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Abstract—The progress of Internet of Things (IoT) leads
to appearance of diverse networked environments where specific
class of service-oriented applications—smart spaces—are becom-
ing developed and deployed. The deployment is based on certain
software platforms, widely accepted as smart spaces middleware.
This paper overviews this type of middleware with focus on the
requirements that the middleware supports in IoT environments.
We analyze and systemize the middleware requirements. The
systemized requirements are mapped to the particular existing
middleware solutions, leading to identification and comparison of
basic approaches in the smart spaces development problem.

I. INTRODUCTION

Internet of Things (IoT) provides diverse net-
worked environments where specific class of service-oriented
applications—smart spaces—can be deployed [1]. An IoT
environment typically consists of many various devices. They
provide significant computation and information resources,
especially related to the “smart property” of participating
things [2], even transforming to Ambient Intelligence (AmI)
systems [3].

Smart space application enables construction of so
called “semantic services”—the concept derived from Seman-
tic Web [4]). Such services are based on interlinked meaning of
the involved resources and processes. In contrast to the global
view of Semantic Web, smart spaces are focused on localized
IoT environments, not on the entire system of web resources.
Constructed services have uniquely described semantics (for
participants), accessible through the Internet, allow automated
discovery, composition, and proactive initiation.

Smart spaces middleware is used to deploy an appli-
cation in a particular IoT environment [5]). In this paper,
we consider the software development problem for smart
spaces middleware in the IoT case. Although relatively many
middleware solutions are already known (on the technology
market or as research pilots), the smart spaces occupy the upper
layer from the IoT technology, and straightforward use of IoT
middleware is not appropriate.

We show how existing IoT-related approaches and tech-
nologies can be used to solve the studied software develop-
ment problem. We analyze and systemize the smart spaces
middleware requirements. The systemized requirements are
mapped to the particular existing middleware solutions, leading
to identification and comparison of basic approaches in the
smart space development problem.

The rest of the paper is organized as follows. Section II
defines the smart space development and deployment problem

for IoT environments. We introduce our requirements system
applicable to smart spaces middleware development. Sec-
tion III overviews existing middleware solutions to characterize
the achieved level of requirements satisfaction and to identify
possible design approaches. Section IV summarizes the results
of this overview.

II. DEPLOYMENT OF SMART SPACES IN IOT
ENVIRONMENTS

IoT provides diverse networked environments for de-
ploying smart spaces [1]. A smart space supports a shared
view on available resources in the IoT environment and creates
semantics for the use of these resources in cooperative con-
struction of services by multiple devices [3]. In this section, we
consider the deployment problem of smart spaces in respect
to the opportunities of emerging IoT, Web, and semantics
technologies. To solve the deployment problem, smart spaces
middleware can be developed for installing in a particular
IoT environment. Based on the presented study of existing
technologies, we systemize the requirements to smart spaces
middleware.

A. Enabler Technologies

The IoT concept enables the capability of connecting
and integrating a wide range of technologies and devices, from
home automation and smart cities to any system of sensors,
actuators, tags, or physical things in the Internet [6], [7]. The
fundamental building blocks are smart objects defined as acting
autonomously to make own decisions, sensing the environ-
ment, communicating with other objects, accessing resources
of the existing Internet, and interacting with human [2], [8].

The next IoT evolution step is connecting smart objects
and the Web, leading to the so-called Web of Things (WoT) [9],
[10]). The interactions are enabled through the definition
of application programming interfaces over HTTP protocol
based on Web Services following the RESTful architecture.
Accordingly, the services and information provided by the
objects can be incorporated in the Web. As a result, IoT
smart objects can use the same language as other resources
on the Web. One can easily integrate physical devices (things)
with web pages (information world) allowing web users and
services to experience the physical world and act on its data
and services.

The Semantic Web of Things (SWoT) further advances
the Web technologies and WoT concept with the Semantic Web
technologies [11]. The technologies are focused on enabling
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wide scale integration and interoperability [4]). Global share
and re-use of smart objects enable provision of semantic ser-
vices based on interlinked meaning of the involved resources
and processes. One of the challenges to move towards the
SWoT is to define common semantic descriptions (ontologies)
that allow data to be universally and understandable. SWoT
ensures an extension to the IoT allowing integration of both
the physical and information worlds.

