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Corrections for Question-Descriptions in the Textbook

Through the creation of the solution manual, several minor errors were noticed in
the question descriptions in the textbook. Below is a collected list of which questions are
affected and what changes are needed to be made. The information of what corrections
are to be made is also present in the solutions manual at the question affected.

1.10 The expression x(n) = ν(n) + 0.75ν(n − 1) + 0.75ν(n − 2) should read
x(n) = ν(n) + 0.75ν(n− 1) + 0.25ν(n− 2)

5.6 The cost function should be Js (w) = |e(n)|4 not Js (w) = |e(n)|4

5.6 a) The update formula should be given as:
ŵ(n+ 1) = ŵ(n) + 2µu(n)e∗(n) |e(n)|2
not ŵ(n+ 1) = ŵ(n) + µu(n− i)e∗(n) |e(n)|2 i = 0, 1, . . . ,M − 1

6.16 The problem is overdefined by providing both a noise variance and an AR
process variance. The noise variance as such can be ignored. However if the
solution is found with the prescribed noise variance the resulting graphs will
be nearly identical to those included in the solution manual.

11.1 a) The question was meant to ask to show that µ−
1
2 w̃(n+ 1) equals

µ−
1
2 w̃(n)− µ 1

2 u(n)
(
d(n)− ŵT (n)u(n)

)
not µ−

1
2 w̃(n)− µ− 1

2 u(n)
(
d(n)− ŵT (n)u(n)

)
11.1 c) The last bracketed expression on the right hand side of the question should

read
(
d(n)− ŵT (n)u(n)

)2
not
(
d(n)− w̃T (n)u(n)

)2

11.1 d) The last bracketed expression on the right hand side of the question should
read

(
d(n)− ŵT (n)u(n)

)2
not
(
d(n)− w̃T (n)u(n)

)2

11.2 The denominator of the inequality should read

µ−1wTw +
i−1∑
n=0

(
d(n)−wTu(n)

)2
not µ−1wTw +

i−1∑
n=0

ν2(n).
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11.4 The question should be asking to find the optimizing w as shown by

w =
[
µ−1I− u(i)uT (i)

]−1

(
i−1∑
n=0

e(n)u(n)− d̂(i)u(i)

)
,

not w =
[
µI− u(i)uT (i)

]−1

(
i−1∑
n=0

e(n)u(n)− d̂(i)u(i)

)
.

11.5 b) The experiment is described in Section 6.7 not 6.8.

11.7 d) Tildes are missing from above the step size parameters of the Normalized
LMS algorithm entries in table P 11.1
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Notes on the Computer Simulations and Provided Programs

The computer experiments completed for this solutions manual were completed al-
most exclusively using Matlab®, for ease of readability. To improve the accessibility of
the solutions, to the users of this manual, specialized signal processing toolkits were not
used in programs included. Graphical solutions are provided along with the .m files in
case the user of the textbook is interested in completing the exercises in a different pro-
gramming language, in which case a graphical solution is available for comparison.

The solutions of the computer problems in Chapter 13 were completed by Ashique
Rupam Mahmood, Computer Science, University of Alberta, the creator of the Autostep
algorithm. The solutions being completed prior to the rest of the manual are only avail-
able in the programming language python, which is similar to Matlab® and therefore quite
readable.

vi



Chapter 1

Problem 1.1

Let

ru(k) = E[u(n)u∗(n− k)] (1)

ry(k) = E[y(n)y∗(n− k)] (2)

we are given that

y(n) = u(n+ a)− u(n− a) (3)

Hence, substituting Equation (3) into Equation (2), and then using Equation (1), we get

ry(k) =E[(u(n+ a)− u(n− a))(u∗(n+ a− k)− u∗(n− a− k))]

=2ru(k)− ru(2a+ k)− ru(−2a+ k)

Problem 1.2

We know that the correlation matrix R is Hermitian; that is to say that

RH = R

Given that the inverse matrix R−1 exists, we may write

R−1RH = I

where I is the identity matrix. Taking the Hermitian transpose of both sides:

RR−H = I

1



PROBLEM 1.3. CHAPTER 1.

