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Abstract

The information provided in this paper is derived entirely from a PhD
dissertation written by Paul C. Roberts and submitted to Emmanuel Col-
lege, University of Cambridge on September 2005 [1]. In his paper Paul
C. Roberts provides a detailed theory of operation and practical imple-
mentation for a Doubly-Fed Induction (dual stator) machine. This paper
is provided only to verify the analysis and findings presented by Paul C.
Roberts (hereafter referred to as Roberts).

It is highly suggested that the reader review in detail the theory pro-
vided by Roberts first before referring to the information provided in
this paper. This paper for the most part provides only a practical valida-
tion to that presented by Roberts based on a traditional 3-phase, single
stator induction machine.

1 Introduction

Before I attempt to break down the information provided by Roberts, it should
be mentioned the method used to generate the various simulation provided in
this paper. A custom simulation environment was created to provide a means
in which to write code (either VHDL implemented in an FPGA or C code im-
plemented in an embedded processor such as DSP) that could run concurrently
with the simulation algorithm (sixth order Runge-Kutta). The mechanism for
simulation is explained in detail in [4].

2 Representation for a simple 3-Phase, 2-Pole
Motor Induction Machine

Roberts presents many different types of dual stator and rotor designs in his
paper. Given that this paper does not address dual stator induction motor de-
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signs, we can still derive from this pertinent information relative to that of a
traditional single stator design.

A somewhat detailed explanation for a 6 bar cage rotor is presented is Sec-
tion B.7, page 267 of Roberts. The details of the stator design are presented
in Section B.2.2 page 251. I have provided a verification into the analytical de-
sign presentation based on the information provided in Chapter 2 of Roberts
relative to the 6 bar cage rotor coupled with Stator 1. Roberts presents the
results of the Stator 1 to Rotor mutual of inductance of this design in Figure
B.9-a, page 269 of his paper. My calculations on this same design are shown in
Figure 1 below. The results are nearly identical.

Figure 1: Stator 1 to rotor mutual inductance for BDFM as presented in Figure
B.9 (a), page 269 of Roberts. Phase A, B, C are the Stator-to-Rotor mutual
inductance results for each phase. The derivatives relative to rotor position are
also plotted as as Drv-Phase A, Drv-Phase B and Drv-Phase C.

I take these calculations one step further and include the derivative of the
three phase coupled mutual inductance relative to rotor position. These calcu-
lations were not done in Roberts. Note that the design presented by Roberts
is intended to provide a sinusoidal distribution of the flux within the motor
making the assumption that the drive amplifier too be designed to provide si-
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nusoidal output voltage.

For the simulation provided in this paper, I choose to base the stator-rotor
design on a somewhat crude winding distribution that would produce CEMF
voltages that were essentially six-step in appearance. The physical specifica-
tion for this design and the calculated Stator-Rotor mutual inductance plots
are presented in Figures 2, 3 and 4 and Table 1 below.

Figure 2: Simplified representation of a 3-phase, 2 pole induction motor used in
all simulations provided in this paper.

3



Figure 3: Stator to rotor mutual inductance for the simplified representation of
the induction motor described in Figure 2
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Figure 4: Stator to rotor position derivative mutual inductance for the simplified
representation of induction motor described in Figure 2

Parameter Value
w .1955 m
d .1751 m
g .000555 m
Nk 30.0
Nj 1.0
Ack PI
Wsk 2.0*PI*.03/(2.0*PI*d/2.0)
Acj PI
Wsj 2.0*PI*.03/(2.0*PI*d/2.0)
Rs 2.728 Ω

Rrloop .0001 Ω
Rrbar

-.000025 Ω
Jm .11 kg ·m2

Ti .5*ωr

Table 1: Parameters for the simple induction motor shown in Figure 2 above.
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This simplified model of the induction motor serves to illustrate the effect of
excessive torque ripple when applying sinusoidal voltages to the terminals. By
doing this one can deduce a so called amount of forgiveness between a reference
model running on the controller and the actual induction motor being controlled.

Before continuing, it should be noted that all simulations presented in this
paper are driven by a linear voltage source (linear amplifier) as opposed to a
switching PWM source as shown in Figure 5 below.

Figure 5: Diagram of voltage source used in this simulation. Only a simple linear
amplifier was used to create all simulations presented in this paper. Carrier
based PWM and Space-Vector PWM sources could have been used as well (See
[4]).
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3 Coupled Circuit for the Induction Motor in
the physical (Rotating) frame

As per the derivation of the coupled circuit model of the dual stator induction
motor given in Equation 2.59 page 66 of Roberts, our model for the single
stator induction motor is provided by Equations 1 through 3 below.

[
Mss Msr

Mᵀ
sr Mrr

] [
dis
dt
dir
dt

]
=

[[
vs
0

]
−
[
Rs 0
0 Rr

]
− ωr

[
0 dMsr

dt
dMᵀ

sr

dt 0

]] [
is
ir

]
(1)

dθr
dt

= ωr (2)

dωr
dt

=
1

2

([
isᵀ irᵀ

] [ 0 dMsr

dt
dMᵀ

sr

dt 0

] [
is
ir

]
− Tl

)
/Jm (3)

Equations 1 through 3 are expanded in equations 29 through 36 of Appendix
A. These equations are presented in a from very close to the code created to
run the simulation.

The parameters used in Equations 1 through 3 above are shown in Table 2
as a reference to that derived by Roberts.