The M3 architecture (multidevice, multivendor, mul-
tidomain) for smart spaces applies technologies from IoT,
WoT, and SWoT to develop service-oriented applications for
ubiquitous computing environments [12], [5], [13], where
the physical, information, and social worlds are semantically
fused. Service construction is implemented by software agents
running on various devices in the IoT environment (small or
large, local or remote). The focus is on the resources related to
a spatial-restricted area: locally produced data, computational
power of surrounding devices, expertise of participating users,
etc. Semantics of such resources are integrated in a knowledge
base, which is collectively created, maintained, and used by
agents through semantic information broker (SIB). Such an
agent is also called knowledge processor (KP) or smart space
participant.

B. Smart Spaces Middleware

Examples of services for IoT environments can be found
in [2], [8], [5]. Smart spaces are used in various problem
domains such as collaborative work [14], [15], mobile health-
care [16], [17], digital museums and cultural heritage [18],
[19]. In general, smart spaces middleware provide support
for interaction and integration of various devices, software
components, and information resources within a common goal
for service construction and delivery [20], [21], [22]). The
support is implemented as a separate layer on the top of IoT
(the network communication layer).

There are many variants of IoT middleware that im-
plement the network communication layer, e.g., see [23],
[24], [25]. Such IoT middleware can be considered from the
semantic-oriented viewpoint (among many other viewpoints),
reflecting the observable growth of using the semantic methods
in the IoT. In this case, IoT middleware become an appropriate
base for deploying smart spaces (in some IoT environments),
i.e., can be transformed to smart spaces middleware.

Semantic-oriented IoT middleware is based on technolo-
gies of the Semantic Web, e.g., RDF, OWL, and SPARQL.
The technologies are used for uniform data representation and
processing, which enable data exchanging of heterogeneous
devices [26]). Various information space solutions are con-
sidered. In particular, a point in such a space is represented
as an n-tuple. In the basic case, each tuple corresponds to
a triple (n = 3 components), following the RDF and OWL
representation model. The SPARQL query language is used
to formulate data update and retrieve queries from the shared
information storage. The Smart-M3 platform is one example of
this type of middleware [12]. Semantic-oriented IoT middle-
ware integrates Web 3.0 and evolve to Web 4.0, embodying the
idea of symbiotic Web—human mind and machines interact in
symbiosis [27], [28].

The existing semantic-oriented IoT middleware solu-
tions can be divided into the following groups based on
their design approaches [24], [29]: event-based, service-
oriented, VM-based, agent-based, tuple-spaces, database-
oriented, application-specific, and data-driven. Typically,
mixed approaches are used in existing middleware implemen-
tations. In particular, the database-oriented and agent-based
approaches can be combined to support indirect communi-
cation of agents with each other. In contrast to the direct
communication, when an agent has to discover another agent
and explicitly connect to exchange data or commands, the
indirect communication uses the shared view model (e.g.,
blackboard) implemented in some database (e.g., local device
storage, nearby storage in the IoT environment, cloud storage).

Commercial IoT middleware follow the three main
centralized design approaches to deploying smart spaces [30]:
1) one cloud for all, 2) local cloud, and 3) local cloud with
shared global functionality. The first approach is suitable for
organizing the cooperation of many distributed devices. The
approach is provided by IBM, Microsoft, and Intel, since a
large number of software and hardware resources are required
to maintain the cloud environment. The second approach
deploys a local shared storage for devices in a physical
spatial-restricted area. The third approach is a combination of
the previous ones. Decentralized design approaches are also
possible, e.g., based on peer-to-peer methods [31].

Based on the semantic-oriented properties of existing
IoT middleware, we conclude that smart spaces middleware
should provide data integration, easy knowledge exchange,
and intelligent reasoning over the shared information as well
as interoperability and integration within a heterogeneous
IoT environment of ubiquitously interconnected objects and
systems. This kind of requirements to smart spaces middleware
can be classified onto three groups: 1) functional requirements,
2) non-functional requirements, and 3) application develop-
ment requirements. Particular requirements for each of these 
groups were considered in the publications above and we 
discuss the requirements further in this section. The summary 
view is shown in Fig. 1.

C. Functional Requirements

Functional requirements cover the functions provided
by smart spaces middleware. The requirements are related
to the Semantic Web standards and technologies and their
software implementation constraints. Straightforward transfer
of global-scale Semantic Web solutions for localized (edge-
centric) IoT environments with resource-constrained devices
is inappropriate for practical use. The functional requirements
reflect such constraints in smart spaces middleware as follows.

