂xi

dx dt

− (1 + α2)
∫
QT

(m×Hd,a(m)) · φdx dt

− (1 + α2)Ks

∫
(Γ±)×(0,T )

(ν · γm)(γm× ν) · γφ dx dt

− (1 + α2)J1

∫
(Γ±)×(0,T )

(γm× γ′m) · γφ dx dt

− 2(1 + α2)J2

∫
(Γ±)×(0,T )

(γm · γ′m)(γm× γ′m) · γφ dx dt. (3.2)

(3) m(·, 0) =m0 in the sense of traces.
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(4) For all T > 0,

E(m(T )) +
α

1 + α2

∫
QT

∣∣∣∣∣∂m∂t
∣∣∣∣∣
2

dt dx ≤ E(m(0)), (3.3)

with E defined in (2.2) and in section 2.

Any classical solution to the Landau-Lifshitz equation is also a weak solution.
Any weak solutions of class C2 is also a classical solution.

We prove in section 5 the following result

Theorem 3 Given any m0 in H
1(Ω), |m0| = 1 almost everywhere on Ω,

there exists at least one weak solution to the Landau-Lifshitz system with non-
homogenous Neumann condition.

The solution is probably not unique. This is proven when only the exchange
interaction is present, see [4].

3.2 Strong solutions: definitions and main theorems

We study the strong solutions to the Landau-Lifshitz system in the presence of
super-exchange and surface anisotropy. The existence and uniqueness of such
strong solutions without the boundary terms have been established in [14]. We
prove the existence with the more general boundary condition

∂m

∂ν
=


0 on ∂Ω \ Γ,
Q+(γm, γ′m) on Γ+,

Q−(γm, γ′m) on Γ+,

(3.4)

where

Q+(γm, γ′m) = Q+
r (γm, γ′m)− (Q+

r (γm, γ′m) · γm)γm,

Q−(γm, γ′m) = Q−
r (γm, γ′m)− (Q−

r (γm, γ′m) · γm)γm,

and where Q+
r and Q−

r are two polynomials in two variables. The particular
case of super-exchange and surface anisotropy interactions is given by

Q+
r (γm, γ′m) =

Ks

A
(ν · γm)ν +

J1
A
γ′m+ 2

J2
A
(γm · γ′m)γ′m,

Q−
r (γm, γ′m) =

Ks

A
(ν · γm)ν +

J1
A
γ′m+ 2

J2
A
(γm · γ′m)γ′m.

Definition 4 We say that m in H
3, 3

2 (Ω × (0, T )) is a strong solution to the
Landau-Lifshitz equation with generalized boundary condition (3.4) and initial
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conditionm0 if it satisfies boundary condition (3.4) and equations (3.1) almost
everywhere in Ω × (0, T ).

We prove in section 6 the following result.

Theorem 5 Given an initial condition m0 belonging to H
2(Ω), |m0| = 1

almost everywhere on Ω, and satisfying the boundary condition

∂m0

∂ν
=


0 on ∂Ω \ Γ±,

Q+(γm0, γ
′m0) on Γ+,

Q−(γm0, γ
′m0) on Γ−.

(3.5)

then, there exist a positive time T and a strong solution to the Landau-Lifshitz
equation over (0, T ). Moreover, the time interval is bounded from below by a
function that only depends on the size of the initial condition.

The proof is based on Galerkin’s method with a modified Neumann operator
on the interface.

4 Some properties of Sobolev spaces and other useful results

First, we recall the reader about some properties of Sobolev spaces. As in
Lions-Magenes [15], we define the spaces

Hs1,s2(Ω × (0, T )) = L2(0, T ; Hs1(Ω)) ∩ Hs2(0, T ; L2(Ω)).

and we define

H
s1,s2(Ω×(0, T )) = L2(0, T ;Hs1(Ω))∩Hs2(0, T ;L2(Ω)) = (Hs1,s2(Ω×(0, T )))3.

In particular, we make an extensive use of the space H
3, 3

2 (Ω × (0, T )).

We recall here without proof some well-known properties of Sobolev spaces.
It can be verified [14], or [16, chap. 5] that the considered domain Ω is regular
enough for those inequalities to hold. In particular, Sobolev embeddings hold.

Lemma 6 The space H3, 3
2 (Ω×(0, T )) is embedded in the space C0(0, T ; H2(Ω)).

Lemma 7 Suppose u in H2(Ω), then u belongs to L∞(Ω) and there exists a
constant C such that

‖u‖L∞(Ω) ≤ C‖u‖
1
2

H1(Ω)‖u‖
1
2

H2(Ω).
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PROOF. This is true for all open subsets of R3 satisfying the cone property.
See Maz’ya [17], pp. 274.

Definition 8 We define H
m− 1

2
morc (∂Ω) as the subset of L2(∂Ω) of functions whose

restrictions on ∂B × (0, L), B × {0} et B × {L} are in Hm− 1
2 .

We define γ1 as the trace application that maps m to ∂m
∂ν

. Then H
1
2
morc =

γ1(H2(Ω)). This happens because there is no need of compatibility relations
between the normal traces in that case, see [15].

The following regularity properties hold.

Proposition 9 (Elliptic regularity)

The space
{
v ∈ H1(Ω) | �v ∈ L2(Ω), ∂v

∂ν
∈ H

1
2
morc(∂Ω)

}
is equal to H2(Ω) and

there exists a constant C such that for all v in H2(Ω)

‖v‖H2(Ω) ≤ C

‖v‖L2(Ω) + ‖�v‖L2(Ω) +

∥∥∥∥∥ ∂v∂ν
∥∥∥∥∥
H

1
2
morc(∂Ω)

 . (4.1a)

Proposition 10 The space
{
v ∈ H1(Ω),∇�v ∈ L

2(Ω), ∂v
∂ν

∈ H
3
2
morc(∂Ω)

}
is

equal to H3(Ω) and there exists a constant C such that for all v in H3(Ω)

‖v‖H3(Ω) ≤ C

‖v‖L2(Ω) + ‖∇�v‖L2(Ω) +

∥∥∥∥∥ ∂v∂ν
∥∥∥∥∥
H

3
2 (∂Ω)

 . (4.1b)

PROOF. See [14], [18], and [19]. For a way to reduce the case of domains such
as Ω to the case of domains with a smooth boundary by reflections, see [16,
chap. 5]

In particular, for v satisfying the homogenous Neumann boundary condition,
we derive from propositions 9 and 10

Corollary 11 If v belongs to H2(Ω) and satisfies ∂v
∂ν

= 0 then

‖v‖H2(Ω) ≤ C
(
‖v‖L2(Ω) + ‖�v‖L2(Ω)

)
. (4.2a)

If v also belongs to H3(Ω) then

‖v‖H3(Ω) ≤ C
(
‖v‖L2(Ω) + ‖∇�v‖L2(Ω)

)
. (4.2b)

We also use the

9



Lemma 12 (Aubin’s lemma) Let p, 1 ≤ p < +∞. Let B be a Banach
space. Let X, Y be Banach spaces such that X ⊂ B ⊆ Y , with compact injec-
tion from X to B. Let F be a set of functions included in Lp(0, T ;B). Suppose
F is bounded in Lp(0, T ;X) and suppose the set {∂tf, f ∈ F} is bounded in
Lp(0, T ; Y ), then F is compact in Lp(0, T ;B).

PROOF. See [20].

5 Proof of theorem 3

The proof is based on the method found in Alouges-Soyeur [4], and Labbé [7].
We use a penalization method, replacing the boundary condition by a volume
term on a thin layer. First, we introduce for any η belonging to (0,min(L− −
l, L+ + l)) the nonlinear operator Hη

s :

m �→ 1

2η


0 in R

3 \ (B × (Il \ Il+η) ),

2Ks((m · ν)ν −m) + 2J1(m
σ −m)

+4J2
(
(m ·mσ)mσ − |mσ|2m

) in B × (Il \ Il+η),

(5.1)
where mσ(·, ·, z, ·) = m(·, ·,−z, ·). We keep the same notations throughout
the rest of this section. We also introduce the corresponding energy

Eη
s =

Ks

2η

∫
B×(I

l
\I

l+η
)

(
|m|2 − (m · ν)2

)
dx

+
J1
2η

∫
B×(I

l
\I

l+η
)

( |m|2 + |mσ|2
2

− (m ·mσ)

)
dx

+
J2
2η

∫
B×I

l
\I

l+η

(
|mσ|2|m|2 − (m ·mσ)2

)
dx.

The general idea is to introduce the solutionmη of the Landau-Lifshitz system
with excitation h = H(m) + Hη

s(m) and to have η tend to zero. However,
we must first prove the existence of solutions with such nonlinear excitation.
Following Alouges and SoyeurSoyeur [4], and Labbé [7], we introduce, for all
positive integers k and positive real η, the penalized problem

α
∂mk,(η)

∂t
+mk,(η) × ∂mk,(η)

∂t
= (1 + α2)(H(mk,(η)) +Hη

s(m
k,(η)))

− k(1 + α2)(|mk,(η)|2 − 1)mk,(η)) in Ω,

∂mk,(η)

∂ν
= 0 on ∂Ω.