Of special note are the parameters Msr and dMsr

dt . Here, a lookup table with
a primary index based on 360 electrical degrees is precomputed for use in the
simulator. These lookup tables are shown graphically in Figures 3 and 4 above.

Parameter Deriving reference Page Number Notes
Mss Eq. 2.27 and 2.44 46 and 56
Msr Eq. 2.27 and 2.53 46 and 63 Matrix array created by 360 iterations.
Mrr Eq. 2.27 and 2.51 46 and 62
Rs A simple diagonal of phase resistance.
Rr Section B.8 267 Connections between bars are included.
dMsr

dt Eq. 2.27 and 2.53 46 and 63 360 iterations of the derivative of Eq. 2.27

Table 2: Reference to the parameters in the rotating frame as defined by
Roberts.
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4 Coupled Circuit for the Induction Motor in
the D/Q (slip) frame

Unlike the synchronous motor, a simple translation from the rotating (or termi-
nal) plane to the D/Q plane for an induction motor places the point of reference
relative to the slip frequency of the motor. The D/Q transformation is described
beginning in Chapter 3 page 69 of Roberts.

For our simplified single stator motor, the D/Q transformation of Equations
1 through 3 are described by Equations 4 through 6 below.

[
Mdq0s Mdqsr

Mᵀ
dqsr Mdqr

] [disdq
dt

dirdq
dt

]
=[

vsdq
0

]
−
[[
Rdq0s 0

0 Rdqr

]
− ωr

[
Qdq0s Qdqsr

0 0

]] [
isdq
irdq

] (4)

dθr
dt

= ωr (5)

dωr
dt

=
1

2

([
isᵀdq irᵀdq

] [ 0 Qdqsr
Qᵀ
dqsr 0

] [
isdq
irdq

]
− Tl

)
/Jm (6)

Similar to that done for the rotating plane, Equations 4 through 6 are ex-
panded in equations 37 through 44 of Appendix A. However because we are not
yet in the proper reference plane suitable as a bases for controlling the motor,
simulation in this reference plane is not presented in this paper.

In any event, the parameters used in Equations 4 through 6 are shown in Table
3 below as a reference to that derived by Roberts.
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Parameter Deriving reference Page Number
Mdq0s Eq. 3.19 76
Mdqsr Eq. 3.26 79
Mdqr Eq. 3.24 77
Rdq0s Unchanged from Rs by D/Q transformation.
Rdqr Diagonalized by D/Q transformation applied to Rr.
Qdq0s Eq. 3.17 76
Qdqsr Eq. 3.28 79

Table 3: Reference to the parameters in the D/Q frame as defined by Roberts.
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5 Coupled Circuit for the Induction Motor in
the Synchronous D/Q frame

As pointed out in Roberts Section 7.2 page 176, one additional transformation
needs to be preformed on the equations establishing the slip frame to make the
model usable for control. By doing this, we now are similar to the D/Q refer-
ence frame that would be established when evaluating the coupled equations for
permanent magnet synchronous machine (see [2] and [4]).

For our simplified single stator motor, the Synchronous D/Q transformation
of Equations 4 through 6 are described by Equations 7 through 9 below.

[
Msync0s Msyncsr

Mᵀ
syncsr Msyncr

] [dissdq
dt

dirsdq
dt

]
=

[
vssdq

0

]
−


[
Rsync0s 0

0 Rsyncr

]
− ωr

[
Qsync0s Qsyncsr

0 0

]
−(ωr − ωs)

[
Qsyncd0s Qsyncdsr
Qᵀ
syncdsr Qsyncdr

]
[issdqirsdq

] (7)

dθr
dt

= ωr (8)

dωr
dt

=
1

2

([
isᵀsdq irᵀsdq

] [ 0 Ssyncsr
Sᵀ
syncsr 0

] [
issdq
irsdq

]
− Tl

)
/Jm (9)

Similar to that done for the rotating plane and D/Q (slip) frames above,
Equations 7 through 9 are expanded in equations 45 through 52 of Appendix
A.

The parameters used in Equations 7 through 9 are shown in Table 4 below
as a reference to that derived by Roberts.
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Parameter Deriving reference Page Number
Msync0s Top left element of Msync, Eq. 7.9 179
Msyncsr Top right element of Msync, Eq. 7.9 179
Mᵀ
syncsr Bottom left element of Msync, Eq. 7.9 179

Msyncr Bottom right element of Msync, Eq. 7.9 179
Rsync0s Top left element of Rsync, Eq. 7.7 179
Rsyncr Bottom right element of Rsync, Eq. 7.7 179
Qsync0s Top left element, first term of Qsync, Eq. 7.8 179
Qsyncsr Top right element, first term of Qsync, Eq. 7.8 179
Qsyncd0s Top left element, second term of Qsync, Eq. 7.8 179
Qsyncdsr Top right element, second term of Qsync, Eq. 7.8 179
Qᵀ
syncdsr Bottom left element, second term of Qsync, Eq. 7.8 179

Qsyncdr Bottom right element, second term of Qsync, Eq. 7.8 179
Ssyncsr Top right element of Ssync, Eq. 7.10 179
Sᵀ
syncsr Bottom left element of Ssync, Eq. 7.10 179

Table 4: Reference to the parameters in the synchronous D/Q frame as defined
by Roberts
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6 Feedback Linearization

Some control strategies for the dual stator induction motor are suggested by
Roberts (review Chapter 7 and 8). Obviously the approaches he derives for
the BDFM can be applied to the a standard single stator induction motor using
very simple modifications. Before continuing, it should be noted that Roberts
simplifies the derivation for the motor equations in the D/Q slip plane so as
to remove some of the zero sequence terms (see Equation 3.30, page 80 of his
paper).

