

en

©SICK STEGMANN GmbH

All rights reserved. No component of the description may by copied or processed in any other way without the written consent of the company.

This documentation applies to the HIPERFACE DSL[®], release version 1.06, release date May 31, 2014.

Subject to modification without notice.

SICK STEGMANN GmbH accepts no responsibility for the non-infringement of patent rights, e.g. in the case of recommendations for circuit designs or processes.

The trade names listed are the property of the relevant companies.

HIPERFACE® and HIPERFACE DSL® are registered trademarks of SICK STEGMANN GmbH.

SICK STEGMANN GmbH Dürrheimer Strasse 36 78166 Donaueschingen, Germany Tel.: +(49) 771 / 807 – 0 Fax: +(49) 771 / 807 – 100 Internet: http://www.sick.com/ E-mail: info@sick.com

Made in Germany, 2014.

Table of contents

1. 1.1. 1.2. 1.3. 1.4.	Scope of application of the document Symbols used HIPERFACE DSL [®] for Motor Feedback Systems Features of HIPERFACE DSL [®] Associated documents	. 5 . 6 . 7		
2. 2.1. 2.2. 2.3. 2.4. 2.5.	Protocol overview Process data channel Safe Channel 1 Safe Channel 2 Parameters Channel SensorHub Channel	12 12 13 13		
3. 3.1. 3.2. 3.3.	Hardware installation Interface circuit FPGA IP Core Cable specification	15 18		
4. 4.1. 4.2. 4.3. 4.4.	Interfaces Drive interface SPI PIPE Interface Control signals Test signals	25 25 28		
5. 5.1. 5.2. 5.3. 5.4.	Register diagram Explanation of the registers Online Status DSL Master function register Function register for the DSL Slave	34 35 37		
6. 6.1. 6.2. 6.3. 6.4. 6.5. 6.6.	Central functions System start System diagnostics Fast position Safe position, Channel 1 Parameters Channel Status and error messages	71 72 74 81 82		
7. 7.1. 7.2.	Motor feedback system resources 1 Access to resources 1 Resources list 1	00		
8. 8.1. 8.2. 8.3.	FPGA IP-Core 1 Interface blocks 1 Implementation of the IP Core for Xilinx Spartan-3E/6 1 Installation of the IP Core for Altera FPGAs 1	61 76		
Keywo	rds index1	92		
	ry1			
Versior	Versions19			

Table of figures

Figure 1: Drive system with HIPERFACE DSL [®]	6
Figure 2: Length of protocol packages	. 10
Figure 3: Data channels in HIPERFACE DSL [®]	. 11
Figure 4: HIPERFACE DSL [®] SensorHub interface	. 14
Figure 5: Interface circuit with separate encoder cable	. 16
Figure 6: Interface circuit with two core cable (integrated in cable)	. 16
Figure 7: Block diagrams of the "standard" DSL Master IP Core with interfaces	. 18
Figure 8: Reset procedure	. 21
Figure 9: Cross section of the separate encoder cable with four encoder cables	. 22
Figure 10: Cross section of the integrated cable with two encoder cables	. 23
Figure 11: DSL system interfaces	. 24
Figure 12: SPI-PIPE interface time control	. 26
Figure 13: "Read Pipeline" transaction	. 27
Figure 14: fast_pos_rdy indication	. 29
Figure 15: Sample signal	. 30
Figure 16: Register block overview	. 33
Figure 17: Interrupt masking	. 46
Figure 18: DSL Slave status and summary	. 55
Figure 19: Sequence of the bytes to calculate the CRC	. 57
Figure 20: Status table for DSL system start	. 71
Figure 21: Position value format	. 74
Figure 22: Polling of position registers in free running mode	. 77
Figure 23: Polling of rotation speed registers in free running mode	. 77
Figure 24. SYNC mode signals	. 79
Figure 25: Polling registers for the fast position in SYNC mode	. 80
Figure 26: Polling of rotation speed registers in SYNC mode	. 80
Figure 27: Polling the safe position	. 81
Figure 28: Reading from remote register	. 83
Figure 29: "Long message" characteristics	. 85
Figure 30: Example of a "long message" read command	. 88
Figure 31: Reset of the Parameters Channel	. 90
Figure 32: Acknowledgment of event bits	. 91
Figure 33: Tree structure of the resources database	101

Figure 34: Workflows for data storage 1	144
Figure 35: SensorHub categories 1	153
Figure 36: Block circuit diagram of the DSL Master IP Core 1	157
Figure 37: Combination examples of interface blocks 1	161
Figure 38: Serial interface block signals 1	162
Figure 39: Time control of the SPI 1	164
Figure 40: Parallel interface block signals 1	168
Figure 41: Allocation of parallel interface block to host 1	170
Figure 42: Read access basic interface 1	173
Figure 43: Write access basic interface 1	173

1. Scope of application of the document

This document is for a standard HIPERFACE DSL[®] application. For safety applications, please <u>only</u> refer to the document "HIPERFACE DSL[®] safety manual (8017596).

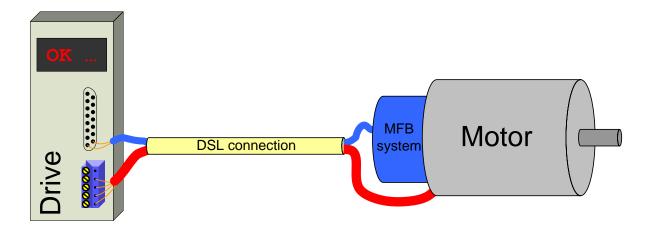
1.1. Symbols used

Note/tip

Notes refer to special features of the device. Please pay attention to these notes. They often contain important information. Tips provide additional information that facilitates using the documentation.

Safety notes

Safety notes contain information about specific or potential dangers, and misuse of the application. This information is to prevent injury. Read and follow the safety notes carefully.


1.2. HIPERFACE DSL[®] for Motor Feedback Systems

This document describes the use and implementation of the HIPERFACE DSL[®] data protocol installed in motor feedback systems of servo drives.

HIPERFACE DSL[®] is a purely digital protocol that requires a minimum of connection cables between frequency inverter and motor feedback system. The robustness of the protocol enables the connection to the motor feedback system via the motor connection cable.

Motor feedback systems with the HIPERFACE DSL[®] interface can be used across all performance ranges and substantially simplify the installation of an encoder system in the drive:

- Standardized digital interface (RS485)
- Analog components for the encoder interface are not required
- Standardized interface between the frequency inverter application and the protocol logic

Figure 1: Drive system with HIPERFACE DSL[®]

Based on the name for the predecessor protocol, the SICK HIPERFACE[®], the name HIPERFACE DSL[®] stands for HIgh PERformance InterFACE Digital Servo Link.

This interface takes into account all the current requirements of digital motor feedback systems and also contains future enhancements for the manufacturers of frequency inverters.

1.3. Features of HIPERFACE DSL[®]

Some of the main advantages of HIPERFACE $DSL^{\mathbb{B}}$ are based on the opportunity for connection of the encoder:

- A digital interface on the frequency inverter for all communication with the motor feedback system. The interface complies with the RS485 standard with a transfer rate of 9.375 MBaud.
- Communication with the encoder via a dual cable
- Power supply and communication with the encoder can be carried out using the same dual cable. This is possible by the enhancement of the frequency inverter with a transformer.
- The connection cables to the encoder can be routed as a shielded, twistedpair cable in the power supply cable to the motor. This means that no encoder plug connector to the motor and to the frequency inverter is necessary.
- The cable length between the frequency inverter and the motor feedback system can be up to 100 m, without degradation of the operating performance.

The digital HIPERFACE DSL[®] protocol can be used for a variety of frequency inverter applications:

- For the feedback cycle of the frequency inverter's synchronous cyclic data that enables synchronous processing of position and rotation speed of the encoder.
- Shortest possible cycle time: 12.1 µs.
- Transmission of the safe position of the motor feedback system with a maximum cycle time of 192 $\mu s.$
- Redundant transmission of the safe position of the motor feedback system with a maximum cycle time of 192 μ s, so that suitable motor feedback systems can be used in SIL2 applications (in accordance with IEC 61508).
- Transmission of the safe position of the motor feedback system on a second channel with a maximum cycle time of 192 µs, so that suitable motor feedback systems can be used in SIL3 applications (in accordance with IEC 61508).
- Parameter data channel for bi-directional general data transfer with a band width of up to 340 kBaud. This data includes an electronic type label for designation of the motor feedback system and for storage of frequency inverter data in the motor feedback system.
- SensorHub channel via which motor data from external sensors is transmitted, that are connected by the HIPERFACE DSL[®] SensorHub protocol to the motor feedback system.

The protocol is integrated into the frequency inverter in the form of hardware logic. This logic circuit is supplied by several manufacturers as an IP Core for FPGA components (FPGA = Field Programmable Gate Array).

- The available protocol logic enables free routing when installing the HIPERFACE DSL[®] IP Core. The protocol circuit can be installed along with the frequency inverter application on the same FPGA.
- Choice between full-duplex SPI interface (SPI = serial peripheral interface) or parallel interface between protocol logic and frequency inverter applications for standardized access to process data (position, rotation speed) and parameters.
- Fast additional full-duplex SPI interface between protocol logic and frequency inverter applications for standardized access to secondary position data
- Additional configurable SPI interfaces for output of the data from external sensors.
- Configurable interrupt output

1.4. Associated documents

Along with this manual, the following documents are relevant for the use of the HIPERFACE $DSL^{\$}$ interface:

Document number	Title	Status		
8017596	HIPERFACE DSL [®] safety manual	2014-05-31		
Table 1. Associated decuments				

Table 1: Associated documents

Individual encoder types with the HIPERFACE DSL[®] interface are described with the following documents:

- Data sheet
- Operating instructions
- Errata document

2. Protocol overview

HIPERFACE DSL[®] is a fast digital protocol for motor feedback systems for the connection between servo drive and motor feedback system. The protocol is installed in the transport layer in the frequency inverter using a digital logic circuit (DSL Master IP Core).

The position data are generated in two different ways in HIPERFACE DSL[®], either in free running mode, in which the position values are sampled and transmitted as quickly as possible, or in SYNC mode, in which the position data are sampled and transmitted synchronously with a defined clock signal. With a frequency inverter application, this clock signal is normally the clock feedback of the frequency inverter.

In SYNC mode the protocol matches the time points for the sampling of the data without time fluctuations with the clock coming from the frequency inverter.

For each frequency inverter cycle at least one position value is sampled and transmitted with constant latency to the DSL Master. As the protocol matches the internal data transfer speed to the frequency inverter cycle, the overall transfer rate of the HIPERFACE DSL[®] depends on the frequency inverter clock.

The protocol package is matched to the various lengths, see Figure 2. Provided the frequency inverter cycle is long enough, additional sampling points can be positioned in the frequency inverter cycle, known as "extra" packages. The number of additional packages is programmed by the user with a distribution value.

The number of packages transmitted per frequency inverter cycle cannot be selected at random, as the lower and upper range length of a protocol package must be adhered to. This must be taken into account when setting the distribution value.

In free running mode, the frequency inverter cycle is not taken into account for sampling and transmission and the protocol uses the minimum package length.

It must be noted that the minimum package length in free running mode is shorter than the minimum package length in SYNC mode.

Table 2 shows the dependency of the lengths of the protocol packages using examples for the length of the frequency inverter cycle.

Manual

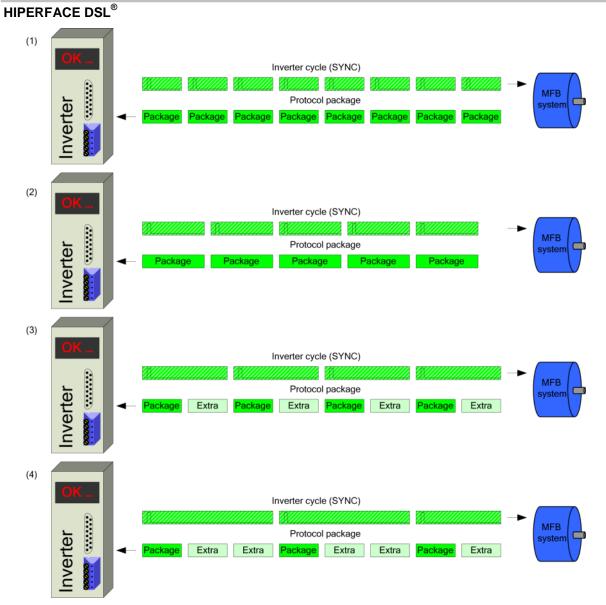


Figure 2: Length of protocol packages

Inverter cycle frequency (kHz)	Length of the frequency inverter cycle (µs)	Length of the protocol package (μs)	Protocol packages per frequency inverter cycle
2	500	12.50	40
4	250	12.50	20
6.25	160	13.33	12
8	125	12.50	10
16	62.5	12.50	5
40	25	12.50	2
37 to 84	27 to 12.1	27 to 12.1	1
Free running		11.52	

Table 2: Frequency inverter cycle and length of protocol packages

In HIPERFACE DSL[®], the data are transmitted over several channels. Each individual channel is adapted to different requirements according to its content. The cycle time of each individual channel varies with the length of the basic protocol package.

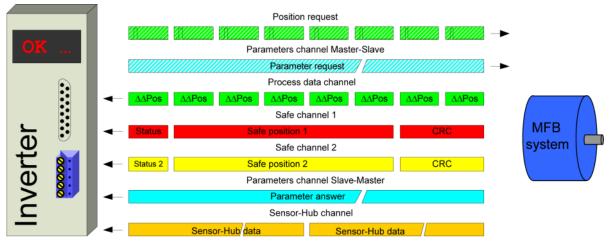


Figure 3: Data channels in HIPERFACE DSL[®]

Table 3 gives an overview of the characteristics of the various channels.

It should be noted that the minimum cycle time and the maximum band width only apply if the maximum number of sample points per frequency inverter cycle was programmed (refer to "Register synchronization control", section 5.3.2).

Channel in HIPERFACE DSL [®]	Function	Cycle time (µs)	Band width (kBaud)
Process data channel	Fast position, rotation speed	12.1 to 27.0	1321 to 669
Safe Channel 1	Absolute / safe position, status of Channel 1	96.8 to 216.0	660 to 334
Safe Channel 2	Absolute / safe position, status of Channel 2	96.8 to 216.0	660 to 334
Parameter channel	General data, parameters	Variable	330 to 167
SensorHub channel	External data	12.1 to 27.0	660 to 334

Table 3: Channels for protocol data

2.1. Process data channel

The fast position value of the motor feedback system is transferred on the process data channel synchronously with the position requests that are controlled by the signal at the SYNC input of the frequency inverter cycle.

The process data channel is the fastest channel of the HIPERFACE DSL[®] protocol. Every protocol package transferred contains a complete update of the content of this channel.

This content consists of increments to rotation speed and fast position that are used as feedback parameters for the control loop of the motor drive (see sections 5.3.11 and 5.3.12).

If the fast position from the process data channel cannot be calculated (either due to transmission or due to sensor errors), estimation is made by the DSL Master based on the last two available position values of Safe Channel 1. The worst case deviation from the actual mechanical position is also provided.

For reliable position estimation, the user needs to provide application specific information about maximum speed and maximum acceleration. Please see section 6.3.1 for details.

2.2. Safe Channel 1

The safe position value of the motor feedback system is transferred on the Safe Channel as an absolute value. In addition, the status of the encoder is reported on this channel in the form of errors and warnings.

The safe position value transferred on the Safe Channel is not synchronous with the frequency inverter cycle signal at the SYNC input.

The safe position is used by the DSL Master IP Core to check the fast position value of the process data channel and can be used by the frequency inverter application for the same purpose.

Where there are deviations between the safe and the fast position values, an error message is generated (see section 4.4.2). In this case, the protocol replaces the fast position with the estimated position. Please see section 6.3.1 for details.

In each package of the safe channel, a collection of status bits is transferred that reflects the error and warning condition of the motor feedback system.

It should be noted that each bit of the summary byte of the Safe Channel refers to one status byte the motor feedback system. Each status byte of the encoder can be read with a "short message" (see section 6.5.1).

2.3. Safe Channel 2

In Safe Channel 2, copies of the absolute position value and the status of the motor feedback system are transferred. This information can be discarded in standard applications.

The Safe Channel 2 is only accessible in the safety variants of the DSL Master IP Core.

2.4. Parameters Channel

The Parameters Channel is the interface, over which the frequency inverter application reads and writes parameters of the motor feedback system.

In addition to the main task of position measurement, motor feedback systems with the HIPERFACE DSL[®] interface also have various internal resources installed. These resources are accessible via the Parameters Channel.

Examples of these resources are temperature measurements, monitoring - mechanisms for correct functioning, product data (the "electronic type label") or freely programmable data fields.

It should be noted that the resources actually installed for DSL products differ and are listed in the relevant product data sheet.

There are two types of communication on the Parameters Channel:

- "Short message" transaction
- "Long message" transaction

A "short message" transaction allows access to resources that have an influence on the HIPERFACE DSL[®] protocol interface and are used for monitoring them. This includes detailed status and error messages for the motor feedback system and indications of the signal strength on the DSL connection. As a "short message" transaction is processed directly by the interface logic of the motor feedback system, this transaction is completed in a comparatively short time.

A "long message" transaction allows access to all the other resources of the motor feedback system. Unlike a "short message" transaction, a "long message" normally requires processing by the motor feedback system processor and therefore has does not have a response time that can be defined in advance.

It should be noted that in HIPERFACE DSL[®], a maximum of one "short message" and one "long message" are processed at any time.

HIPERFACE DSL®

2.5. SensorHub Channel

Data from additional external sensors can be transferred on the SensorHub Channel that can be used in the frequency inverter system. External sensors must be connected to the motor feedback system via the HIPERFACE DSL[®] SensorHub interface. Various sensors or sensor networks are accessible via this interface and can be selected using HIPERFACE DSL[®].

The configuration of external sensors is carried out via the Parameters Channel, whilst the data are selected via the SensorHub Channel. The transfer of protocol packages in the SensorHub Channel takes place synchronously with the DSL transfer and as an extension of the frequency inverter cycle signal that is present at the DSL Master SYNC input. Depending on the use of the SensorHub interface, external data can therefore be sampled and transferred synchronously.

The protocol in the SensorHub Channel is not monitored by HIPERFACE DSL[®]. Apart from the monitoring of the data transfer quality, there are no protocol mechanisms on this channel.

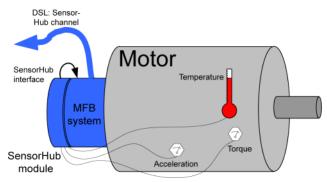


Figure 4: HIPERFACE DSL[®] SensorHub interface

3. Hardware installation

The installation of HIPERFACE DSL[®] in a drive system requires an interface circuit with special components as well as the installation of a digital logic core for an FPGA component.

The interface circuit is described thoroughly in this chapter. The chapter also contains recommendations for the selection of components.

The digital logic core (IP Core) is supplied by SICK for prescribed FPGA types.

In addition, the type of cable recommended for the connection between the frequency inverter and the motor feedback system is described thoroughly in this chapter.

It may also be possible to use other sorts of cable. These must be tested before use, however.

As a physical layer, HIPERFACE DSL[®] uses a transfer in accordance with EIA-485 (RS-485). Valid RS-485 interface drivers must comply with the conditions in Table 4.

Characteristic	Value	Units
Transfer rate	>20	MBaud
Permitted common mode voltage	-7 to +12	V
Receiver: Differential threshold voltage	< 200	mV
Load resistance	< 55	Ohm
Receiver running time delay	< 60	ns
Sender running time delay	< 60	ns
Sender power-up delay	< 80	ns
Sender power-down delay	< 80	ns
Sender rise time	< 10	ns
Sender dropout time	< 10	ns
Protection against short-circuit		
Protection against bus conflict		

Table 4: Valid RS-485 interface drivers

3.1. Interface circuit

HIPERFACE DSL[®] can be used in connection with two different interface circuit configurations. Each configuration requires a different sort of connection cable (see section 3.3).

Please note that the use of four core cable is no longer recommended for the motor cable.

3.1.1. Separate encoder cable - four core cable

When using a separate encoder cable (see section 3.3.1), the smallest interface circuit can be used. The separate encoder cable requires a four core connection.

In connection with the associated table, Figure 5 below gives the specification of the interface circuit.

HIPERFACE DSL®

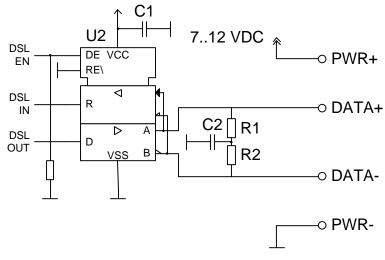


Figure 5: Interface circuit with separate encoder cable

Component		Part	Manufacturer
C1	Ceramic capacitor	100 nF	
C2	Ceramic capacitor	2.2 μF, 16 V	
R1, R2	Resistors	56R	
U2	RS485 transceiver	SN65LBC176A	Texas Instruments
		SN75LBC176A	Texas Instruments

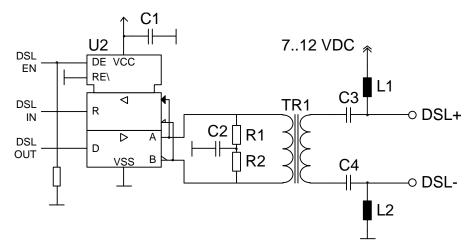

Recommended components for the interface circuit are set out in Table 5

 Table 5: Components for the interface circuit with separate encoder cable.

3.1.2. Integrated cable - two core cable

For a connection via a two core cable integrated in the motor cable, (see section 3.3.2), the data cables must be provided with a transformer to raise the common mode rejection ratio. To feed the supply voltage into the data cables choke coils are also required.

In connection with the associated table, Figure 6 below gives the specification of the interface circuit.

Figure 6: Interface circuit with two core cable (integrated in cable) Recommended components for the interface circuit are set out in Table 6.

Component		Part	Manufacturer
C1	Ceramic capacitor	100 nF	
C2	Ceramic capacitor	2.2 μF, 16 V	
C3, C4	Ceramic capacitor	470 nF, 50 V	
L1, L2	Choke coils	744043101, 100 µH	Würth Elektronik
		ELL6SH101M, 100 µH	Panasonic
R1, R2	Resistors	56R	
U2	RS485 transceiver	SN65LBC176A	Texas Instruments
		SN75LBC176A	Texas Instruments
TR1	Transformer	PE-68386NL	Pulse Engineering
		78602/1C	Murata
		B78304B1030A003	Epcos
		78602/1C	Epcos

Table 6: Components of the interface circuit with two core cable (integrated in cable)

Motor feedback voltage supply 3.1.3.