Hence,

R−H = R−1

That is, the inverse matrix R−1 is Hermitian.

Problem 1.3

For the case of a two-by-two matrix, it may be stated as

Ru = Rs + Rν

=

[
r11 r12

r21 r22

]
+

[
σ2 0
0 σ2

]

=

[
r11 + σ2 r12

r21 r22 + σ2

]
For Ru to be nonsingular, we require

det(Ru) 6= 0

(r11 + σ2)(r22 + σ2)− r12r22 6= 0

With r12 = r21 for real data, this condition reduces to

(r11 + σ2)(r22 + σ2)− r2
12 6= 0

Since this is a quadratic in σ2, we may impose the following conditions on σ2 for nonsin-
gularity of Ru:

σ2 6= 1

2
(r11 + r22)

(√
1− 4∆r

(r11 + r22)2 − 1

)
where ∆r = r11r22 − r2

12

Problem 1.4

We are given

R =

[
1 1
1 1

]
2



PROBLEM 1.5. CHAPTER 1.

This matrix is positive definite because it satisfies the condition:

aTR a =
[
a1 a2

] [1 1
1 1

] [
a1

a2

]
=a2

1 + 2a1a2 + a2
2

=(a1 + a2)2 > 0 for all nonzero values of a1 and a2

But the matrix R is singular because:

det(R) = (1)2 − (1)2 = 0

Hence, it is possible for a matrix to be both positive definite and singular at the same time.

Problem 1.5

a)

RM+1 =

[
r(0) rH

r RM

]
(1)

Let

R−1
M+1 =

[
a bH

b CM

]
(2)

wherea,b and C are to be determined. Multiply Equation (1) by Equation (2):

IM+1 =

[
r(0) rH

r RM

] [
a bH

b C

]
Where IM+1 is the identity matrix. Therefore,

r(0)a+ rHb = 1 (3)

ra+ RMb = 0 (4)

rbH + RMC = IM (5)

r(0)bH + rHC = 0 (6)

Equation (4) can be rearranged to solve for b as:

b = −R−1
M ra (7)

3



PROBLEM 1.5. CHAPTER 1.

Hence, from equations (3) and (7):

a =
1

r(0)− rHR−1
M r

(8)

Correspondingly,

b = − R−1
M rrHR−1

M

r(0)− rHR−1
M r

(9)

From Equation (5):

C = R−1
M −R−1

M rbH

C = R−1
M +

R−1
M rrHR−1

M

r(0)− rHR−1
M r

(10)

As a check, the results of Equations (9) and (10) should satisfy Equation (6)

r(0)bH + rHC = − r(0)rHR−1
M

r(0)− rHR−1
M r

+ rHR−1
M +

rHR−1
M rrHR−1

M

r(0)− rHR−1
M R

= 0

We have thus shown that

R−1
M+1 =

[
0 0
0 R−1

M

]
+ a

[
1 −rHR−1

M

R−1
M r R−1

M rrHR−1
M

]

=

[
0 0
0 R−1

M

]
+ a

[
1

−R−1
M r

] [
1 −rHR

−1
M

]
where the scalar a is defined by Equation (8)

b)

RM+1 =

[
RM rB∗

rBT r(0)

]
(11)

Let

R−1
M+1 =

[
D e
eH f

]
(12)

4



PROBLEM 1.5. CHAPTER 1.

where D, e and f are to be determined. Multiplying Equation (11) by Equation (12) you
get:

IM+1 =

[
RM rB∗

rBT r(0)

] [
D e
eH f

]
Therefore:

RMD + rB∗eH = I (13)

RMe + rB∗f = 0 (14)

rBTe + r(0)f = 1 (15)

rBTD + r(0)eH = 0 (16)

From Equation (14):

e = −R−1
M rB∗ (17)

Hence, from Equation (15) and Equation (17):

f =
1

r(0)− rBTR−1
M rB∗

(18)

Correspondingly,

e = − R−1
M rB∗

r(0)− rBTR−1
M rB∗

(19)

From Equation (13):