I go one step further and set the condition that the motor windings are balanced
allowing all zero sequence terms to be removed from the equations derived so far.
This is denoted by the bar placed above all parameters (for example Msyncsr).

Using the references defined in Table 4 above, define the modified matrix
definitions created by multiplying through by the inverse of the matrix Msync.
The results are shown in equations 10 through 12.

Rsync m =[
Msync0s Msyncsr

Mᵀ
syncsr Msyncr

]−1 [
Rsync0s 0

0 Rsyncr

] (10)

Qsync m =[
Msync0s Msyncsr

Mᵀ
syncsr Msyncr

]−1 [
Qsync0s Qsyncsr

0 0

] (11)

Qsyncd m =[
Msync0s Msyncsr

Mᵀ
syncsr Msyncr

]−1 [
Qsyncd0s Qsyncdsr
Qᵀ

syncdsr Qsyncdr

] (12)

The inverse of the matrix Msync is defined by equation 13.

Msync inv =

[
Msync0s Msyncsr

Mᵀ
syncsr Msyncr

]−1
(13)

12



Using equations 10 through 13, Equation 7 is transformed to Equation 14
below.


dissdqd
dt

dissdqq
dt

dirsdqd
dt

dirsdqq
dt

 =


vssdqdMsync inv[0][0]

vssdqqMsync inv[1][1]

vssdqdMsync inv[2][0]

vssdqqMsync inv[3][1]

−
[
Rsync m − ωrQsync m
−(ωr − ωs)Qsyncd m

]
issdqd
issdqq
irsdqd
irsdqq


(14)

Next, define a new matrix T sync as described by equation 15 below.

T sync =[
0 Ssyncsr

Sᵀ
syncsr 0

]−1 [
Msync0s Msyncsr

Mᵀ
syncsr Msyncr

] (15)

Again, using the definitions provided by Table 4 above, define a new set of
transformation matrices as described by equations 16 through 18 below.

Rsync c =

T sync

[
Rsync0s 0

0 Rsyncr

]
(16)

Qsync c =

T sync

[
Qsync0s Qsyncsr

0 0

]
(17)
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Qsyncd c =

T sync

[
Qsyncd0s Qsyncdsr
Qᵀ

syncdsr Qsyncdr

]
(18)

Stator voltages to be applied to the motor can now be determined. Based
on the motor model for single stator winding, equation (8.14) on page 213 of
Roberts can be expanded as shown in equation 19 below.

issdqdvssdqqT sync[0][1] + issdqqvssdqdT sync[1][0]+

irsdqdvssdqqT sync[2][1] + irsdqqvssdqdT sync[3][0]−
issdqd(issdqqRsync c[0][1] + irsdqqRsync c[0][3])−
issdqq(issdqdRsync c[1][0] + irsdqdRsync c[1][2])−
irsdqd(issdqqRsync c[2][1] + irsdqqRsync c[2][3])−
irsdqq(issdqdRsync c[3][0] + irsdqdRsync c[3][2])−
(is2sdqdQsync c[0][0] + issdqdirsdqdQsync c[0][2]+

is2sdqqQsync c[1][1] + issdqqirsdqqQsync c[1][3]+

irsdqdissdqdQsync c[2][0] + ir2sdqdQsync c[2][2]+

irsdqqissdqqQsync c[3][1] + ir2sdqqQsync c[3][3])ωr−
(is2sdqdQsyncd c[0][0] + issdqdirsdqdQsyncd c[0][2]+

is2sdqqQsyncd c[1][1] + issdqqirsdqqQsyncd c[1][3]+

irsdqdissdqdQsyncd c[2][0] + ir2sdqdQsyncd c[2][2]+

irsdqqissdqqQsyncd c[3][1] + ir2sdqqQsyncd c[3][3])(ωr − ωs)−

Jm
d2ωr
dt2

−Bm
dωr
dt

= 0 (19)

Roberts does not elaborate on what type of minimization should be done to
vssdqd and vssdqq to obtain a solution for equation 19. I believe he is referring to
the use of Lagrange Multipliers for which the method to determine a minimum
for the vector vssdq is described in [2] using the constraint that the quantity
vs2sdqd + s2sdqq be held to a minimum around a unit circle. Information for this
method can also be found by referring to [3], Chapter 4.
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This in my opinion is too general of a constraint in that this approach ignores
the unit current stress on the amplifier element (the servo drive power stage) for
the sake of keeping the magnitude of the voltage to a minimum (see [4] Section
B.1.3).

Instead, vssdqd and vssdqq should be considered independent of each other where
in a closed loop control environment, vssdqq is responsible for torque control with
vssdqd uses to control motor flux.
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7 The Lagrange method applied to the Induc-
tion Motor electrical model.

Equation 19 contains three unknown control variables, the applied stator volt-
ages vssdqd, vssdqq, and ωs the driving frequency for these stator voltages.

The Lagrange method mentioned in the previous section can be used to deter-
mine the value vssdqq and ωs while leaving vssdqd as the independent variable
for controlling motor flux. Normally, we would set vssdqd to zero while deter-
mining vssdqq and ωs. But as will be mentioned in Section B.1 below, the open
loop voltage generating equations used in this simulation produced the driving
voltage on vssdqd with vssdqq set to zero.

So in order to adjust for this we will set vssdqq to zero and derive vssdqd and ωs
instead. Applying the Lagrange we obtain the following results 1.