Machine-readable logic: Smart space middleware fol-
lows the W3C standard for encoding semantics of stored data
as class and property axioms of some description logic in
RDF/XML, which is machine-readable. The encoding func-
tions use OWL built upon RDF, RDF Schema, and XML
Schema. The machine-readable logic provides a logical system
specifying instances, their relationships (properties or predi-
cates), and the sets (classes) to which instances or relations
belong.
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Fig. 1. Smart spaces middleware requirements

Inference: Semantic inference supports discovering new
relationships based on the stored semantics and deduction
rules. The inference functions use the graph-oriented RDF
properties, reducing the problem to connectivity analysis
among the basic facts.

Knowledge discovery: In general, knowledge discovery
is defined as “the non-trivial extraction of implicit, unknown,
and potentially useful information from the data” [32]. This
process is the key component of enhanced information retrieval
in semantic databases. A smart space is an information col-
lection about the IoT environment. The knowledge discovery
functions are performed over this dynamic and heterogeneous
collection in order to construct advanced services.

Data federation: Integration of data from multiple, dis-
parate sources to form a single, concerted view. Data federation
functions enable an interface to access heterogeneous sources,
making the distributed data sources appear as if they are
in a single local database. The key challenge is high data
dynamicity and heterogeneity in IoT environments, even in
localized (edge-centric) environments.

Big data management and analytics: Many Semantic
Web solutions have the exponential time complexity, i.e. of
poor scalability and low performance when size parameters
of data are growing. Functions for big data management and
analytics provide the ability to effectively filter, aggregate, and
collect data in or close to real-time mode. The data are coming
from a wide variety of devices and other sources. Furthermore,
the functions support real-time data mining and assistance in
decision-making.

D. Non-Functional Requirements

A non-functional requirement describes constraints on
the smart spaces middleware as a whole system or for a par-
ticular function. The non-functional requirements are mainly
inherited from the corresponding requirements for IoT middle-
ware.

Extensibility: Middleware architecture is composite,
e.g., based on plug-ins or modules. This property offers high
extensibility when new functions are added. The composite
architecture supports inclusion/exclusion of certain plug-ins or
modules in compilation time or in runtime. n particular, the
middleware functionality can be customized for a given IoT
environment and other prerequisites.

Connectivity and accessibility: The property of ubiq-
uitous computing, when the middleware keeps regular con-
nectivity for any participant to access appropriate resources
in the IoT environment. Moreover, the middleware supports
participants with ability to discover resources and each other.

Dependability: Smart space middleware should remain
operational during an application process, even in the presence
of failures. The dependability of a middleware helps in achiev-
ing application dependability. Every component in a middle-
ware should be dependable to achieve overall dependability,
which includes devices, communication, technologies, data,
and implementation of middleware layers.

Interoperability: Middleware should support simultane-
ous operation of heterogeneous applications (each constructs
services) when information is exchanged between applica-
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tions and their services. The semantic interoperability means
transparent and easy information exchange even if the set of
participants is dynamically changed (e.g., new devices join
the IoT environment). To enable the semantic interoperability,
smart spaces middleware can use ontologies to represent shared
data such that the information is interpreted similarly by any
participant.

Security: A security mechanism is needed to ensure the
three key concepts: integrity, confidentiality and availability.
Use of context-awareness may disclose some personal-like
information (e.g., phone number, home address, current loca-
tion). In order to preserve the owner’s privacy, the smart spaces
middleware support organizing, controlling, and delimiting the
access to information shared in the smart space.

Portability and adaptability: The requirement is im-
portant specially due to the expansion of various computing
devices (PC, tablets, smartphones, routers, etc.), including
Linux and Windows based systems, as well as embedded
systems. Such devices are used to host some middleware
components. The middleware should provide certain indepen-
dence level from network protocol, programming language,
and operating system. The adaptability supports evolution of
hosted middleware component in respect to changes in the IoT
environment.

Easy of deployment: Middleware architecture, which de-
fines the components hosted on various devices, should support
easy elaboration, evolution, and understanding by third-party
developers. The multi-device components deployment is not
oriented to expert knowledge. A common user can deploy
the components, with no complicated installation and setup
procedures.

Engaging the development community: Community en-
gaging is important since no single company or developer can
create and support all smart space middleware components.
The new functionality can be implemented by third-party
developers and preferably as open source.

E. Application Development Requirements

The use of smart spaces middleware for application
development needs appropriate programming models and soft-
ware development tools On the one hand, the ever-growing
number of smart spaces applications impose requirements on
simplifying the application development and software main-
tenance. On the other hand, the Semantic Web technologies
impose unified standards for application development.