To solve this system of equations, we use Galerkin’s method.
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Galerkin’s method We introduce the orthonormal base of L2(Ω) whose el-
ements wi are the eigenvectors of the Laplacian operator with the homoge-
nous Neumann boundary condition. The sequence (w1, . . . , wn, . . .) is also
an orthogonal basis of H1(Ω). This basis exists when the embedding of
H1(Ω) to L2(Ω) is compact, which is the case here since Ω satisfies the cone
property and is bounded, see [12]. We define Vn as the subspace generated
by {w1, . . . , wn}. By classical results, each wi belongs to C∞(Ω). For each
n ≥ 1, we search mk,(η)

n in Vn ⊗ C1([0, T ∗
n);R

3) that verifies the following
weak formulation for all test function ψ in Vn ⊗ C1([0,+∞);R3)(

α
∂mk,(η)

n

∂t
+mk,(η)

n × ∂mk,(η)
n

∂t
− (1 + α2)Hv(m

k,(η)
n ),ψ

)
L2(QT )

+(1 + α2)
(
k(|mk,(η)

n |2 − 1)mk,(η)
n )−Hη

s (m
k,(η)
n ),ψ

)
L2(QT )

= 0,

(5.2)

and the following initial condition

mk,(η)
n (·, 0) = Pn(m0), (5.3)

where Pn is the orthogonal projection on Vn, as a subspace of L2(Ω). We
expand mk,(η)

n on the (wi)i basis as
∑n

i=1ϕi,n(t)wi where each ϕi,n belongs
to C1(R+;R3). We define Φn as the finite sequences (ϕi,n)i∈[[1,n]], and obtain
an equivalent system expressed in terms of Φn:

dΦn

dt
−A(Φn(t))

dΦn

dt
= F (Φn(t)),

where F is a polynomial, thus of class C∞ and Φn(t) �→ A(Φn(t)) is linear
continuous, thus smooth. Moreover, A(Φ) is an antisymmetric matrix for all
Φ. So the matrix I−A(Φ) is nonsingular and the function Φ �→ (I−A(Φ))−1

is of class C∞. By the Cauchy-Lipschitz theorem, for every n, there is a
solutionmk,(η)

n on some time interval (0, T n) with Φn of class C∞. Next, we

derive some estimates onmk,(η)
n . In equation (5.2), we take ψ = ∂m

k,(η)
n

∂t
and

after integration over (0, T ) we obtain for all time T > 0

Ev(m
k,(η)
n (T )) +

α

1 + α2

∫ T

O

∥∥∥∥∥∂mk,(η)
n

∂t

∥∥∥∥∥
2

L2(Ω)

dt

+ Eη
s(m

k,(η)
n (T )) +

k

4

∫
Ω
(|mk,(η)

n (T )|2 − 1)2 dx

≤ Ev(m
k,(η)
n (0)) + Eη

s(m
k,(η)
n (0))

+
k

4

∫
Ω
(|mk,(η)

n (0)|2 − 1)2 dx. (5.4)

For any positive integer n,mk,(η)
n exists for any time T > 0 in C∞(0, T ;H1(Ω)).

Since H1(Ω) is embedded in L
4(Ω), the right-hand side of equation (5.4) re-

mains bounded independently of n. So for all T > 0,

11



• mk,(η)
n is bounded in H

1(Ω × (0, T )),
• mk,(η)

n is bounded in L∞((0, T );H1(Ω)),

• ∂m
k,(η)
n

∂t
is bounded in L

2(Ω × (0, T )),
• (|mk,(η)

n |2 − 1) is bounded in L
2(Ω × (0, T )).

There exists a subsequence mk,(η)
nj

still writtenmk,(η)
n , andmk,(η) in H

1(Ω×
(0, T )) such that for all T > 0

lim
n→∞m

k,(η)
n =mk,(η) weakly in H

1(Ω × (0, T )),

lim
n→∞(|m

k,(η)
n |2 − 1) = (|mk,(η)|2 − 1) weakly in L

2(Ω × (0, T )).

Moreover, mk,(η) belongs to L∞(0, T ;H1(Ω)). According to Aubin’s lemma,
for all 1 ≤ p < 6 and 1 ≤ q < +∞:

lim
n→∞m

k,(η)
n =mk,(η) strongly in Lq((0, T );Lp(Ω)).

Hence, mk,(η) verifies the following properties:
(1) mk,(η)(·, 0) =m0 since Pn(m0) tends strongly tom0 in H

1(Ω× (0, T ))
as n tends to infinity.

(2) We now take the limit in equation (5.4). Since |m0| = 1 and mk,(η)
n (0)

strongly converges to m0 in H
1(Ω) and in L

6(Ω), the right-hand side
of equation (5.4) converges to Eη

s(m0) + Ev(m0). By the lower semi-
continuity of convex functions we obtain

∫
QT

∣∣∣∣∣∂mk,(η)

∂t

∣∣∣∣∣
2

dx dt ≤ lim inf
n→∞

∫
QT

∣∣∣∣∣∂mk,(η)
n

∂t

∣∣∣∣∣
2

dx dt.

Before considering the energy terms and the penalization term we take
for each particular T a further subsequence such that

lim
n→∞m

k,(η)
n (T ) =mk,(η)(T ) weakly in H

1(Ω).

Then, by the lower semi-continuity of convex applications

∫
Ω
|∇mk,(η)(T |2 dx ≤ lim inf

n→∞

∫
Ω
|∇mk,(η)

n (T )|2 dx.

Moreover mk,(η)
n (T ) converges strongly in L

2 ∩ L
p(Ω) to mk,(η)(T ) for

1 ≤ p < 6. Hence,

lim
n→∞Ev(m

k,(η)
n (T )) + Eη

s(m
k,(η)
n (T )) = Ev(m

k,(η)(T )) + Eη
s(m

k,(η)(T )).

12



We derive from the previous relations that

Ev(m
k,(η)(T )) +

α

1 + α2

∫
QT

∣∣∣∣∣∂m
k,(η)

∂t

∣∣∣∣∣
2

dx dt

+Eη
s(m

k,(η)(T )) +
k

4

∫
Ω
(|mk,(η)(T )|2 − 1)2 dx ≤ Ev(m0) + Eη

s(m0).

(5.5)

(3) For all T > 0, for all ϕ in C∞(0, T ;R3), for all 1 ≥ i ≥ n,mk,(η)
n verifies

∫
QT

mk,(η)
n × ∂mk,(η)

n

∂t
wiϕ dx dt+ α

∫
QT

∂mk,(η)
n

∂t
wiϕ dx dt

= (1 + α2)
∫
QT

Hd,a(m
k,(η)
n )wiϕ dx dt

− (1 + α2)A
∫
QT

3∑
j=1

∂mk,(η)
n

∂xj
· ∂ϕwi

∂xj
dx dt

+ (1 + α2)
∫
QT

Hη
s(m

k,(η)
n ) ·ϕwi dx dt

− (1 + α2)k
∫
QT

(|mk,(η)
n |2 − 1)mk,(η)

n wiϕ dx dt.

We recall that ϕwi belongs to C∞(QT ). By Aubin’s lemma,mk,(η)
n tends

strongly tomk,(η) in L
4(QT ). We take the limit in every term and obtain

∫
QT

mk,(η) × ∂mk,(η)

∂t
·ψ dx dt+ α

∫
QT

∂mk,(η)

∂t
·ψ dx dt

= (1 + α2)
∫
QT

Hd,a(m
k,(η)) ·ψ dx dt

− (1 + α2)A
∫
QT

3∑
j=1

∂mk,(η)

∂xj
· ∂ψ
∂xj

dx dt

+ (1 + α2)
∫
QT

Hη
s(m

k,(η)) ·ψ dx dt

− (1 + α2)k
∫
QT

(|mk,(η)|2 − 1)mk,(η)ψ dx dt, (5.6)

for all ψ in
(⋃+∞

i=1 Vn

)
⊗C∞([0, T ];R3). Since this set is dense in H

1(Ω×
(0, T )), the equality (5.6) also holds for any ψ in H

1(Ω × (0, T )).
Convergence of the penalized problem By estimate (5.5), there exists a
subsequence of (mk,(η))k, still denoted (mk,(η))k, and m

(η) in H
1(QT ) and

in L∞(0, T ;H1(Ω)) such that for all T > 0:

mk,(η) →m(η) weakly in H
1(QT ),

|mk,(η)|2 − 1 → 0 strongly in L
2(QT ).

13



Moreover, by Aubin’s lemma,

mk,(η) →m(η) strongly in Lq(0, T ;Lp(Ω)),

for 1 ≤ p < 6, and 1 ≤ q < +∞. Especially, the convergence is obtained in
L
4(QT ).
The properties of m(η) are

(1) For all k ≥ 0, mk,(η)(·, 0) =m0, thus m
(η)(·, 0) =m0.