Define row number one of equation 14 with
dissdqd
dt set to zero as.

f1(vssdqd, vssdqq, issdqd, issdqq, irsdqd, irsdqq, ωr, ωs) = 0

Define row number two of equation 14 with
dissdqq
dt set to zero as.

f2(vssdqd, vssdqq, issdqd, issdqq, irsdqd, irsdqq, ωr, ωs) = 0

Define row number three of equation 14 with
dirsdqd
dt set to zero as.

f3(vssdqd, vssdqq, issdqd, issdqq, irsdqd, irsdqq, ωr, ωs) = 0

Define row number four of equation 14 with
dirsdqq
dt set to zero as.

f4(vssdqd, vssdqq, issdqd, issdqq, irsdqd, irsdqq, ωr, ωs) = 0

Define the constraint equation as:

g(vssdqd, vssdqq, issdqd, issdqq, irsdqd, irsdqq, ωr, ωs) =

vs2sdqd + vs2sdqq + C
(20)

Construct the set of Lagrange multipliers as described in equations 21 through
28 below.

k1
∂f1

∂vssdqd
+ k2

∂f2
∂vssdqd

+ k3
∂f3

∂vssdqd
+ k4

∂f4
∂vssdqd

=
∂g

∂vssdqd

k1Msync inv[0][0] + k3Msync inv[2][0] = 2vssdqd

(21)

1In open loop, vssdqq and vssdqd do not have any direct representation as to the component
that produces torque or control flux
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k1
∂f1

∂vssdqq
+ k2

∂f2
∂vssdqq

+ k3
∂f3

∂vssdqq
+ k4

∂f4
∂vssdqq

=
∂g

∂vssdqq

k2Msync inv[1][1] + k3Msync inv[3][1] = 2vssdqq

(22)

k1
∂f1

∂issdqd
+ k2

∂f2
∂issdqd

+ k3
∂f3

∂issdqd
+ k4

∂f4
∂issdqd

=
∂g

∂issdqd

−k1Rsync m[0][0]−
k2ωr(Qsync m[1][0] +Qsyncd m[1][0])+

k2ωsQsyncd m[1][0]−
k3Rsync m[2][0]−

k4ωr(Qsync m[3][0] +Qsyncd m[3][0])+

k4ωsQsyncd m[3][0] =

0

(23)

k1
∂f1

∂issdqq
+ k2

∂f2
∂issdqq

+ k3
∂f3

∂issdqq
+ k4

∂f4
∂issdqq

=
∂g

∂issdqq

−k1ωr(Qsync m[0][1] +Qsyncd m[0][1])+

k1ωsQsyncd m[0][1]−
k2Rsync m[1][1]−

k3ωr(Qsync m[2][1] +Qsyncd m[2][1])+

k3ωsQsyncd m[2][1]−
k4Rsync m[3][1] =

0

(24)

k1
∂f1

∂irsdqd
+ k2

∂f2
∂irsdqd

+ k3
∂f3

∂irsdqd
+ k4

∂f4
∂irsdqd

=
∂g

∂irsdqd

−k1Rsync m[0][2]−
k2ωr(Qsync m[1][2] +Qsyncd m[1][2])+

k2ωsQsyncd m[1][2]−
k3Rsync m[2][2]−

k4ωr(Qsync m[3][2] +Qsyncd m[3][2])+

k4ωsQsyncd m[3][2] =

0

(25)
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k1
∂f1

∂irsdqq
+ k2

∂f2
∂irsdqq

+ k3
∂f3

∂irsdqq
+ k4

∂f4
∂irsdqq

=
∂g

∂irsdqq

−k1ωr(Qsync m[0][3] +Qsyncd m[0][3])+

k1ωsQsyncd m[0][3]−
k2Rsync m[1][3]−

k3ωr(Qsync m[2][3] +Qsyncd m[2][3])+

k3ωsQsyncd m[2][3]−
k4Rsync m[3][3] =

0

(26)

k1
∂f1
∂ωr

+ k2
∂f2
∂ωr

+ k3
∂f3
∂ωr

+ k4
∂f4
∂ωr

=
∂g

∂ωr

−k1(issdqq(Qsync m[0][1] +Qsyncd m[0][1])+

irsdqq(Qsync m[0][3] +Qsyncd m[0][3])−
k2(issdqd(Qsync m[1][0] +Qsyncd m[1][0])+

irsdqd(Qsync m[1][2] +Qsyncd m[1][2])−
k3(issdqq(Qsync m[2][1] +Qsyncd m[2][1])+

irsdqq(Qsync m[2][3] +Qsyncd m[2][3])−
k4(issdqd(Qsync m[3][0] +Qsyncd m[3][0])+

irsdqd(Qsync m[3][2] +Qsyncd m[3][2]) =

0

(27)

k1
∂f1
∂ωs

+ k2
∂f2
∂ωs

+ k3
∂f3
∂ωs

+ k4
∂f4
∂ωs

=
∂g

∂ωs

k1(issdqqQsyncd m[0][1] + irsdqqQsyncd m[0][3])+

k2(issdqdQsyncd m[1][0] + irsdqdQsyncd m[1][2])+

k3(issdqqQsyncd m[2][1] + irsdqqQsyncd m[2][3])+

k4(issdqdQsyncd m[3][0] + irsdqdQsyncd m[3][2]) =

0

(28)

Using Equations 14, 21, 22, 27 and 28 solve for vssdqd and ωs. The results
of this verification are shown in Figure 21 of Section B.4.
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A The Expanded Coupled Circuit Model for the
Induction Motor

The circuit models for the induction motor described by Equations 1 through
3, 4 through 6 and 7 through 9 must be flattened before being processes by the
simulator. This expansion is shown in the following subsections A.1, A.3 and
A.3 for rotating model, the D/Q (slip) model and the Synchronous D/Q model
respectively. As mentioned previously only the simulations for the rotating
frame and the Synchronous D/Q frame are presented in this paper.