Motor feedback systems with HIPERFACE $DSL^{\text{®}}$ have been developed for operation with a supply voltage of 7 to 12 V. The voltage supply is measured at the encoder plug connector.

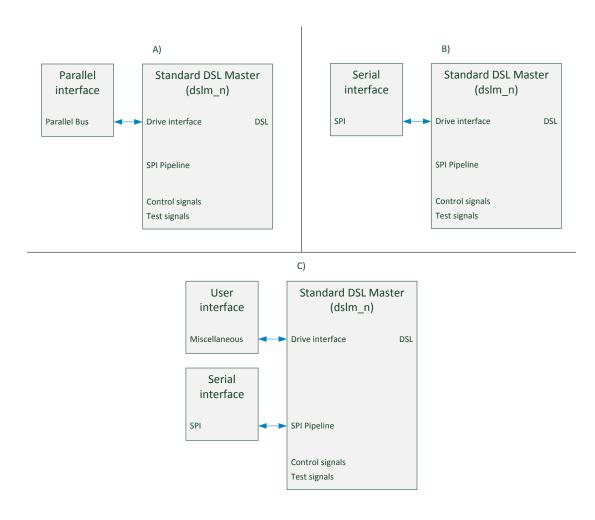
Table 7 below describes the specification for the power supply.

Parameter	Value
Switch-on voltage ramp	Max. 180 ms from 0 to 7 V
Inrush current	Max. 3.5 A (0 to100 µs)
infush current	Max. 1 A (100 µs to 400 µs)
Operating current	Max. 250 mA at 7 V
Table 7: Voltage supply	

Table 7: Voltage supply

HIPERFACE DSL®

3.2. FPGA IP Core


The frequency inverter system communicates with the DSL motor feedback system via a special protocol logic circuit that is designated as the DSL Master. The circuit is supplied by SICK and must be installed in an FPGA component. It is supplied as an Intellectual Property Core (IP Core). The DSL Master IP Core is supplied in different forms, depending on the FPGA vendor preferred by the user (compiled netlist or encrypted VHDL). If there is sufficient space in the FPGA being used, the DSL Master can be installed in the same component as the frequency inverter application.

There are two different IP Cores available, one for standard and one for safety applications. This manual only describes the standard variant. Please choose according to the desired system.

For interfacing the IP Core, several options are available. For details of those interface blocks see section 8.1.

The following figure show the possible combinations of IP Core and interface block variants.

	Value				
Parameter	Mini- mum	Typical	Maxi- mum	Units	Remarks
System Clock	74.9925	75.0000	75.0075	MHz	± 100 ppm
Interface characteristics					· · · ·
Cable transfer rate		9.375		MBd	
Reset duration	0.02	0.06		μs	Reset is High active
Recovery time after			727		
communication errors			121	μs	
Characteristics of the motor feedb	ack systen	n			
Position resolution per rotation		24	40	Bit	The total can be
Number of resolved rotations		16	40	Bit	a maximum of 40 bits
Rotation speed			262,000	rad/s	24 bit/rotation
Acceleration			670,000	rad/s ²	24 bit/rotation
Sampling latency		10.5		μs	SYNC trigger up to valid position
Characteristics of the host interfac	ce				
Frequency inverter cycle time	12.1		1,950	μs	in SYNC mode
Frame cycle time	12.1		27	μs	in SYNC mode
Frame cycle time		11.52		μs	In free running mode
Duration of the SYNC signal	0.04			μs	The SYNC signal must be inactive for at least 0.04 µs per cycle.
Jitter of the SYNC signal frequency		26		ns	± 2 system clock cycles
		_			
Characteristics of the SPI-PIPE int	erface bloc	cks	1	1	1
SPI-PIPE clock			10	MHz	
Characteristics of the Parameters				<u>.</u> .	
Theoretical transfer rate	166		334	kBd	
Duration of access to the communications resource	167		1,100	μs	"Short message"
Duration of access to the encoder resource	263		764	μs	"Long message"
Characteristics of the SensorHub	Channel				
Transfer rate	334		669	kBd	

Table 8: Characteristics of the DSL Master IP Core

3.2.1. DSL Master inputs / outputs

Signal name	Туре	Function		
rst*	Input	Master reset (High active)		
clk*	Input	Clock input		
sync*	Input	Position sampling resolution		
interrupt	Output	Configurable interrupt		
link	Output	Connection indication		
pos_ready	Output	Position data availability indication		
sync_locked	Output	Position sampling resolution locked		
bigend	Input	Byte sequence choice		
fast_pos_rdy	Output	Fast position update indication		
sample	Output	DSL bit sampling information		
estimator_on	Output	Postion Estimator activated		
safe_channel_err	Output	Transmission error in safe channel 1		
safe_pos_err	Output	Safe position not valid		
acceleration_err	Output	Fast channel / position error		
		Fast channel / position threshold error		
encoding_err	Output	DSL message encoding error		
dev_thr_err	Output	Estimator deviation threshold reached		
aux_signals	Output (12)	Auxiliary signals		
dsl_in*	Input	DSL cable, input data		
dsl_out*	Output	DSL cable, output data		
dsl_en*	Output	DSL cable transceiver, activation		
spipipe_ss	Input	SensorHub SPI choice		
spipipe_clk	Input	Serial clock for SPI SensorHub		
spipipe_miso	Output	SPI SensorHub, master output data/slave		
		input data		
online_status_d	Output (16)	IP Core status information		
hostd_a	Input (7)	Host interface address		
hostd_di	Input (8)	Host interface data in		
hostd_do	Output (8)	Host interface data out		
hostd_r	Input	Host interface data read		
hostd_w	Input	Host interface data write		
hostd_f Input		Host interface register freeze		

Table 9: Pin functions of the IP Core interface

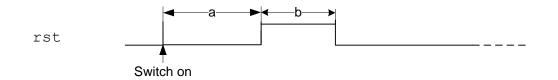
* these signals must be assigned to physical pins of the FPGA.

SYNC signal:

The HIPERFACE DSL communication can be established in "SYNC mode" or "free running mode". In free running mode, the IP-Core will use the fastest possible transmission timing and this input should be low (0). Please note that the IP-Core is not bound to any timing of the frequency inverter in this mode.

In SYNC mode the frequency inverter clock must be supplied to this input/pin. Please refer to table 8 for the signal specification. This signal triggers position sampling of the DSL encoder. The polarity of the edge can be programmed using the SPOL bit in the SYS_CTRL register.

As the frame cycle time must always be within a limited range, a divider for the SYNC frequency has to be chosen accordingly. The divider value needs to be written to the SYNC_CTRL register.


In case of the SYNC frequency changing, the IP-Core will synchronize automatically. During this synchronization the former sampling frequency is used. Please note that this synchronization takes a few SYNC periods.

Reset signal:

rst is the reset input (high active) of the DSL Master IP Core.

After start-up (switching on) of the frequency inverter, a reset procedure is mandatory to return the DSL Master IP Core to its initialization condition.

The reset procedure is established by the parameters listed in Table10 and quoted in Figure 8.

Figure 8: Reset procedure

Diagram reference	Parameters in Table 8	Value (cf. Table 8)			
а	Reset delay	Variable			
b	Duration of the reset signal	>60 ns			
Table 40: Deast time assurance					

Table 10: Reset time sequence.

Additional pin functions are described in detail in chapter 4.

3.3. Cable specification

The cable recommended for connecting the frequency inverter to the HIPERFACE DSL[®] motor feedback system is specified by the parameters set out in Table 10. These technical data apply to all configurations.

In the case of integrated cables (see section 3.3.2), the motor cables are not listed.

Characteristic	Minimum	Typical	Maximum	Units	
Length			100	m	
Impedance at 10 MHz	100	110	120	Ω	
DC loop resistance			0.1	Ω/m	
Velocity ratio	0.66			С	
Propagation delay		5		ns/m	
Limit frequency	25			MHz	
Maximum current per cable	0.25			А	
Operating temperature	-40		125	°C	

Table 11: Technical data for the HIPERFACE DSL[®] cable

3.3.1. Separate encoder cable - four core cables

The recommended cross section of the separate encoder cable with four encoder cables is given in Figure 9.

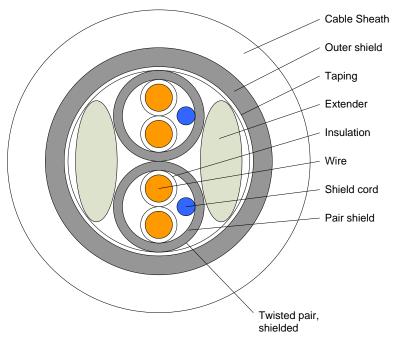


Figure 9: Cross section of the separate encoder cable with four encoder cables

3.3.2. Integrated cable - two core cable

The recommended cross section of the integrated cable with two encoder cables is given in Figure 10.

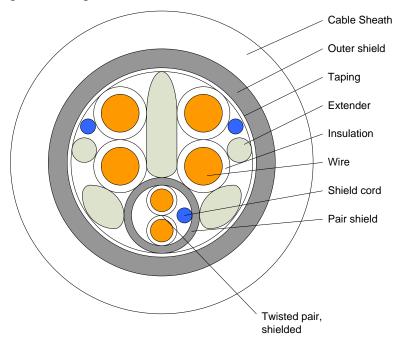


Figure 10: Cross section of the integrated cable with two encoder cables

More information relating cable construction and installation are available on the Whitepaper "Cable and Connector for HIPERFACE DSL[®] Motor and Drive Applications".

http://www.sick.com/group/EN/home/products/technologies/hiperfacedsl/Pages/hiperfacedsl_documentation.aspx

4. Interfaces

The IP Core of the DSL Master includes interfaces to the motor feedback system (DSL Slave) and to the frequency inverter application (see Figure 11).

The motor feedback system communicates via a DSL connection with the DSL Master. All data channels between the DSL Master and DSL Slave are routed via this connection.

The frequency inverter is connected via one interface (choice of SPI or parallel bus) and several control signals. In addition, the frequency inverter provides a clock signal (CLK) and a reset signal (RST) to the DSL Master IP Core. By means of these signals, a defined start-up performance is achieved.

According to the requirements of the particular application, an optional serial interface (SPI-PIPE) can be employed to use the SensorHub Channel (see Section 2.5, SensorHub Channel).

The various interfaces correspond to the tasks described in Table 12.

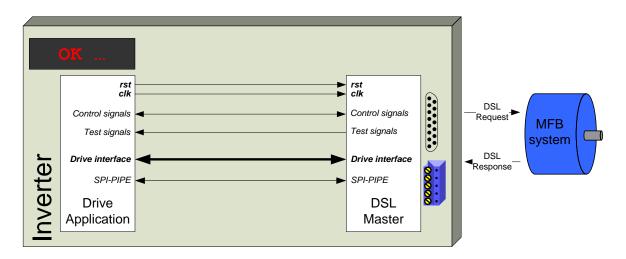


Figure 11: DSL system interfaces

Interface	Туре	Function		
Drive interface	Full duplex SPI	Register-based access to all DSL Master and DSL Slave		
	-or-	functions		
	Parallel bus			
SPI PIPE	SPI with read access	Optional register-based access to SensorHub Channel data		
Control signals	Digital in/outputs	DSL Master indication and control signals		
Test signals	Digital outputs	Test signals for development or fault-finding for a DSL		
		controller		
CLK	Digital input	Clock signal for the IP Core circuit		
RST	Digital input	Reset signal for the IP Core circuit		
DSL	Half duplex RS485	Connection to the motor feedback system		

 Table 12: Interface functions

4.1. Drive interface

The drive interface forms the central communications interface between the frequency inverter application and the DSL Master IP Core. Absolute and fast position data can be read via this interface. The functions of the motor feedback system are also accessible via this interface.

Pin name	Туре	Function
online_status_d(0:15)	Output	IP Core status (see section 5.2)
hostd_a(0:6)	Input	Register address bus
hostd_di(0:7)	Input	Register input data bus
hostd_do(0:7)	Output	Register output data bus
hostd_r	Input	Read signal
hostd_w	Input	Write signal
hostd_f	Input	Freeze signal
Table 12 Drive interf	aaa alanala	

The following signals are used for Drive interface:

Table 13. Drive interface signals.

Example installations of interface blocks for the Drive interface of the DSL Master are supplied together with the IP Core. These examples include a serial SPI interface and a parallel Texas Instruments EMIFA interface. For more information please see section 8.1.

4.2. SPI PIPE Interface

The SPI PIPE is a write-protected Serial Peripheral Interface (SPI). SPI PIPE is an optional communication channel between the frequency inverter application and the DSL Master IP Core. Read processes on the SensorHub Channel can be carried out via this interface. Alternatively, this data can also be read from the registers by standard transactions via Drive interface.

The type of access to the SensorHub Channel is selected by setting or deleting the **SPPE** bits in the **SYS_CTRL** register (see section 5.3.1). If the **SPPE** bit is deleted, the data and the status of the SensorHub channel are accessible via the DSL Master **PIPE_S** (2Dh) and **PIPE_D** (2Eh) registers. If the **SPPE** bit is set, the SensorHub Channel is read using the SPI PIPE "Read Pipeline" transaction.

SPI PIPE should be activated if, at a fast frequency inverter cycle, the bandwidth of Drive interface is insufficient to access position and pipeline data, or if the pipeline data is being processed by another frequency inverter application resource.

It should be noted that in every case, the configuration of external sensor components at the SensorHub is carried out via the DSL Master Parameters Channel. The SPI PIPE provides only one read access to the SensorHub Channel (see section 2.5, SensorHub Channel).

The SensorHub Channel data is kept in a FIFO (First In First Out) buffer that can hold 8 bytes. In addition, for each data byte, status information is also stored in the FIFO buffer (see sections 5.3.21 and 5.3.22).

It should be noted that the FIFO buffer can only store 8 bytes of SensorHub Channel data. If the buffer is not read quickly enough, old data will be overwritten. This is indicated by a flag in the FIFO buffer status information.

The SPI Master for the SPI PIPE is the frequency inverter application. The SPI functions "Slave Selection" (Pin: spipipe_sel) and "clock" (Pin: spipipe_clk) are controlled by the frequency inverter application. The SPI function "Data, Master input Slave output" (Pin: spipipe miso) is controlled by the DSL Master.

SPI PIPE has the following SPI characteristics:

- PHA = 1 (Sampling for clock trailing edge, data changes for clock leading edge)
- POL = 0 (Basic clock value)

The data with the highest value bit (MSB) is given first.

When accessing the SensorHub Channel via the SPI PIPE, the first four bits of the status buffer (0101) show a different value for each transaction, in order to check the correct function of the interface.

4.2.1. SPI-PIPE timing

The time sequence for SPI PIPE is shown in the time sequence diagram (Figure 12) below and in Table 15.

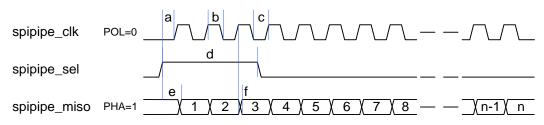


Figure 12: SPI-PIPE interface time control

Diagram reference	Description	Minimum	Maximum	Units
А	Creation of spipipe_sel before spipipe_clk	30		ns
В	Time for spipipe_clk high	30		ns
С	Time for spipipe clk low	30		ns
D	spipipe sel pulse width	30		ns
E	Delay spipipe_miso after spipipe_sel high	25	70	ns
F	Delay spipipe_miso after spipipe_clk high	25	70	ns

Table 14: SPI-PIPE time control

4.2.2. Read pipeline

The SPI PIPE transaction "Read Pipeline" is used for access to the FIFO buffer values that contain the data and status of the SensorHub Channel.

Symbol	Meaning			
PIPE STATUS	SensorHub Channel status (see section 5.3.20)			
PIPE DATA	SensorHub Channel data (see section 5.3.21)			
Table 45: "Dead Dinaling" transaction				

Table 15: "Read Pipeline" transaction

spipipe_sel			
spipipe_clk			
spipipe_miso	PIPE STATUS	PIPE DATA	

Figure 13: "Read Pipeline" transaction

4.3. Control signals

Various control signals are available between the DSL Master and the frequency inverter application to configure the performance of the IP Core or to carry out fast monitoring of the IP Core status.

4.3.1. SYNC signal

sync is a DSL Master digital input.

One edge on this pin triggers a position sampling. The polarity of the edge can be programmed using the **SPOL** bit in the **SYS_CTRL** (00h) register. The protocol requires a constant frequency of the signal at this pin, with deviations permitted within a set tolerance band. At start-up, the protocol synchronizes the protocol frame with the signal frequency at sync.

If the sync signal frequency is outside the tolerance range, re-synchronization of the protocol is triggered. During the time that the re-synchronization is taking place, sampling is carried out with the former sync frequency until the re-synchronization is complete. For more details on the sync signal also see section 3.2.1.

4.3.2. INTERRUPT signal

interrupt is a DSL Master digital output.

interrupt is set to "1" if an interrupt condition has been fulfilled in the DSL-Master. The interrupt conditions are set using the registers **MASK_H**, **MASK_L** and **MASK_SUM** (see sections 5.3.5 and 5.3.6).

During each write process in one of the registers **EVENT_H** or **EVENT_L**, the interrupt output is triggered until the current SPI transaction has ended.

4.3.3. LINK signal

link is a DSL Master digital output.

link reflects the content of the LINK bit in the **MASTER_QM** register (see section 5.3.3) and therefore indicates whether the DSL Master has produced a communications link to a connected HIPERFACE $DSL^{\text{®}}$ motor feedback system.

link is intended to be a control signal for an LED display, but can also be used to control the start-up performance (see section 6.1) or for global error handling.

link is reset if communication faults are detected.

4.3.4. FAST_POS_RDY signal

fast pos rdy is a DSL Master digital output.

fast_pos_rdy signals that a new fast position value is available and permits an event-based reading of the position for incorporating latency reduction.

 $fast_pos_rdy$ is always available, even if the position value is invalid or no connection to the encoder has been established.

The timing is according to the figure 14 below.

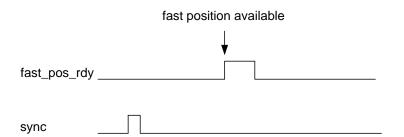


Figure 14: fast_pos_rdy indication.

Dependent upon the configuration in the register system control (see section 5.3.1), fast_pos_rdy displays either only the availability of positions based on user requirements (edge at sync input) or all transmitted positions.

4.3.5. SYNC_LOCKED signal

sync locked is a DSL Master digital output.

sync_locked indicates whether the sync signal was correctly passed to the encoder, or whether the IP Core is still in a synchronization phase. sync_locked drops to "0" when the provided sync is more than two clock cycles earlier or later than expected.

4.3.6. BIGEND signal

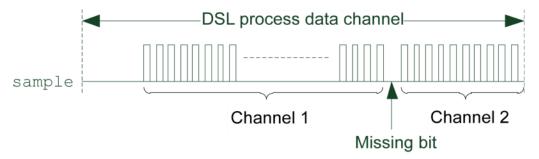
bigend is a DSL Master digital input.

The byte sequence of the address allocation for registers can be influenced via bigend (see section 8.1.4). The byte sequence is based on 32 bit-wide data words. The selection influences the allocation independently of the interface block used.

Table 16 below lists the selection options for bigend.

Value	Address allocation byte sequence
0	Little endian
1	Big endian

Table 16: bigend selection.


4.4. Test signals

To support development or fault-finding for controllers that have a DSL interface integrated, the DSL Master supplies some test signals.

4.4.1. SAMPLE signal

sample is a DSL Master digital output.

The sample signal is set at the sampling time point of each bit that is transmitted from the DSL motor feedback system. It consists of 50 pulses from Channel 1 followed by a bit pause and 10 pulses from Channel 2 of the motor feedback system.

Figure 15: Sample signal

The sample signal can be used for eye diagrams to measure time and voltage margins during signal transmission.

When making the evaluation, signal delays in the DSL Master must be taken into account. The rising edge of the sample signal is offset by 40 ns from the line driver signal. The time delay of the line driver must also be taken into account. Typically this is 13 ns.

4.4.2. ESTIMATOR_ON signal

estimator on is a DSL Master digital output.

The estimator_on signal is set if some event leads to the transmitted fast position (see 5.3.11) being invalid and the position estimator supplying the values. Such events are:

- The DSL motor feedback system reporting a position error
- A coding error in transmission of the fast position
- A check-sum error in transmission of the fast position
- Realignment from fast to safe position
- The protocol is re-synchronizing following a break in the link

The <code>estimator_on</code> signal can be used to carry out a statistical analysis of the incidence of errors in the DSL system. For more information, please refer to section 6.3.1.

4.4.3. DEV_THR_ERR signal

dev thr err is a DSL Master digital output.

If the fast position from the process data channel cannot be calculated (either due to transmission or due to sensor errors), estimation is made by the DSL Master based on the last two available position values of the Safe Channel. The worst case deviation from the actual mechanical position is also provided, referring to a user-defined parameter for the maximum possible acceleration in the application (fast position acceleration boundary, see section 5.3.24).

A threshold can be set up for a worst case deviation to raise the dev_thr_err output. The threshold is a user defined parameter for the maximum tolerable deviation in the application (fast position estimator deviation, see section 5.3.25).

dev_thr_err indicates whether the maximum tolerable deviation is violated ('1') or kept ('0').

4.4.4. SAFE_CHANNEL_ERR signal

safe_channel_err is a DSL Master digital output.

The safe_channel_err signal is set if some event leads to the safe position (see 5.3.14) being invalid. Such events are:

- A coding error in transmission of the safe position
- A check-sum error in transmission of the safe position

The <code>safe_channel_err</code> signal can be used to carry out a statistical analysis of the incidence of errors in the DSL system.

4.4.5. SAFE_POS_ERR signal

safe_pos_err is a DSL Master digital output.

safe_pos_err is a DSL Master digital output. The safe_pos_err signal is set if the safe position of Safe Channel 1 is not updated or it has never been written since the startup. Another possible cause can be the DSL motor feedback system reporting a position error.

4.4.6. ACCELERATION_ERR signal

acceleration err is a DSL Master digital output.

The acceleration_err signal is set if an encoding error was detected after transmission of a fast position value.