(2) |mk,(η)|2 − 1 tends strongly in L
2(QT ) to both 0 and |m(η)|2 − 1, hence

|m(η)| = 1 a.e. in Ω × (0,+∞).
(3) Since the penalization term in the energy estimate is positive, it can be

omitted when passing to the limit in (5.5). The other terms are handled
as previously done in the convergence ofmk,(η)

n tomk,(η) and we obtain

Ev(m
(η)(T )) + Eη

s(m
(η)(T )) +

α

1 + α2

∫
QT

∣∣∣∣∣∂m
(η)

∂t

∣∣∣∣∣
2

dx dt

≤ Ev(m0) + Eη
s(m0). (5.7)

(4) Let φ be a vector field belonging to (C∞(Ω × (0, T ))3. We take ψ =
mk,(η) × φ in relation (5.6) and we obtain

∫
QT

|mk,(η)|2∂m
k,(η)

∂t
· φdx dt = α

∫
QT

mk,(η) × ∂mk,(η)

∂t
· φdx dt

+
∫
QT

(
mk,(η) · ∂m

k,(η)

∂t

)
mk,(η) · φ dx dt

− (1 + α2)
∫
QT

(mk,(η) ×Hd,a(m
k,(η))) · φdx dt

+ (1 + α2)A
∫
QT

3∑
j=1

(
mk,(η) × ∂mk,(η)

∂xj

)
· ∂φ
∂xj

dx dt

− (1 + α2)
∫
QT

(mk,(η) ×Hη
s(m

k,(η))) · φ dx dt. (5.8)

By Aubin’s lemma, we know that mk,(η) tends strongly to m(η) in
L
4(QT ). We can take the limit in every term in (5.8) and obtain

∫
QT

∂m(η)

∂t
· φ dx dt = α

∫
QT

m(η) × ∂m(η)

∂t
· φ dx dt

− (1 + α2)
∫
QT

(m(η) ×Hd,a(m
(η))) · φdx dt

+ (1 + α2)A
∫
QT

3∑
j=1

(
m(η) × ∂m(η)

∂xj

)
· ∂φ
∂xj

dx dt

− (1 + α2)
∫
QT

(m(η) ×Hη
s(m

(η))) · φ dx dt.

(5.9)
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Convergence to the weak solution We study the convergence of m(η) as
the thickness η tends to 0. m0 belongs 2 to C0((−L−,−l) ∪ (l, L+);L4(B)).

lim
η→0

Ev(m0) + Eη
s(m0) = Ev(m0) + Es(m0).

Hence the right-hand side of estimate (5.7) is bounded independently of η.
Moreover |m(η)| = 1 locally, for all η > 0, hence:
• m(η) is bounded in H

1(Ω × (0, T )),
• m(η) is bounded in L∞(0, T ;H1(Ω)).
Since the considered spaces are reflexive, there exist a subsequence of m(η)

and m in H
1(Ω × (0, T )) ∩ L∞(0, T ;H1(Ω)) such that

m(η) →m weakly in H
1(Ω × (0, T )), (5.10a)

m(η) →m strongly in L
2(Ω × (0, T )), (5.10b)

m(η) →m strongly in L
∞(Il,L

2(B × (0, T ))). (5.10c)

Since |m(η)| = 1, for all p, 2 ≤ p < +∞, m(η) tends strongly to m in
L
∞(Il,L

p(B × (0, T ))).
We now prove thatm is a weak solution to the Landau-Lifshitz equation:

(1) Clearly, m(·, 0) =m0.
(2) By the strong L

2 convergence, |m| = 1 almost everywhere in Ω×(0, T ).
(3) We take the limit in equality (5.9). All the volume terms converge to

their intuitive limit as in the previous steps of the proof. m(η) tends
strongly to m in L

∞(Il,L
4(B × (0, T ))). Thus,

lim sup
η→0

∣∣∣∣∣
∫
QT

(
m(η) ×Hη

s(m
(η))

)
· φ dx dt

−
∫
QT

(m×Hη
s(m)) · φ dx dt)

∣∣∣∣∣ = 0.

Moreover m belongs 3 , so

lim
η→0

∫
QT

(m×Hη
s(m)) · φ dx dt =

∫
(Γ±)×(0,T )

(m×Hs(m)) · φdx dt.

Hence, the boundary terms converge to their intuitive limits and we
obtain relation (3.2).

(4) In order to take the limit in estimate (5.7), we extract for any T > 0
a subsequence, depending on T , such that m(η)(·, T ) tends to m(·, T )
weakly in H

1(Ω). All the volume terms converge and are handled as
in the precedent stage. It remains to calculate the limit as η tends
to 0 of Eη

s(m
(η)(T )), which requires a little more work. First, for any

2 This is proved in [12] or in [15].
3 This a consequence of interpolation results found in [12] to L∞(0, T ; C0(Il;L4(B)))
or in [15].
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0 ≤ s < 1m(η)(·, T ) tends tom(·, T ) strongly in H
s(Ω). Hence, for any

1 ≤ p < 4, the convergence holds in the normed spaces L∞(Il,L
p(B)).

Since |m(η)| = |m| = 1 almost everywhere, the convergence holds even
for 1 ≤ p < +∞. Especially, for p = 4, we obtain

lim sup
η→0

∣∣∣Eη
s(m

(η)(T ))− Eη
s(m(T ))

∣∣∣ = 0.

Since m(T ) belongs to H
1(Ω) embedded in C0(Il,L

4(B))

lim
η→0

Eη
s(m(T )) = Es(m(T )).

Thus, m verifies the energy estimate

Ev(m(T ))+Es(m(T ))+
α

1 + α2

∫
QT

∣∣∣∣∣∂m∂t
∣∣∣∣∣
2

dx dt ≤ Ev(m0)+Es(m0)

≤ E(m0) (5.11)

Hence, m verifies all the required properties and is therefore a weak solu-
tion. �

6 Proof of theorem 5

The general idea is to introduce a sequence (mn)n∈N whose elements satisfy
equations (6.2), (3.1b), (3.1c) and a variation of equation (3.4)

∂mn

∂ν
=


0 on ∂Ω \ Γ,
Q+

r (γm
n−1, γ′mn−1)− (Q+

r (γm
n−1, γ′mn−1) · γmn)γmn on Γ+,

Q−
r (γm

n−1, γ′mn−1)− (Q−
r (γm

n−1, γ′mn−1) · γmn)γmn on Γ−,
(6.1)

for all n ≥ 0. We call this sequence the outer converging sequence. The limit
being the solution to theorem 5. Knowing mn, the proof of the existence of
mn+1 require itself the convergence of yet another sequence which is denoted as
the inner converging sequence. The proof of the existence and the convergence
of such sequences is based on the method and inequalities found in [14].

The construction of the inner converging sequences uses a modification of
the proof of Carbou and Fabrie [14]. First, we recall the reader about some
inequalities.
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6.1 Some remarks about the Landau-Lifshitz system

Definition 13 We call the developed equation of Landau-Lifshitz the follow-
ing equation where the dissipating exchange term has been developed

∂m

∂t
= αA�m+ αA|∇m|2m− Am×�m
−m×Hd,a(m)− αm× (m×Hd,a(m)).

(6.2)

It is easily verified that ifm belongs to L2(0, T ;H2(Ω)) and if |m| = 1 almost
everywhere, then equation (3.1a) and equation (6.2) are equivalent.

Lemma 14 Let m be in L2(0, T ;H3(Ω)) ∩ L∞(0, T ;H2(Ω)). If m verifies ei-
ther the Landau-Lifshitz equation (3.1a) or its developed version (6.2), then

m ∈ H1(0, T ;H1(Ω)),

m ∈ C0(0, T ;H2(Ω)),

m ∈ H
3
2 (0, T ;L2(Ω)).

PROOF. Calculating the gradient of either equation (6.2) or equation (3.1a),
m belongs to the space H1(0, T ;H1(Ω)). By interpolation, see [13],m belongs
to C0(0, T ;H2(Ω)). For the last assertion, we use interpolations and the fact
that if A is a continuous bilinear operator from spaces X, Y into space Z then
A is bilinear continuous from the spaces (L∞ ∩ H

1
2 )(X), (L∞ ∩ H

1
2 )(Y ) into

(L∞ ∩H
1
2 )(Z).

6.2 Landau-Lifshitz with nonzero affine Neumann boundary condition

To construct the needed sequences, we need to prove the existence of solutions
of the Landau-Lifshitz system with some affine terms. From this result, we
derive the existence of solutions with an nonzero affine Neumann boundary
condition.

Proposition 15 Let T ∗ be a positive real. Let v be in H
3, 3

2 (Ω× (0, T )) for all
T < T ∗ with

∂(m0 − v(·, 0))
∂ν

= 0.