D = R−1
M −R−1

M rB∗eH

= R−1
M +

R−1
M rB∗rBTR−1

M

r(0)− rBTR−1
M rB∗

(20)

As a check, the results of Equation (19) and Equation (20) must satisfy Equation (16):

rBTD + r(0)eH = 0

rBTR−1
M +

rBTR−1
M rB∗rBTR−1

M

r(0)− rBTR−1
M rB∗

− r(0)rBTR−1
M

r(0)− rBTR−1
M rB∗

= 0

We have thus shown that

R−1
M+1 =

[
R−1
M 0
0 0

]
+ f

[
R−1
M rB∗rBTR−1

M R−1
M rB∗

−rBTR−1
M 1

]
=

[
R−1
M 0
0 0

]
+ f

[
−R−1

M rB∗

1

] [
−rBTR−1

M 1
]

where the scalar f is defined by Equation (18)

5



PROBLEM 1.6. CHAPTER 1.

Problem 1.6

a)
We express the difference equation describing the first-order AR process u(n) as

u(n) = ν(n) + w1u(n− 1)

where w1 = −a1 . Solving the equation by repeated substitution, we get

u(n) =ν(n) + w1ν(n− 1) + w1u(n− 2)

=ν(n) + w1ν(n− 1) + w2
1ν(n− 2) + . . .+ wn−1

1 ν(1) (1)

Here we used the initial condition

u(0) = 0

Taking the expected value of both sides of Equation (1) and using

E[ν(n)] = µ

we get the geometric series

E[u(n)] = µ+ w1µ+ w2
1µ+ . . .+ wn−1

1 µ

=

{
µ(

1−wn
1

1−w1
), w1 6= 1

µn, w1 = 1

}
This result shows that if µ 6= 0, then E[u(n)] is a function of time n. Accordingly, the AR
process u(n) is not stationary. If, however, the AR parameter satisfies the condition:

|a1| < 1 or |w1| < 1

then

E[u(n)]→ µ

1− w1

as n→∞

Under this condition, we say that the AR process is asymptotically stationary to order one.

b)
When the white noise process ν(n) has zero mean, the AR process u(n) will likewise have
zero mean. Then

var[ν(n)] = σ2
ν

6



PROBLEM 1.6. CHAPTER 1.

var[u(n)] = E[u2(n)] (2)

Substituting Equation (1) into Equation (2), and recognizing that for the white noise pro-
cess

E[ν(n)ν(k)] =

{
σ2
ν n = k

0, n 6= k
(3)

we get the geometric series

var[u(n)] =σ2
ν(1 + w2

1 + w4
1 + . . .+ w2n−2

1 )

=

 σ2
ν(

1− w2n
1

1− w2
1

), w1 6= 1

σ2
νn, w1 = 1

When |a1| < 1 or |w1| < 1, then

var[u(n)] ≈ σ2
ν

1− w2
1

=
σ2
ν

1− a2
1

for large n

c)
The autocorrelation function of the AR process u(n) equals E[u(n)u(n−k)]. Substituting
Equation (1) into this formula, and using Equation (3), we get

E[u(n)u(n− k)] = σ2
ν(w

k
1 + wk+2

1 + . . .+ wk+2n−2
1 )

=

{
σ2
νw

k
1(

1−w2n
1

1−w2
1

), w1 6= 1

σ2
νn, w1 = 1

For |a1| < 1 or |w1| < 1, we may therefore express this autocorrelation function as

r(k) =E[u(n)u(n− k)]

≈ σ2
νw

k
1

1− w2
1

for large n

Case 1: 0 < a1 < 1
In this case, w1 = −a1 is negative, and r(k) varies with k as follows:

7



PROBLEM 1.7. CHAPTER 1.