A.1 Expansion in the rotating frame

The expansion of equations 1) through 3 is provided in equations 29 through 36
below.

Mss[0][0]
dis1
dt

+Mss[0][1]
dis2
dt

+Mss[0][2]
dis3
dt

+Msr[θr][0][0]
dir1
dt

+Msr[θr][0][1]
dir2
dt

+Msr[θr][0][2]
dir3
dt

=

vs1 −Rs[0][0]is1

−ωr(
dMsr[θr][0][0]

dθr
ir1 +

dMsr[θr][0][1]

dθr
ir2 +

dMsr[θr][0][2]

dθr
ir3) (29)

Mss[1][0]
dis1
dt

+Mss[1][1]
dis2
dt

+Mss[1][2]
dis3
dt

+Msr[θr][1][0]
dir1
dt

+Msr[θr][1][1]
dir2
dt

+Msr[θr][1][2]
dir3
dt

=

vs2 −Rs[1][1]is2

−ωr(
dMsr[θr][1][0]

dθr
ir1 +

dMsr[θr][1][1]

dθr
ir2 +

dMsr[θr][1][2]

dθr
ir3) (30)

Mss[2][0]
dis1
dt

+Mss[2][1]
dis2
dt

+Mss[2][2]
dis3
dt

+Msr[θr][2][0]
dir1
dt

+Msr[θr][2][1]
dir2
dt

+Msr[θr][2][2]
dir3
dt

=

vs3 −Rs[2][2]is 3

−ωr(
dMsr[θr][2][0]

dθr
ir1 +

dMsr[θr][2][1]

dθr
ir2 +

dMsr[θr][2][2]

dθr
ir3) (31)
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Msr[θr][0][0]
dis1
dt

+Msr[θr][1][0]
dis2
dt

+Msr[θr][2][0]
dis3
dt

+Mrr[0][0]
dir1
dt

+Mrr[0][1]
dir2
dt

+Mrr[0][2]
dir3
dt

=

−Rr[0][0]ir1 −Rr[0][1]ir2 −Rr[0][2]ir3

−ωr(
dMsr[θr][0][0]

dθr
is1 +

dMsr[θr][1][0]

dθr
is2 +

dMsr[θr][2][0]

dθr
is3) (32)

Msr[θr][0][1]
dis1
dt

+Msr[θr][1][1]
dis2
dt

+Msr[θr][2][1]
dis3
dt

+Mrr[1][0]
dir1
dt

+Mrr[1][1]
dir2
dt

+Mrr[1][2]
dir3
dt

=

−Rr[1][0]ir1 −Rr[1][1]ir2 −Rr[1][2]ir3

−ωr(
dMsr[θr][0][1]

dθr
is1 +

dMsr[θr][1][1]

dθr
is2 +

dMsr[θr][2][1]

dθr
is3) (33)

Msr[θr][0][2]
dis1
dt

+Msr[θr][1][2]
dis2
dt

+Msr[θr][2][2]
dis3
dt

+Mrr[2][0]
dir1
dt

+Mrr[2][1]
dir2
dt

+Mrr[2][2]
dir3
dt

=

−Rr[2][0]ir1 −Rr[2][1]ir2 −Rr[2][2]ir3

−ωr(
dMsr[θr][0][2]

dθr
is1 +

dMsr[θr][1][2]

dθr
is2 +

dMsr[θr][2][2]

dθr
is3) (34)

dθr
dt

= ωr (35)

ωr =

(is
1
(
dMsr[θr][0][0]

dθr
ir1 +

dMsr[θr][0][1]

dθr
ir2 +

dMsr[θr][0][2]

dθr
ir3)

+is2(
dMsr[θr][1][0]

dθr
ir1 +

dMsr[θr][1][1]

dθr
ir2 +

dMsr[θr][1][2]

dθr
ir3)

+is
3
(
dMsr[θr][2][0]

dθr
ir1 +

dMsr[θr][2][1]

dθr
ir2 +

dMsr[θr][2][2]

dθr
ir3)

−Ti)/Jm (36)
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A.2 Expansion in the D/Q (slip) plane

The expansion of equations 4) through 6 is provided in equations 37 through 44
below.

Mdq0s[0][0]
disdqd
dt

+Mdqsr[0][0]
dirdqd
dt

=

vsdqd −Rdq0s[0][0]isdqd − ωr(Qdq0s[0][1]isdqq +Qdqsr[0][1]irdqq) (37)

Mdq0s[1][1]
disdqq
dt

+Mdqsr[1][1]
dirdqq
dt

=

vsdqq −Rdq0s[1][1]isdqq − ωr(Qdq0s[1][0]isdqd +Qdqsr[1][0]irdqd) (38)

0 = vsdqz −Rdq0s[2][2]isdqz (39)

Mᵀ
dqsr[0][0]

disdqd
dt

+Mdqr[0][0]
dirdqd
dt

=

−Rdqr[0][0]irdqd (40)

Mᵀ
dqsr[1][1]

disdqq
dt

+Mdqr[1][1]
dirdqq
dt

=

−Rdqr[1][1]irdqq (41)

Mdqr[2][2]
dirdqz
dt

=

−Rdqr[2][2]irdqz (42)

dθr
dt

= ωr (43)

ωr =

(.5Qdqsr[0][1]isdqdirdqq + .5Qdqsr[1][0]isdqqirdqd

+.5Qᵀ
dqsr[0][1]isdqqirdqd + .5Qᵀ

dqsr[1][0]isdqdirdqq

−Ti)/Jm (44)
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A.3 Expansion in the Synchronous D/Q plane

The expansion of equations 7) through 9 is provided in equations 45 through 52
below.