If the acceleration_err signal is set the error counter acc_err_cnt will be incremented with each transmission (see section 5.3.23). As soon as the acceleration_err signal is reset the error counter acc_err_cnt will be set to "0" again.

4.4.7. ACC_THR_ERR signal

acc thr err is a DSL Master digital output.

The <code>acc_thr_err</code> signal is set if the threshold programmed in register <code>acc_err_cnt</code> is exceeded.

The acc_thr_err signal can be used to implement a fault-tolerant evaluation in the drive. For this the maximum position deviation can be calculated from the number of transmission errors.

4.4.8. ENCODING_ERR signal

encoding_err is a DSL Master digital output.

The encoding_err signal is set if the underlying 8B/10B encoding of a DSL frame transmission is disturbed.

The encoding_err signal can be used to make a statistical analysis of the bit error rate of a DSL system.

5. Register diagram

All IP Core registers and functions can be accessed via drive interface. As an option, the SensorHub Channel data is accessible via the SPI PIPE interface.

In addition, the DSL Slave interface registers are mirrored as decentralized registers. The address area 40h to 7Fh is intended for this. The addressing of these registers is identical to the addressing of the registers in the DSL Master. The answer to the transaction is, however, delayed and must be read individually (see under "Short message", in section 6.5.1).

Figure 16 below shows via which interface a connection to which register block is established.

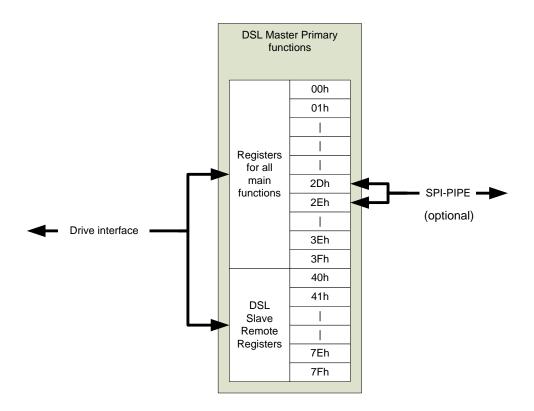


Figure 16: Register block overview

5.1. Explanation of the registers

In the following description of the registers, symbols are used to describe the standard value of a bit following a reset. Additional symbols are used to describe the functions provided to the frequency inverter application for this bit.

The bit is described according to the following example:

"Function" "Reset value", e.g. "R/W-0"

Function symbol	Meaning
R	Bit can be read.
W	Bit can be set and deleted.
С	Bit can only be deleted.
Х	Bit is not installed and will always be read
	as "0".

Table 17: Function symbols for bits

Reset value	Meaning			
0	The bit is deleted after a reset.			
1	The bit is set after a reset.			
Х	After a reset, the bit has no defined value.			
-	In the register diagram:			
	The bit is not installed and will always be			
	read as "0".			

Table 18: Symbols for bit reset values

It should be noted that read access to a bit that can only be written ("W") always returns the value "0". If a register address that is not used is read, the result will be "0" as well.

5.2. Online Status

The Online Status is a non-storing copy of registers **EVENT_H** and **EVENT_L**. The static information in these registers must be deleted by the user after the read process, by writing the value "0" to the corresponding bit in the register, whilst the Online Status only shows the current status without storing previous indications. The signal name of the Online Status is online status d (with d indicating drive).

online_status_d is given in two bytes. If an SPI block is used for interfacing the IP Core, online_status_d is transmitted in each transaction in the first two bytes via the spi_miso output. When a parallel bus interface is used for drive interface, online_status_d has 16 dedicated output signals available.

It should be noted that when the parallel bus interface is used the 16 signals of the Online Status are not frozen during a read access. If required, the user can insert a Latch (e.g. using the hostd f signal).

Online Status , High Byte

R-0	R-0	R-1	R-1	R-1	R-1	R-1	R-1
INT	SUM	SCE	FIX1	POS	VPOS	DTE	PRST
Bit 7							Bit 0

Bit 7 INT: Status of the Interrupt output This bit represents an exception to the Online Status, as this bit does not relate to an event indication. INT provides the value of the physical INT output so that request management (polling) can be established. The importance of this flag depends on the Interrupt sources monitored.
1 = interrupt output on "High" level 0 = interrupt output on "Low" level
Bit 6 SUM: Summary byte 1 = The last valid value from SUMMARY was not zero. The importance of this flag depends on the particular error source that leads to a set SUMMARY (see section 5.3.13).

0 = The last valid value from **SUMMARY** was zero.

HIPERFACE DSL [®]						
Bit 5	 SCE: CRC error on the Safe Channel 1 = The last Safe Channel CRC received was wrong. It is expected that the last safe position transmitted (see section 5.3.15) is invalid. 0 = The last Safe Channel CRC received was correct. 					
Bit 4	FIX1 : This bit always gives a "1". For SPI interfaces, this is used for checking the spi_miso pin for stuck-at- '0' faults.					
Bit 3	POS : Estimator turned on 1 = A source of an error in the fast position was identified or an alignment procedure is currently being carried out. It is probable that the last fast position is invalid. Be aware that the fast position read through drive interface is provided by the estimator. 0 = No fast position error.					
Bit 2	VPOS : Safe position invalid 1 = An error in the safe position was identified. It is expected that the safe position transmitted from the encoder is invalid. 0 = The last safe position received was correct.					
Bit 1	DTE : Deviation Threshold Error (see section 4.4.3)					
	1 = Current value of deviation greater than the specified maximum.					
	0 = Current value of deviation smaller than the specified maximum.					
Bit 0	 PRST: Protocol reset 1 = IP-Core has restarted the protocol. 0 = IP-Core running. 					
	Online Status , Low Byte					
	X-0 X-0 R-0 R-0 R-1 R-0 R-0 POSTX MIN ANS FIX0 QMLW FREL FRES Bit 7 Bit 0 Bit 0 Bit 0 Bit 0 Bit 0 Bit 0					
Bit 7-6	 POSTX1:POSTX0: Position transmission status 00: Position request is transmitted to the DSL encoder. 01: Safe Channel was correctly transmitted. 10: Fast position present (see section 5.3.11). 11: Safe Channel 2 was correctly transmitted. 					
Bit 5	 MIN: Acknowledgment of message initialization 1 = The DSL encoder sends a figure by which the initialization of the Parameter Channel is acknowledged. 0 = Parameter Channel not functioning. 					
Bit 4	ANS : Incorrect answer detected. 1 = The last answer to a long message was damaged.					

- 0 = No error detected in the last answer to a long message.
- Bit 3 **FIX0**: This bit always gives a "0". For SPI interfaces, this is used for checking the spi_miso pin for stuck-at-'1' faults.

HIP	ERF	ACE	DSL®

Bit 2	QMLW : Quality monitoring at Low level (see section 5.3.3) 1 = Current value of quality monitoring less than 14. 0 = Current value of quality monitoring greater than or equal to 14.
Bit 1	FREL: Channel status for "long message".1 = The channel for the "long message" is free.0 = The channel for the "long message" is in use.
Bit 0	 FRES: Channel status for the "short message". 1 = The channel for the "short message" is free. 0 = The channel for the "short message" is in use.

5.3. DSL Master function register

The protocol logic controls the performance of the DSL Master via the registers in the DSL Master IP Core on drive interface. These registers are also used for accessing the position values.

The table below contains a list of all the function registers available in the IP Core.

The addresses given below are referencing a big-endian addressing. For a table stating the register addresses depending on the endianness, see section 8.1.4.

Addr	Designation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu res	
00h	SYS_CTRL	PRST	MRST	FRST	LOOP	PRDY	SPPE	SPOL	OEN	0000	0000
01h	SYNC_CTRL	ES								0000	0001
03h	MASTER_QM	LINK	-	-	-	Quali	ty mon	itoring	a A	0	0000
04h	EVENT H	INT	SUM	SCE	-	POS	VPOS	DTE	PRST	000-	0000
05h	EVENT L	-	-	MIN	ANS	-	QMLW	FREL	FRES	00	-000
06h	MASK H	-	MSUM	MVRT	-	MPOS	MVPOS	MDTE	MPRST	-00-	0000
07h	MASK L	-	-	MMIN	MANS	-	MQMLW	MFREL	MFRES	00	-000
08h	MASK SUM	MSUM7	: 0							0000	0000
09h	EDGES	Bit sa	ampling	patter	rn					0000	0000
0Ah	DELAY	RSSI		-		Cable	delay			0000	0000
0Bh	VERSION	Codino	1	IP Co	re ver	sion nu	umber			0101	0110
0Dh	ENC ID2	-	SCI				D19:16			-000	0000
0Eh	ENC ID1	ENC II								0000	0000
OFh	ENC ID0	ENC II								0000	
10h	POS4		positio	n, bvte	e 4					0000	
11h	POS3	-	positio							0000	
12h	POS2	-	positio							0000	
13h	POS1	-	positio	=						0000	
14h	POSO	-	positio	. 1						0000	
15h	VEL2	-	byte	=						0000	
16h	VEL1		byte byte							0000	
17h	VELO		byte byte							0000	
18h	SUMMARY	SUM7:		0						0000	
19h	VPOS4		, positio	n hvte	<u>م</u>					0000	
1Ah	VPOS3	-	positio	_						0000	
1Bh	VPOS2	-	positio	. 1						0000	
1Ch	VPOS1	-	positio	_						0000	
1Dh	VPOS0	-	positio							0000	
1Eh	VPOSCRC H		E the s			byto	1			0000	
1Fh	VPOSCRC L		the s							0000	
20h	PC BUFFER0		eters C	-		4	0			0000	
2011 21h	PC BUFFER1		eters C							0000	
22h	PC BUFFER2		eters C							0000	
23h	PC_BUFFER3		eters C							0000	
2311 24h	PC BUFFER4		eters C							0000	
2411 25h										0000	
26h	PC_BUFFER5		Parameters Channel, byte 5 Parameters Channel, byte 6								
-	PC_BUFFER6				4					0000	
27h	PC_BUFFER7		eters C	1	1			11000	0	0000	
28h	PC_ADD_H	LID	LDIR	LOFF	LIND	LLEN		LADD9	:8	1000	
29h	PC_ADD_L	LADD7:								0000	
2Ah	PC_OFF_H	LID		DD14:8						1000	
2Bh	PC_OFF_L	LOFFAI			1	1	1			0000	
2Ch	PC_CTRL	-	-	-	-	-	-	-	LSTA		-
2Dh	PIPE_S	-	-	-	-	POVR	PEMP	PERR	PSCI		
2Eh	PIPE_D	-	Hub FI		-					0000	
2Fh	PC_DATA		messa							0000	
38h	ACC_ERR_CNT	-	-	-			thresho	old/cou	nter	0	
39h	MAXACC	Acc. H			Mantis					0000	
3Ah	MAXDEV_H		positio							1111	1111
3Bh	MAXDEV_L	Max. p	Max. position deviation, byte 0 1111 1111							1111	
3Fh	DUMMY	No dat	a								

Table 19: Description of the registers in DSL Master, drive interface

5.3.1. System control

The system control register SYS_CTRL contains the main control bits of the DSL Master.

It should be noted that apart from a reset of the Master, all system control bits can only be set and deleted by the user.

Register 00h:	System control				
Register oon.	R/W-0R/W-0R/W-0R/W-0R/W-0R/W-0PRSTMRSTFRSTLOOPPRDYSPPESPOLOENBit 7Bit 0				
Bit 7	PRST : Protocol reset 1 = A forced reset of the protocol status will be initiated. If the bit is deleted, a restart of the connection is triggered. 0 = Normal protocol action				
Bit 6	 MRST: Messages reset 1 = The Parameters Channel is reset. Current short and long messages are discarded. 0 = Normal Parameters Channel action 				
Bit 5	 FRST: Pipeline FIFO, reset 1 = The FIFO is reset. Data is not stored and cannot be read. 0 = Normal FIFO access 				
Bit 4	LOOP: Test drive interface Value for the read back test for drive interface. This value has no other purpose.				
Bit 3	<pre>PRDY: POS_READY mode. 1 = pos_ready shows time of receipt of all position transmissions.</pre>				
	0 = pos_ready shows only the time of receipt of position transmissions following a control clock (sync input).				
Bit 2	SPPE : SPI-PIPE activation 1 = SPI-PIPE activated. Access to pipeline status and data via SPI-PIPE. The registers PIPE_S and PIPE_D are read as "0".				
	0 = SPI-PIPE deactivated. Access to pipeline status and data via the registers PIPE_S and PIPE_D .				
Bit 1	SPOL: Polarity of the synchronization pulse 1 = The sync trailing edge is used. 0 = The sync leading edge is used.				
Bit 0	OEN : Activation of the output 1 = The DSL cables are activated for output to the DSL Slave. 0 = The impedance of the DSL cable is high.				

5.3.2. Synchronization control

The SYNC_CTRL register for control of the synchronization contains the bit with which the synchronization source for position sampling is controlled.

•		•	•	•					
Register 01h:	Synchro	onizatio	n contro	ol					
	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-1	
				E	ES				
	Bit 7							Bit 0	
Bit 7-0	ES: Exte 0000000 cycle tim)0 = Pos			luring fre	e runnin	g at the	shortest	
	All othe	er value	es = Po	osition s	sampling	with tl	ne syna	signal	
	synchro	synchronized. The value from ES determines the number of							
	•	•	0		n one sy s per cyc				

5.3.3. Quality monitoring

The ${\tt MASTER}_{\tt QM}$ quality monitoring register contains the quality monitoring value for the data connection.

As soon as the DSL Master detects events that indicate an improvement or degradation of the quality of the data connection, these events are indicated as values higher or lower than the quality monitoring value (see Table 20).

Protocol event	Value change in quality monitoring
Wrong synchronization in Safe Channel (last byte)	-4
Wrong synchronization in Safe Channel (1 st … 7 th bytes)	-6
RSSI <1	-4
Wrong encoding in parameter or SensorHub channels	-1
Wrong encoding in process data channel	-2
Unknown special characters in the protocol package	-2
Any identified error in Safe Channel 1	-6
Any identified error in Safe Channel 2	-8
Correct synchronization in Safe Channel	+1
Correct CRC value in Safe Channel	+1
Table 20: Quality monitoring events	•

length (see section 6.3.3).

 Table 20: Quality monitoring events

Quality monitoring is initiated with the value "8".

The maximum quality monitoring value is "15". This is the standard value during operation.

Particular attention must be paid to the quality monitoring value during the development of a DSL drive controller. If a value lower than "15" is indicated, the cause may be a problem with the connection circuit, particularly if the value is continuously displayed.

If the quality monitoring value falls below "14", **QMLW** information is indicated in Online Status and in the **EVENT_L** register.

If the quality monitoring value falls to "0", a forced reset of the protocol is carried out. This is indicated by the **PRST** error bit in Online Status and in the **EVENT_H** register.

The MASTER_QM register is write protected.

Register 03h:	Quality monitoring register							
	R-0	X-0	X-0	X-0	R-0	R-0	R-0	R-0
	LINK					Q	М	
	Bit 7							Bit 0
Bit 0	 LINK: DSL protocol connection status 1 = Protocol connection between DSL Master and Slave was established. 0 = No connection present or connection error due to a communications error. It should be noted that LINK is also represented at the link 					due to		
	interface	output	(see sec	tion 4.3	.3).			
Bit 6-4	Not imp	lemente	ed: Read	d as "0".				
Bit 3-0	QM3:QN 0000 to better c "0000", a	1111: C onnectic	Quality m	onitoring e quality	g value. I / monito	ring rea	aches th	

5.3.4. Events

The <code>EVENT_H/EVENT_L</code> registers contain the messaging bits for all warning and error modes of the DSL system.

All messaging bits are set by the DSL Master if a corresponding status is determined.

The following bit description lists the effects of warning and error conditions as well as the reactions to errors that must be installed in the frequency inverter application.

An event bit that has been set is not reset by the DSL Master. The frequency inverter application must delete bits that have been set.

Both edge and level-sensitive flags are present in the EVENT registers. Edgesensitive bits are set when the corresponding status arises. They are only set again if the corresponding status disappears and then arises once more. This is the standard action. The level-sensitive bits set a bit as long as the corresponding status exists.

It should be noted that all event register bits are also transferred to Online Status (see sections 5.2 and 6.6.2). The event bits are not static there and contain the actual status of each individual event.

Register 04h:	High Byte events
	R-0 R/C-0 R
Bit 7	INT : Interrupt status This bit reflects the status of the interrupt signal (see section 4.3.2).
Bit 6	 SUM: Remote event monitoring 1 = The DSL Slave has signaled an event and the summary mask is set accordingly (see registers MASK_SUM and SUMMARY). 0 = All DSL Slave events are deleted. When the SUM bit is set, an error or a warning has been transmitted from the DSL Slave. The frequency inverter application must check the SUMMARY register (see section 5.3.13) to obtain a detailed description. This bit is level sensitive.
Bit 5	 SCE: Error on the Safe Channel 1 = Data consistency error on the Safe Channel. 0 = Safe Channel data was correctly transmitted. This error usually indicates a transmission error on the DSL connection. If this error occurs frequently, the wiring of the DSL connection should be checked. If this error occurs continuously, there is probably an error in the motor feedback system. This error affects quality monitoring and produces the QMLW warning or a protocol reset.

When this error occurs, the last valid value of the safe position is retained (see section 5.3.14). Only if a fresh value has been transmitted will the safe position be updated and correspond to the actual position of the motor feedback system. The fast position is not affected by this.

- Bit 4 Not implemented: Read as "0".
- Bit 3**POS**: Estimator turned on1 = Fast position data consistency error. The fast position read
through drive interface is supplied by the estimator.
0 = The data for the fast position was correctly transmitted.

This error usually indicates a transmission error on the DSL connection. If this error occurs frequently, the wiring of the DSL connection should be checked. If this error occurs continuously, there is probably an error in the motor feedback system.

When this error occurs, the fast position is updated by the estimator (see section 6.3.1).

Bit 2

- VPOS: Safe position error
 1 = Sensor error.
 - 0 = The safe position is correct.

This error usually indicates an encoder sensor error. If this error occurs continuously, there is probably an error in the motor feedback system.

When this error occurs, the error value FD FD FD FD FDh is displayed instead of the safe and fast position

Bit 1 DTE: Estimator Deviation Threshold Error (see section 4.4.3)

1 = Current value of deviation greater than the specified maximum.

0 = Current value of deviation smaller than the specified maximum.

This error message is relevant when the estimator deviation threshold is used. See section 6.3.1 for details of this function.

Bit 0 **PRST**: Protocol reset warning 1 = The forced protocol reset was triggered. 0 = Normal protocol action

This error message indicates that the protocol connection to the DSL Slave has been re-initialized. This error message can be caused by a frequency inverter application request (**PRST** bit in SYS_CTRL), generated by the DSL Master itself, or activated via the rst input.

The DSL Master causes a protocol reset if too many transmission errors indicate a connection problem (see section 5.3.3). A protocol reset causes a re-synchronization with the DSL Slave that can improve the connection quality.

Register 05h: Low Byte events

X-0	X-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
		MIN	ANS		QMLW	FREL	FRES
Bit 7							Bit 0

Bit 7-6 Not implemented: Read as "0".

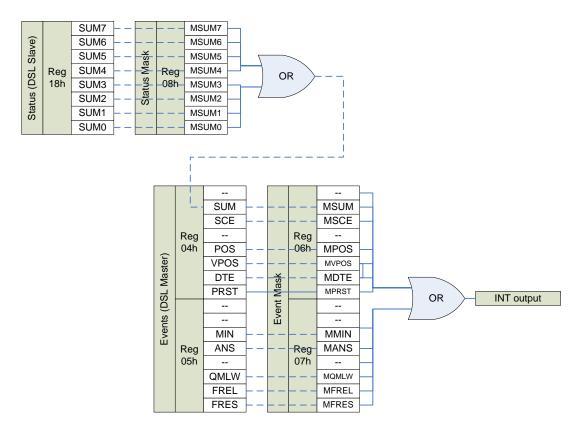
Bit 5MIN: Message initialization1 = An acknowledgment was received from the Slave for the
initialization of a message.
0 = No acknowledgment for the initialization received.When this warning is displayed, the Parameters Channel is still in
the initialization status and no "short message" or "long

the initialization status and no "short message" or "long message" can be triggered. This bit is level sensitive.

Bit 4ANS: Erroneous answer to "long message"1 = An error occurred during the answer to a long message. The
effectiveness of the previous transaction is not known.
0 = The last answers to "long messages" were error free.

This error indicates that the transmission of an answer from the DSL Slave to the last "long message" failed. The frequency inverter application must send the "long message" again.

Bit 3 Not implemented: Read as "0".


Bit 2	QMLW : Quality monitoring low value warning 1 = Quality monitoring value (see register 03h) below "14" 0 = Quality monitoring value greater than or equal to "14"
	This warning indicates that a transmission error occurred at bit level for one of the CRC values. If this error occurs frequently, the wiring of the DSL connection should be checked (also see section 5.3.3).
Bit 1	 FREL: Channel free for "long message" 1 = A "long message" can be sent on the Parameters Channel. 0 = No "long message" can be sent.
	If the bit is set, the frequency inverter application can trigger a "long message". Provided no answer has been received from the DSL Slave, this bit remains deleted. As the processing duration of a "long message" in the motor feedback system is not specified, a user time limit condition should be installed via the frequency inverter application. When a time limit is exceeded, the MRST bit in the SYS_CTRL register is set, which causes the Parameters Channel to be reset.
Bit 0	 FRES: Channel free for "short message" 1 = A "short message" can be sent on the Parameters Channel. 0 = No "short message" can be sent.
	If the bit is set the frequency inverter application can trigger

If the bit is set, the frequency inverter application can trigger a "short message". Provided no answer has been received from the DSL Slave, this bit remains deleted. As the processing duration of a "long message" in the motor feedback system is not specified, a time limit condition is installed in the DSL Master. If the time limit is exceeded, attempts are made again automatically (see under **RET** bit).

5.3.5. Event mask

In the event mask registers ${\tt MASK_H/MASK_L},$ the events are set with which the interrupt signal is set.

Several events can be masked to trigger an interrupt. In addition, events from the DSL Slave summary can be combined with these events (see section 5.3.6). This is explained in figure 17.

Figure 17: Interrupt masking

It should be noted that the **SUM** bit is an OR connection of all bits of the status summary (SUMMARY register).