9

For |a1| < 1 or |w1| < 1, we may therefore express this autocorrelation function as

  for large n

Case 1:   0 < a1 < 1

In this case, w1 = -a1 is negative, and r(k) varies with k as follows:

Case 2:  -1 < a1 < 0

In this case, w1 = -a1 is positive and r(k) varies with k as follows:

1.7 (a) The second-order AR process u(n) is described by the difference equation:

Hence

and the AR parameters equal

Accordingly, we write the Yule-Walker equations as

r k( ) E u n( )u n k–( )[ ]=

σv
2
w1

k

1 w1
2

–
---------------≈

-4

-3

-2
-1

0
+1

+2

+3

+4
k

r(k)

-4 -2    -1 0 +2      +3 +4
k

r(k)

-3 +1

u n( ) u n 1–( ) 0.5u n 2–( )– v n( )+=

w1 1=

w2 0.5–=

a1 1–=

a2 0.5=

Case 2: −1 < a1 < 0
In this case, w1 = −a1 is positive, and r(k) varies with k as follows:

9

For |a1| < 1 or |w1| < 1, we may therefore express this autocorrelation function as

  for large n

Case 1:   0 < a1 < 1

In this case, w1 = -a1 is negative, and r(k) varies with k as follows:

Case 2:  -1 < a1 < 0

In this case, w1 = -a1 is positive and r(k) varies with k as follows:

1.7 (a) The second-order AR process u(n) is described by the difference equation:

Hence

and the AR parameters equal

Accordingly, we write the Yule-Walker equations as

r k( ) E u n( )u n k–( )[ ]=

σv
2
w1

k

1 w1
2

–
---------------≈

-4

-3

-2
-1

0
+1

+2

+3

+4
k

r(k)

-4 -2    -1 0 +2      +3 +4
k

r(k)

-3 +1

u n( ) u n 1–( ) 0.5u n 2–( )– v n( )+=

w1 1=

w2 0.5–=

a1 1–=

a2 0.5=

Problem 1.7

a)
The second-order AR process u(n) is described by the difference equation:

u(n) = u(n− 1)− 0.5u(n− 2) + ν(n)

which, rewritten, states

w1 = 1

w2 = −0.5

as the AR parameters are equal to:

a1 = −1

a2 = 0.5

Accordingly, the Yule-Walker equation may be written as:[
r(0) r(1)
r(1) r(0)

] [
1
−0.5

]
=

[
r(1)
r(2)

]
b)
Writing the Yule-Walker equations in expanded form:

r(0)− 0.5r(1) = r(1)

8



PROBLEM 1.8. CHAPTER 1.

r(1)− 0.5r(0) = r(2)

Solving the first relation for r(1):

r(1) =
2

3
r(0) (1)

Solving the second relation for r(2):

r(2) =
1

6
r(0) (2)

c)
Since the noise ν(n) has zero mean, the associated AR process u(n) will also have zero
mean. Hence,

var[u(n)] = E[(u2)]
= r(0)

It is known that

σ2
ν =

2∑
k=0

akr(k)

=r(0) + a1r(1) + a2r(2) (3)

Substituting Equation (1) and Equation (2) into Equation (3), and solving for r(0), we
get:

r(0) =
σ2
ν

1 + 2
3
a1 + 1

6
a2

= 1.2

Problem 1.8

By Definition,

P0 = Average power of the AR process u(n)

=E[|u(n)|2]

=r(0) (1)

where r(0) is the autocorrelation function of u(n) with zero lag. We note that

{a1, a2, . . . , aM}

{

r(1)

r(0)
,
r(2)

r(0)
, . . . ,

r(M)

r(0)

}
9



PROBLEM 1.9. CHAPTER 1.

Equivalently, except for the scaling factor r(0),

{a1, a2, . . . , aM}
 {r(1), r(2), . . . , r(M)} (2)

Combining Equation (1) and Equation (2):

{P0, a1, a2, . . . , aM}
 {r(0), r(1), r(2), . . . , r(M)} (3)

Problem 1.9

a)
The transfer function of the MA model of Fig. 1.3 is

H(z) = 1 + b∗1z
−1 + b∗2z

−2 + . . .+ b∗Kz
−K

b)
The transfer function of the ARMA model of Fig. 1.4 is

H(z) =
b0 + b∗1z

−1 + b∗2z
−2 + . . .+ b∗Kz

−K

1 + a∗1z
−1 + a∗2z

−2 + . . .+ a∗Mz
−M

c)
The ARMA model reduces to an AR model when

b0 = b1 = . . . = bK = 0

The ARMA model reduces to MA model when

a1 = a2 = . . . = aM = 0

10



PROBLEM 1.10. CHAPTER 1.