Then there exist a unique maximal T̃ ∗ ≤ T ∗ and a unique u in H
3, 3

2 (Ω×(0, T )),
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for all T < T̃ ∗, where u is the solution to

∂u

∂t
= −∂v

∂t
+ αA�(u+ v) + αA|∇(u+ v)|2(u+ v)− A(u+ v)×�(u+ v)

− (u+ v)×Hd,a(u+ v)− α(u+ v)× ((u+ v)×Hd,a(u+ v)),

(6.3)

∂u

∂ν
= 0, (6.4)

u(·, 0) =m0 − v(·, 0). (6.5)

Moreover, if T̃ ∗ < T ∗, then

lim
t→T̃ ∗

‖u‖H2(t) = +∞.

PROOF. We use Galerkin’s method. For the estimates, we use inequali-
ties (4.2a) and (4.2b). Let (wi)i be the scalar eigenfunctions of the Laplace
operator with the homogenous Neumann boundary condition. The eigenfunc-
tions (wi)i are an orthonormal basis of L2(Ω) and also an orthogonal basis of
H1(Ω) and of {f ∈ H2(Ω)|∂f

∂ν
= 0}.

We look for a local solution un in Vn ⊗ C∞([0, Tn);R
3) of the system

un(·, 0) = Pn(m0 − v(·, 0)), (6.6)

∂un

∂t
= Pn

(
− ∂v

∂t
+ αA�(un + v) + αA|∇(un + v)|2(un + v)− A(un + v)×�(un + v)

− (un + v)×Hd,a(u
n + v)− α(un + v)× ((un + v)×Hd,a(u

n + v))

)
.

(6.7)

where Pn is the orthogonal projector on the vector subspace Vn generated by
{w1, . . . , wn}. We decompose un =

∑n
k=1φ

n
k(t)wk on the (w1, . . . , wn) base.

By the Cauchy-Lipschitz theorem, un exists at least locally in time. We now
give some estimates on un. We recall that estimates on∇�un give an estimate
on un in L2(0, T ;H3(Ω)) by corollary 11. For the estimates, we define wn =
un+v. In all the subsequent estimates, η is a positive real that can be chosen
arbitrarily small but independently of n. C is a constant that only depends
on the domain Ω. C(η) is a constant depending also on η.
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First estimate Multiplying equation (6.7) by un and integrating over Ω gives

1

2

d‖un‖2
L2(Ω)

dt
+ αA‖∇un‖2

L2(Ω) = −
∫
Ω

∂v

∂t
· un dx︸ ︷︷ ︸
I

+αA
∫
Ω
�v · un dx︸ ︷︷ ︸

II

+αA
∫
Ω
|∇wn|2wn · un dx︸ ︷︷ ︸

III

−A
∫
Ω
(v ×�wn) · un dx︸ ︷︷ ︸

IV

−
∫
Ω
(v ×Hd,a(w

n)) · un dx︸ ︷︷ ︸
V

− α
∫
Ω
(v × (wn ×Hd,a(w

n))) · un dx︸ ︷︷ ︸
V I

. (6.8)

First, we estimate I =
∫
Ω

∂v
∂t

· un dx. By Cauchy-Schwartz inequality, we
obtain

|I| ≤ 1

2

∥∥∥∥∥∂v∂t
∥∥∥∥∥
2

L2(Ω)

+
1

2
‖un‖2

L2(Ω). (6.9a)

Then, we estimate II =
∫
Ω �v · un dx, and we obtain

|II| ≤ 1

2
‖�v‖2

L2(Ω) +
1

2
‖un‖2

L2(Ω). (6.9b)

Let’s estimate III =
∫
Ω|∇(un + v)|2(un + v) ·un dx. By Hölder inequality,

we obtain

|III| ≤ 2(‖∇un‖2
L2(Ω) + ‖∇v‖2

L2(Ω))(‖un‖L∞(Ω) + ‖v‖L∞(Ω))‖un‖L∞(Ω).
(6.9c)

If we estimate IV =
∫
Ω(v × �(un + v)) · un dx, we obtain by Hölder

inequality

|IV | ≤
(
‖�un‖L2(Ω) + ‖�v‖L2(Ω)

)
‖v‖L∞(Ω)‖un‖L2(Ω). (6.9d)

We estimate V =
∫
Ω(v×Hd,a(u

n + v)) ·un dx, and obtain using theorem 1

|V | ≤ C‖v‖L4(Ω)(‖un‖L4(Ω) + ‖v‖L4(Ω))‖un‖L2(Ω). (6.9e)

Estimating V I =
∫
Ω(v × ((un + v)×Hd,a(u

n + v))) · un dx yields

|V I| ≤ C‖v‖L6(Ω)(‖un‖L6(Ω) + ‖v‖L6(Ω))
2‖un‖L2(Ω). (6.9f)

Combining equations (6.9), and using classical Sobolev embeddings, we
obtain the whole first estimate

1

2

d‖un‖L2(Ω)2

dt
+αA‖∇un‖2

L2(Ω) ≤ P1(‖v‖H2(Ω))+P2(‖un‖H2(Ω))+
1

2

∥∥∥∥∥∂v∂t
∥∥∥∥∥
2

L2(Ω)

,

(6.10)
where P1 and P2 are polynomials that do not depend on n.
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Second estimate Multiplying equation (6.7) by �2un and integrating over
Ω gives us:

1

2

d‖�un‖2
L2(Ω)

dt
+αA‖∇�un‖2

L2(Ω) =
∫
Ω

∂∇v
∂t

· ∇�un︸ ︷︷ ︸
I

−αA
∫
Ω
∇�v · ∇�un dx︸ ︷︷ ︸

II

− 2αA
∫
Ω
(D2wn∇wn)(wn · ∇�un) dx︸ ︷︷ ︸

III

−αA
∫
Ω
|∇wn|2∇wn · ∇�un dx︸ ︷︷ ︸

IV

+ A
∫
Ω
(∇wn ×�wn) · ∇�un dx︸ ︷︷ ︸

V

+A
∫
Ω
(wn ×∇�v) · ∇�un dx︸ ︷︷ ︸

V I

−
∫
Ω
(∇wn ×Hd,a(w

n)) · ∇�un dx︸ ︷︷ ︸
V II

−
∫
Ω
(wn ×∇Hd,a(w

n)) · ∇�un dx︸ ︷︷ ︸
V III

− α
∫
Ω
(wn × (wn ×∇Hd,a(w

n))) · ∇�un dx︸ ︷︷ ︸
IX

− α
∫
Ω
(wn × (∇wn ×Hd,a(w

n))) · ∇�un dx︸ ︷︷ ︸
X

− α
∫
Ω
(∇wn × (wn ×Hd,a(w

n))) · ∇�un dx︸ ︷︷ ︸
XI

. (6.11)

We estimate I =
∫
Ω

∂∇v
∂t

· ∇�un dx, and we obtain for any positive η

|I| ≤ 1

4η

∥∥∥∥∥∂∇v∂t
∥∥∥∥∥
2

L2(Ω)

+ η‖∇�un‖2
L2(Ω). (6.12a)

Using Hölder inequality in II =
∫
Ω ∇�v · ∇�un dx, we obtain

|II| ≤ 1

4η
‖∇�v‖2

L2(Ω) + η‖∇�un‖2
L2(Ω). (6.12b)

Let’s estimate III =
∫
Ω D2(un + v)∇(un + v)(un + v) · ∇�un dx, using

Hölder inequality, interpolation inequality for Lp spaces and embedding the-
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orems for Sobolev spaces.

|III| ≤ (‖un‖L∞(Ω) + ‖v‖L∞(Ω))(‖D2un‖L3(Ω) + ‖D2v‖L3(Ω))

(‖∇un‖L6(Ω) + ‖∇v‖L6(Ω))‖∇�un‖L2(Ω)

≤ C(‖un‖H2(Ω) + ‖v‖H2(Ω))
5
2

(‖un‖H2(Ω) + ‖v‖H2(Ω) + ‖∇�un‖L2(Ω) + ‖∇�v‖L2(Ω))
1
2‖∇�un‖L2(Ω)

≤ C ′′
(
1 +

1

η3

)(
P4(‖un‖H2(Ω)) + P4(‖v‖H2(Ω))

)
+
η

6
‖∇�v‖2

L2(Ω) + η‖∇�un‖2
L2(Ω),

(6.12c)

where P4 is a polynomial independent of η and n.
We estimate IV =

∫
Ω|∇(un + v)|2∇(un + v) · ∇�un dx, and we obtain

|IV | ≤ 8

η
‖∇un‖6

L6(Ω) +
8

η
‖∇v‖6

L6(Ω) + η‖∇�un‖2
L2(Ω). (6.12d)

If we estimate V =
∫
Ω(∇(un + v) × �(un + v)) · ∇�un dx using Hölder

inequality and embedding properties of Sobolev spaces, we obtain

|V | ≤ (‖∇un‖L6(Ω) + ‖∇v‖L6(Ω))
(
‖�un‖L3(Ω) + ‖�v‖L3(Ω)

)
‖∇�un‖L2(Ω)

≤ C(‖v‖H2(Ω) + ‖un‖H2(Ω))
3
2

(‖un‖H2(Ω) + ‖v‖H2(Ω) + ‖∇�un‖L2(Ω) + ‖∇�v‖L2(Ω))
1
2‖∇�un‖L2(Ω)

≤ C ′′
(
1 +

1

η3

)(
P5(‖un‖H2(Ω)) + P5(‖v‖H2(Ω))

)
+
η

6
‖∇�v‖2

L2(Ω) + η‖∇�un‖2
L2(Ω),

(6.12e)

where P5 is a polynomial that do not depend on η.
Let’s estimate V I =

∫
Ω((u

n + v)×∇�v) · ∇�un dx

|V I| ≤ (‖un‖L∞(Ω) + ‖v‖L∞(Ω))‖∇�v‖L2(Ω)‖∇�un‖L2(Ω)

≤ C

η
(‖un‖2

H2(Ω) + ‖v‖H2(Ω))
2‖∇�v‖2

L2(Ω) + η‖∇�un‖2
L2(Ω).