Msync0s[0][0]
dissdqd
dt

+Msyncsr[0][0]
dirsdqd
dt

=

vssdqd −Rsync0s[0][0]issdqd

−ωr(Qsync0s[0][1]issdqq +Qsyncsr[0][1]irsdqq)

−(ωr − ωs)(Qsyncd0s[0][1]issdqq +Qsyncdsr[0][1]irsdqq) (45)

Msync0s[1][1]
dissdqq
dt

+Msyncsr[1][1]
dirsdqq
dt

=

vssdqq −Rsync0s[1][1]issdqq

−ωr(Qsync0s[1][0]issdqd +Qsyncsr[1][0]irsdqd)

−(ωr − ωs)(Qsyncd0s[1][0]issdqd +Qsyncdsr[1][0]irsdqd) (46)

0 = vssdqz −Rsync0s[2][2]issdqz (47)

Mᵀ
syncsr[0][0]

dissdqd
dt

+Msyncr[0][0]
dirsdqd
dt

=

−Rsyncr[0][0]irsdqd
−(ωr − ωs)(Q

ᵀ
syncdsr[0][1]issdqq +Qsyncdr[0][1]irsdqq) (48)

Mᵀ
syncsr[1][1]

dissdqq
dt

+Msyncr[1][1]
dirsdqq
dt

=

−Rsyncr[1][1]irsdqq
−(ωr − ωs)(Q

ᵀ
syncdsr[1][0]issdqd +Qsyncdr[1][0]irsdqd) (49)

Msyncr[2][2]
dirsdqz
dt

= −Rsyncr[2][2]irsdqz (50)

dθr
dt

= ωr (51)

ωr =

(.5Ssyncsr[0][1]issdqdirsdqq + .5Ssyncsr[1][0]issdqqirsdqd

+.5Sᵀ
syncsr[0][1]issdqqirsdqd + .5Sᵀ

syncsr[1][0]issdqdirsdqq

−Ti)/Jm (52)
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B Simulation Plots

Finally, some simulation plots are presented to support the information provide
above. First some details on how the open loop voltage was generated for the
simulations presented in this paper as well as the modifications made to the
D/Q and Synchronous transformations presented by Roberts to make them
usable for the single stator induction motor described in this paper.

One point to make here is that a formal simulation in the D/Q (slip) plane
was skipped. This is because the the D/Q and Synchronous transformations
(with their inverses) mentioned in the next section can be applied in the Rotat-
ing or Synchronous D/Q planes to obtain any information that is required in
the D/Q (slip) plane.

B.1 Background Information

The generation of the stator angular velocity and voltage used in all simulations
presented in this paper are defined by Equations 53 and 54 below.

ωs =

.5V O TRAJ(sin(tπ/RT TRAJ − π/2) + 1)

if(t < RT TRAJ), else

V O TRAJ

if(t < RT TRAJ + CT TRAJ), else

.5V O TRAJ(sin((CT TRAJ + 2RT TRAJ − t)π/RT TRAJ − π/2) + 1)

if(t < 2RT TRAJ + CT TRAJ), else

0
(53)

vs1 = .5ωsDC BUS V OLTAGEcos(.5θs)/V O TRAJ

vs2 = .5ωsDC BUS V OLTAGEcos(.5θs −
2π

3
)/V O TRAJ

vs3 = .5ωsDC BUS V OLTAGEcos(.5θs −
4π

3
)/V O TRAJ (54)

The total run time is defined by 2RT TRAJ + CT TRAJ with RT TRAJ
set to 4 seconds and CT TRAJ set to 2 seconds. V O TRAJ is set to 100
radians/sec. The bus voltage DC BUS V OLTAGE is set to 600 VDC. θs is
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derived from the integral of the stator angular velocity ωs defined by Equation
53.

The various transformations defined by Roberts that are used in the plots
that follow are provided below.

Equations 55 and 56 are used to transform Equation 54 so as to derive the
voltage for the Synchronous D/Q simulation model defined by Equations 45
through 52 above2.

vsdqdvsdqq
vsdqz

 =

√
2

3

cos θr cos(θr − 2π
3 ) cos(θr − 4π

3 )
sin θr sin(θr − 2π

3 ) sin(θr − 4π
3 )

1√
2

1√
2

1√
2

vs1vs2
vs3

 (55)

vssdqdvssdqq
vssdqz

 =

 cos(θr − θs) sin(θr − θs) 0
−sin(θr − θs) cos(θr − θs) 0

0 0 1

vsdqdvsdqq
vsdqz

 (56)

Equations 57 and 58 are used when translating from the rotating plane to
the synchronous D/Q plane3.

isdqd derivedisdqq derived
isdqz derived

 =

√
2

3

cos θr cos(θr − 2π
3 ) cos(θr − 4π

3 )
sin θr sin(θr − 2π

3 ) sin(θr − 4π
3 )