Problem 1.10
∗ Taking the z-transform of both sides of the correct equation:

X(z) = (1 + 0.75z−1 + 0.25z−2)V (z)

Hence, the transfer function of the MA model is:

X(z)

V (z)
=1 + 0.75z−1 + 0.75z−1

=
1

(1 + 0.75z−1 + 0.75z−1)−1 (1)

Using long division we may perform the following expansion of the denominator in Equa-
tion (1):

(1 + 0.75z−1 + 0.75z−1)−1

= 1− 3

4
z−1 +

5

16
z−2 − 3

64
z−3 − 11

256
z−4 − 45

1024
z−5

− 91

4096
z−6 +

93

16283
z−7 − 85

65536
z−8 − 627

262144
z−9 +

1541

1048576
z−10 + . . .

≈ 1− 0.75z−1 + 0.3125z−2 − 0.0469z−3 − 0.043z−4 − 0.0439z−5

− 0.0222z−6 + 0.0057z−7 − 0.0013z−8 − 0.0024z−9 + 0.0015z−10

(2)

a)

M = 2

Retaining terms in Equation (2) up to z−2, we may approximate the MA model with an
AR model of order two as follows:

X(z)

V (z)
≈ 1

1− 0.75z−1 + 0.3125z−2

∗Correction: the question was meant to ask the reader to consider an MA process x(n) of order two
described by the difference equation

x(n) = ν(n) + 0.75ν(n− 1) + 0.25ν(n− 2)

not the equation

x(n) = ν(n) + 0.75ν(n− 1) + 0.75ν(n− 2)

11



PROBLEM 1.11. CHAPTER 1.

b)

M = 5

Retaining terms in Equation (2) up to z−5, we may approximate the MA model with an
AR model of order two as follows:

X(z)

V (z)
≈ 1

1− 0.75z−1 + 0.3125z−2 − 0.0469z−3 − 0.043z−4 + 0.0439z−5

c)

M = 10

Retaining terms in Equation (2) up to z−10, we may approximate the MA model with an
AR model of order two as follows:

X(z)

V (z)
≈ 1

D(z)

where D(z) is given by the polynomial on the right-hand side of Equation (2).

Problem 1.11

a)
The filter output is

x(n) = wHu(n)

where u(n) is the tap-input vector. The average power of the filter output is therefore

E[|x(n)|2] = E[wHu(n)uH(n)w]
= wHE[u(n)uH(n)]w
= wHRw

b)
If u(n) is extracted from a zero-mean white noise with variance σ2, then

R = σ2I

where I is the identity matrix. Hence,

E[|x(n)|2] = σ2wHw

12



PROBLEM 1.12. CHAPTER 1.

Problem 1.12

a)
The process u(n) is a linear combination of Gaussian samples. Hence, u(n) is Gaussian.

b)
From inverse filtering, we recognize that ν(n) may also be expressed as a linear combina-
tion of samples relating to u(n). Hence, if u(n) is Gaussian, then ν(n) is also Gaussian.

Problem 1.13

a)
From the Gaussian moment factoring theorem:

E[(u∗1u2)k] =E[u∗1 . . . u
∗
1u2 . . . u2]

=k!E[u∗1u2] . . .E[u∗1u2]

=k!(E[u∗1u2])k (1)

b)
By allowing u2 = u1 = u, Equation (1) reduces to:

E[|u|2k] = k!(E[|u|2])k

Problem 1.14

It is not permissible to interchange the order of expectation and limiting operation in Equa-
tion (1.113). The reason is that the expectation is a linear operation, whereas the limiting
operation with respect to the number of samples N is nonlinear.