Programming abstractions: Providing an API for appli-
cation developers is an important requirement for any smart
space middleware. The required support is implemented as
high-level programming interfaces for application develop-
ers. The programming abstraction (e.g., the publish/subscribe
model) and the interface type that defines the style of the
programming need to be considered when defining an API.

Semantic service-based system: The Semantic Web in-
troduced the concept of semantic web services, which can
be used in smart spaces. A smart space application aims
at constructing services with uniquely described semantics,
accessible through the Internet, and suitable for automated
discovery, composition, and proactive initiation.

Computer-aided design and programming: Smart spaces
middleware should provide application development ap-
proaches with heavy developer involvement and extensive
use of tools of computer-aided design and computer-aided
programming that support application prototyping. Computer-
aided design tools are being used to automate the work of
creating and maintaining the various ontological and graphic
representations of smart space application systems design.
Computer-aided programming tools are being used to simplify
the task of programming of smart space applications providing
an integrated developed environment and automated program-
code generation tools.

Summary

The discussed smart spaces middleware requirements
were summarized in Figure 1 above. The requirements system-
ize the properties that a particular smart spaces middleware can
have. Middleware development uses this requirements system
to map particular properties to generic-form requirements. The
system also serves as a basis for determining to which extend
an existing IoT middleware can be used as smart spaces
middleware.

III. MIDDLEWARE OVERVIEW

The requirements discussed in the previous section are
essentially inherited from the rich area of IoT middleware. This
section presents an overview of particular existing middleware
solutions that can be used (directly or by enhancing) for
the case of smart spaces. For each considered solution the
overview focuses on the achieved level of requirements satis-
faction. As a result, we identify and systemize possible design
approaches and characteristics for smart spaces middleware.

A. Semantic Middleware for Networked Embedded Systems

LinkSmart [33]) is an open source platform for de-
veloping IoT applications in various domain. The platform
provides the framework and the service infrastructure for
creation of distributed IoT applications, combining the service-
oriented architecture, peer-to-peer networking, and semantic
web services technologies.

The semantic layer of the platform is based on the
RDF/OWL knowledge representation formalisms and related
reasoning mechanisms. In order to create the basis for decision
making and data federation at the layers of the middleware
architecture, LinkSmart includes data fusion, situation patterns
recognition, and complex event processing mechanisms.

The modular architecture provides software components
for building local smart environments consisting of a number
of devices, applications and services, which can be discov-
ered and communicated with using the publish/subscribe or
request/response messaging. The middleware also focused on
connecting remote environments over the Internet. LinkSmart
provides device/protocol specific components that integrate
various low-level (e.g., ZigBee, Modbus) and high-level pro-
tocols (e.g., like HTTP, MQTT) to enable interoperability at
the physical and application layers respectively. The semantic
interoperability is accomplished by combining the use of
ontologies with semantic web services. Distributed security
and social trust components at the security layer offer secure
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and trustworthy communication within devices, applications
and services. Regarding the easy of deployment requirement,
the application layer contains customizable user applications
that may include modules for workflow management, user
interface, custom logic and configuration details.

LinkSmart provides a mechanism for wrapping stan-
dard API interfaces of services, sensors, and various physical
devices with a defined web service extension. LinkSmart
services uses a semantic model for service composition, which
covers the service execution preconditions and post-conditions,
the models for orchestration of services into processes or
grounding the services to a concrete implementation.

B. Open Source IoT in Cloud

The OpenIoT project [34] provides an open source
cloud-based middleware platform enabling the semantic unifi-
cation of diverse IoT applications.

OpenIoT exploits the Linked Data concept realized
through the Linked Stream Middleware (LSM), which has
been re-designed with cloud interfaces. The RDF triple store
is deployed by LSM for encoding semantics of sensors data
and supporting a description logic. LSM provides a Linked
Data query processor that supports the SPARQL 1.1 standard.
SPARQL queries, which are continuously executed as new
data arrive from different types of sensors, output the data
in a unified format, providing data federation. However, be-
sides continuous queries, there is no real semantic reasoning
possible.

The architecture of LSM allows inclusion/exclusion of
a wide range of wrappers at runtime. Wrappers can collect
data from sensors through serial port communication, UDP
connections, HTTP requests, and etc. Each sensor is available
for discovery and querying from any layer of the OpenIoT
architecture, a sensor is registered and corresponding RDF
triples are stored in LSM. OpenIoT enables he semantic in-
teroperability of IoT services through a software infrastructure
for collecting and semantically annotating data from virtually
any sensor available. The privacy & security module is used to
perform user management, authentication, and authorization.