1√
2

1√
2

1√
2

is1is2
is3

 (57)

issdqd derivedissdqq derived
issdqz derived

 =

 cos(θr − θs) sin(θr − θs) 0
−sin(θr − θs) cos(θr − θs) 0

0 0 1

isdqd derivedisdqq derived
isdqz derived

 (58)

2Equation 55 alone places the voltage in the D/Q (Slip) plane
3Equation 57 alone places the current in the D/Q (Slip) plane
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Equations 59 and 60 are used when translating from the synchronous D/Q
plane to the rotating plane4 .

isdqd derivedisdqq derived
isdqz derived

 =

cos(θr − θs) −sin(θr − θs) 0
sin(θr − θs) cos(θr − θs) 0

0 0 1

issdqdissdqq
issdqz

 (59)

is1 derivedis2 derived
is3 derived

 =

√
2

3

 cos θr sin θr
1√
2

cos(θr − 2π
3 ) sin(θr − 2π

3 ) 1√
2

cos(θr − 4π
3 ) sin(θr − 4π

3 ) 1√
2


isdqd derivedisdqq derived
isdqz derived

 (60)

4Equation 59 alone places the current in the D/Q (Slip) plane
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B.2 Results of Simulation in the Rotating Frame

The plots provided in this section were produced by the simulation model de-
scribed by Equations 29 through 36 of Section A.1.

Voltages vs1, vs2 and vs3 are generated by Equation 54. Voltage vs1 is shown
in Figure 6 below.

Figure 6: Phase 1 voltage vs1 of a 3-phase supply voltage applied to the motor
for all open loop tests (vs2 and vs3 are not shown).

The results for stator current is1 and rotor current ir2 are shown in Figures
7 and 8.
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Figure 7: Corresponding Phase 1 stator current is1 for the applied open loop
voltage shown in Figure 6 above (is2 and is3 are not shown).
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Figure 8: Corresponding Phase 1 rotor bar current ir1 for the applied open loop
voltages shown in Figure 6 above (ir2 and ir3 not shown).

Note in Figure 8 the excessive ripple caused by applying the sinusoidal volt-
ages of vs1, vs2 and vs3 to the non-sinusoidally wound stator of the simplistic
induction motor described in Section 2.

Next, a plot of the D/Q (Slip) stator currents derived from the rotating (termi-
nal) plane stator currents is1, is2 and is3.
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Figure 9: Transformation of is1, is2 and is3 into the D/Q (Slip) plane using the
transformations described in Equation 57 above (isdqz not shown).

The plot of Figure 9 is derived by applying the transformation described by
57 to is1, is2 and is3.

Next, the currents in the Synchronous D/Q plane derived from the derived D/Q
(Slip) currents.
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Figure 10: Transformation of isdqd, isdqq and isdqz into the Synchronous
D/Q plane using the transformation described by Equation 58 above (issdqz
not shown).

The plot of Figure 10 is derived by applying the transformation described
by 57 followed by 58 to is1, is2 and is3.

And finally, a plot of the stator driving frequency and resultant rotor frequency
with a closeup view showing the torque ripple. Because the simulation involves
a 2-Pole motor, the physical shaft frequency and stator voltage frequency are
the same.
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Figure 11: Rotor speed ωr vs ωs. ωr is produced by Equation 36 with ωs is
produced by Equation 53.
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Figure 12: Close-up of Figure 11 above.

Note in Figure 12 the torque ripple effects on ωr caused by the non-sinusoidal
wound stator of the simplistic induction motor described in Section 2.

32



B.3 Results of Simulation in the Synchronous D/Q Frame

The plots provided in this section were produced by the simulation model de-
scribed by Equations 45 through 52 of Section A.3.

First the driving voltages vssdqd and vssdqq in the Synchronous D/Q plane5.

Figure 13: D/Q voltages vssdqd and vssdqq in the synchronous D/Q plane. These
are generated from vs1, vs2 and vs3 using Equations 55 and 56 above.

It should be noted that the voltage generation Equations 53 and 54 produces
a command where all voltage is placed in the direct (vssdqd) with the quadrature
(vssdqq) set to zero. This is because we are doing all simulations under open
loop conditions. In an actual control environment, voltages would be generated
such that the quadrature component would control torque with the option of
field weakening controlled by the direct component.

Next, the resultant stator currents in the Synchronous D/Q plane.

5In this paper, I may interchange the words frame and plane.
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Figure 14: Synchronous D/Q stator currents issdqd and issdqq for the applied
open loop voltages shown in Figure 13 above (issdqz is zero and is not shown).

It should be noted that Figure 14 produced by the simulation running in the
synchronous D/Q plane and Figure 10 produce by the simulation running in the
rotating (or terminal) reference plane and then translated by transformations
57 and 58, produce identical results (except for the removal of the torque ripple
effects that are not modeled when running the simulation in the synchronous
D/Q plane).

Like what was done for the simulation in the Rotating plane, we can trans-
form the currents shown in Figure 14 back to the Rotating plane as shown in
the next plot.
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Figure 15: Synchronous D/Q stator currents issdqd and issdqq translated back
to the rotating plane using Equations 59 and 60 (is2 derived and is3 derived not
shown).

And finally, a plot of the stator driving frequency and resultant rotor fre-
quency created in the Synchronous D/Q plane.
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Figure 16: Rotor speed ωr vs ωs. ωr is produced by Equation 52 with ωs is
produced by Equation 53.