Problem 1.15

The filter output is

y(n) =
∑
i

h(i)u(n− i)

13
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Similarly, we may write

y(m) =
∑
k

h(k)u(m− k)

Hence,

ry(n,m) = E[y(n)y∗(m)]

= E

[∑
i

h(i)u(n− i)
∑
k

h∗(k)u∗(m− k)

]

=
∑
i

∑
k

h(i)h∗(k)E [u(n− i)u∗(m− k)]

=
∑
i

∑
k

h(i)h∗(k)ru(n− i,m− k)

Problem 1.16

The mean-square value of the filter output response to white noise input is

P0 =
2σ2∆ω

π

The value P0 is linearly proportional to the filter bandwidth ∆ω. This relation holds irre-
spective of how small ∆ω is compared to the mid-band frequency of the filter.

Problem 1.17

a)
The variance of the filter output is

σ2
y =

2σ2∆ω

π

It has been stated that

σ2 = 0.1 volts2

14
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∆ω = 2π × 1 radians/sec

Hence,

σ2
y =

2× 0.1× 2π

π
= 0.4 volts2

b)
The pdf of the filter output y is

f(y) =
1√

2πσy
exp(−y2/0.8)

=
3.1623√

2π
exp(−y2/0.8)

Problem 1.18

a)
We are given

Uk =
N−1∑

0

u(n) exp(− jnωk), k = 0, 1, ..., N − 1

where u(n) is real valued and

ωk =
2π

N
k

Hence,

E[UkU
∗
l ] =E

[
N−1∑
n=0

N−1∑
m=0

u(n)u(m) exp(− jnωk + jmωl)

]

=
N−1∑
n=0

N−1∑
m=0

exp(− jnωk + jmωl)E[u(n)u(m)]

=
N−1∑
n=0

N−1∑
m=0

exp(− jnωk + jmωl)r(n−m)

=
N−1∑
n=0

exp(jmωk)
N−1∑
m=0

r(n−m) exp(− jnωk) (1)

15
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By definition, we also have

N−1∑
n=0

r(n) exp(− jnωk) = Sk

Moreover, since r(n) is periodic with period N , we may invoke the time-shifting property
of the discrete Fourier transform to write

N−1∑
n=0

r(n−m) exp(− jnωk) = exp(− jmωk)Sk

Recognizing that ωk = (2π/N)k, Equation (1) reduces to

E[UkU
∗
l ] = Sk

∑N−1
m=0 exp(jm(ωl − ωk))

=

{
Sk l = k
0, otherwise

b)
Part A) shows that the complex spectral samples Uk are uncorrelated. If they are Gaussian,
then they will also be statistically independent. Hence,

fU(U0, U1, . . . , UN−1) =
1

(2π)Ndet(Λ)
exp

(
−1

2
UHΛU

)
where

U = [U0, U1, . . . , UN−1]T

Λ =
1

2
E[UUH ]

=
1

2
diag(S0, S1, ..., SN−1)

det(Λ) =
1

2N

N−1∏
k=0

Sk

16



PROBLEM 1.19. CHAPTER 1.

Therefore,

fU(U0, U1, . . . , UN−1) =
1

(2π)N2−N
N−1∏
k=0

Sk

exp

−1

2

N−1∑
k=0

|Uk|2
1

2
Sk



= π−N exp

(
N−1∑
k=0

(
−|Uk|

2

Sk

)
− lnSk

)

Problem 1.19

The mean-square value of the increment process d z(ω) is

E[| d z(ω)|2] = S(ω) dω

Hence, E[| d z(ω)|2] is measured in watts.

Problem 1.20

The third-order cumulant of a process u(n) is

c3(τ1, τ2) = E[u(n)u(n+ τ1)u(n+ τ2)]
= third-order moment.

All odd-order moments of a Gaussian process are known to be zero; hence,

c3(τ1, τ2) = 0

The fourth-order cumulant is

cr(τ1, τ2, τ3) = E[u(n)u(n+ τ1)u(n+ τ2)u(n+ τ3)]
−E[u(n)u(n+ τ1)]E[u(n+ τ2)u(n+ τ3)]
−E[u(n)u(n+ τ2)]E[u(n+ τ1)u(n+ τ3)]
−E[u(n)u(n+ τ3)]E[u(n+ τ1)u(n+ τ2)]