(6.12f)

Since Hd,a is continuous from L
4 to L

4, the estimation of V II =
∫
Ω(∇(un+

v)×Hd,a(u
n+v)) ·∇�un dx, and V III =

∫
Ω((u

n+v)×∇Hd,a(u
n+v)) ·

∇�un dx yields

|V II|+ |V III| ≤ C

η
(‖un‖H2(Ω) + ‖v‖H2(Ω))

4 + η‖∇�un‖2
L2(Ω). (6.12g)

And we can also estimate IX =
∫
Ω((u

n+v)× ((un+v)×∇Hd,a(u
n+v))) ·

∇�un dx, and X =
∫
Ω((u

n+v)× (∇(un+v)×Hd,a(u
n+v))) ·∇�un dx,

and XI =
∫
Ω(∇(un + v) × ((un + v) × Hd,a(u

n + v))) · ∇�un dx. Since
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Hd,a is continuous from L
6 to L

6,

|IX|+ |X|+ |XI| ≤ C

η
(‖un‖H2(Ω) + ‖v‖H2(Ω))

6 + η‖∇�un‖2
L2(Ω). (6.12h)

Then, using embedding theorems in Sobolev spaces and choosing η small
enough, we derive from inequalities (6.12) the whole second estimate

1

2

d‖�un‖2
L2(Ω)

dt
+
αA

2
‖∇�un‖2

L2(Ω) ≤ g1P3(‖un‖H2(Ω)) + g2, (6.13)

where P3 is a polynomial independent of n, and g1 and g2 two elements of
L1(0, T ;R) only depending on the H

3, 3
2 (Ω × (0, T )) norm of v.

If we combine the two estimates, using inequalities (4.2a) and (4.2b), we obtain

d‖un‖2
H2(Ω)

dt
+ ‖∇�un‖2

L2(Ω) ≤ gP ′(‖un‖H2(Ω)) + g′,

where P ′ is a polynomial independent of n, and g and g′ two elements of
L1(0, T ;R) depending only on the H

3, 3
2 (Ω × (0, T )) norm of v.

Applying Gronwall’s lemma, we deduce a minimum time of existence T̃ ∗ for
all n. Moreover, for any T < T̃ ∗, there exists a constant CT such that for any
n ≥ 0

‖un‖L∞(0,T ;H2(Ω)) ≤ CT , ‖un‖L2(0,T ;H3(Ω)) ≤ CT .

Since un verifies equation (6.7), we can apply, up to a minor modification,
lemma 14

‖un‖H1(0,T ;H1(Ω)) ≤ CT , ‖un‖
H

3
2 (0,T ;L2(Ω))

≤ CT .

We can therefore extract a subsequence unk , such that

lim
k→+∞

unk = u weakly in H1(0, T ;H1(Ω)),

lim
k→+∞

unk = u weakly in L2(0, T ;H3(Ω)),

lim
k→+∞

unk = u weakly in H
3
2 (0, T ;L2(Ω)).

We now verify that u is a solution to system (6.3), (6.4) and (6.5). First,
un(·, 0) tends tom0−v(·, 0) inH

2(Ω). Thus, u(·, 0) =m0−v(·, 0). The bound-
ary condition is ∂un

∂ν
= 0. Since ∂unk

∂ν
tends weakly to ∂u

∂ν
in L2(0, T ;H

3
2 (∂Ω)),

∂u
∂ν

= 0. It remains to prove that equation (6.3) is verified by u. By compact-
ness results 4 , the subsequence also converges strongly in

4 See [15].
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• H
s1,s2(Ω × (0, T )) for all 0 ≤ s1 < 3, 0 ≤ s2 <

3
2
,

• C0(0, T ;Hs(Ω)) for all 0 ≤ s < 2,
• L

∞(Ω × (0, T )).

By Aubin’s lemma, the subsequence also converges strongly in Lp(0, T ;H2(Ω))
for all 1 ≤ p < +∞. Then, we take the limit in equation (6.7). u verifies
equation (6.3). A posteriori, equation (6.3) and lemma 14 imply that u + v

also belongs to H
3
2 (0, T ;L2(Ω)) for any T < T̃ ∗. Hence u also belongs to

H
3
2 (0, T ;L2(Ω)).

Suppose now there exist two solutions u1 and u2 with the same initial condi-
tion and homogenous Neumann boundary condition. Multiplying equation (6.3)
by δu = u2 − u1 and integrating over Ω yields

1

2

d‖δu‖L2(Ω)
2

dt
+ αA‖∇δu‖2

L2(Ω) ≤
αA

∫
Ω
|∇(u1+v)|2|δu|2 +αA

∫
Ω
(∇δu · ∇(u2 + u1 + 2v)) ((u2 + v) · δu) dx

+ A
3∑

i=1

∫
Ω

(
∂(u1 + v)

∂xi
× ∂δu

∂xi

)
· δu−

∫
Ω
((u1 + v)×Hd,a(δu)) · δu dx

− α
∫
Ω
((u1 + v)× (δu×Hd,a(u2 + v))) · δudx

− α
∫
Ω
((u1 + v)× ((u1 + v)×Hd,a(δu))) · δu dx. (6.14)

We estimate the right-hand side of the precedent inequality. We obtain

1

2

d‖δu‖2
dt

+ αA‖∇δu‖2
L2(Ω) ≤ αA‖∇(u1 + v)‖2

L∞(Ω)‖δu‖2L2(Ω)

+
(αA)2

4η
‖∇(u1 + u2 + 2v)‖2

L∞(Ω)‖u2 + v‖2
L∞(Ω)‖δu‖2L2(Ω)

+
A2

4η
‖∇(u1 + v)‖2L∞(Ω)‖δu‖2L2(Ω) + 3η‖∇δu‖2

L2(Ω)

+ C

(
1 +

1

η

)
(1 + ‖u2 + v‖2H1(Ω) + ‖u1 + v‖2L∞(Ω))

2‖δu‖2
L2(Ω)

≤ g(t)‖δu‖2
L2(Ω) + 3η‖∇δu‖2

L2(Ω),

where g belongs to L1(0, T ;R+). Choosing η sufficiently small, we can apply
Gronwall’s lemma. Since ‖u2(·, 0)− u1(·, 0)‖2L2(Ω) = 0, we obtain u2 = u1.

We now prove the explosion at the end of time of existence. Suppose T̃ ∗ < T ∗,
choose δ = min(T ∗ − T̃ ∗, T̃ ∗)/2. The H

3, 3
2 (Ω × (T̃ ∗/2, T̃ ∗ + δ)) norm of v is

bounded so there exists a constant C such that

‖v‖
H

3, 32 (Ω×(T̃ ∗−t,T̃ ∗−t+δ))
< C,
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for any t < T̃ ∗/2. Suppose also that ‖m‖H2(Ω) is bounded on (0, T̃ ∗). Hence,
there exists a ∆t, such that the equation with initial condition m(·, t) and
v(·, t + ·) for any t in (T̃ ∗/2, T̃ ∗) has a solution which exists over (0,∆t).
Choosing t > T̃ ∗ − ∆t, we construct a solution that extends the original
solution beyond T̃ ∗, hence a contradiction.

The previous proposition leads to the following corollary.

Corollary 16 Let T ∗ > 0 and m0 in H
2(Ω) such that

∂m0

∂ν
=


0 on ∂Ω \ (Γ±),

Q+
r (γm0, γ

′m0)− (Q+
r (γm0, γ

′m0) · γm0)γm0 on Γ+,

Q−
r (γm0, γ

′m0)− (Q−
r (γm0, γ

′m0) · γm0)γm0 on Γ−.

Let a and b in H
3, 3

2 (Ω × (0, T )) for all T < T ∗ be such that

∂a

∂ν
= 0 on ∂Ω \ Γ, ∂b

∂ν
= 0 on ∂Ω \ Γ,

a(·, 0) =m0, b(·, 0) =m0.