Register 06h:	High Byte event mask
	X-0 W-0 X-0 W-0 W-0 W-0 MSUM MSCE MPOS MVPOS MDTE MPRST Bit 7 Bit 0 Bit 0 Bit 0 Bit 0 Bit 0 Bit 0
Bit 7	Not implemented: Read as "0".
Bit 6	 MSUM: Mask for remote event monitoring 1 = DSL Slave events that are masked in the SUMMARY register set the interrupt signal. 0 = DSL Slave events that are masked in the SUMMARY register do not set the interrupt signal.
Bit 5	 MSCE: Mask for transmission errors on the Safe Channel 1 = A transmission error on the Safe Channel sets the interrupt signal. 0 = A transmission error on the Safe Channel does not set the interrupt signal.
Bit 4	Not implemented: Read as "0".
Bit 3	 MPOS: Mask for fast position error 1 = An error in the fast position sets the interrupt signal. 0 = An error in the fast position does not set the interrupt signal.
Bit 2	 MVPOS: Mask for safe position error 1 = An error in the safe position sets the interrupt signal. 0 = An error in the safe position does not set the interrupt signal.
Bit 1	 MDTE: Mask for estimator deviation threshold error warning 1 = A high estimator deviation threshold error sets the interrupt signal. 0 = A high deviation threshold error value does not set the interrupt signal.
Bit 0	 MPRST: Mask for protocol reset warning 1 = A protocol reset sets the interrupt signal. 0 = A protocol reset does not set the interrupt signal.
Register 07h:	Low Byte event mask
	X-0 X-0 W-0 X-0 W-0 W-0 Image: Model MMIN MANS MQMLW MFREL MFRES Bit 7 Bit 0 Bit 0 Bit 0 Bit 0 Bit 0 Bit 0
Bit 7-6	Not implemented: Read as "0".
Bit 5	 MMIN: Mask for message initialization confirmation 1 = The acknowledgment for the initialization of a DSL Slave message sets the interrupt signal. 0 = The acknowledgment for the initialization of a DSL Slave message does not set the interrupt signal.

HIPERFACE DSL®)
----------------	---

Bit 4	<pre>MANS: Mask for erroneous answer to long message 1 = A transmission error during the answer to a long message sets the interrupt signal. 0 = A transmission error during the answer to a long message does not set the interrupt signal.</pre>							
Bit 3	Not implemented: Read as "0".							
Bit 2	<pre>MQMLW: Mask for low quality monitoring value warning 1 = A low quality monitoring value (see registers 03h and 05h) sets the interrupt signal. 0 = A low quality monitoring value does not set the interrupt signal.</pre>							
Bit 1	<pre>MFREL: Mask for "channel free for "long message"' 1 = If a "long message" can be sent on the Parameters Channel, the interrupt signal is set. 0 = If a "long message" can be sent on the Parameters Channel, the interrupt signal is not set.</pre>							
Bit 0	<pre>MFRES: Mask for "channel free for "short message"' 1 = If a "short message" can be sent on the Parameters Channel, the interrupt signal is set. 0 = If a "short message" can be sent on the Parameters Channel, the interrupt signal is not set.</pre>							

5.3.6. Summary mask

In the MASK_SUM summary mask register, the DSL Slave collective events are determined with which the **SUM** event monitoring in the event register as well as the signal to the interrupt pin are set (interrupt).

Several events can be masked to trigger an interrupt. In addition, events from the DSL Master can be combined with these events (see section 5.3.4).

It should be noted that the **MSUM** bit from the <code>MASK_H</code> register is an OR connection of all bits of the summary mask register.

Register 08h:	Summa	ry mask	Σ.					
	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
	MSUM7	MSUM6	MSUM5	MSUM4	MSUM3	MSUM2	MSUM1	MSUM0
	Bit 7							Bit 0
Bit 7-0	MSUM7 1 = In th the SUM 0 = In th not set interr	ne set st I event r ne set sta the S	atus, the nonitorin atus, the UM eve	e corresp ng and th corresp	bonding ne signal bonding s	status s at the i status su	nterru Immary	pt pin. bit does

5.3.7. Edges

The EDGES edge register contains the time control for the DSL cable bit sampling and can be used to monitor the connection quality.

Each individual edge register bit is set if, at system start-up, an edge of the test signal is detected during the time period of the corresponding bit. An edge is defined as a change in cable value between successive detections. The sampling is carried out eight times as fast as the cable bit rate.

Clean cable signals mean that only a few bits are set in the edge register, whilst noisy cable signals set a large number of bits.

If all bits in the edge register are set, this is an indication of excessive interference in the cable in which no connection can be established.

The register is write protected. The content of this register does not change after the start-up phase. A new bit sampling pattern is only generated after a forced reset of the protocol.

Register 09h:

Edges

-							
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			Bit sampli	ng pattern			
Bit 7							Bit 0

Bit sampling pattern: Identification of edges in the cable signal 1 = An edge was detected in the time period of the corresponding bit.
0 = No edge was detected in the time period of the corresponding bit.

5.3.8. Delay

The DELAY run time register stores information about the run time delay of the system cable and the signal strength. The register can be used to monitor the connection quality.

The register is write protected.

Register 0Ah:	Run time delay
- 3	

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	RS	SSI			Cable	delay	
Bit 7							Bit 0

Bit 7-4 **RSSI**: Indication of the received signal strength 4 bit value for the cable signal strength, from "0" to "12". Higher values indicate better connection quality. If the value is less than "1" a forced reset of the protocol is carried out.

RSSI is continuously updated during operation and used for signal monitoring during run time.

Bit 3-0 Cable delay:

4 bit value for cable delay. This value gives the cable signal round trip delay of cable and transceivers in bits. This value enables a rough estimate of cable length to be made.

The value for **Line Delay** does not change after the start-up phase. A fresh value for **Line Delay** is only measured after a forced reset of the protocol.

Table 21 below shows the relationship between the value in **Line Delay** and the cable length of the DSL connection.

Cable delay	DSL connection cable delay	Cable length DSL connection						
0	<100 ns	< 10 m						
1	100 to 200 ns	10 to 20 m						
2 3	200 to 300 ns	20 to 30 m						
3	300 to 400 ns	30 to 40 m						
4	400 to 500 ns	40 to 50 m						
5	500 to 600 ns	50 to 60 m						
6	600 to 700 ns	60 to 70 m						
7	700 to 800 ns	70 to 80 m						
8	800 to 900 ns	80 to 90 m						
9	900 to 1000 ns	90 to 100 m						
Table 21: Cable delay								

A value above "9" indicates a delay of greater than 1 μ s. Such a value will lead to a violation of the specification for cycle time. In this case, a check should be made of whether the cable complies with the cable specification.

5.3.9. Version

The VERSION register contains the release version of the DSL Master IP Core. The register is write protected.

Register 0Bh:	Version							
	R-0	R-1	R-0	R-1	R-0	R-1	R-1	R-0
	Coc	ling	Major F	Release		Minor F	Release	
	Bit 7							Bit 0
Bit 7-6	-	Coding : Type of IP Core 01= DSL Master IP Core						
Bit 5-4		IP Core Major release number : The current version is 1 (01).						
Bit 3-0	IP Core The curr	_						

5.3.10. Encoder ID

The ENC_ID encoder ID registers contain the designation code of the motor feedback system connected to the DSL Master. In the current protocol specification, the designation code is 20 bits long. With later enhancements, the free bits in the encoder ID registers are used to indicate special characters.

These registers are write protected.

These registere ar								
Register 0Dh:	Encode	r ID, byt	e 2					
	X-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	Bit 23		SCI			ENC_II	D19:16	Bit 16
Register 0Eh:	Encode	r ID, byt	e 1					Dir To
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				ENC_I	D15:8			Dit o
Register 0Fh:	Bit 15 Encode	r ID hvt	e 0					Bit 8
rtogiotor of fi.	R-0	R-0		ΡO	ΡO	R-0	R-0	R-0
	K-0	K-0	R-0	R-0 ENC_	<u>R-0</u> ID7:0	K-0	K-0	K-0
	Bit 7							Bit 0
Bit 23	Not imp	lemente	ed: Read	d as "0".				
Bit 22-20	3 bit sp	SCI : Indication of special characters 3 bit special character for later enhancements of the encoder designation code. Not allocated.						
Bit 19-0	ENC_ID Designa		•			m (lengtl	n: 20 bits	6)
The individual EN	C_ID regis	ter bits a	are alloca	ated as f	ollows:			
Bit 19	Continu longer th		•			dicates	that EN	IC_ID is
Bit 18 to 16	Reserve	d: Read	d as "0".					
Bit 15 to 12	User de defined					•	to 15) f	or user-
Bit 11	Reserve	d: Read	d as "0".					
Bit 10	-	-		-		•		value is ue is not
Bit 9 to 4		length	of the	accelei	ration v	•	rd value ansmitte	: 40 bits) ed (see
	# A = = 0.	1	. f. (l					است ما م م م

Bit 3 to 0 **#Acc-8**: Length of the acceleration value transmitted (standard value: 11 bits) minus 8.

5.3.11. Fast position

The POS registers for the fast position contain the value of the motor feedback system connected. This position is generated incrementally from the safe position at start-up and is updated with every protocol frame.

After every eight protocol frames, the fast position is checked against the safe position (see under registers 18h to 1Ch).

The position sampling point is determined by the **ES** value of the synchronization control register.

Only those POS bits are activated that lie within the range that the motor feedback system has actually measured. All other higher value bits are read as "0". The number of measurable bits can be taken from **ENC_ID** bits 9 to 0 in the ENC ID0 to 2 registers.

If **Sign** is set in the **ENC_ID** register, the value of the fast position is given signed in the two's complement.

The units of the position value are (steps).

These registers are write protected.

Register 10h:	Fast pos	sition, b	yte 4					
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				Fast positi	ion, byte 4			
	Bit 39							Bit 32
Register 11h:	Fast pos	sition, b	yte 3					
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				Fast positi	ion, byte 3			
	Bit 31							Bit 24
Register 12h:	Fast pos	sition, b	yte 2					
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				Fast positi	ion, byte 2			
	Bit 23							Bit 16
Register 13h:	Fast pos	sition, b	yte 1					
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				Fast positi	ion, byte 1			
	Bit 15							Bit 8

Register 14h:	Fast pos	sition, b	yte 0					
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				Fast positi	ion, byte C			
	Bit 7							Bit 0

Bit 39-0 **Fast position, byte 4/3/2/1/0**: Position value of the motor feedback system (length: 40 bits), incrementally generated.

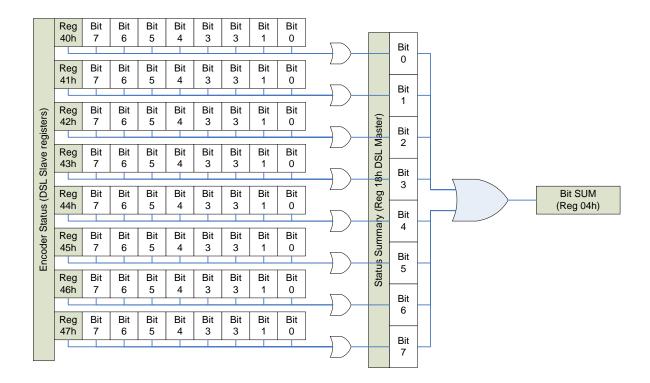
5.3.12. Speed

The VEL speed registers contain the speed values of the connected motor feedback system. This value is calculated as a Δ position from the acceleration value ($\Delta\Delta$ position) transmitted on the process data channel and the currently updated protocol frame (see section 2).

The speed sampling point is determined by the ES value of the SYNC CTRL register.

The units of the speed value are (steps/frame cycle time).

These registers are write protected.


Register 15h:	Speed, I	byte 2						
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				Speed,	, byte 2			
	Bit 23							Bit 16
Register 16h:	Speed, I	byte 1						
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				Speed,	, byte 1			
	Bit 15							Bit 8
Register 17h:	Speed, I	byte 0						
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				Speed,	, byte 0			
	Bit 7							Bit 0
Bit 23-0	Sneed	hvte 2/1	/0·					

Bit 23-0 Speed, byte 2/1/0:

Speed of the motor feedback system (length: 24 bits)

5.3.13. Status summary

The SUMMARY status summary register contains the summarized DSL Slave status information. Each status summary bit contains the summarized information from 8 error, warning and event modes of the DSL Slave. The bits in the status summary register can be read only. Figure 18 shows the relationship between the encoder status registers, the status summary register and the **SUM** bit in the EVENT registers.

Figure 18: DSL Slave status and summary

A bit that has been set in the SUMMARY register is not automatically deleted by the DSL System. To delete, the frequency inverter application must read the corresponding DSL Slave encoder status register (see section 5.4.1) and acknowledge the status message, by individually deleting each set bit.

Register 18h:	Status s	summar	у					
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	SUM7	SUM6	SUM5	SUM4	SUM3	SUM2	SUM1	SUM0
	Bit 7							Bit 0
Bit 7-1	SUM7:S 1 = An e external 0 = The	error, a resourc	warning es was t	or an e riggered	vent ass I.	sociated	with DS	SL Slave
Bit 0	protocol	error, a w interface ne DSL	varning o e was trig Slave	or an eve gered.	ent assoc			SL Slave n error,

5.3.14. Safe position

The VPOS registers for the safe position contain the position value from the primary channel of the motor feedback system connected. This safe position is transmitted in every eighth protocol frame if the validity of the data transfer has been checked.

The value for each safe position transmitted is compared with the incrementally generated position value (fast position) (see registers 10h to 14h).

The safe position is not synchronized with the sync signal.

Only those vpos bits are activated that lie within the range that the motor feedback system has actually measured. All other higher value bits are read as "0". The number of measurable bits can be taken from **ENC_ID** bits 9 to 0 in the ENC_ID0 to 2 registers.

If **Sign** is set in the **ENC_ID** register, the value of the safe position is given signed in the two's complement.

The units of the position value are [steps].

These registers are write protected.

Register 19h:	Safe position, byte 4								
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
	Bit 39							Bit 32	
Register 1Ah:	Safe pos	sition, b	yte 3						
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
	Safe position, byte 3								
	Bit 31							Bit 24	
Register 1Bh:	Safe pos	sition, b	yte 2						
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
	Safe position, byte 2								
	Bit 23							Bit 16	
Register 1Ch:	Safe pos	sition, b	yte 1						
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
				Safe posit	ion, byte 1				
	Bit 15							Bit 8	
Register 1Dh:	Safe pos	sition, b	yte 0						
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
				Safe posit	ion, byte 0				
	Bit 7							Bit 0	
Bit 39-0	Safe po Position 40 bits),	value	transm	itted thr	ough S	afe Ch	annel	1 (length:	

5.3.15. Position checksum

The POSCRC registers for the position checksum contain the CRC checksum of the safe position VPOS (see section 5.3.14) and the SUMMARY status summary (see section 5.3.13).

The CRC is checked in the DSL Master IP Core. These registers can be checked with an external cross check by the drive application.

The CRC is	generated v	with the	following	CRC	parameters:
	generatea			00	paramotoror

Parameter	Value
CRC sequence	16 Bit
CRC polynomial	C86Ch $(x^{16} + x^{15} + x^{12} + x^7 + x^6 + x^4 + x^3 + 1)$
Starting value	0000h
Closing XOR value	00FFh
Reverse data bytes	No
Reverse CRC before closing	No
XOR	
Table 22: BOSCBC parameters	

Table 22: POSCRC parameters

The sequence of the bytes to calculate the CRC is shown in the following figure:

SUMMARY VPOS[39:32] VPOS[31:24] VPOS[23:16] VPOS[15:8] VPOS[7:0]

Figure 19: Sequence of the bytes to calculate the CRC

Register 1Eh:	CRC of the safe position, byte 1								
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			CRC o	of the safe	position,	byte 1			
	Bit 15							Bit 8	
Register 1Fh:	CRC of the safe position, byte 0								
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
	CRC of the safe position, byte 0								
	Bit 7							Bit 0	

Bit 15-0 **CRC of the safe position**: 16 bit CRC checksum (CRC 16) of the safe position and status summary in Safe Channel 1.

5.3.16. Parameters Channel buffer

The eight PC_BUFFER registers of the Parameters Channel buffer contain the answer to the last "long message" request or the data for a "long message" write operation.

Access to these registers may only take place if the "long message" channel is free (FREL in the EVENT_L register).

Depending on the length of the "long message" answer, the registers are used as follows:

Length of the "long message"	Register used
8 bytes	20h to 27h
4 bytes	20h to 23h
2 bytes	20h to 21h
0 bytes	None

Table 23: Data length of the "long message"

These registers are also for the reporting of error conditions arising from a "long message" operation. If, when accessing a resource, an error due to a "long message" arises (e.g. invalid data, error in the A/D conversion, time overrun), after the answering message has been received the **LOFF** bit in the PC_ADD_H register (28h) is set. In this case the Parameters Channel buffer bytes 0 and 1 contain an error code.

The meaning of the error code depends on the particular HIPERFACE DSL[®] encoder and is described in detail in the data sheet.

Register 20h: Parameters Channel buffer, byte 0												
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			Para	ameters C	hannel, by	/te 0						
	Bit 63							Bit 56				
Register 21h:	Parame	ters Cha	annel bu	uffer, by	te 1							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			Para	ameters C	hannel, by	/te 1						
	Bit 55				_			Bit 48				
Register 22h:	Parame	ters Cha	annel bu	uffer, by	te 2							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			Para	ameters C	hannel, by	/te 2						
	Bit 47				_			Bit 40				
Register 23h:	Parame	ters Cha	annel bu	uffer, by	te 3							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			Para	ameters C	hannel, by	/te 3						
	_ Bit 39							Bit 32				
Register 24h:	Parame	ters Cha	annel bi	uffer, by	te 4							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			Para	ameters C	hannel, by	/te 4						
	Bit 31				_			Bit 24				
Register 25h:	Parame	ters Cha	annel bi	uffer, by	te 5							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			Para	ameters C	hannel, by	/te 5						
	Bit 23							Bit 16				

Register 26h:	Parameters Channel buffer, byte 6								
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	Parameters Channel, byte 6								
	Bit 15							Bit 8	
Register 27h:	Parameters Channel buffer, byte 7								
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	Parameters Channel, byte 7								
	Bit 7							Bit 0	
Bit 63-0	Parameters Channel buffer, byte 0-7 : 8 bytes for the answer to a long message (read operation) or for a "long message" write operation.								
Bit 63-48	Error report for a long message, byte 0-1: 2 bytes for reports about errors in encoder resources arisin from the previous "long message" operation.							arising	

5.3.17. Long message address

The addresses and the addressing mode for "long messages" sent over the Parameters Channel are determined in the PC_ADD_H/PC_ADD_L long message address registers.

In addition, the long message address register 28h (PC_ADD_H) contains indications of errors arising from "long message" operations. For this sort of error, the Parameters Channel buffer contains the error code in bytes 0 and 1 associated with this status (see section 6.6.5).

Register 28h:	Long me	essage	address	, byte 1					
	R-1 LID	W-0 LRW	R/W-0 LOFF	W-0 LIND	W-0 LLI	W-0 EN	W-0 LADD9	W-0 LADD8	
	Bit 15							Bit 8	
Register 29h:	Long me	essage	address	, byte 0					
	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
	LADD7:0								
	Bit 7					_		Bit 0	
Bit 15		•	age iden ' when re		n. This is	s a read	only bit	that will	
Bit 14	LRW : Long message, read/write mode 1 = "long message" read operation 0 = "Long message" write operation								
Bit 13	Write act 1 = Offs the PC_C selected 0 = Addr	cess: et addro DFF_H/ databas essing (ssage add essing of PC_OFF_ se entry a of "long m F_H/PC_0	"long m L registe s a sub-a nessages	essages ers is us address. s" withou	ed in the u	offset val e resourc The offs	lue from e of the	
		last "lor	ng messa ng messa	-			ssed.		

ര

HIPERFACE DSL [®]							
Bit 12	LIND: Indirect addressing of long messages 1 = Indirect addressing of "long messages". During this operation, the stored address content in the given database entry is evaluated. 0 = Direct addressing of "long messages". The operation affects the database entry given in the current address.						
Bit 11-10	LLEN: Data length of the "long message" 11 = 8 data bytes 10 = 4 data bytes 01 = 2 data bytes 00 = No data bytes						
Bit 9-0	LADD: Long message address Database entry with 10 bit address for a "long message" operation.						

5.3.18. Long message address offset

The PC_OFF_H/PC_OFF_L address offset registers for long messages are used in "long message" operations, if **LOFF** is set in the register 28h. In this case the LOFFADD value from these registers is used to communicate with the sub-address of a multiple byte encoder resource.

Only write access is possible for these registers.

Register 2Ah:	Long message address offset, byte 1									
	R-1	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
	LID		LOFFADD14:8							
	Bit 15							Bit 8		
Register 2Bh:	Long me	essage	address	offset,	byte 0					
	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
				LOFFA	DD7:0					
	Bit 7							Bit 0		
Bit 15	LID: Long message identification. The value must be "1".									
Bit 14-0	LOFFAD The 15 stored in	bit offse	t value	•			address	offset is		

5.3.19. Parameters Channel control

The PC_CTRL control register for the Parameters Channel handles the start of "long message" transactions. After setting all "long message" registers (registers PC_BUFFER0 to 7, PC_ADD_H/PC_ADD_L and PC_OFF_H/L), the "long message" is transmitted to the DSL Slave by setting the LSTA bit.

Register 2Ch: Parameters Channel control

X-0	X-0	X-0	X-0	X-0	X-0	X-0	W-0
							LSTA
Bit 7							Bit 0

Bit 7-1 Not implemented: Read as "0".

Bit 0 **LSTA**: Control of the long message start 1 = A "long message" transaction is started with the values currently stored in the "long message" registers. 0 = No effect.

5.3.20. SensorHub Channel status

The SensorHub Channel status register PIPE_S provides information about the current status of the SensorHub Channel (see section 2.5. SensorHub Channel).

PIPE_S is only accessible as a register of the DSL Master if SPI-PIPE is deactivated (SPPE in the SYS CTRL register is deleted).

Otherwise the value of PIPE_S is transmitted via SPI-PIPE as the first byte of each read request (see section 4.2). In this case, the first four bits are transmitted as "0101" to check the SPI-PIPE interface for errors due to unchanged values.