LSM provides a wide range of interfaces for access-
ing sensor readings such as physical connections, APIs, and
database connections. OpenIoT provides an integrated environ-
ment for building/deploying and managing IoT applications
that essentially accelerates the process of developing IoT
applications.

Ali et al. ([35]) present a conceptual architecture of IoT-
enabled communication systems, which are built upon existing
frameworks for semantic data acquisition, and tools to enable
continuous processing, discovery and federation of dynamic
data sources based on Linked Data. The proposed middle-
ware extends the functionalities of the OpenIoT platform by
introducing HTTP Listener wrapper for capturing streaming
data, and semantic querying and reasoning layer, which allows
IoT-enabled communication systems to include semantically
annotated data streams produced by sensors as an additional
source information. The main advantage of the middleware
over the OpenIoT project is the introduction of Stream Process-
ing and Reasoning Layer. The Stream Processing component

enables to continuously query sensor data streams and detect
events in realtime. The Stream Reasoning component contains
application logic to make smart decisions customised to the
particular requirements and context of the user.

C. Integrated Semantics Service Platform

Ryu et al. ([36]) proposed an integrated semantic service
platform (ISSP) to support ontological models in various IoT-
based service domains.

In order to express the explicit metadata and machine
logic, the platform uses linguistic techniques of the Semantic
Web, such as XML, RDF, and OWL. The web-based tool of
the ISSP provides support for the semantic web rule language,
which is used for reasoning based on added ontologies in
the IoT-based service integration ontology. Through SPARQL,
the semantic discoverer, one of the five main components of
the ISSP, performs semantic discoveries over an ontology for
a specific service domain. The other component, the service
connector, generates commands for collaborating with external
IoT platforms using the individuals received from the semantic
discoverer enabling the data federation. The service connector
uses HTTP verbs according to the open APIs.

The ISSP provides open APIs to monitor and control
IoT devices through RESTful interfaces. The ISSP handles
and stores various service domain knowledge in a smart city
using ontologies and then provides semantic interoperability
between different service domains (e.g., heating, ventilation,
and air conditioning) based on the integrated knowledge. The
ISSP is developed using Java on the web application server.
The main components run on a web browser, so as to support
various devices, such as a tablet, smartphone and personal
computer. Developers or administrators in each service domain
input values using the web-based tool to create an ontology
based on their service domain knowledge.

ISSP resolves three main problems for providing seman-
tic services via applying the semantic technologies: (1) inte-
grated semantic discovery; (2) dynamic semantic representa-
tion; (3) semantic data repository.

D. Semantic Middleware with Big Data Storage and Analytics

SOFIA2 [37] is a semantic middleware with Big Data
storage and analytics capacities, which allows the exchange of
information from the real world between smart applications to
build composed services. The middleware is based on mixed
design approach combining such approaches as event-based,
service-oriented, agent-based, and database-oriented.

SOFIA2 proposes using JSON o exchange information
and to define the ontologies of middleware application systems.
There is a lightweight syntax to serialize Linked Data in
JSON called JSON-LD. In this way developers can generate or
consume Linked Data, an RDF graph, or an RDF Dataset in a
JSON syntax specifying instances, their relationships (proper-
ties or predicates), and the sets (classes). This middleware also
offers advanced functionality like real-time events subscription
and rule definition and execution. However, there is no real
semantic reasoning possible, besides the ontology governance
rules ensuring that all the information in the middleware has
a homogenous structure among the different applications.

______________________________________________________PROCEEDING OF THE 27TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 138 ----------------------------------------------------------------------------



As for non-functional requirements, SOFIA2 meets
most of them. Actually, SOFIA2 is a multi-language and multi-
protocol middleware that provides a semantic interoperability
of multiple heterogeneous devices and systems. Extensibil-
ity requirement is implemented in a middleware architecture
through a mechanism of plug-ins. The middleware uses several
security mechanisms that ensure authorization, authentication,
consistency and as a whole integral protection of the data.
It also has a third-party API for many languages, such as
Javascript, Arduino, Android, C and Python, among others.

E. Semantically Interoperable Federation of IoT Experimen-
tation Facilities

FIESTA-IoT project [38]) provides IoT middleware
infrastructure that adapts and federates existing IoT platforms
and testbeds.