Then there exists a unique maximal T̃ ∗ and a uniquem in H
3, 3

2 (Ω×(0, T )) for
all T < T ∗ satisfying the Landau-Lifshitz developed equation (6.2) and such
that

m(·, 0) =m0,

∂m

∂ν
=


0 on ∂Ω \ Γ,
Q+

r (γa, γ
′a)− (Q+

r (γa, γ
′a) · γb)γb on Γ+,

Q−
r (γa, γ

′a)− (Q−
r (γa, γ

′a) · γb)γb on Γ−.

Moreover, if T̃ ∗ < T ∗, then

lim
t→T̃ ∗

‖m‖H2(t) = +∞

PROOF. It relies on an extension result. Suppose there exists v in H
3, 3

2 (Ω×
(0, T )) for each T < T ∗ such that

∂v

∂ν
=


0 on ∂Ω \ Γ,
Q+

r (γa, γ
′a)− (Q+

r (γa, γ
′a) · γb)γb on Γ+,

Q−
r (γa, γ

′a)− (Q−
r (γa, γ

′a) · γb)γb on Γ−.

Since ∂(m0−v(·,0))
∂ν

= 0, we apply proposition 15 to construct u. Choosingm =
u + v gives the solution. The uniqueness of m is a direct consequence of the
uniqueness of u.
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We now construct v. First, we recall that H3, 3
2 (Ω×(0, T )) is an algebra. Given

χ in C∞
c (−∞,+∞;R+) such that

χ(t) =

1 if |x| < min(L+,L−)
2

,

0 if |x| > 3
4
min(L+, L−).

We define

g =

Q
+
r (a,a ◦ σ)− (Q+

r (a,a ◦ σ) · b)b in Ω+,

Q−
r (a,a ◦ σ)− (Q+

r (a,a ◦ σ) · b)b in Ω−.

where σ is the application that maps (x, y, z, t) to (x, y,−z, t). Then,

v(·, ·, z, ·) =
∫ z

0
χ(s)g(·, ·, s, ·) ds,

is in H
3, 3

2 (Ω × (0, T )) and has the required properties.

6.3 The converging sequences

For the construction of sequence (6.1), we need proposition 18 whose proof
involves itself a converging sequence. It would be difficult to merge the two
sequences in one because H

1(Ω) is not an algebra. Since the elements of the
sequence do not verify the Neumann homogenous condition, we cannot use
corollary 11. We must use the more general propositions 9 and 10.

To build both sequences, we need an initial guess. It is provided by the fol-
lowing lemma.

Lemma 17 Let m0 be in H
2(Ω), with ∂m0

∂ν
= 0 on ∂Ω \ Γ. Then there exists

u belonging to H
3, 3

2 (Ω × (0, T )) such that

u(·, 0) =m0 in Ω, (6.15a)

∂u

∂ν
= 0 on ∂Ω \ Γ× (0, T ). (6.15b)

PROOF. To construct such a function, we need in the spirit of Lions and
Magenes [15] to introduce the corresponding spaces Hr,s,t(B × (0, L)× (0, T ))
and to study the compatibility conditions between the traces. This construc-
tion is found in [16, App. A]. In this case, all the compatibility conditions hold:
u does exist.
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6.3.1 The inner converging sequence

Proposition 18 Let T ∗ > 0. Let m0 in H
2(Ω) verify the condition (3.5) and

u in H
3, 3

2 (Ω × (0, T )) for all T < T ∗ satisfy equations (6.15a) and (6.15b).

Then, there exists a unique maximal T̃ ∗ and a unique v in H
3, 3

2 (Ω × (0, T ))
for all T < T̃ ∗ satisfying equations (3.1c) and (6.2), and such that

∂v

∂ν
=


0 on ∂Ω \ Γ× (0, T ),

Q+
r (γu, γ

′u)− (Q+
r (γu, γ

′u) · γv)γv on Γ+,

Q−
r (γu, γ

′u)− (Q−
r (γu, γ

′u) · γv)γv on Γ−.

(6.16)

Moreover, if T̃ ∗ < T ∗, then

lim
t→T̃ ∗

‖v‖H2(t) = +∞.

If |m0| = 1 a.e. in Ω then |v| = 1 a.e. in Ω × (0, T ).

PROOF. The proof is divided in three steps:

(1) We construct a sequence vn whose elements satisfies equations (3.1c) and
(6.2), and

∂vn+1

∂ν
=


0 on ∂Ω \ Γ× (0, T ),

Q+
r (γu, γ

′u),−(Q+
r (γu, γ

′u) · γvn)γvn on Γ+,

Q−
r (γu, γ

′u),−(Q−
r (γu, γ

′u) · γvn)γvn on Γ−.
(6.17)

(2) We make estimates on size of the elements of sequence (vn)n.
(3) The limit has the required properties and is the solution..

First step We need to construct a decreasing sequence of maximal T ∗
n and

vn belonging to H
3, 3

2 (Ω × (0, T )) such that for every n ≥ 0, vn satisfies equa-
tions (3.1c) , (6.2), and (6.17). To construct such a sequence, we define

• v−1 = u.
• Given vn−1 in H

3, 3
2 (Ω × (0, T )), we construct vn using corollary 16 with

a = u and b = vn−1.

We initialize the sequence with u at n = −1 instead of n = 0 so that v0 satisfy
equation (6.2).

Before making estimates, we note that compared to the proof of 15, the new
Neumann boundary condition forces us to modify the proof. First, an integral
over the boundary may appear in each of the estimate. Second, since inequal-
ities (4.1a) and (4.1b) contain a boundary term on the right-hand side, an
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upper bound of ‖v‖L2 , ‖�v‖L2 and ‖∇�v‖L2 do not yield an upper bound
of ‖v‖H2 or ‖v‖H3 . We infer from Proposition 9 and the boundary condition
verified by vn for all positive integer n that

‖vn+1‖2
H2(Ω) ≤ C

(
‖vn+1‖2

L2(Ω) + ‖�vn+1‖2
L2(Ω)

+
∥∥∥Q+

r (γu, γ
′u)− (Q+

r (γu, γ
′u) · γvn)γvn

∥∥∥2
H

1
2 (Γ+)

+
∥∥∥Q−

r (γu, γ
′u)− (Q−

r (γu, γ
′u) · γvn)γvn

∥∥∥2
H

1
2 (Γ−)

)
≤ C

(
‖vn+1‖2

L2(Ω) + ‖�vn+1‖2
L2(Ω)

)
+ P1(‖u‖H2(Ω))(1 + ‖|vn|2‖2

H1(Ω))

≤ C
(
‖vn+1‖2

L2(Ω) + ‖�vn+1‖2
L2(Ω)

)
+ 3P1(‖u‖H2(Ω))(1 + ‖vn‖2

H1(Ω)‖vn‖2L∞(Ω))

≤ C
(
‖vn+1‖2

L2(Ω) + ‖�vn+1‖2
L2(Ω)

)
+ C ′P1(‖u‖H2(Ω))(1 + ‖vn‖3

H1(Ω))‖vn‖H2(Ω)

(6.18)

Thus,

‖vn+1‖2
H2(Ω) ≤ C

(
‖vn+1‖2

L2(Ω) + ‖�vn+1‖2
L2(Ω)

)
+ C ′′(1 + P1(‖u‖H2(Ω))

2)(1 + ‖vn‖6
H1(Ω))

+
‖vn‖2

H2(Ω)

2
,

(6.19)

where P1 is a given polynomial. The inequalities above are justified because
H

2(Ω) is an algebra and because of lemma 7. Thus, if N ≥ 1

sup
1≤n≤N

{
‖vn‖2

H2(Ω)

}
≤ 2C

(
sup

1≤n≤N
{‖vn‖2

L2(Ω)}+ sup
1≤n≤N

{‖�vn‖2
L2(Ω)}

)
+ 2C ′′P1(‖u‖H2(Ω))

2(1 + sup
1≤n≤N

{‖vn‖6
H1(Ω)})

+ ‖v0‖2
H2(Ω) + 2C ′′P1(‖u‖H2(Ω))

2(1 + ‖v0‖6
H1(Ω)).

(6.20)

By the same method and proposition 10, we get

‖vn+1‖2
H3(Ω) ≤ C

(
‖vn+1‖2

L2(Ω) + ‖∇�vn+1‖2
L2(Ω)

+
∥∥∥Q+

r (γu, γ
′u)− (Q+

r (γu, γ
′u) · γvn)γvn

∥∥∥2
H

3
2 (Γ+)

+
∥∥∥Q−

r (γu, γ
′u)− (Q−

r (γu, γ
′u) · γvn)γvn

∥∥∥2
H

3
2 (Γ−)

)
≤ C ′ (‖vn+1‖2

L2(Ω) + ‖∇�vn+1‖2
L2(Ω)

)
+ P2(‖u‖H2(Ω))‖vn‖2H2(Ω),

(6.21)
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where P2 is a given polynomial. Thus if N ≥ 1,

sup
1≤n≤N

{‖vn‖2
H3(Ω)} ≤ sup

1≤n≤N
{‖vn‖2

L2(Ω)}+ sup
1≤n≤N

{‖∇�vn‖2
L2(Ω)}

P2(‖u‖H2(Ω)) sup
1≤n≤N

{‖vn‖2
H2(Ω)}+ P2(‖u‖H2(Ω))‖v0‖2H2(Ω).