When this register is read, the current data from the FIFO buffer is read and stored in an intermediate register so that a subsequent read process in the <code>PIPE_D</code> register can be considered to be completed at the same time as the <code>PIPE_S</code> register is read. Using this mechanism, any deviation between status and data information in this instance will prevent new data entering the SensorHub Channel during access to the FIFO buffer.

PIPE_S is a write protected register.

Register 2Dh:	SensorH	lub Cha	annel sta	atus				
	X-0	X-0	X-0	X-0	R-0	R-0	R-0	R-0
	Bit 7				POVR	PEMP	PERR	PSCI Bit 0
Bit 7-4	Not imp	lemente	ed: Read	d as "0".				Dit U
Bit 3	Channel values h 0 = The is not ye	e capac data w ave bee capacity t exhau	city of th vas exha en discar y of the l sted.	he 8 by lusted a ded. FIFO bu	yte FIFC and since	e the las SensorHu	st read p	process,
Bit 2	SensorH contains 0 = No "I	read r lub Ch the valu	equest annel d ue 00h. mpty" er	was iss ata is ror.	buffer is sued, bu empty. ccess to t	it the F In this	case,	
Bit 1	Channel 0 = No e	bit leve is error rror in b s stored	el coding neous. bit coding d togethe	of the	n the Ser data cur he pipelii	rently in	the Ser	nsorHub

Bit 0 **PSCI**: Indication for special characters in the SensorHub Channel. 1 = A special character was received in the SensorHub Channel.

0 = Indication for "no special character". This bit is stored together with the pipeline data byte in question in the FIFO buffer.

Special characters are normally used as data separators or to indicate special events. To obtain information about which special character was received, the <code>PIPE_D</code> register must be read. All 8b10b special characters can be used on the SensorHub channel. An exception is the "K30.7" symbol that is used in HIPERFACE DSL[®] to indicate "no data" and is not stored in the FIFO buffer.

Table 24 below contains the supported 8b10b special characters.

Special characters	Coding in register PIPE_D
K28.0	1Ch
K28.1	3Ch
K28.2	5Ch
K28.3	7Ch
K28.4	9Ch
K28.5	BCh
K28.6	DCh
K28.7	FCh
K23.7	F7h
K27.7	FBh
K29.7	FDh

Table 24: 8b10b special characters supported in the SensorHub Channel

5.3.21. SensorHub Channel data

The PIPE_D SensorHub Channel data register contains the SensorHub Channel data that is stored in an 8 byte FIFO buffer.

If new data arrives at the buffer when it is full, before <code>PIPE_D</code> is read, the oldest value is discarded and the **POVR** bit in <code>PIPE_S</code> is set.

If a read request is issued when the buffer is empty, the **PEMP** bit in **PIPE_S** is set and the value 00h is transmitted.

PIPE_D is only accessible as a register of the DSL Master if SPI-PIPE is deactivated (SPPE in the SYS CTRL register is deleted).

Otherwise the value of PIPE_D is transmitted via SPI-PIPE as the second byte of each read request (see section 4.2).

At the moment that the PIPE_S register is accessed, the corresponding PIPE_D value is frozen to guarantee synchronization between status and data information.

PIPE D is a write protected register.

Register 2Eh:	Sensor Hub Channel data										
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
	SensorHub Channel data										
	Bit 7							Bit 0			
Bit 7-0	Sensor	Hub Ch	annel da	ata							

8 bit value of the FIFO buffer for SensorHub Channel data.

5.3.22. Parameters Channel short message

The PC_DATA register for the Parameters Channel short message contains the results of "short message" transactions.

"Short message" transactions are generated if operations are carried out with remote registers (DSL Slave). Generally, **FRES** (in the EVENT_L register) must be set after a transaction is started. Only then will PC_DATA contain valid information.

Register 2Fh:	"Short n	nessage	e" Paran	neters C	hannel	data				
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
		"Short message" Parameters Channel data								
	Bit 7							Bit 0		
Bit 7-0	" Short ı 8 bit valı									

5.3.23. Fast position error counter

The ACC_ERR_CNT register returns the count of transmitted fast position values with consecutive transmission errors. The value is clamped to a maximum of 31 (1Fh).

With a writing access the error threshold for the test signal acc_thr_err can be set. This value is also clamped to a maximum of 31 (1Fh). If the count of transmitted fast position values with consecutive transmission errors exceeds this threshold acc thr err will be set to '1'.

Register 38h: **Fast position error counter**

X-0	X-0	X-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	-	CNT4	CNT3	CNT2	CNT1	CNT0
Bit 7							Bit 0

Bit 7-5 **Not implemented**: Read as "0".

Bit 4-0 CNT4:CNT0: Position error count/threshold for acc_thr_err Read: 5 bit value of count of transmitted fast position values with consecutive transmission errors Write: 5 bit value for threshold of acc_thr_err

5.3.24. Fast position acceleration boundary

The MAXACC register allows setting an acceleration threshold for a given application. This threshold is used by the fast position estimator to clamp the acceleration of the estimated position during communication or sensor failures of the fast position channel.

Register 39h:	Fast position acceleration boundary									
	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
	RES1	RES0	MNT5	MNT4	MNT3	MNT2	MNT1	MNT0		
	Bit 7							Bit 0		
Bit 7-6	RES1:R	ES0 : Re	solution	of fast p	position a	accelera	tion bou	ndary		
Bit 5-0	MNT5:N	INTO: M	antissa o	of fast po	osition a	ccelerati	on boun	dary		

5.3.25. Fast position estimator deviation

The MAXDEV registers return the maximum absolute position deviation while the position estimator is active. The returned 16 bit value has the same format (resolution) as the fast position channel and is clamped to a maximum of 65535 steps (0xFFF). The registers are set to the maximum value 0xFFFF at reset.

These registers also allow setting a deviation threshold value for triggering the output signal dev_thr_err (see section 4.4.3). The threshold value can be written with the same format as the deviation (unsigned 16 bit, same resolution as the fast position channel).

Register 3Ah:	Fast pos	sition es	stimator	deviati	on high	byte		
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	DEV15	DEV14	DEV13	DEV12	DEV11	DEV10	DEV09	DEV08
	Bit 15							Bit 8
Register 3Bh:	Fast pos	sition es	stimator	deviati	on low l	byte		
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	DEV07	DEV06	DEV05	DEV04	DEV03	DEV02	DEV01	DEV00
	Bit 7							Bit 0
Bit 15-0	DEV15: Read: 10					tion thre	shold	
	Write: 16		•			for dev	_thr_err	

5.4. Function register for the DSL Slave

The remote registers of the DSL Slave (encoder) are mirrored in the DSL Master under the addresses 40h to 7Fh. These registers are accessible using "short message" transactions (see section 6.5.1).

It should be noted that the DSL Slave register can only be accessed via 8 bit addressing. If a 16 bit wide interface is used, the higher value byte will always be returned as "0". The bigend option does not affect the Slave register address allocation.

The minimum number of remote registers present in the DSL Slave is set out in Table 25. For real DSL Slave installations, more remote registers can be installed than are set out in the table.

Address	Designation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value at reset
40h	ENC_ST0	ST07	ST06	ST05	ST04	ST03	ST02	ST01	ST00	0000 0000
41h	ENC_ST1	ST17	ST16	ST15	ST14	ST13	ST12	ST11	ST10	0000 0000
42h	ENC_ST2	ST27	ST26	ST25	ST24	ST23	ST22	ST21	ST20	0000 0000
43h	ENC_ST3	ST37	ST36	ST35	ST34	ST33	ST32	ST31	ST30	0000 0000
44h	ENC_ST4	ST47	ST46	ST45	ST44	ST43	ST42	ST41	ST40	0000 0000
45h	ENC_ST5	ST57	ST56	ST55	ST54	ST53	ST52	ST51	ST50	0000 0000
46h	ENC_ST6	ST67	ST66	ST65	ST64	ST63	ST62	ST61	ST60	0000 0000
47h	ENC_ST7	ST77	ST76	ST75	ST74	ST73	ST72	ST71	ST70	0000 0000
7Ch	SRSSI	-	-	-	-	-	SRSSI	2:0		000
7Eh	MAIL	Slave-	Mail							0000 0000
7Fh	PING	Slave-	·Ping ¹							0000 0000

Table 25: Remote slave register

5.4.1. Encoder status

The ENC_ST encoder status registers contain all slave system errors, events and warnings from the DSL encoder.

The allocation between the individual bits and the slave system statuses is determined when the DSL Slave is installed and set out in the associated data sheet. The general application of the status register follows the list in Chapter 6.6.4.

It should be noted that all bits of an encoder status register are OR linked and mirror bits in the SUMMARY DSL Master register (1Fh) (see Table 26 and Figure 18 in section 5.3.13). In this way the appropriate groups can react rapidly to slave statuses.

Bits in the encoder status register can only be set by the DSL Slave and only deleted by the frequency inverter application (acknowledgment).

¹ After a protocol reset, the PING register contains the slave interface version (see section 5.4.4).

Encoder status	SUMMARY bit (DSL Master 1Fh)
ENC_ST0 (40h)	SUM0
ENC_ST1 (41h)	SUM1
ENC_ST2 (42h)	SUM2
ENC_ST3 (43h)	SUM3
ENC_ST4 (44h)	SUM4
ENC_ST5 (45h)	SUM5
ENC_ST6 (46h)	SUM6
ENC_ST7 (47h)	SUM7
Table 26, Encoder at	tue and summary register

 Table 26: Encoder status and summary register

Register 40h:	Encode	r status	, byte 0					
	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
					er status			
	Bit 7							Bit 0
Register 41h:	Encoder	r status	, byte 1					
	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
				Encode	er status			
	Bit 15							Bit 8
Register 42h:	Encode	r status	, byte 2					
	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
				Encode	er status			
5 1	Bit 23							Bit 16
Register 43h:	Encode	r status	, byte 3					
	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
				Encode	er status			
	Bit 31							Bit 24
Register 44h:	Encode	r status	, byte 4					
	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
				Encode	er status			
B	_ Bit 39							Bit 32
Register 45h:	Encode	r status	, byte 5					
	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
				Encode	er status			
Decister (Ch.	Bit 47		hute C					Bit 40
Register 46h:	Encode	status	, byte 6					
	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
				Encode	er status			
	Bit 55							Bit 48
Register 47h:	Encode	r status	, byte 7					
	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
				Encode	er status			
	Bit 63							Bit 56

Bit 63-0 Encoder status

The individual bits indicate different errors, events and warnings. The meaning of each individual bit is determined by the particular DSL Slave installation. Generally the specification in section 6.6.4 applies.

1 = Error, event or warning status.

0 = Encoder in normal status.

5.4.2. Slave RSSI

The SRSSI register for indicating the received signal strength at the slave (Slave Received Signal Strength Indicator, RSSI) provides an indication of the strength of the signal arriving at the slave.

The value of the register is only updated from frame to frame if the measurement result deteriorates. After a read access to this register, the register is reset to the value "7" (maximum signal strength).

The register is write protected.

Register 7Ch: Slave RSSI

X-0	X-0	X-0	X-0	X-0	R-0	R-0	R-0
						SRSSI	
Bit 7							Bit 0

Bit 7-3 Not implemented: Read as "0".

Bit 2-0 Value of the Slave RSSI The values for the Slave RSSI range from "0" (poorest signal strength) to "7" (best signal strength).

5.4.3. Slave-Mail

The MAIL multi-purpose register of the slave is used for fast communication with the DSL motor feedback system processor. The content of the slave mail register is transmitted to the encoder processor by the most rapid route possible.

Register 7Eh:	Slave Mail											
	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
		Slave-Mail										
	Bit 7							Bit 0				
Bit 7-0	Slave-N	lail										

8 bit slave mail data for multiple applications.

5.4.4. Slave-Ping

The PING register of the slave is used to carry out connection tests on behalf of the DSL Slave. The register can be written to and read externally, without this affecting the DSL interface.

On start-up, the register is initialized with the DSL Slave interface hardware version.

Register 7Fh: Slave-Ping

_	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	Slave-Ping							
-	Bit 7							Bit 0

Bit 7-0 Slave-Ping

8 bit hardware version of the DSL encoder at start-up. On first reading, the Ping value of the slave can be used as a connection test on behalf of the slave.

6. Central functions

In this chapter, access to the central sensor functionality via interfaces and registers is described.

6.1. System start

As soon as the motor feedback system is supplied with power, a forced reset ensures that a defined system start status is produced in the DSL Master IP Core .

Figure 20 shows the status table for system start.

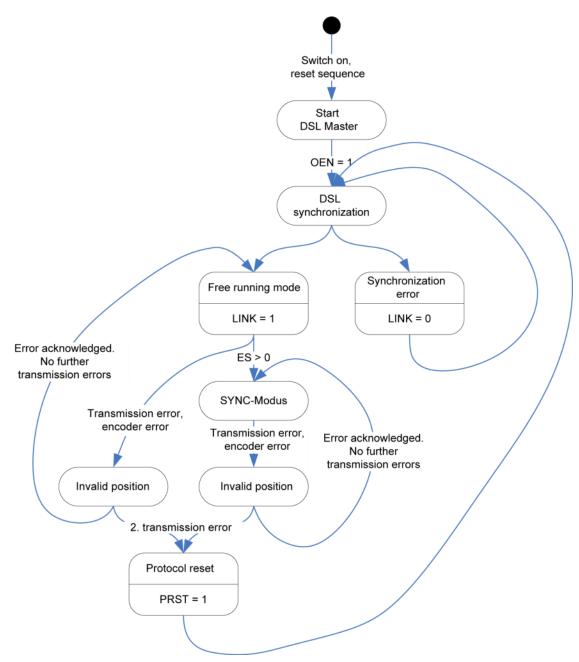


Figure 20: Status table for DSL system start.

Individual conditions are described in Table 27.

Status	Prerequisite	Indication
DSL Master start	Switching on supply	Communication via drive interface is
	voltage.	possible
	Reset process	
	(Duration: 500 ms)	
DSL synchronization	OEN = 1	None
-	(SYS_CTRL register)	
Synchronization error	Time overrun during the	LINK = 0
-	DSL synchronization	(MASTER_QM register)
Free running mode	Successful	LINK = 1
	DSL synchronization	(MASTER_QM register)
SYNC mode	ES > 0	Synchronous encoder position in the
	(SYNC_CTRL register),	POS0 to POS4 registers
	Cyclic signal to SYNC	
	input	
Invalid position	External transmission or	Error bit set in EVENT_H , EVENT_L or
	encoder error	in Online Status
Protocol reset	Two successive	PRST = 1
	transmission errors	(EVENT_H register or Online Status)

 Table 27: Conditions at DSL system start

6.2. System diagnostics

HIPERFACE DSL[®] provides comprehensive system diagnostics in relation to communications quality both during the development of a DSL system as well as during normal operation.

6.2.1. System diagnostics during development

During the development of a DSL system, several registers are involved in the diagnostics of correct use and operation. These include:

- Quality monitoring MASTER QM
- Edge register EDGES
- Run time register DELAY

After the DSL connection has been activated (**OEN** bit, see section 5.3.1), the **LINK** flag in the MASTER_QM register must be checked for the set value "1". This indicates that the connection to the motor feedback system was successfully established.

If this bit remains deleted for longer than the expected start-up time (see encoder datasheet), there is a fundamental problem in the connection between the frequency inverter and the motor feedback system.

Check whether the encoder is supplied with power.

Using an oscilloscope, also check whether any level changes in the transmission frequency range can be identified over the data cables between the frequency inverter and the encoder.

Using the run time register (see section 5.3.8), it is possible to identify whether the DSL signal **cable delay** complies with the specification. The run time is mainly a result of the length of the cable between the frequency inverter and the motor

feedback system. In addition, the selection of the interface drive (RS485 transceiver) has an effect on the signal run time.

The value of the EDGES register (see section 5.3.7) indicates how well or badly the DSL Master can sample the communication signal coming from the motor feedback system.

Start the check of the **bit sampling pattern** with the motor switched off. If several bits have been set in the sampling pattern (more than four), the encoder shielding design should be checked. The aim should be that, during interference-free operation, the minimum number of bits is set in the sampling pattern.

In the second step, check the sampling pattern with the motor switched on, preferably in the target application. In such cases a maximum of seven bits may be set in the EDGES register.

If under certain circumstances, however, eight bits are set in the EDGES register, the operation of the DSL motor feedback system cannot be guaranteed.

6.2.2. System diagnostics during operation

When operating the DSL system, system diagnostics are indicated in the following registers:

- Run time register DELAY
- Quality monitoring MASTER QM
- Indication of the received signal strength at the SRSSI slave

The run time register (see section 5.3.8) contains the **RSSI** value that lies in the range between "0" and "12". The register indicates the quality of the connection during operation with regard to the signal strength.

The quality monitoring (see section 5.3.3) contains the **QM** value that lies in the range between "0" and "15". **QM** indicates the quality of the connection during operation with regard to transmission errors.

For continuous monitoring of the connection quality it is recommended that these two values are polled cyclically.

Event-oriented monitoring is also possible. For this, the event bits **QMLW** and **PRST** must be polled. These bits indicate **QM** sinking below a value of "14" (poor quality) or a broken connection if **QM** has a value of "0" or **RSSI** has a maximum value of "1". The following table contains the possible conditions:

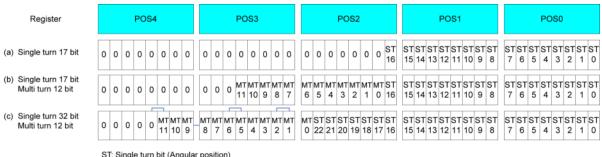
Quality monitoring value	RSSI value	QMLW	PRST	Connection status	LINK	
15	12 to 2	0	0	Good connection quality	1	•
14 to 1		1	0	Poor connection quality	0	•
0		1	1	Connection broken	0	
15 to 0	1 to 0	1	1	Connection broken	0	

 Table 28: Values for quality monitoring and RSSI

HIPERFACE DSL®

Frequent errors can indicate that the shielding design of the DSL connection is inadequate or that the cable does not comply with the specification.

The slave RSSI register (see section 5.4.2) contains the **SRSSI** value that lies in the range between "0" and "7". **SRSSI** indicates the quality of the run time connection as the signal strength of the data transmitted to the DSL encoder.


6.3. Fast position

The fast position and the rotation speed of the encoder shaft are transmitted on the DSL motor feedback system process data channel. These values are the main process values for the drive application control circuit.

HIPERFACE DSL[®] stores the fast position in the POS0...4 DSL Master registers and the rotation speed in the VEL0...2 registers.

The position is given as a 40 bit value that includes the angle setting ("single turn" value) and the number of rotations ("multi-turn" value). Only the position bits actually measured by the motor feedback system are accessible and are stored in the registers as a right-justified value. The other (higher value) bits are constantly set at "0" (see examples "a" to "c" in Figure 21).

The fast position is automatically added to the current safe position of the motor feedback system. This mechanism is automatically checked by the DSL Master. For this purpose, the DSL Master compares the fast with the safe position (see section 6.4).

MT: Multi turn bit (Number of revolutions)

Figure 21: Position value format

The motor feedback system fast position is sampled and transmitted if the DSL Master receives a SYNC signal. This SYNC signal can be created in two different ways (see sections 6.3.2 and 6.3.3).

If the encoder detects faults in the fast position sensor or if a transmission fault of the fast position value occurs, the fast position registers POS0...4 and the rotation speed registers VEL0...2 are automatically loaded with estimator values to allow for a ride-through of non-permanent fault conditions. This state is indicated by a non-zero value in the MAXDEV registers and a raised estimator on signal.

6.3.1. Estimator

There are two main reasons why the Estimator is triggered:

- a) While operating under harsh conditions, sometimes the encoder position cannot be sampled correctly (i.e. mechanical shock). In these cases the encoder will transmit a "position not valid" character instead of a valid position.
- b) The fast position CRC or the fast position encoding received by the DSL master is wrong (i.e. EMC problems).

In these cases the value in the POS4...POS0 registers is supplied by an estimator calculation instead of a real transmitted position.

Whenever the estimator is active, the estimator_on signal is set to "1". Therefore it is highly recommended to monitor this flag during operation.

As there is no limit on how long the estimator is running, the user application has to decide on how long the estimated values are accepted. There are two use cases foreseen for the estimator.

In one case the user measures the time that the <code>estimator_on</code> signal is active. If this time exceeds a predefined maximum, measures can be taken accordingly. This is the easiest approach to use the estimator and recommended for most applications. No further setup is required.

In the other case the user must define the maximum deviation accepted along with the maximum acceleration of the system. Whenever the estimator uncertainty grows bigger than the maximum deviation, the dev_thr_err signal will be raised to "1". This more sophisticated approach gives the user more control over the estimator, and can be used to run the motor feedback system under harsh conditions. However, it requires information about the system that the motor is operating in. The remainder of this chapter will provide the necessary information to set up these values.

Usage of deviation threshold:

To set the maximum position deviation allowed for the estimator calculation the MAXDEV registers are used (see chapter 5.3.25). The resolution of this value is the same as the resolution of the fast position.

The maximum acceleration needs to be calculated for each individual application. Some margin should also be given to the maximum limit in order to account for noise, inaccuracy and so on.

The maximum absolute value of the acceleration must be written to the MAXACC register in a floating point format (see chapter 5.3.24). The resolution is stored in bits 7 and 6, and a positive integer mantissa on the remaining part of the register. The resulting value can be calculated as follows:

 $|acc_{max}| = mantissa \cdot resolution$

mantissa is the value stored in bits 5...0 and resolution is defined in the table below:

Bit 7,6	Resolution
00	ACC _{LSB} / 256
01	ACC _{LSB} / 64
10	ACC _{LSB} / 16
11	ACC _{LSB} / 4

Table 29: Resolution of fast position acceleration boundary

The ACC_{LSB} value is the resolution of the DSL fast position channel which can be calculated as:

$$ACC_{LSB} = \frac{2\pi}{2^{\Pr es} \cdot T_{hframe}^2} [rad / s^2]$$

with Pres as position resolution per turn in number of bits and T_{hframe} as DSL frame duration in s (see ch. 2).

Example:

If the DSL frame lasts 15.625µs, an 18 bit resolution encoder is used, and a limit of 10000 rad/s² is foreseen:

$$ACC_{LSB} = \frac{2\pi}{2^{18} \cdot \left(15.625 \cdot 10^{-6}\right)^2} = 98174.77 \ rad/s^2$$

The finest possible resolution for acc_{max} is $ACC_{LSB}/256 = 383.5 \text{ rad/s}^2$. Accordingly, acc_{max} can be set to

 $acc_{max} = 27 \cdot 383.5 \ rad/s^2 = 10355 \ rad/s^2$

with a setting of 0x1B in the MAXACC register.