The data of platforms and testbeds are adapted to
a common FIESTA-IoT ontology (i.e. compliance to com-
mon semantics). Different RDF representation formats (i.e.,
RDF/XML, JSON-LD, Turtle) are supported. Furthermore, the
proposed semantic-based platform enables the management
of triple store databases and the execution of inference and
reasoning engines.’ Regarding the data federation requirement,
the common FIESTA-IoT ontology enables makes it possible
to seamlessly deal with data from different sources. Moreover,
the platform provides a single experimentation-as-a-service
application program interface for accessing IoT data resources
independently of their source IoT platform/testbed.

The central component of the FIESTA-IoT meta-
platform is a directory service. This directory will enable the
dynamic discovery and use of resources from all the intercon-
nected testbeds. The FIESTA-IoT ontology is the baseline for
the semantic interoperability of the heterogeneous testbeds and
IoT platforms. The FIESTA-IoT architecture ensures secure
access to testbed resources by authenticated and authorized
users. Although the middleware provides the API for regis-
tering, managing and querying resources, the deployment of
platform components requires expert knowledge and support,
making it complicated to install, setup, and evolve by third-
party developers.

However, the involvement of third-parties plays an im-
portant instrumental role for the large scale validation of the
FIESTA-IoT experimental infrastructure.

F. Reactive Middleware for Sensor Data

MASSIF [29] is a reactive data-driven middleware for
the semantic annotation of and reasoning on raw sensor data.
The middleware allows the development and deployment of
services that can operate on a subset of data, improving
reasoning efficiency. Each of these services operates with its
own context model to retrieve high-level knowledge. It allows
semantic annotation of IoT data and the high-level coordination
between semantic IoT services.

A context model is internally represented as an ontology
using the OWL API. Data are represented as a set of OWL
axioms, describing the data semantically. Through the use
of semantic reasoning and description logics over this data
representation, inference requirement is met by the extraction

of intelligent high-level conclusions and the execution of
intelligent decisions.

MASSIF has a plug-in architecture that allows loosely-
coupled modular services, which enable extensibility and
scalability. Reactive and real-time data processing ensures
connectivity and accessibility through detection and imme-
diate reaction to events. In order to meet the dependability
requirement, the middleware uses a specialized backup system
to provide to minimize the data loss upon failure and intelligent
caching to match similar events without the need to reason. The
middleware also supports communication and collaboration
between the different components. The different components
publish their data on the Semantic Communication Bus (SCB)
in the form of OWL axioms. Each component can subscribe
to the SCB by passing a filter rule in the form of an OWL
class expression.

MASSIF includes the API-components, which can se-
mantically annotate the data and services, which process the
semantic data to retrieve high-level knowledge.

G. Adaptive IoT and WoT Convergence Platform

The concept platform [39] provides global intercom-
patibility to help users to easily communicate with things by
connecting through the webs.

The platform provides semantic-based thing storage
(based on RDF) and inference module, things retrieval mod-
ule, and Ubiquitous Process Management (UPM)-based thing
dynamic collaboration modules. Services and applications may
be provided with a semantic search result through the API to
handle the SPARQL query.

The plug-in-based architecture of the Web and network-
ing layer includes the HTTP communication manager, things
and devices resource manager, internal message networking
and monitor, and the security functionality and things metadata
repository. UPM-based module module supports collaborative
monitoring thing resource identification, services mashup with
smart devices, thing-to-thing communication, and thing mon-
itoring capabilities for collaboration. The middleware enables
semantic interoperability between separate thing data and
improves analysis by optimizing the situational awareness. The
users have access to things through the Web and perform
a search for the thing resource information acquisition and
control functions.

Services and applications may be provided with a useful
semantic search result through the API to handle the SPARQL
query.

H. SPARQL Event Processing Architecture

Work [22] proposes a decentralized Web-based soft-
ware architecture, named SEPA (SPARQL Event Processing
Architecture), underlying the open interoperability platform for
smart space applications.

SEPA is used the Semantic Web technologies enabling
machines to generate, publish and consume new information
autonomously based on computable logic described by RDF
data model. SEPA is built on top of the SPARQL 1.1 Protocol
and provides general semantic reasoning and data integration
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techniques based on this protocol. SEPA stores information in
a Big Data RDF store to be later analyzed.