For the special case of τ=τ1=τ2=τ3, the fourth-order moment of a zero-mean Gaussian
process of variance σ2 is 3σ4, and its second-order moments of σ2. Hence, the fourth-
order cumulant is zero. Indeed, all cumulants higher than order two are zero

17
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Problem 1.21

The trispectrum is

C4(ω1, ω2, ω3) =
∞∑

τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

c4(τ1, τ2, τ3) exp(− j(ω1τ1 + ω2τ2 + ω3τ3))

Let the process be passed through a three-dimensional band-pass filter centered on ω1, ω2,
and ω3. We assume that the bandwidth (along each dimension) is small compared to the
respective center frequency. The average power of the filter output is therefore proportional
to the trispectrum, C4(ω1, ω2, ω3).

Problem 1.22

a)
Starting with the formula

ck(τ1, τ2, . . . , τk−1) = γk

∞∑
i=−∞

hihi+τ1 . . . hi+τk−1

The third-order cumulant of the filter output is

c3(τ1, τ2) = γ3

∞∑
i=−∞

hihi+τ1hi+τ2

where γ3 is the third-order cumulant of the filter input. The bispectrum is

c3(τ1, τ2) =γ3

∞∑
τ1=−∞

∞∑
τ2=−∞

c3(τ1, τ2) exp(− j(ω1τ1 + ω2τ2))

=γ3

∞∑
i=−∞

∞∑
τ1=−∞

∞∑
τ2=−∞

hihi+τ1hi+τ2 exp(− j(ω1τ1 + ω2τ2))

Hence,

C3(ω1, ω2) = γ3H
(
ejω1

)
H
(
ejω2

)
H∗
(
ej(ω1+ω2)

)
(1)

b)
From the formula found in part a), Equation (1), can be clearly deduced that

arg[C3(ω1, ω2)] = arg
[
H
(
ejω1

)]
+ arg

[
H
(
ejω2

)]
− arg

[
H
(
ej(ω1+ω2)

)]
18
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Problem 1.23

The output of a filter, which is defined by the impulse response hi due to an input u(i), is
given by the convolution sum

y(n) =
∑
i

hiu(n− i)

The third-order cumulant of the filter output is, for example,

C3(τ1, τ2) =E[y(n)y(n+ τ1)y(n+ τ2)]

=E

[∑
i

hiu(n− i)
∑
k

hku(n+ τ1 − k)
∑
l

hlu(n+ τ2 − l)
]

=E

[∑
i

hiu(n− i)
∑
k

hk+τ1u(n− k)
∑
l

hl+τ2u(n− l)
]

=
∑
i

∑
k

∑
l

hihk+τ1hl+τ2E[u(n− i)u(n− k)u(n− l)]

For an input sequence of independent and identically distributed random variables, we
note that

E[u(n− i)u(n− k)u(n− l)] =

{
γ3, i = k = l
0, otherwise

Hence,

C3(τ1, τ2) = γ3

∞∑
i=−∞

hihi+τ1hi+τ2

In general, we may thus write

Ck(τ1, τ2, . . . , τk−1) = γk

∞∑
i=−∞

hihi+τ1 . . . hi+τk−1

Problem 1.24

By definition:

r(α)(k) =
1

N

N−1∑
n=0

E[u(n)u∗(n− k)e− j 2παn]ejπαk
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Hence,

r(α)(−k) =
1

N

N−1∑
n=0

E[u(n)u∗(n+ k)e− j 2παn]e− jπαk

r(α)∗(k) =
1

N

N−1∑
n=0

E[u∗(n)u(n− k)ej 2παn]e− jπαk

We are told that the process u(n) is cyclostationary, which means that

E[u(n)u∗(n+ k)e− j 2παn] = E[u∗(n)u(n− k)ej 2παn]

It follows therefore that

r(α)(−k) = r(α)∗(k)

Problem 1.25

For α = 0, the input to the time-average cross-correlator reduces to the squared amplitude
of a narrow-band filter with mid-band frequency ω. Correspondingly, the time-average
cross-correlator reduces to an average power meter. Thus, for α = 0, the instrumentation
of Fig. 1.16 reduces to that of Fig. 1.13 in the book.
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