The results in Figure 16 are virtually identical to that that shown in Figure
11 above again noting that the torque ripple effects are absent when simulating
in the Synchronous D/Q plane.
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B.4 Simulations to validate control strategies

Document [4] describes in detail the simulator used to generate the data pre-
sented in this paper. Along with a sixth order Runge-Kutta ODE solver to
handle the real time execution of the motor model, the simulator possesses the
ability to simulate control processes that would normally be executed in an in-
terrupt routine on the control processor or DSP. This is called a a CtrlObject
and in the case of this simulation, is setup to run every 50 uSec.

Three tests using this control object are presented below. For each of these
tests, selected states are read from the simulator and applied to the specific
algorithm to be verified.
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B.4.1 Test 1: Solve for Synchronous D/Q Stator Currents using
Euler method running in a CtrlObject

Roberts suggests some control strategies for the induction motor in Chapter
7 and Chapter 8 of his paper. Common to all but two of the methods men-
tioned is a requirement to have a running model of the electrical equations for
the induction motor. For our simple example in this paper, this is the model
described by Equation 14.

Figure 17: Results of a test showing a derived form of the synchronous D/Q
currents issdqd and issdqq produced by applying the values ωr, ωs, vssdqd and
vssdqq of the simulation run shown described in section B.3 above to Equation
14 running in the CtrlObject.

Equation 14 is setup to run using the a simple Euler method (first order in-
tegration) with an incremental step size of 50 uSec executed concurrently with
the simulation run. These derived currents are labeled issdqd r and issdqq r. The
point here is to show that an embedded DSP algorythm can derive accurately
(given an accurate model) the actual Synchronous D/Q currents for the pro-
poses of generating reference currents. Compare these plots shown in Figure 17
with Figure 14.
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A close-up view of 17 is shown in the next figure.

Figure 18: This is close-up of Figure 17 above showing the incremental step size
of 50 uSec produced by the Euler method running in the CtrlObject.
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B.4.2 Test 2: Solve for Synchronous D/Q stator voltages running in
a CtrlObject

Roberts derives in Equation 8.14 page 213 of his paper a way to determine the
appropriate stator voltages to be applied to the motor given the stator current
and flux. Here we apply his analysis to our simple motor. It should be noted
that we disregard his transformation used to convert stator and rotor currents
to a controllable stator flux (see Equation 8.5 and 8.6 page 212 of Roberts).

Instead we input the rotor currents directly from the simulator.

Figure 19: Results of a test to provide a verification for Equation 8.14, page 213
of Roberts which has been reduced in this paper to that described by Equation
19.

The implementation here is similar to that used to derive the results in Fig-
ures 17 and 18 above.

Equation 19 is solved for vssdqd with vssdqq set to zero. The values for
issdqd, issdqq, irsdqd, irsdqq, ωr and ωs are gathered while running the simulation
described in section B.3 and plugged into 19. This produces vssdqd r. Compare
this derived value for vssdqd with that shown in Figure 13. They are essentially
identical.
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B.4.3 Test 3: Solve for Synchronous D/Q stator voltages using a
Lagrange approach running in a CtrlObject

As pointed out by Roberts in his description for Equation 8.14 of page 213,
there are an infinite number of valid solution for this equation when determin-
ing the values for vssdqd and vssdqq There is also a problem with determining a
valid value for the stator frequency variable ωs. Roberts does not elaborate on
what he terms the ...the solution giving the minimum value. I believe what he
is referring to is a Lagrange solution based on the constraint that both vssdqq
and vssdqd are held to a minimum. This technique is used by [2] for the control
of an AC brushless permanent magnet motor.

In a practical sense, I point out in [4] that this technique for determining vssdqq
and vssdqd is in my opinion flawed because it disregards the side effects of exces-
sive current draw on the amplifier for the sake of keeping the magnitude of the
of sum-of-squares of the applied stator voltage to a minimum at any operating
point of the motor.

I believe a better method is to use the minimization technique above but in-
stead set vssdqd to zero and solve for vssdqq and ωs. Then in the actual control
environment vssdqd is controlled by some independent process for the purpose
of optimizing the motor field (field weakening based on motor speed)6

The Lagrange is defined using Equations 20 through 28 above. In the actual
test which is shown below, I set vssdqq to zero and solve for vssdqd and ωs. As
discussed above, this was done because the open loop simulation run shown in
Section B.3 produced by applying Equations 55 and 56 to Equations 53 and 54
generates a voltage vector entirely in the synchronous d-plane.

This is shown in Figures 20 and 21 below.

6One thing that needs to be address using this approach is the fact that we invalidate the
Lagrange when we set vssdqd to a value other then zero.
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Figure 20: Results of a test used to provide a verification for 20 through 28
above to solve for vssdqd.

The implementation here is similar to that used in the descriptions for Sec-
tions B.4.1 and B.4.2 above. The values for issdqd, issdqq, irsdqd, irsdqq, vssdqq
(set to zero) and ωr are gathered while running the simulation described in
section B.3. This produces vssdqd r. Compare this derived value for vssdqd in
Figure 20 with that shown in Figure 13. They are essentially identical.
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Figure 21: Results of a test used to provide a verification for 20 through 28
above to solve for ωs.

Like Figure 20 above the Lagrange defined by 20 through 28 are used to
determine the optimum value for ωs. Again, the values for issdqd, issdqq, irsdqd,
irsdqq, vssdqq (set to zero) and ωr are gathered while running the simulation de-
scribed in section B.3. This produces ωs r (which is plotted with ωr). Compare
this derived value for ωs r in Figure 21 with that shown for ωs in Figure 16.
They are essentially identical.
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