Values greater than 24000 rad/s^2 can be achieved by using different resolutions: on the same system as above, a limit of 30000 rad/s^2 can be set using $ACC_{LSB}/64 = 1534 rad/s^2$.

Therefore:

 $acc_{max} = 20.1534 \ rad \ / \ s^2 = 30680 \ rad \ / \ s^2$

In this case the data to be written to the MAXACC register would be 0x54.

6.3.2. Free running mode

In free running mode, the SYNC signal is automatically created by the DSL Master, for which the maximum frame transmission frequency is used (see Table 8). The free running mode is the standard DSL Master operating mode at start-up.

This operating mode can also be selected manually, by setting the **ES** value in the SYNC_CTRL register to "0".

It should be noted that in free running mode, no account is taken of the signals at the SYNC input.

The polling of the position and rotation speed values is explained in Figure 22 and Figure 23.

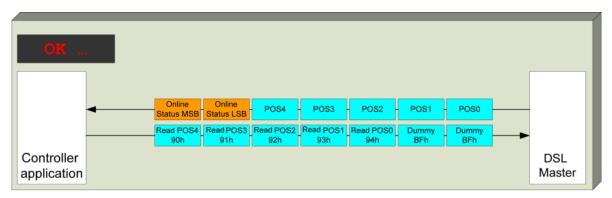


Figure 22: Polling of position registers in free running mode

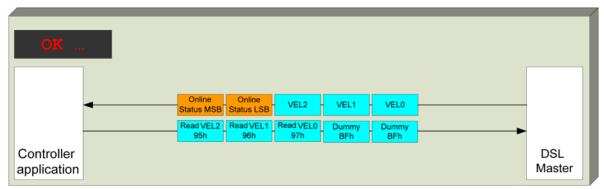


Figure 23: Polling of rotation speed registers in free running mode

6.3.3. SYNC mode

In SYNC mode, the DSL Master depends on a prepared cyclic control signal. This control signal triggers position measurements and enables polling of position and rotation speed values synchronously with the control signal. The control signal must be applied to the SYNC input and have the characteristics prescribed for the DSL Master (see section 3.2).

The position is available after a set delay in relation to the leading edge of the control signal.

When SYNC mode is used the following points must be noted:

- 1.) A correct control signal must be applied at the sync input. The signal must correspond with the specifications for pulse width and cycle time.
- 2.) Setting or deleting the **SPOL** bit in the SYS_CTRL register determines whether the position measurements are to be triggered by the leading of the trailing edge of the control signal. The set latency of the DSL system is measured from this edge.
- 3.) The correct **ES** divider must be set in the SYNC_CTRL register. This divider determines how many position samplings and transmissions will be undertaken for each control signal.

The ES divider must be selected so that the cycle time between the two position samplings corresponds to the prescribed range limits (package cycle time) in Table 8.

The range limits for the **ES** divider can be calculated as follows:

 $\textbf{ES} \leq t_{Svnc} / t_{Min}$

ES \geq t_{Svnc} / t_{Max}

The symbols used in the formulae are explained as follows:

Symbol	Description
t _{Sync}	Cycle time of the pulse signal at the SYNC input
t _{Min}	Minimum cycle time for the transmission of DSL frames (11.95 µs)
t _{Max}	Maximum cycle time for the transmission of DSL frames (27,00 µs)

Table 30 below contains typical cycle times for the control signal and the valid ranges of **ES** divider values.

Frequency of the SYNC signal (kHz)	Cycle time of the SYNC signal (µs)	Minimum value ES	Maximum value ES
2	500	19	41
4	250	10	20
6.25	160	6	13
8	125	5	10
16	62.5	3	5
40	25	1	2
42 to 82	23,8 to 12,1	1	1

Table 30: Cycle times for SYNC signals and valid ES values

After the sequence described above, SYNC mode is activated. In the specified "start-up time" the protocol is synchronized with the applied sync signal. Following this period, the position value is available with constant latency after the data package has been transmitted (see Figure 24).

The time profile of the relevant signals in SYNC mode is shown in the following graphic. This shows the sync signal, the cycle signal generated from the ES divider and the dsl out DSL output signal.

sync	
cycle	
dsl_out	DSL Frame DSL Frame DSL Frame DSL Frame

Figure 24. SYNC mode signals

The arrival of a requested fast position is indicated by the POSTX Online Status bits of drive interface (see section 5.2).

The position value can be polled via drive interface from the POSO to POS4 registers of the DSL Master (see section 5.3.11).

OK									
SYNC									SYNC
POSTX	POSTX								
	•	Online Status MSB	Online Status LSB	POS4	POS3	POS2	POS1	POS0	-
Controller		Read POS4 90h	Read POS3 91h	Read POS2 92h	Read POS1 93h	Lese POS0 94h	Dummy BFh	Dummy BFh	► DSL
application									Master

Figure 25: Polling registers for the fast position in SYNC mode.

It should be noted that polling of fewer than the five full position registers may be appropriate dependent upon the application. This enables fast reading of the position.

The rotation speed of the motor feedback system can be read in the same way. The rotation speed is also measured and transmitted synchronously with the sync signal. This is explained in Figure 26.

ОК		
SYNC		SYNC
POSTX		POSTX
	Coline Online VEL2 VEL1 VEL0	
Controller application	Read VEL2 Read VEL1 Read VEL0 Dummy 95h 96h 97h BFh	DSL Master

Figure 26: Polling of rotation speed registers in SYNC mode.

6.4. Safe position, Channel 1

The motor feedback system safe position is transmitted as a complete absolute position. This makes internal validation of the data transfer possible.

The complete transmission is available every eighth protocol frame. Therefore the position values are older than the fast position values received in the same frame.

The safe position is not synchronized with the last control cycle present at the DSL Master IP Core. The safe position should not be used in the control circuit for frequency inverter position or speed.

The safe position is stored in the VPOS0...4 registers and can be polled via drive interface (see Figure 27).

OK								
	 Online Status MSB	Online Status LSB	VPOS4	VPOS3	VPOS2	VPOS1	VPOS0	
	Read VPOS4 98h	Read VPOS3 99h	Read VPOS2 9Ah	Read VPOS1 9Bh	Read VPOS0 9Ch	Dummy BFh	Dummy BFh	
Controller application								DSL Master

Figure 27: Polling the safe position

As soon as the DSL master identifies a difference between the transmitted safe position and the integrated fast position, the **POS** error bit is set in the EVENT_H register (see section 6.5).

HIPERFACE DSL®

6.5. Parameters Channel

The HIPERFACE DSL[®] Parameters Channel is for access to the motor feedback system parameters.

Using two separate access mechanisms, the Parameters Channel distinguishes between two separate data areas:

- Interface information is polled via "short messages".
- Information on the motor feedback system is polled via "long messages".

6.5.1. Short message

Remote (DSL motor feedback system) registers that indicate interface information are mirrored in the DSL Master under register addresses 40h to 7Fh. These remote registers are addressed in the same way as DSL Master registers.

As the values of remote registers are transmitted via the Parameters Channel and hence via the DSL cables, the delay between polling and answer for "short message" transactions depends on the connection cables of the systems in question. Unlike DSL Master registers, the frequency inverter application must wait for the answer to arrive.

Although remote registers are addressed in the same way as DSL Master registers, the answer is recorded in a special DSL Master register (PC DATA, 2Fh).

The value of the direct answer that reaches SPI1 MISO during reading or writing is a dummy value.

In the EVENT_L DSL Master register, **FRES** indicates whether the "short message" channel is busy or whether the answer has reached the DSL Master. **FRES** can be evaluated for all SPI1 operations as the register content is a component of every SPI1 transmission (bit 0 in **ONLINE STATUS L**, see section 5.2).

The Parameters Channel can only transmit one "short message" at a time. Several remote registers can only be polled in sequence, i.e. after the previous answer has been received.

It should be noted that a "short message" can be triggered during a running "long message" transaction (see section 6.5.2) and vice versa.

The following figure gives an example of reading from the remote register ENC STO (40h).

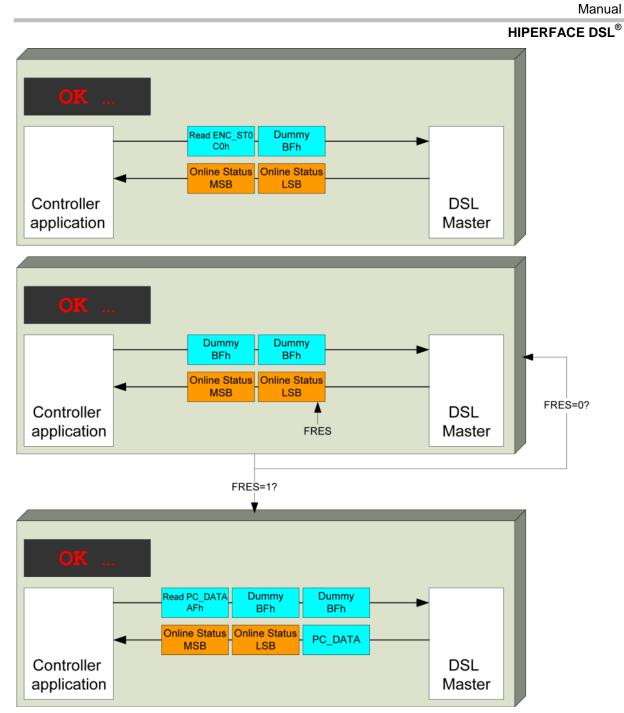


Figure 28: Reading from remote register

6.5.2. Long message

Apart from the interface registers (see section 5.4), access to resources of the motor feedback system takes place by "long message" transactions on the Parameters Channel.

The organization and scope of the resources depend on the particular DSL Slave and DSL encoder installation.

A "long message" is triggered by setting the corresponding "long message" registers (PC_ADD_H/L, PC_OFF_H/L, PC_CTRL and – for write operations – PC_BUFFER0:7). The result, where present, is recorded in the PC_BUFFER0:7 registers.

When carrying out a long message transaction, **FREL** is deleted in the EVENT L register. When the transaction has completed, **FREL** is set again.

It should be noted that a "long message" can be triggered during a running "short message" transaction (see section 6.5.1) and vice versa.

A "long message" transaction enables the exchange of general parameter data between the frequency inverter and the motor feedback system. These parameters can contain information on the status of the motor feedback system, control data for the motor feedback system or user-defined data.

Individual parameters are defined as resources of the motor feedback system.

Chapter 7 lists the usual resources of a DSL encoder. Resources that have actually been installed are specified in the data sheet for individual DSL encoders.

A "long message" is triggered by the setting of the corresponding PC_BUFFER, PC ADD, PC OFF and PC CTRL (20h to 2Ch) registers in the DSL Master.

Whilst the motor feedback system is processing a "long message", the **FREL** flag in the EVENT_L (05h) events register is deleted. Once the processing is finished, this flag is set once more to indicate readiness to process a fresh "long message".

After the setting of a **FREL** flag has been indicated, the data returned from a read access can be polled in the PC BUFFER registers (see section 5.3.16).

It should be noted that only one "long message" can be processed at a time. Access to resources with more than 8 bytes must be done using successive "long messages".

A "long message" is defined with the aid of several characteristics present in the registers quoted above. The figure below gives an overview of these characteristics.

	HIPERFACE DSL														
Registe	er PC_B	UFFER	0 (20h)					Registe	er PC_B	UFFER	1 (21h)				
DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA
Registe	er PC_B	UFFER:	2 (22h)					Registe	er PC_B	UFFER	3 (23h)				
DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA
Registe	er PC_B	UFFER	4 (24h)					Registe	er PC_B	UFFER	5 (25h)				
DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA
Registe	er PC_B	UFFER	6 (26h)					Register PC_BUFFER7 (27h)							
DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA
Registe	er PC_A	DD_H (2	28h)					Register PC_ADD_L (29h)							
frei	R/W	O/N ERR	D/I	LEN	LEN	ADD	ADD	ADD	ADD	ADD	ADD	ADD	ADD	ADD	ADD
Registe	er PC_C	0FF_H (2	2Ah)					Registe	er PC_C	0FF_L (2	Bh)				
frei	OFF ADD	OFF ADD	OFF ADD	OFF ADD	OFF ADD	OFF ADD	OFF ADD	OFF ADD	OFF ADD	OFF ADD	OFF ADD	OFF ADD	OFF ADD	OFF ADD	OFF ADD
Registe	er PC_C	TRL (20	Ch)												
empty	empty	empty	empty	empty	empty	empty	Start								

Figure 29: "Long message" characteristics

The meaning of each characteristic is described in the table below.

Characteristic	Description
DATA	Content of the "long message"
R/W	Direction of the "long message" (read/write)
O/N	Only for triggering the message: "Long message" mode
	(with offset/without offset)
ERR	Only for answer to the message: Error indication
D/I	"Long message" mode (direct/indirect addressing)
LEN	Data length of the "long message" (0/2/4/8 bytes)
ADD	Identification/address of the resource for a "long message"
OFF ADD	Offset address of the resource for a "long message"
Start	Trigger for the transmission of the "long message"

Table 31: "Long message" characteristics

DATA contains all the data to be transmitted during write access to the motor feedback system. After a read access, **DATA** contains all the data from the motor feedback system.

Dependent upon the LEN characteristic, separate areas of the DATA register are used.

LEN value	Data length	DATA register used	
0 (00b)	0 bytes	No data transfer	
1 (01b)	2 bytes	PC_BUFFER0	
		PC_BUFFER1	
2 (10b)	4 bytes	PC_BUFFER0	
		PC_BUFFER1	
		PC_BUFFER2	
		PC_BUFFER3	
3 (11b)	8 bytes	PC_BUFFER0	
		PC_BUFFER1	
		PC_BUFFER2	
		PC_BUFFER3	
		PC_BUFFER4	
		PC_BUFFER5	
		PC_BUFFER6	
		PC_BUFFER7	

Table 32: DATA register areas

The **R/W** "long message" characteristic is used to determine whether a read or write access is programmed.

R/W value	Direction of the "long message"	
0	Write	
1	Read	

Table 33: R/W value for the "long message"

For programmed write access, the data to be transferred must be present in the **DATA** characteristic.

The "long message" characteristic **O/N** determines whether the message is transmitted with or without an offset address.

O/N value	"Long message" mode	
0	No offset addressing	
1	Offset addressing	

Table 34: O/N value for the "long message"

The resource description in section 7.2 contains an explanation of the purpose for which offset addressing is used. Using offset addressing, an additional "long message" parameter can be transmitted to the motor feedback system as well as the address (ADD) and the message data (DATA).

If the **O/N** characteristic is set to "1", then the **OFF ADD** characteristic must contain the value for the offset address characteristic.

The same **O/N** bit in the **PC_ADD_H** register can be read after receipt of the "long message" answer to determine the **ERR** error characteristic.

ERR value	Error during	Error during	
	resource access		
0	No error		
1	An error was identified		

Table 35: ERR value for the "long message"

If the motor feedback system discovers an error during a resource access, the **ERR** bit is set and the **LEN** characteristic is set to 2 bytes (01b).

In this case the PC_BUFFER0 and PC_BUFFFER 1 DATA registers will contain an error code as detailed in section 6.6.5. This error code enables precise error handling for "long messages".

D/I determines whether direct or indirect addressing is used for a "long message".

D/I value	"Long message" addressing
0	Direct addressing
1	Indirect addressing
Table 20, D/I value for the llang measure!	

Table 36: D/I value for the "long message"

The resource description in section 7.2 contains an explanation of the purpose for which direct or indirect addressing is used.

The **LEN** characteristic determines the data length of the "long message". Table 32 describes the use of this characteristic.

LEN must correspond to the permitted values applicable to the resource addressed (see section 7.2). If these values are not observed, the "long message" in the motor feedback system will be ended and a corresponding error message indicated.

The **ADD** characteristic determines the target resource of the "long message". The **ADD** value corresponds to the RID resource index.

ADD value	Resource index (RID)	
000h to 3FFh	000h to 3FFh	

Table 37: ADD value for the "long message"

Access to resources not installed in the motor feedback system is ended with a corresponding error message.

The **OFF ADD** "long message" characteristic contains the offset address, provided offset addressing is used (see above under the **O/N** characteristic). The resource description in section 7.2 contains an explanation of the permitted scope and purpose of each individual resource.

OFF ADD value	Register used	
0000h to 7FFFh	PCR_ADD_H/PCR_ADD_L	
Table 38: OFF ADD value for the "long message"		

Access to a resource with an invalid **OFF ADD** value, or one that is too high, will cause the "long message" in the motor feedback system to be ended and a corresponding error message will be indicated.

The table below gives an example of a "long message" read command.

Manual

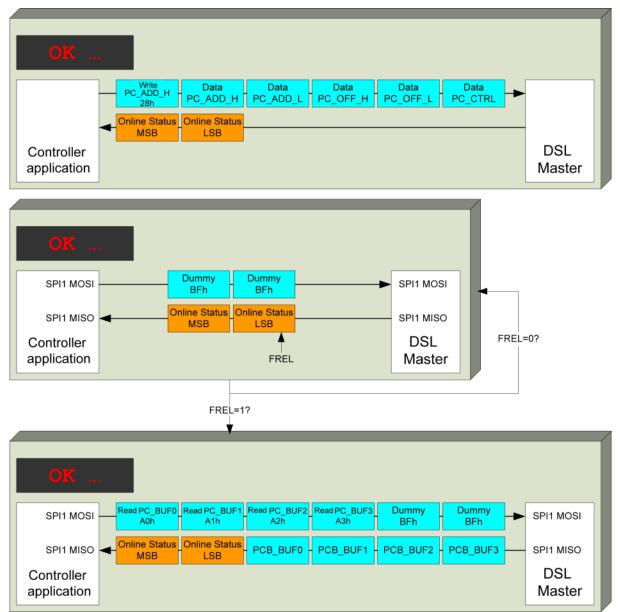


Figure 30: Example of a "long message" read command

6.5.3. Error handling in the Parameters Channel

Errors in a "short message" are handled differently than for a "long message".

If a "short message" is transmitted to the motor feedback system with an error, the protocol sends the message again automatically until an acknowledgment of correct transmission is received. This is not explicitly indicated to the frequency inverter. The **FRES** flag remains deleted until correct receipt of the answer to the "short message".

If the DSL Master receives no acknowledgment of the transmission of a "short message", the protocol automatically begins cyclic repetition of the transmission.

There is no limit to the number of repetitions and the user must decide when to issue a message reset.

If the DSL Master receives no acknowledgment of the successful reception of a "long message" from the DSL slave, the protocol automatically begins a cyclic repetition of the transmission until such an acknowledgment is received. This has no internal timeout.

If a "long message" is transmitted correctly to the motor feedback system but the answer received from the DSL slave is not valid, the **ANS** flag in the EVENT_L register will be set. In that case, "the long message" will not be repeated. The user needs to perform the same "long message" action once again.

In case of a "long message" being correctly transmitted and an acknowledgement received, the DSL Master will wait for an answer from the DSL Slave. As the processing time of a long message cannot be reliably predicted, there is no timeout implemented in the DSL Master. To determine the time overrun for a "long message" transaction, the user must refer to the time overrun characteristic in each individual resource of the DSL motor feedback system (see section 8.2).

To be able to use the Parameters Channel again in case of a pending "short message" or "long message" that is blocking the corresponding message channel, the user application must trigger a Message reset of the Parameters Channel (see section 5.3.1).

This reset does not affect position measuring or the transmission of position data.

The reset sequence for the Parameters Channel is specified figure 31.

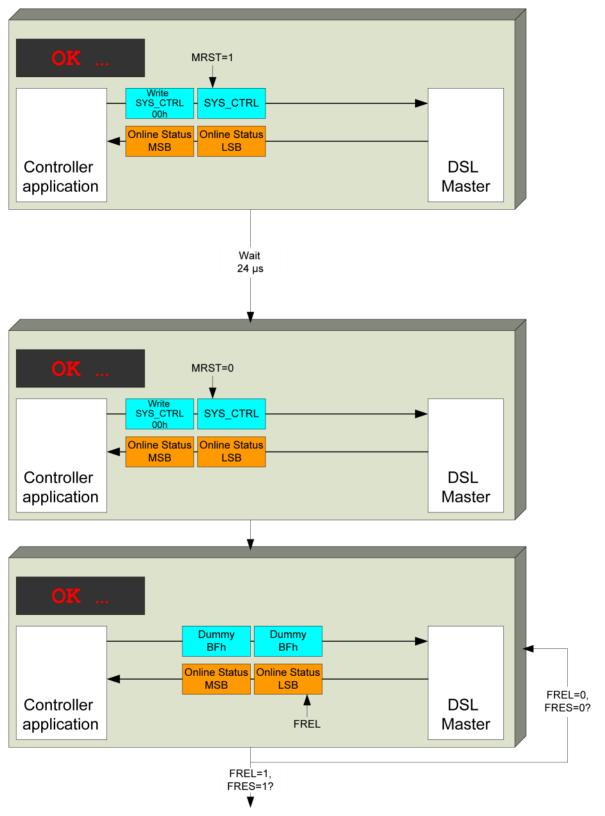


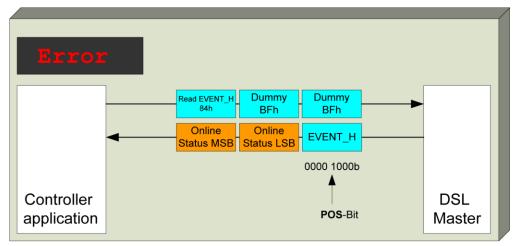
Figure 31: Reset of the Parameters Channel

6.6. Status and error messages

HIPERFACE DSL^{B} can be used to monitor the status of the motor feedback system in various ways.

Dependent upon the importance of the status or error message, different indication mechanisms are used to inform the frequency inverter application.

6.6.1. Event register


The EVENT_H and EVENT_L registers (see section 5.3.4) contain all important error and status indications for the DSL Master. All events are updated after 200 μ s at the latest.

More specifically, the EVENT_H register contains all the critical motor feedback system error messages. Recommendations for error handling can be found in section 5.3.4.

The EVENT_L register contains all motor feedback system warning and status messages. Recommendations for error handling can be found in section 5.3.4.