The SEPA Framework provides a development en-
vironment and offers developers a modular and extensi-
ble solution. Connectivity and accessibility are achieved by
publish-subscribe mechanism. Connectivity and accessibility
are achieved by publish-subscribe mechanism where publishers
and subscribers use SPARQL 1.1 Queries communicating
through HTTP/HTTPS and WS/WSS protocols. SEPA aims
to provide a minimum level of dependability through the
Dependability Manager that implements the client credentials
grant type and uses JSON Web Tokens. Semantic interoper-
ability is granted by RDF/RDFS/OWL ontologies offering an
API in several programming languages and at different levels
of abstraction. The SPARQL 1.1 Secure Event Protocol is
proposed to support subscriptions and secure communications.
Secure requests are authorized through JSON Web Token and
sent over TLS connections.

I. Knowledge-Aware and Service-Oriented Middleware

KASOM [40] is a knowledge-aware and service-
oriented middleware for pervasive embedded networks.

The knowledge bases of KASOM are intended to be
structured as ontology over a RDF/OWL 2. Such ontology is
parsed in order to create a WSDL 2.0 document. KASOM
provides the reasoning and inferencing engine, which gets
the contextual information from the environment using the
approach based on three phases in charge of managing the
contextual information: discovery, acquisition, and reasoning.

The middleware provides the Knowledge Management
services enabling an effective way of managing the amount of
information generated in a so heterogeneous network as the
WSAN. The Knowledge Management services are founded
on complex reasoning mechanisms and protocols based on
the WSAN’s Contextual Model. KASOM showed a good
reliability-delay balance during the reliability and performance
tests when dealing with event-based and on-demand services.
Security Service provides procedures to manage various major
security issues (e.g. permissions for accessing to services).
KASOM enables an execution platform over which a number
of different in-network Perceptual Reasoning Agents (PRAs)
can be run. When developing PRAs the developer has to
keep in mind the two major features which characterize PRA:
independence and reusability. PRA was designed following a
lightweight agent philosophy, which facilitates a rapid design,
development and deployment.

KASOM provides to developers a common API to
register PRAs in the system hiding the details of underly-
ing software as well as the allocation and management of
resources.

J. Semantic-Aware Policy Framework

SeCoMan (Semantic Web-based Context Management)
is a framework for developing context-aware smart applica-
tions preserving the users’ privacy in a semantic-oriented IoT
vision [41].

The middleware makes use of OWL 2 for encoding
semantics of stored data. In order to infer new knowledge,

the Reasoner module of SeCoMan receives ontological mod-
els generated by the Interpreter module and returns inferred
models with new knowledge by using semantic rules.

The Plug-in layer provides extensibility to SeCoMan.
This layer is composed of different plug-ins that interact with
the Middleware module, which communicate with sensors or
other devices to receive context information, and with the
Location Systems module to obtain information about the envi-
ronment. SeCoMan defines a collection of ontologies to shape
the space and context information to provide the semantic
interoperability. The framework dynamically controls users’
privacy, their authorization to stay in certain environments,
and generates new knowledge by using semantic rules, which
form policies (Operational policies, Authorization policies, and
Location policies).

SeCoMan makes only SPARQL queries in order to
obtain the space and context information desired by the users.

K. Semantic Agent-Based Service Middleware

Liu et al. [42] proposed an agent-based, service-oriented
middleware towards semantic service enablement in IoT appli-
cations.

In order to describe the semantics of stored data the
middleware provides a general service ontology based on the
XSD design. This ontology is consisted of four properties
with range classes: output, capability, deployment and re-
source. This representation enables the standardized, structured
data to instantiate the service ontology. Each agent in the
middleware abides by a Belief-Desire-Intention (BDI) model.
Agents activate the decision model by executing the plan and
actions to reach its goals using such opportunities of semantic
representation as inference and knowledge discovery.

This middleware provides a semantic service represen-
tation model to support interoperability between heterogeneous
M2M services, applications, and devices.

The M2M applications layer of the middleware provides
an interface with various M2M applications. As part of the
middleware design an efficient semantic service discovery and
matching approach for the service combination process are
presented. The service model is based on such service design
patterns as OWL-S, SAWSDL, and SWSO. This model also
follows the bottom-up data flow and the REST operation style.

L. Semantic Information Broker

CuteSIB [20] is the open-source software implemen-
tation for such a central element of an M3 smart space as
Semantic Information Broker (SIB). CuteSIB is follows the
mixed design approach based on event-based, service-oriented,
agent-based, and tuple-spaces approaches. The implementation
of CuteSIB is based on the Qt framework in order to support
a wide spectrum of Qt-based devices.

The functional requirements are implemented through
the use of W3C standard for encoding semantics of stored data
and OWL built upon RDF, RDF Schema, and XML Schema.