(6.22)

Second step We now make three estimates on the norm of vn for n ≥ 1.

(1) We multiply equation (6.2) by vn and integrate over Ω.
(2) We take the gradient of equation (6.2), multiply it by∇�vn and integrate

over Ω.
(3) We take the gradient of equation (6.2), multiply it by ∇vn and integrate

over Ω.

The first two estimates have mostly been made in the proof of proposition 15 or
by Carbou-Fabrie in [14], except for the nonzero Neumann boundary condition.
The third estimate is a simplification of the second estimate.

First estimate Using trace theorems, we obtain

1

2

d‖vn‖2
L2(Ω)

dt
+ αA‖∇vn‖2

L2(Ω) ≤ αA‖∇vn‖2
L2(Ω)‖vn‖2L∞(Ω) + αA

∫
Γ

∣∣∣∣∣∂v
n

∂ν
· vn

∣∣∣∣∣ dσ(x)
≤ P1(‖vn‖H2(Ω)),

(6.23)

where P1 is a given polynomial.
Second estimate See [14] for the estimates of the volume terms for the sec-
ond estimate. We obtain

1

2

d‖�vn‖2
L2(Ω)

dt
+ αA‖∇�vn‖2

L2(Ω) ≤
(
1 +

1

η3

)
P2(‖vn‖H2(Ω)) + η‖D3vn‖2

L2(Ω)

+ αA

∣∣∣∣∣
∫
Γ±

∂2vn

∂ν∂t
· �vn

∣∣∣∣∣ dσ(x)
≤
(
1 +

1

η3

)
P2(‖vn‖H2(Ω)) + η‖∇�vn‖2

L2(Ω)

+ ηP3(‖vn−1‖H2(Ω)) +
∫
Γ±

∣∣∣∣∣∂
2vn

∂ν∂t
· �vn

∣∣∣∣∣ dσ(x).
(6.24)

The boundary term has a meaning even before using the boundary condi-
tion. If v belongs to H

3, 3
2 (Ω× (0, T )), then ∂2v

∂t∂ν
belongs to H− 1

4 (0, T ;L2(Ω))

and γ�v belongs to H
1
4 (0, T ;L2(Ω)). The evaluation of the integral on Γ+

28



for n ≥ 1 gives

∫
Γ+

∣∣∣∣∣∂
2vn

∂ν∂t
· �vn

∣∣∣∣∣ dσ(x) ≤ 1

4
‖�vn‖2

L2(Γ+) +

∥∥∥∥∥ ∂
2vn

∂ν∂t

∥∥∥∥∥
2

L2(Γ+)

.

But,

‖�vn‖2
L2(Γ+) ≤ C‖�vn‖

1
2

L2(Ω)(‖�vn‖L2(Ω) + ‖∇�vn‖L2(Ω))
3
2 (6.25)∥∥∥∥∥∂2vn∂ν∂t

∥∥∥∥∥
2

L2(Γ+)

≤
∥∥∥∥∥∂((Q+

r (γu, γ
′u) · vn−1)vn−1 −Q+

r (γu, γ
′u))

∂t

∥∥∥∥∥
2

L2(Γ+)

≤ 4

∥∥∥∥∥∂Q+
r (γu, γ

′u)
∂t

∥∥∥∥∥
2

L2(Γ+)

(1 + ‖vn−1‖4
L∞(Ω))

+ 8‖Q+
r (γu, γ

′u)‖L∞(Γ+)‖vn−1‖2
L∞(Ω)

∥∥∥∥∥∂v
n−1

∂t

∥∥∥∥∥
2

L2(Γ+)

.

(6.26)

There exists a polynomial P3 such that

∥∥∥∥∥∂Q+
r (γu, γ

′u)
∂t

∥∥∥∥∥
L2(Γ+)

≤ P3(‖u‖L∞(Ω))

∥∥∥∥∥∂u∂t
∥∥∥∥∥

1
4

L2(Ω)

∥∥∥∥∥∂u∂t
∥∥∥∥∥

3
4

H1(Ω)

(6.27a)

‖Q+
r (γu, γ

′u)‖L∞(Γ+) ≤ P3(‖u‖L∞(Ω)) (6.27b)∥∥∥∥∥∂v
n−1

∂t

∥∥∥∥∥
2

L2(Γ+)

≤ C

∥∥∥∥∥∂v
n−1

∂t

∥∥∥∥∥
1
2

L2(Ω)

∥∥∥∥∥∂v
n−1

∂t

∥∥∥∥∥
3
2

H1(Ω)

≤ P3(‖vn−1‖H2(Ω))
1
2‖vn−1‖

3
2

H3(Ω)

≤ 1

η3
P3(‖vn−1‖H2(Ω))

2 + η‖vn−1‖3
H3(Ω).

(6.27c)

Thus,

∫
Γ+

∣∣∣∣∣∂
2vn

∂ν∂t
· �vn

∣∣∣∣∣ dσ(x) ≤ C ′
(
1 +

1

η3

)
‖vn‖2

H2(Ω) + η‖vn‖2
H3(Ω)

+ C ′′
(
1 +

1

η3

)
P4(‖vn−1‖H2(Ω)) + η‖vn−1‖2

H3(Ω)

+ C

∥∥∥∥∥∂u∂t
∥∥∥∥∥
2

H1(Ω)

‖vn−1‖2
L∞(Ω),

(6.28)

where P4, P5 are polynomials and
∥∥∥∂u

∂t

∥∥∥2
H1(Ω)

a L1(0, T ) function.

Third estimate This is a simplification of the previous estimate and we ob-
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tain for n ≥ 1

1

2

d‖∇vn‖2
L2(Ω)

dt
+ αA‖�vn‖2

L2(Ω) ≤
(
1 +

1

η1/3

)
P6(‖vn‖H2(Ω)) + η‖∇�vn‖2

L2(Ω)

+ ηP7(‖vn−1‖H2(Ω)) + αA
∫
Γ±

∣∣∣∣∣∂vn

∂ν
· �vn

∣∣∣∣∣ dσ(x).
(6.29)

The evaluation of the boundary term on Γ+ gives

∫
Γ+

∣∣∣∣∣∂vn

∂ν
· �vn

∣∣∣∣∣ dσ(x) ≤ 1

2
‖�vn‖2

L2(Γ+) +
1

2

∥∥∥∥∥∂vn

∂ν

∥∥∥∥∥
2

L2(Γ+)

≤ C‖�vn‖
1
2

L2(Ω)‖∇�vn‖
3
2

L2(Ω) + P3(‖u‖H2(Ω))‖vn−1‖4
L∞(Ω)

≤ 1

η3
P4(‖vn‖H2(Ω)) + C‖vn−1‖2

H1(Ω)‖vn−1‖2
H2(Ω)

+ η‖∇�vn‖2
L2(Ω),

where the Pi are polynomials and C a constant only depending on the
L∞(0, T ;H2(Ω)) norm of u which is bounded for all T < T ∗.

We choose η small enough, then combine all three estimates. Taking the max-
imum over 1 ≤ n ≤ N , we obtain, for all t in (0, min

0≤n≤N
T ∗
n),

sup
1≤n≤N

{‖vn‖H1(Ω) + ‖�vn‖L2(Ω)}

+ sup
1≤n≤N

{∫ t

0
‖∇�vn‖L2(Ω) ds

}
≤
∫ t

0
P η
5 ( sup

1≤n≤N
‖vn‖H2(Ω)) ds

+
∫ t

0
P η
5 ‖v0‖H2(Ω)) ds+ η

∫ t

0
‖∇�v0‖2L2(Ω) ds

+ η
∫ t

0
‖∇�v−1‖2L2(Ω) ds.

(6.30)

We now replace the H
2(Ω) norm of vn using inequality (6.20). Gronwall’s

lemma implies that the L∞(0, T ;L2(Ω)) norms of vn, �vn and ∇vn, as well
as the L2(0, T ;L2(Ω)) norm of ∇�vn cannot explode before a given time
T̃ ∗ independent of n. Thus, using again inequality (6.20), the H

2 norm of
vn remains bounded independently of n. Hence, there exists a common time
of existence T̃ ∗ for all n ≥ 0. By lemma 14, for every T < T ∗, the norm
H3, 3

2 (Ω × (0, T )) is bounded independently of n. Thus, there exists a weakly

converging subsequence vnk in H3, 3
2 (Ω × (0, T )) for all T < T ∗.

Third step We need to prove that the limit v has the required proper-
ties (3.1c), (6.2), and (6.16). As in proposition 15, we can take the limit in
equation (6.2) and v verifies this equation. Since for all positive integers n,
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vn(·, 0) =m0, then v(·, 0) =m0. Since
∂vn

∂ν
= 0 on ∂Ω \ Γ, ∂v

∂ν
= 0 on ∂Ω \ Γ.