All errors and warning conditions indicated in the event registers must be acknowledged by deletion of the corresponding error bits. The DSL Master does not automatically reset these bits.

This mechanism is explained below using an example (error in the transmitted fast position, **POS** bit).

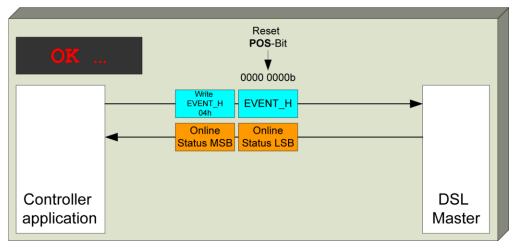


Figure 32: Acknowledgment of event bits

In the frequency inverter application, three mechanisms can be installed to allow timely reaction to reports in the event registers.

- These registers are polled cyclically.
- The Online Status is polled cyclically. Event registers are mirrored here (see section 6.6.2).
- Either all, or individual event register events can be masked in the event mask registers (registers MASK_H and MASK_L, see section 5.3.5), in order to issue events via the interrupt interface (see section 4.3.2).

6.6.2. Online Status

The Online Status (see section 5.2) is transmitted during every SPI communication via drive interface between the frequency inverter application and the DSL Master. The status contains the error and status reports from the event registers.

Unlike with direct polling of the event registers, the Online Status only shows the current status values. As soon as the error status of the motor feedback system becomes unavailable, the error is no longer indicated in the Online Status.

The event registers retain the error statuses until the registers are acknowledged. After acknowledgment, the event registers are reset (see section 5.3.4).

The Online Status is updated after 200 µs at the latest.

6.6.3. Status summary of the motor feedback system

In addition, detailed motor feedback system errors and warnings are indicated in the SUMMARY status summary register (18h, see section 5.3.13).

Each individual bit of the register indicates an error status of a functionality in the motor feedback system (see Table 39). The safety relevance of all of these error groups is precisely described in this table.

Bit no.	Error group	
0	1 = Fast position error	
1	Safe position error	
2	Installation error	
3	Monitoring error	
4	Error when accessing	
	a resource	
5	Reserved	
6	Reserved	
7	User-defined warnings	

 Table 39: Motor feedback system error groups

A bit set in the status summary register definitely indicates that one or more individual errors in the motor feedback system have been recognized. The individual errors can be determined by polling the remote encoder status register ENC_ST (see sections 5.4.1 and 6.6.4).

It should be noted that the **SUM** error bit in the EVENT_H event register represents an aggregated summary of all error groups (see section 5.3.5).

It should be noted that the reading of detailed motor feedback system error messages enables a more precise reaction to all fault indications in the status summary.

6.6.4. Motor feedback system error messages

Errors recognized in the motor feedback system are indicated in the $\tt ENC_ST$ remote encoder status registers.

Access to a remote encoder status register can last up to 1.5 ms.

A summary of error groups is indicated at the appropriate time in the status summary register in the DSL Master (see section 6.6.3).

To simplify error handling, the motor feedback system errors are grouped logically.

Table 40 below contains all error messages and recommendations for error handling.

Error	Error bit	Description	Error handling
group (Register)			
0 (40h)	0	Protocol reset indication	After an encoder has been switched on, this message is always displayed and should be reset. If this error is displayed later, it is probable that the position and rotation speed of the encoder are wrong. Automatic communications restart. If this error appears repeatedly, check the cable connection. If the error persists, there is probably a general hardware or mechanical failure. Inform customer service.
	1	Acceleration overrun	Following the indication of this error, it is probable that the position and rotation speed of the encoder are wrong. Action: Restart the encoder. If "Acceleration overrun" is indicated, the encoder experienced an acceleration outside the HIPERFACE DSL specification.
	2	Test running The frequency inverter system has requested a test. All error indications arising from this test are indicated together with the message "Test running" to be able to distinguish this indication from actual errors.	If the message "Test running" is shown together with an error indication arising from a previous test message, no action is required apart from having to delete this bit and the corresponding error bit. If the message "Test running" is shown without the expected error indication, there is probably a safety related error in the DSL encoder. In this case the drive system must be placed in a safe condition. Action: Restart the encoder. If the error condition persists, there is probably a general hardware or mechanical failure. Inform customer service.
	4	Position error: Error in tracking filter	Following the indication of this error, it is probable that the position and rotation speed of the encoder are wrong. The drive system must be placed in a safe condition. Action: Restart the encoder. Check the allocation between encoder and motor. If the error persists, there is probably a general hardware or mechanical failure. Inform customer service.

Error	Error bit	Description	Error handling
group (Register)			
	5	Position error: Error in the vector length	Following the indication of this error, it is probable that the position and rotation speed of the encoder are wrong. When there is an error, the IP Core advances the fast position in linear fashion until valid values are present again. Dependent upon the application, one or more vector length errors in succession can be tolerated. The tolerable number of errors (possibly application-dependent) can be determined from a calculation of the maximum deviations in each error that occurs. If necessary, the safe position can be used as an alternative to position measurement if this error arises for the fast position. In this case the significantly slower refresh cycle of the safe position must be considered. If the maximum tolerable number of errors is exceeded, the drive system must be placed in a safe condition. If the error persists, there is probably a general hardware or mechanical failure. Inform customer service.
	6 7	Position error: Counter error Position error: Synchronization error	 Following the indication of this error, it is probable that the position and rotation speed of the encoder are wrong. The drive system must be placed in a safe condition. Action: Restart the encoder. Check the allocation between encoder and motor. If the error persists, there is probably a general hardware or mechanical failure. Inform customer service. Following the indication of this error, it is probable that the position and rotation speed of the encoder are wrong. The drive system must be placed in a safe condition. Action: Restart the encoder. Check the allocation between encoder and notor. If the error persists, there is probably a general hardware or mechanical failure. Inform customer service. Following the indication of this error, it is probable that the position and rotation speed of the encoder are wrong. The drive system must be placed in a safe condition. Action: Restart the encoder. Check the allocation between encoder and motor. If the error persists, there is probably a general hardware or mechanical failure.

Error	Error bit	Description	Error handling
group (Register)			
1 (41h)	0	Error in Single Turn	Following the indication of this error, it is probable that the position of the DSL encoder is wrong. The drive system must be placed in a safe condition if a safe position function is being used. Action: Restart the encoder. Check the allocation between encoder and motor. If the error persists, there is probably a general hardware or mechanical failure. Inform customer service.
	1	Error 1 in Multi-Turn	Following the indication of this error, it is probable that the position of the DSL encoder is wrong. The drive system must be placed in a safe condition if a safe position function is being used. Action: Restart the encoder. Check the allocation between encoder and motor. Check the magnetic environment of the encoder. If the error persists, there is probably a general hardware or mechanical failure. Inform customer service.
	2	Error in Multi-Turn, gear stage 2	Following the indication of this error, it is probable that the position of the DSL encoder is wrong. The drive system must be placed in a safe condition if a safe position function is being used. Action: Restart the encoder. Check the allocation between encoder and motor. If the error persists, there is probably a general hardware or mechanical failure. Inform customer service.
	3	Error in Multi-Turn, gear stage 3	Following the indication of this error, it is probable that the position of the DSL encoder is wrong. The drive system must be placed in a safe condition if a safe position function is being used. Action: Restart the encoder. Check the allocation between encoder and motor. If the error persists, there is probably a general hardware or mechanical failure. Inform customer service.

group (Register)Switch-on self testOnly for DSL safety Must be set after su Action: Reset after re If the report persist switching on it is	
2 0 Switch-on self test Only for DSL safety (42h) Action: Reset after so Action: Reset after re If the report persist	
(42h) Must be set after sy Action: Reset after re If the report persist	
Action: Reset after re If the report persist	utohing on
If the report persist	
	•
	ation speed of the
encoder are wrong.	
a safe condition.	must be placed in
1 Safety parameters warning Only for DSL safety	
	errors were found in
	rs that were rectified.
	ecessary, reset after
report.	ists, there is probably
	general hardware fault.
Inform customer serv	
2 Safety parameters error Only for DSL safety	
	ation of this error, it is
	position and rotation
speed of the encode	
a safe condition.	must be placed in
Action: Restart the en	ncoder
	ts, there is probably
	general hardware fault.
Inform customer serv	rice.
	errors were found in
	neters. Data (except
wrong.	the encoder may be
Action: Restart the en	roder
	ts, there is probably
	general hardware fault.
Inform customer serv	ice.
4 Internal communications error After switching	on, an internal
1 communications error	
	r error is indicated,
	necessary. Reset after
report.	ts, there is probably
	general hardware fault.
Inform customer servi	-
5 Internal communications error After switching	on, an internal
2 communications error	- ,
	r error is indicated,
	necessary. Reset after
report.	to those is probably
	ts, there is probably general hardware fault.
Inform customer servi	•
	an internal electronic
error was identified.	
Action: Restart the en	ncoder.
	ts, there is probably
If the error persist	
If the error persist	general hardware fault.

Error	Error bit	Description	Error handling
group (Register)			
3 (43h)	0	Critical temperature	Cool or warm the encoder. Check the installation position of the encoder.
	1	Critical LED current	The encoder LED is defective or fatigued. Internal mechanical damage. Inform customer service.
	2	Critical supply voltage	Encoder hardware defect. Inform customer service.
	3	Critical rotation speed	Rotation speed limit prescribed in the data sheet exceeded. Check the application.
	4	Critical acceleration	Acceleration limit prescribed in the data sheet exceeded. Check the application.
	5	Counter overrun	Reset the counter
	6	Internal monitoring error	An internal error was identified during a monitoring operation. Action: Restart the encoder. If the error persists, there is probably a memory error or a general hardware fault. Inform customer service.
4 (44h)	0	Invalid argument during access to a resource	Check the programming of the frequency inverter application.
	1	Access to resource denied	Check the programming of the frequency inverter application. Set the correct access code.
	2	Error when accessing an internal resource	Restart the encoder. If the error persists, there is probably a memory error or a general hardware fault. Inform customer service.
	3	Error when accessing a file	Check the programming of the frequency inverter application.
7 (47h)	0 to 7	User-defined warnings	Relevance of the warning dependent upon user-defined warning limits (see section 7.2.4.5). The number of available user-defined warnings is specified in the product data sheet.

Table 40: Motor feedback system error messages

6.6.5. Long message error code

Due to the complexity of "long messages", errors occurring here are reported in detail to the user.

If the motor feedback system establishes an error when accessing a resource, this error is displayed as an error message (see section 6.6.4). In addition the **ERR** flag is set, the **LEN** characteristic is set to 2 bytes (01B) and the PC_BUFFER0 and PC_BUFFER1 DATA registers contain an error code.

By means of this error code, the errors in a "long message" transaction can be understood in detail.

The table below contains the error codes and their meaning.

It should be noted that the value of the $PC_BUFFER1$ register corresponds to the error code in the ENC_ST encoder status register (see section 5.4.1).

PC_BUFFER1	PC_BUFFER0	Meaning of the error code
40h	10h	Resource address not installed in the encoder
	11h	Incorrect length for resource access given
	12h	Incorrect length for direct resource access given
	13h	Offset address too high
	14h	Invalid offset address
	15h	Invalid "long message" characteristic
	16h	Missing offset address
41h	10h	Write access not possible
	11h	Read access not possible
	12h	Write access denied
	13h	Read access denied
	14h	Write access for direct resource access denied
42h	10h	Resource database entry damaged
	11h	Time overrun during resource access
	12h	Internal processing error during resource access
43h	11h	File name was not found
	12h	Invalid address for file access
	13h	File size may not be altered
	14h	Memory location for files full
	15h	File allocation table damaged
	16h	No file loaded for action
	17h	File exists with the same name

 Table 41: "Long message" error codes.

7. Motor feedback system resources

The resources of a DSL motor feedback system make up most of the functions of the sensor.

"Long message" transactions enable access to all resources installed in a DSL motor feedback system. Examples of resources are the values for encoder designation, function and fault monitoring, sensor administration or the storage of user-defined data (i.e. electronic type label).

It should be noted that for motor feedback system process values, i.e. position and rotation speed values, separate access mechanisms apply (see sections 6.3 and 6.4).

The resources installed in a DSL motor feedback system are accessible via the resources database (RDB). A "long message" is always aimed at an individual RDB entry.

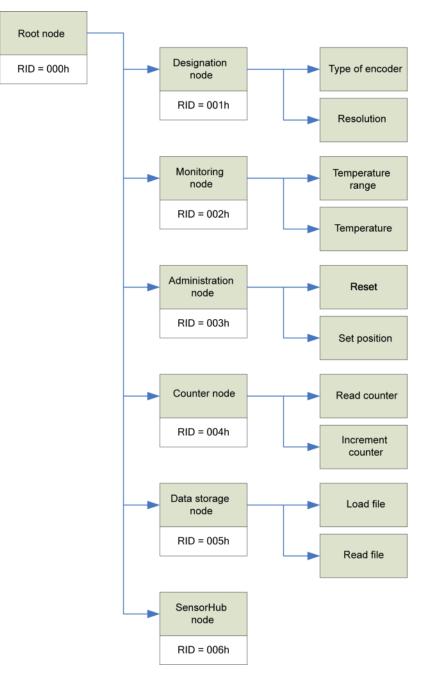
The resources set out in this section describe the normal functions of a DSL motor feedback system. The actual resources installed in individual DSL motor feedback systems are given in the appropriate data sheets.

7.1. Access to resources

Access to the resources of a DSL motor feedback system is possible in two ways. This section also describes how resource definitions can be read by "direct access".

7.1.1. Access by means of an index

Each individual resource is defined by a unique resource index (RID).


A "long message" can be directed at the associated resource by using the RID as the address characteristic (see section 6.5.2).

If a resource is accessed via direct access, the resource definition is returned (see section 7.1.3).

7.1.2. Access using the tree

The resources database (RDB) is structured in the form of a tree. This enables access to a resource by referencing, in which the access begins with a root resource that returns an indicator to other resources. Figure 33 shows this tree structure.

Starting at the "root node" resource with the resource index RID=000h, a write access returns the addresses of the linked nodes. By progressing recursively through further nodes, it is possible to access all levels of the tree.

Figure 33: Tree structure of the resources database

The characteristics of a "long message" for reading a linked node are listed in Table 42.

Characteristic	Value	Description
DATA	-	-
R/W	1	Read
O/N	1	Offset
D/I	1	Indirect
LEN	1	2 bytes
ADD	Variable	Calling node
OFF ADD	Variable	Ordinal number of the
		linked node

 Table 42: Parameters for node access.

The value stored in **OFF ADD** shows the ordinal number of the linked node, the resource identification of which should be returned. The ordinal number is given in the following list of all resources.

The result of this "long message" transaction is the resource index (RID) of the resource requested.

The resources data is described in detail in the resources list (see section 7.1.3).

7.1.3. Direct access

The defining values of a resource can be read from the DSL encoder by direct access (see section 6.5.2).

These defining values consist of a readable description of the resource (max. 8 characters), the data length, the access rights, a value for time overrun and the data type of the resource.

The desired value is selected by the user by setting a corresponding offset address.

Please note that for different encoders the time overrun values can be different. Therefore it is recommended to check the time overrun values prior to reading. The values provided in the resources list are only examples.

Table 43 below sets out all possible access methods (direct and indirect) and their associated values.

Resource type (see section 7.2)	Access	Offset address	Data	Note
Node	Direct	0/none	Resource name	e.g. "ROOT"
	reading	1	Resource data length	e.g. 05h for 5 Sub-entries
		2	Read access level	e.g. 0 for access level 0
		3	Write access level	e.g. 2 for access level 2
		4	Time overrun	e.g. 46h for 70 ms
		5	Data type	00h for node indicator
	Indirect reading	0	Number of linked nodes	e.g. 5
		1	RID of the 1st linked node	e.g. 001h
All remaining	Direct	0/none	Resource name	e.g. "ENCTYPE"
	reading	1	Resource data length	e.g. 02h for 2 bytes
		2	Read access level	e.g. 0 for access level 0
		3	Write access level	e.g. 2 for access level 2
		4	Time overrun	e.g. 46h for 70 ms
		5	Data type	e.g. 04h for 16 bits, unsigned
	Indirect read/write	Variable	Resource value	See section 7.2

Table 43: Different methods of resource access.

It should be noted that individual device families of the DSL motor feedback systems can contain different resources. The list of available resources is published in the device data sheet.

It should be noted that the defining values of the resources that have been laid down in a motor feedback system have priority over the values published in this manual.

7.2. Resources list

This section contains all the resources installed in a DSL motor feedback system.

It should be noted that the motor feedback system position and rotation speed values are process values and access to these values is different from access to general resources (see sections 6.3 and 6.4).

All resources are indicated using the "long message" characteristics that are valid for access (see section 6.5.2).

In addition, the definitions from the resources database (RDB) for each resource are described. These definitions are used to indicate the following resource properties:

HIPERFACE DSL®

RDB definition	Data area	Description					
RID	0 – 1023	Resources index: Is used as an address characteristic in					
	000h to 3FFh	a "long message".					
Size	0 – 32767	Length of the resources data in bytes. Defines the area that can					
	0 to 7FFFh	be used when accessing offset basis in a "long message".					
R		Read access:					
	0	Read possible for all.					
	1	For read, the "operator" access level is required.					
	2	For read, the "maintenance" access level is required.					
	3	For read, the "authorized client" access level is required.					
	4	For read, the "service" access level is required.					
	15	No read access possible.					
W		Write access:					
	0	Write possible for all.					
	1	For write, the "operator" access level is required.					
	2	For write, the "maintenance" access level is required.					
	3	For write, the "authorized client" access level is required. For write, the "service" access level is required.					
	4						
	15	No write access possible.					
Time overrun	0 – 254	Resources access time overrun in milliseconds. If the DSL					
		system does not react to a "long message" within this period,					
		then there is probably a processing error.					
	255	The resource needs more than 254 ms for processing or the					
		time overrun is not deterministic.					
Resource	00h	Node indicator (index, 16 bit)					
data type	01h	Void (no data)					
uuu ypo	02h	Bit $(1 = true/0 = false)$					
	03h	8 bit, unsigned					
	04h	16 bit, unsigned					
	05h	32 bit, unsigned					
	06h	64 bit, unsigned					
	07h	8 bit, with sign					
	08h	16 bit, with sign					
	09h	32 bit, with sign					
	0Ah	64 bit, with sign					
	0Bh	String (character chain)					
	10h to 4Fh	Data structure with data length 0 to 63 bytes					

Table 44: Definitions of the resources database.

If the size of a resource gives a higher byte total than the data type needs, then it is an array of the data type given.

7.2.1. Node

All resources of a DSL motor feedback system have a logical tree structure (see section 7.1.2). This arrangement is structured with node resources.

An indirect read access to a node returns the address of a linked node or a linked resource. For this, an offset must be given to determine the type of information:

Offset	Value
0	Number of linked nodes n
1	RID of the first linked node
n	RID of the <i>n</i> -th linked node

Table 45: Indirect read access to nodes.

7.2.1.1. Root node

The root node is the uppermost resource of the tree structure for the address (RID) 000h.

All nodes representing different resource groups are accessible from the root node.

Offset	Value
	000h
0	"ROOT"
1	2
2	0
3	15
4	75
5	00h – node indicator
	3 4

Direct read access to the root node returns the defining values:

Table 46: Root node defining values.

Indirect read access to root nodes returns information on linked nodes (see Table 45).

7.2.1.2. Designation node

The designation node contains indicators to all resources associated with designations in the motor feedback system ("electronic type label").

Direct read access to the designation node returns the defining values:

Defining value	Offset	Value
RID		001h
Resource name	0	"IDENT"
Data size	1	2
Read access level	2	0
Write access level	3	15
Time overrun	4	75
Data type	5	00h – node indicator

Table 47: Designation node defining values.

Indirect read access to the designation node returns information on linked nodes (see Table 45).

7.2.1.3. Monitoring node

The monitoring node contains indicators to all resources associated with monitoring in the motor feedback system (e.g. temperature control).

Direct read access to the monitoring node returns the defining values:

Defining value	Offset	Value
RID		002h
Resource name	0	"MONITOR"
Data size	1	2
Read access level	2	0
Write access level	3	15
Time overrun	4	75
Data type	5	00h – node indicator

Table 48: Monitoring node defining values.

Indirect read access to the monitoring node returns information on linked nodes (see Table 45).

7.2.1.4. Administration node

The administration node contains indicators to all resources associated with administration in the motor feedback system (e.g. reset, determining access level).

Direct read access to the administration node returns the defining values:

Offset	Value
	003h
0	"ADMIN"
1	2
2	0
3	15
4	75
5	00h – node indicator
	0 1 2 3 4

 Table 49: Administration node defining values.

Indirect read access to the administration node returns information on linked nodes (see Table 45).

7.2.1.5. Counter node

The counter node contains indicators to all resources associated with the userdefined counter.

Direct read access to the counter node returns the defining values:

Offset	Value
	004h
0	"COUNTER"
1	2
2	0
3	15
4	75
5	00h – node indicator
	0 1 2 3 4

Table 50: Counter node defining values.

Indirect read access to the counter node returns information on linked nodes (see Table 45).

7.2.1.6. Data storage node

The data storage node contains indicators to all resources associated with the user defined data storage.

Direct read access to the data storage node returns the defining values:

Defining value	Offset	Value
RID		005h
Resource name	0	"DATA"
Data size	1	2
Read access level	2	0
Write access level	3	15
Time overrun	4	75
Data type	5	00h – node indicator

Table 51: Data storage node defining values.

Indirect read access to the data storage node returns information on linked nodes (see Table 45).

7.2.1.7. SensorHub node

The SensorHub node contains indicators to all resources associated with the identification and actuation of external sensors.

Direct read access to the SensorHub node returns the defining values:

Defining value	Offset	Value
RID		006h
Resource name	0	"SENSHUB"
Data size	1	2
Read access level	2	0
Write access level	3	15
Time overrun	4	75
Data type	5	00h – node indicator

 Table 52: Data storage node defining values.

Indirect read access to the SensorHub node returns information on linked nodes (see Table 45).

7.2.2. Designation resources

The designation resources of the DSL motor feedback system contain the encoder electronic type label.

7.2.2.1. Type of encoder

The type of encoder describes the basic functionality of the motor feedback system.

Direct read access to the type of encoder returns the defining values:

Offset	Value
	080h
0	"ENCTYPE"
1	2
2	0
3	15
4	70
5	04h – 16 Bit, unsigned
	0 1 2 3 4

 Table 53: Defining values for type of encoder.