The plug-ins based architecture achieves higher exten-
sibility due to the modular approach. The CuteSIB implemen-
tation consists of five modules: (1) access points, (2) protocol
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TABLE I. COMPARISON OF THE EXISTING MIDDLEWARE SOLUTIONS FOR SMART SPACES

Middleware
Requirements

Functional Non-functional App. development
MRL Inf KD DF BDM-A Ext C-A Dep Int Sec P-A ED EDC PA SSB CAD-P

LinkSmart � � � � n/a � � n/a � � n/a � � � � n/a
OpenIoT � n/a n/a � n/a � � n/a � � n/a � � � n/a �
Ali et al. � � � � n/a � � n/a � � n/a � � � n/a �
Ryu et al. � � � � n/a n/a � n/a � n/a � � n/a � � n/a
SOFIA2 � � � � � � � n/a � � � n/a � � n/a n/a
FIESTA � � n/a � n/a n/a � n/a � � n/a n/a � � n/a n/a
MASSIF � � � n/a n/a � � � � n/a n/a n/a n/a � � n/a
Yu et al. � � � � n/a � � n/a � � n/a � n/a � n/a n/a
SEPA � � � � � � � � � � n/a � � � n/a n/a
KASOM � � � � n/a n/a � � � � n/a � n/a � n/a n/a
SeCoMan � � � � n/a � � n/a � � n/a n/a n/a n/a n/a n/a
Liu et al. � � � n/a n/a n/a � n/a � n/a n/a n/a n/a � � n/a
CuteSIB � n/a � � n/a � � � � n/a � n/a � � n/a n/a
Legend: (MRL) Machine-readable logic (C-A) Connectivity and accessibility (P-A) Programming

(n/a) No info (Inf) Inference (P-A) Portability and adaptability abstractions

was found (KD) Knowledge discovery (ED) Easy of deployment (SSB) Semantic

(�) Req is met (DF) Data federation (EDC) Engaging the development community service-based

(BDM-A) Big data management (Ext) Extensibility (Dep) Dependability (CAD-P) Computer-

and analytics (Int) Interoperability (Sec) Security -aided design and

programming

handlers, (3) SIB core, (4) operation handlers, and (5) triple-
store. The access points bind to particular network (transport)
protocol, receive agents requests and send responses. Operation
handlers implement operations that are needed for protocol
logic. For example, the main M3 protocol is SSAP. Base
implementation of SSAP is based on TCP and XML. CuteSIB
provides the fault tolerance mechanisms with restart/reconnect
and operation control functionality as well as uses special
services for persistent storage of critical data. CuteSIB stores
data with RDF model. Data can be easily integrated with data
from public SPARQL-endpoints (e.g., such as DBpedia) and
other RDF storages. Portability and adaptability of the CuteSIB
base layer are achieved on implementation stage by using
C/C++ cross-platform languages and Qt framework.

The CuteSIB middleware provides the development
libraries (e.g., SmartSlog DPI, CKPI) for M3 agents and
services.

Summary

Table I provides a summary of the overviewed mid-
dleware solutions in respect to the functional, non-functional,
and application development requirements. The “n/a” wildcard
indicates that no particular information was found about the
ability of the middleware to meet the requirement or the
requirement is not supported.

In general, service-oriented, agent-based, and data-
based design approaches address more smart space middleware
requirements than others. Middleware based on these design
approaches are LinkSmart, SOFIA2, and SEPA. Furthermore,
these approaches support such middleware characteristics as
indirect interaction of agents, multi-layer infrastructure-based,
and resource-constrained that stand out from the others in the
meeting requirements. These approaches and characteristics
are related to providing the multi-layer model of the middle-
ware software infrastructure in next section.

Although the existing semantic-oriented middleware so-
lutions address many requirements associated with middleware
in smart spaces, some requirements and related research issues

remain relatively unexplored, such as big data management and
analytics, semantic services, and computer-aided design and
programming. Two of them, semantic services and computer-
aided design and programming, are associated with the ap-
plication developments requirements, which, with the ever-
increasing number of smart space applications, are becoming
more and more relevant compared to other requirements.

IV. CONCLUSION

This paper considered the development problem for
smart spaces middleware. The middleware is used for smart
space deployment in IoT environment to support construction
of advanced services using available resources. We systemized
the requirements applicable to development of smart spaces
middleware for IoT environments. The requirement system was
then mapped to the particular existing middleware solutions.
The presented overview of the middleware solution was fo-
cused on characterization to which extent the requirements
are satisfied. The existing solutions are compared and basic
approaches are identified to this type of middleware develop-
ment.
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