We only need to verify the Neumann nonhomogenous boundary condition on
Γ.

Suppose 5 that if vnk and vnk+1 both converge weakly, then they converge to
the same limit. Extract a further subsequence such that vnk+1 also converges.
According to our supposition, the limit is the same. On Γ+,

∂vnk+1

∂ν
= Q+

r (γu, γ
′u)− (Q+

r (γu, γ
′u) · γvnk)γvnk).

We take the limit,

∂v

∂ν
= Q+

r (γu, γ
′u)− (Q+

r (γu, γ
′u) · γv)γv).

The corresponding result holds on Γ−.

We now prove that if |m0| = 1 a.e., then |v| = 1 a.e. We work by estimates,
multiplying equation (6.2) by (|v|2 − 1)v and integrating over Ω

1

4

d

dt

(
‖|v|2 − 1‖2L2(Ω)

)
+
αA

2

∥∥∥∇(|v|2 − 1)
∥∥∥2
L2(Ω)

≤ αA
∫
Ω
|∇v|2(|v|2 − 1)2 dx

+
αA

2

∫ ±

Γ

∂|v|2
∂ν

(
|v|2 − 1

)
dσ(x).

We estimate the boundary integral with (6.16).

∫ ±

Γ

∂|v|2
∂ν

(
|v|2 − 1

)
dσ(x) = 2

∫
Γ+
Q+

r (γu, γ
′u)

(
|v|2 − 1

)2
dσ(x)

+ 2
∫
Γ−
Q−

r (γu, γ
′u)

(
|v|2 − 1

)2
dσ(x).

We finally obtain

1

4

d

dt

(
‖|v|2 − 1‖2L2(Ω)

)
+
αA

2

∥∥∥∇(|v|2 − 1)
∥∥∥2
L2(Ω)

≤ αA‖∇v‖2L∞(Ω)‖|v|2−1‖2L2(Ω)+CαAP1(‖v‖L∞)‖|v|2−1‖
1
2

L2(Ω)‖|v|2−1‖
3
2

H1(Ω)

≤ C(η)P2(‖v‖H2(Ω))‖|v|2 − 1‖2L2(Ω) + η‖∇(|v|2 − 1)‖2L2(Ω).

We choose η small enough, then we absorb ‖∇(|v|2− 1)‖2L2(Ω) in the left-hand

side. We apply Gronwall’s lemma and since ‖|m0|2 − 1‖2L2(Ω) = 0, |v| = 1 a.e.
in Ω × (0, T ).

It remains to prove our precedent assumption.

5 We prove this supposition later in lemma 19.
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Lemma 19 For each T < T ∗, the L∞(0, T ;H2(Ω)) norm and the L2(0, T ;H3(Ω))
norm of vn+1 − vn tends to 0.

PROOF. First, using inequality (4.1a), we evaluate the H
2 norm of δnv =

vn+1 − vn for n ≥ 1

‖δnv‖2
H2(Ω) ≤ C

(
‖δnv‖2

L2(Ω) + ‖�δnv‖2
L2(Ω)

)
+ P1(‖u‖H2(Ω)) sup

j
{‖vj‖2

H2(Ω)}‖δn−1v‖2
H1(Ω),

(6.31)

and for the H
3 norm using inequality (4.1b)

‖δnv‖2
H3(Ω) ≤ C

(
‖δnv‖2

L2(Ω) + ‖∇�δnv‖2
L2(Ω)

)
+ P2(‖u‖H2(Ω)) sup

j
{‖vj‖2

H2(Ω)}‖δn−1v‖2
H2(Ω).

(6.32)

Next, we make some estimates. For the first estimate, we multiply equa-
tion (6.2) by δnv = vn+1 − vn and integrate over Ω. For the second estimate,
we take the gradient of equation (6.2), multiply the result by ∇�(vn+1 − vn)
and integrate over Ω. For the third estimate, we take the gradient of equa-
tion (6.2), multiply by ∇(vn+1 − vn) and integrate over Ω. We add the three
estimates, combine them with the regularity inequalities (6.31) and (6.32), and
integrate over (0, t). Hence,

‖δnv‖2
H1(Ω) + ‖�δnv‖2

L2(Ω) +
∫ t

0
‖∇�δnv‖2

L2(Ω) ds

≤
∫ t

0
P1

(
‖vn+1‖H2(Ω), ‖vn‖H2(Ω)

)
‖δnv‖2

H2(Ω) ds

+
∫ t

0
P1(‖u‖H2(Ω)) sup

j
{‖vj‖H2(Ω)}2‖δn−1v‖2

H2(Ω) ds

+ η
∫ t

0
‖∇�δnv‖2

L2(Ω) ds+ η
∫ t

0
‖∇�δn−1vn‖2

L2(Ω) ds,

where η may be chosen arbitrarily small. If we sum over 0 ≤ k ≤ n, then

n∑
k=1

(
‖δkv‖2

H1(Ω) + ‖�δkv‖2
L2(Ω)

)
+

n∑
k=1

∫ t

0
‖∇�(δkv)‖2

L2(Ω) ds

≤ ψ1(t)

(
n∑

k=1

‖δkv‖2
H2(Ω)

)
+ 2η

n∑
k=1

‖δkv‖2
L2(Ω)

+ ψ1(t)‖v1 − v0‖2H2(Ω) + η‖∇�(v1 − v0)‖2
L2(Ω),

where Ψ1 is a L1(0, T ) function. Since
∑n

k=1 δ
kv(·, 0) = 0, the H

2(Ω) norm
of the initial condition remains bounded independently of n. After the use of
inequality (6.31), we can apply Gronwall’s lemma. Hence, for any T < T ∗,
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there exists a constant CT such that

n∑
k=0

‖vk+1 − vk‖2L∞(0,T ;H2(Ω)) ≤ CT ,

n∑
k=0

‖vk+1 − vk‖2L2(0,T ;H3(Ω)) ≤ CT .

Hence, the term in the sum tends to 0.

The uniqueness is proven by the same kind of estimates as in the proof of
lemma 19. As in the proof of proposition 15, there is explosion of the H2 norm
of v at the end of time of existence if T̃ ∗ < T ∗. If that were not the case, we
could extend the lifetime of the solution beyond T ∗, hence a contradiction.

6.3.2 Convergence of sequence (6.1)

The existence of a sequence satisfying equations (3.1b), (3.1c), (6.1), and (6.2)
is a direct consequence of lemma 17 and proposition 18. Each element of the
sequence is in H

3, 3
2 (Ω× (0, T )) for all T < T ∗

n , where T
∗
n is the lifetime ofmn.

We adapt the proof of proposition 18. The only differences are the regularity
estimate (6.19) and inequality (6.28). The latter is replaced for n ≥ 1 by∥∥∥∥∥∂2mn

∂ν∂t

∥∥∥∥∥
2

L2(Γ+)

≤
∥∥∥∥∥∂((Q+

r (γm
n−1, γ′mn−1) ·mn)mn −Q+

r (γm
n−1, γ′mn−1))

∂t

∥∥∥∥∥
2

L2(Γ+)

≤ C

η
(
∥∥∥mn−1

∥∥∥2
H2(Γ+)

+ ‖mn‖2
H2(Γ+))

+ η(‖mn‖2
L2(Γ+)

∥∥∥mn−1
∥∥∥2
L2(Γ+)

+ ‖mn‖2
L2(Γ+)).

The former is replaced by

‖mn+1‖2
H2(Ω) ≤ C

(
‖mn+1‖2

L2(Ω) + ‖�mn+1‖2
L2(Ω)

+
∥∥∥Q+

r (γm
n, γ′mn)− (Q+

r (γm
n, γ′mn) · γmn+1)γmn+1

∥∥∥2
H

1
2 (Γ+)

+
∥∥∥Q−

r (γm
n, γ′mn)− (Q−

r (γm
n, γ′mn) · γmn+1)γmn+1

∥∥∥2
H

1
2 (Γ−)

)
≤ C

(
‖mn+1‖2

L2(Ω) + ‖�mn+1‖2
L2(Ω) + C ′(‖mn‖2

H1(Ω) + ‖mn+1‖2
H1(Ω)

)
.

This inequality holds because the local norm ofmn is equal to 1 for all n ≥ 1.
The rest of the proof of proposition 18 can be applied with no differences.

It is possible to find a common time of existence T ∗ and a converging subse-
quence mnk , such that mnk+1 converges to the same limit.
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The limit is thus the strong solution to theorem 5. There is only one solution,
and if T ∗ < +∞, then

lim
t→T ∗‖m‖H2(Ω) = +∞

If that were not the case, we could extend the solution past T ∗, hence a
contradiction.

7 Conclusion

We have proved for a particular geometry the existence of finite time strong
solutions and infinite time weak solutions to Landau-Lifshitz system. The ex-
istence of such solutions is certainly valid with more complicated geometries.
The proof of such existence would only require some technical modifications.
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