The following table contains the possible values for the type of encoder and their meaning.

Value (dec.)	Value (hex.)	Type of encoder
0	00 00h	Rotary encoder, bipolar counting
1	00 01h	Linear encoder, bipolar counting
2	00 02h	Rotary encoder, unipolar counting
3	00 03h	Linear encoder, unipolar counting

Table 54: Definition of the type of encoder.

For this resource, access to the offset base is not meaningful as the size of the resource data is smaller than the maximum for a "long message" transaction.

Transaction	Regi	ster	1			1			T		1		1
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									54	80	00	00	01
Wait for FREL =	1		•		•	•	•	•	•	•	•	•	•
Read	end	pe of coder											

Table 55: Read type of encoder.

7.2.2.2. Resolution

The resolution value defines the number of steps per rotation of the encoder (rotary encoder) or the length of a measurement step in multiples of 1 nm (linear encoder).

Direct read access to resolution returns the defining values:

Offset	Value
	081h
0	"RESOLUTN"
1	4
2	0
3	15
4	70
5	05h – 32 bit, unsigned
	0 1 2 3 4

 Table 56: Resolution defining values.

The resolution value is given as a 32 bit unsigned value.

For this resource, access to the offset base is not meaningful as the size of the resource data is smaller than the maximum for a "long message" transaction.

Transaction	Regis	ster											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									58	81	00	00	01
Wait for FREL = 1													
Read	F	Resolutio	n (32 bi	t)									

Table 57: Reading the resolution.

7.2.2.3. Measurement range

The measurement range defines the number of coded rotations of the encoder (rotary encoders), or the coded measurement range in multiples of measurement steps (linear encoders).

Direct read access to measurement range returns the defining values:

Defining value	Offset	Value
RID		082h
Resource name	0	"RANGE"
Data size	1	4
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	05h – 32 bit, unsigned

Table 58: Resolution defining values.

The measurement range is given as a 32 bit unsigned value.

For this resource, access to the offset base is not meaningful as the size of the resource data is smaller than the maximum for a "long message" transaction.

Transaction	Regis	ster				1				1	1	1	1
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									78	82	00	00	01
Wait for FREL = 1	•			•	•		•	•	•	•	•	•	•
Read	Meas	urement	range (3	32 bit)									

Table 59: Reading the measurement range.

7.2.2.4. Type name

This resource indicates the type name of the encoder. The designation is stored in ASCII format with a maximum length of 18 characters. Unallocated characters are stored with the ASCII code 00h.

Direct read access to type name returns the defining values:

Defining value	Offset	Value
RID		083h
Resource name	0	"TYPECODE"
Data size	1	18
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	0Bh - string

Table 60: Type name defining values.

It should be noted that to read the whole code designation requires up to three "long message" transactions, as a "long message" can only contain 8 bytes of data.

When accessing offset basis, the OFF ADD characteristic gives the first character of the type name to be returned in the "long message".

Transaction	Regis	ster											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									7C	83	00	00	01
Wait for FREL = 1													
Read		Cha	aracters	s 1 to 8	of the ty	/pe nan	ne						
Write									7C	83	00	08	01
Wait for FREL = 1													
Read		Cha	racters	9 to 16	of the t	ype nai	me						
Write									74	83	00	10	01
Wait for FREL = 1													
Read	17 to 1	acters 8 of the name											

Table 61: Read type name.

7.2.2.5. Serial number

This resource indicates the serial number of the encoder. The serial number is stored in ASCII format with a maximum length of 10 characters. Unallocated characters are stored with the ASCII code 00h.

Direct read access to serial number returns the defining values:

Defining value	Offset	Value
RID		084h
Resource name	0	"SERIALNO"
Data size	1	10
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	0Bh - string

Table 62: Serial number defining values.

It should be noted that to read the whole serial number requires up to two "long message" transactions, as a "long message" can only contain 8 bytes of data.

When accessing offset basis, the OFF ADD characteristic gives the first character of the serial number to be returned in the "long message".

Transaction	Transaction Register												
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									7C	84	00	00	01
Wait for FREL = 1													
Read		Char	acters 1	to 8 of	the sei	rial num	nber						
Write									74	84	00	08	01
Wait for FREL = 1													
Read		acters) of the											
	serial i	number	<u> </u>										

Table 63: Reading the serial number.

7.2.2.6. Device version

This resource indicates the firmware and hardware version of the encoder. The firmware version is stored in ASCII format with a maximum length of 16 characters, the hardware version is in the same format with a maximum of 4 characters. Unallocated characters are stored with the ASCII code 00h.

Direct read access to device version returns the defining values:

Defining value	Offset	Value
RID		085h
Resource name	0	"FWREVNO"
Data size	1	20
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	0Bh - string

Table 64: Device version defining values.

It should be noted that to read the whole device version data requires up to three "long message" transactions, as a "long message" can only contain 8 bytes of data.

When accessing offset basis, the OFF ADD characteristic gives the first character of the device version to be returned in the "long message".

The device version is given in the following format:

Byte	Description
0 to 15	ASCII characters of the firmware version
16 to 19	ASCII characters of the hardware version

 Table 65: Definition of the device version.

Transaction	Regis	ster			-			-		-		-	-
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									7C	85	00	00	01
Wait for FREL = 1													
Read		Chara	cters 1	to 8 of t	he firm	ware ve	rsion						
Write									7C	85	00	08	01
Wait for FREL = 1													
Read		Charac	ters 9 t	o 16 of	the firm	ware ve	ersion						
Write									78	85	00	10	01
Wait for FREL = 1													
Read	the	haracters hardwa	re versi	on									

Table 66: Reading the device version.

7.2.2.7. Firmware date

This resource indicates the firmware date of the encoder. The firmware date is stored in ASCII format with a maximum length of 8 characters.

Direct read access to firmware date returns the defining values:

Defining value	Offset	Value
RID		086h
Resource name	0	"FWDATE"
Data size	1	8
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	0Bh - string

Table 67: Firmware date defining values.

The firmware date is given in the following format:

Byte	Value	Description
7/6	'00' to '99'	Firmware date year, i.e 20yy
5		Decimal point as separator
4/3	'01' to '12'	Firmware date month
2		Decimal point as separator
1/0	'01' to '31'	Firmware date day

Table 68: Firmware date definition.

For this resource, access to the offset basis is not meaningful as the resource data can be read using a "long message" transaction.

Transaction	Regi	Register											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									5C	86	00	00	01
Wait for FREL = '	1	•	•	•	•		•		·	•	•	•	•
Read			Firmwa	are date	DD.M	M.YY"							

Table 69: Reading the firmware date.

7.2.2.8. EEPROM size

This resource indicates the total size of the non-volatile memory in the encoder available for storage of user data. The size of the EEPROM is given as an unsigned 16 bit value, which shows the number of bytes.

Direct read access to the EEPROM size returns the defining values:

Offset	Value
	087h
0	"EESIZE"
1	2
2	0
3	15
4	70
5	04h – 16 Bit, unsigned
	0 1 2 3 4

Table 70: EEPROM size defining values.

For this resource, access to the offset basis is not meaningful as the resource data can be read using a "long message" transaction.

Transaction	Regi	Register											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									54	87	00	00	01
Wait for FREL =	1												
Read	EEPR	OM size											

Table 71: Reading the EEPROM size.

7.2.3. Monitoring resources

The DSL motor feedback system monitoring resources indicate the current ambient values and their range limits as well as usage statistics and an error stack.

7.2.3.1. Temperature range

This resource indicates the minimum and maximum permitted values for the temperature of the DSL motor feedback system given in the product data sheet.

Direct read access to temperature range returns the defining values:

Defining value	Offset	Value
RID		0C0h
Resource name	0	"TEMPRNG"
Data size	1	4
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	08h – 16 bit, with sign

 Table 72: Temperature range defining values.

The temperature range values are stored as signed 16 bit values in the form of two's complements. The temperature value units are tenths of degrees Celsius (0.1 °C).

Examples of temperature range values:

Temperature	Resource value (bin.)	Resource value (hex.)
20.0 °C	0000 0000 1100 1000b	00C8h
115.0 °C	0000 0100 0111 1110b	047Eh
-40.0 °C	1111 1110 0111 0000b	FE70h
	1 1 1	

 Table 73: Examples of temperature ranges.

The temperature range values are given in the following format:

Byte	Value	Description
3/2	-2730 to 10000	Maximum permitted encoder temperature in 0.1 °C
1/0	-2730 to 10000	Minimum permitted encoder temperature in 0.1 °C

Table 74: Temperature range definition.

By accessing offset basis, only one of two temperature range values can be given.

Offset value	Length of the message	Return values
0000h	4	Temperature range minimum and maximum
		values
0000h	2	Minimum temperature
0002h	2	Maximum temperature

 Table 75: Selection of the temperature range offset.

Transaction	Regis	Register											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									58	C0	00	00	01
Wait for FREL = 1				•	•					•	•	•	•
Read	Min.	temp.	Max.	temp.									

Table 76: Reading the temperature range.

7.2.3.2. Temperature

This resource indicates the current temperature of the DSL motor feedback system.

The temperature is measured once per second.

If this relates to the temperature of the DSL motor feedback system, an error is indicated if the measured value is outside one or other of the range limits (see section 6.6.4, error group 3, error number 0).

Direct read access to temperature returns the defining values:

Offset	Value
	0C1h
0	"TEMPRTUR"
1	2
2	0
3	15
4	70
5	08h – 16 bit, with sign
	0 1 2 3 4

 Table 77: Temperature defining values.

The temperature value is stored as a signed 16 bit two's complement. The temperature value units are tenths of degrees Celsius (0.1 °C). The temperature value is given in the following format:

Byte	Value	Description
1/0	-2730 to 10000	Current temperature value in 0.1 °C

Table 78: Temperature definition.

For this resource, access to the offset basis is not meaningful as the resource data can be read using a "long message" transaction.

Transaction	Regi	ster											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									74	C1	00	00	01
Wait for FREL =	1												
Read		coder erature											

Table 79: Reading the encoder temperature.

7.2.3.3. LED current range

This resource indicates the minimum and maximum permitted values for the LED current values of the optical DSL motor feedback system given in the product data sheet.

Direct read access to LED current range returns the defining values:

Offset	Value
	0C2h
0	"LEDRANGE"
1	4
2	0
3	15
4	70
5	04h – 16 Bit, unsigned
	0 1 2 3 4

Table 80: LED current range defining values.

The values of the LED current range are stored as unsigned 16 bit values. The LED current value units are tenths of a milliampere (0.1mA).

Examples of LED current values:

Current	Resource value (bin.)	Resource value (hex.)
5 mA	0000 0000 0011 0010b	0032h
20 mA	0000 0000 1100 1000b	00C8h
20 mA	0000 0000 1100 1000b	00C8h

 Table 81: Examples of LED current range.

The values for the LED current range are given in the following format:

Byte	Value	Description
3/2	0 to 65535	Maximum permitted encoder LED current in 0.1 mA
1/0	0 to 65535	Minimum permitted encoder LED current in 0.1 mA

Table 82: LED current range definition.

By accessing offset basis, only one of two LED current range values can be given.

Offset value	Length of the message	Return values
0000h	4	LED current minimum and maximum values
0000h	2	Minimum LED current
0002h	2	Maximum LED current

Table 83: Offset selection for the LED current range.

Transaction	Register												
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									58	C2	00	00	01
Wait for FREL = 1													
Read	Min.	current	Max.	current									

Table 84: Reading the LED current range.

7.2.3.4. LED current

This resource indicates the LED current of an optical DSL motor feedback system.

The LED current is measured once per second.

If the measured LED current is near the upper range limit, it is possible that the end of the product life is near.

If the measured LED current is outside either one of the range limits, an error is indicated (see section 6.6.4, error group 3, error number 1).

Direct read access to LED current returns the defining values:

Defining value	Offset	Value
RID		0C3h
Resource name	0	"LEDCURR"
Data size	1	2
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	04h – 16 Bit, unsigned
T-LL OF LED		

 Table 85: LED current defining values.

The value of the LED current is stored as an unsigned 16 bit value. The LED current value units are tenths of a milliampere (0.1mA).

The LED current value is given in the following format:

Byte	Value	Description
1/0	0 to 65535	Encoder LED current in 0.1 mA

Table 86: LED current definition.

For this resource, access to the offset basis is not meaningful as the resource data can be read using a "long message" transaction.

Transaction	Regi	ster	1		1		1	1	1				
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									54	C3	00	00	01
Wait for FREL =	1		•	•	•	•	•			•	•	•	•
Read	LED	current											

 Table 87: Reading the LED current.

7.2.3.5. Supply voltage range

This resource indicates the minimum and maximum permitted values for the internal supply voltage for the DSL motor feedback system given in the product data sheet.

Direct read access to supply voltage range returns the defining values:

Defining value	Offset	Value
RID		0C4h
Resource name	0	"SUPRANGE"
Data size	1	4
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	04h – 16 Bit, unsigned

 Table 88: Supply voltage range defining values.

The values of the supply voltage range are stored as unsigned 16 bit values. The supply voltage units are 1 mV.

The values for the supply voltage range are given in the following format:

Byte	Value	Description
3/2	0 to 65535	Maximum permitted internal supply voltage for the encoder in mV
1/0	0 to 65535	Minimum permitted internal supply voltage for the encoder in mV

Table 89: Supply voltage range definition.

By accessing offset basis, only one of two supply voltage range values can be given.

Length of the message	Return values
4	Minimum and maximum value of the supply voltage
2	Minimum supply voltage
2	Maximum supply voltage
	•

 Table 90: Offset selection for the supply voltage range.

Transaction	Regi	Register												
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL	
Write									58	C4	00	00	01	
Wait for FREL =	1	•	•		•	•				•	•	•	•	
Read	Min.	voltage	Max.	voltage										

Table 91: Reading the supply voltage range.

7.2.3.6. Supply voltage

This resource indicates the supply voltage of a DSL motor feedback system.

The supply voltage is measured every 10 msec.

If the measured shaft rotation speed is outside either one of the range limits, an error is indicated (see section 6.6.4, error group 3, error number 2).

Direct read access to supply voltage returns the defining values:

Offset	Value
	0C5h
0	"SUPVOLT"
1	2
2	0
3	15
4	70
5	04h – 16 Bit, unsigned
	0 1 2 3 4

Table 92: Supply voltage defining values.

The value of the supply voltage is stored as an unsigned 16 bit value. The supply voltage units are 1 mV.

The supply voltage value is given in the following format:

Byte	Value	Description								
1/0	0 to 65535	Current encoder supply voltage in mV								

 Table 93: Supply voltage definition.

For this resource, access to the offset basis is not meaningful as the resource data can be read using a "long message" transaction.

Transaction	Regi	Register											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									58	C4	00	00	01
Wait for FREL =	1			•	•	•	•	•	•	•	•	•	•
Read	Supply	y voltage											

Table 94: Reading the supply voltage.

7.2.3.7. Rotation speed range

This resource indicates the permitted maximum shaft rotation speed for rotary DSL motor feedback systems given in the product data sheet.

Direct read access to rotation speed range returns the defining values:

Defining value	Offset	Value
RID		0C6h
Resource name	0	"SPEEDRNG"
Data size	1	2
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	04h – 16 Bit, unsigned

Table 95: Rotation speed range defining values.

The rotation speed range value is stored as a 16 bit unsigned value. The rotation speed value units are 1 rotation per minute (min⁻¹).

It should be noted that the current rotation speed value is given as a process value in the "process data channel" (see section 6.3).

The rotation speed range value is given in the following format:

Byte	Value	Description
1/0	0 to 65535	Maximum permitted rotation speed of the encoder in min ⁻¹

Table 96: Rotation speed range definition.

For this resource, access to the offset basis is not meaningful as the resource data can be read using a "long message" transaction.

Regis	ster											
PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
								54	C6	00	00	01
Max. r	otation											
sp	eed											
	BUFFER0 PC_BUFFER0 bc_ bc_ bc_	D L D L	BC B	BULFER2 BULFER	PC BUFFER	PC BUFFER3 PC BUFFER3	PC BUFFERS PC BUFFERS	Max. rotation	Max. rotation F F F S S F S S F S S F S S F S <	Max. rotation	Max. rotation Max. rotation Image: Construction of the second secon	Max. rotation Max. rotation Image: State of the

 Table 97: Reading the rotation speed range.

7.2.3.8. Rotation speed

This resource indicates the shaft rotation speed of a rotary DSL motor feedback system.

The rotation speed is measured once per second.

If the measured shaft rotation speed is outside either one of the range limits, an error is indicated (see section 6.6.4, error group 3, error number 3).

Direct read access to rotation speed returns the defining values:

Defining value	Offset	Value
RID		0C7h
Resource name	0	"SPEED"
Data size	1	2
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	04h – 16 Bit, unsigned

 Table 98: Rotation speed defining values.

The rotation speed value is stored as a 16 bit unsigned value. The rotation speed value units are 1 rotation per minute (min⁻¹).

It should be noted that the rotation speed value is given synchronously with the DSL measurements trigger signal as a process value in the "process data channel" (see section 6.3).

The rotation speed value is given in the following format:

Byte	Value	Description
1/0	0 to 65535	Current rotation speed of the encoder in min ⁻¹

Table 99: Rotation speed definition.

For this resource, access to the offset basis is not meaningful as the resource data can be read using a "long message" transaction.

Transaction	Regis	ster											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									54	C7	00	00	01
Wait for FREL = 2	1												
Read	Rotatio	on speed											

Table 100: Reading the rotation speed.

7.2.3.9. Acceleration range

This resource indicates the permitted minimum and maximum shaft acceleration for rotary DSL motor feedback systems given in the product data sheet.

Direct read access to acceleration range returns the defining values:

Defining value	Offset	Value
RID		0C8h
Resource name	0	"ACCRANGE"
Data size	1	2
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	04h – 16 Bit, unsigned

Table 101: Acceleration range defining values.

The value of the acceleration range is stored as an unsigned 16 bit value. The acceleration value units are 1000 rad/s².

It should be noted that the current acceleration value can be derived from the rotation speed process value in the "process data channel" (see section 6.3).

The acceleration range value is given in the following format:

Byte	Value	Description
1/0	0 to 65535	Maximum permitted rotational acceleration
		of the encoder in 1000 rad/s ²

Table 102: Acceleration range definition.

For this resource, access to the offset basis is not meaningful as the resource data can be read using a "long message" transaction.

Transaction	Regis	Register											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									54	C8	00	00	01
Wait for FREL = 1	Wait for FREL = 1												
Read	accel	ax. eration											

 Table 103: Reading the acceleration range.

7.2.3.10. Lifetime

This resource indicates the operating time and the observed number of shaft rotations for a DSL motor feedback system. For safety variants, the remaining encoder task lifetime is also indicated.

Direct read access to lifetime returns the defining values:

Offset	Value
	0CBh
0	"LIFETIME"
1	8 (12 for safety variants)
2	0
3	15
4	70
5	05h – 32 bit, unsigned
	0 1 2 3 4

Table 104: Lifetime defining values.

The number of shaft rotations of the product is determined based on an average rotation speed. The integration time lasts one second.

The values for operating time, remaining task lifetime and number of shaft rotations are all stored as unsigned 32- bit values. The operating time units and the remaining task lifetime are 1 minute. The values are stored every 20 minutes in a non-volatile memory.

If the remaining task lifetime falls to 0, the encoder continuously issues error message 22 (safety error). If this is the case, the encoder must be replaced.

Examples of time values:

Duration	Resource value (bin.)	Resource value (hex.)
10 min	0000 0000 0000 0000 0000 0000 0000 1010b	0000 000Ah
200 hours	0000 0000 0000 0000 0010 1110 1110 0000b	0000 2EE0h
5 years	0000 0000 0010 1000 0001 1001 1010 0000b	0028 19A0h

 Table 105: Examples of lifetime.

The lifetime values are given in the following format:

Byte	Value	Description
11 to 8	0 to 4294967295	Remaining task lifetime in minutes
7 to 4	0 to 4294967295	Number of shaft rotations
3 to 0	0 to 4294967295	Operating time in minutes
3 to 0		Operating time in minutes

Table 106: Lifetime definition.

By accessing offset basis, only one of the lifetime values can be given.

Offset value	Length of the message	Return values
0000h	4	Operating time
0004h	4	Number of shaft rotations
0008h	4	Remaining task lifetime

Table 107: Selection of the lifetime offset.

Transaction	Regi	Register											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									7C	CB	00	00	01
Wait for FREL = 1													
Read		Operati	ng time	Operating time Number									

Table 108: Reading the lifetime.

7.2.3.11. Error protocol

This resource returns stored DSL motor feedback system error messages.

Direct read access to error protocol returns the defining values:

Defining value	Offset	Value
RID		0CCh
Resource name	0	"ERRORLOG"
Data size	1	16 per error protocol entry
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	20h – structure with 16 bytes
Table 400, Ennen muste sal de	<u>.</u>	Les a

 Table 109: Error protocol defining values.

As soon as the encoder identifies an error, this error is indicated to the frequency inverter application (see section 6.5). In addition, errors are stored in the non-volatile memory of the DSL motor feedback system.

In addition, those errors identified when the establishment of a connection to the frequency inverter application failed are also stored in the error protocol. This resource provides an overview of these errors.

A DSL motor feedback system can store a set number of errors in its error protocol. If the total of errors recorded exceeds this number, the oldest entries are overwritten. The maximum number of error protocol entries can be found in the product data sheet.

All errors are recorded with time information, and several process and condition values from the time at which the error occurred.

Error protocol entries are each stored in 16 bytes.

Byte	Value	Description
15	00 to FFh	Error code (see section 6.6.4)
14	-	Reserved
13/12	0 to 65535	Acceleration in 1000 rad/s ² during the error
11/10	0 to 65535	Rotation speed in min ⁻¹ during the error
9/8	0 to 65535	Internal supply voltage in mV during the error
7/6	0 to 65535	LED current in 0.1 mA during the error
5/4	-2730 to 10000	Temperature in 0.1 °C during the error
3 to 0	0 to 4294967295	Error time information (operating time or real-time stamp)

The values for the error protocol are given in the following format:

Table 110: Error protocol entries definition.

All error protocol entries are stored sequentially and are accessible by giving the individual values for the offset address.

To give a complete error entry, two "long message" transactions must be carried out as a message can only contain 8 bytes.

It should be noted that the highest offset address that can be given depends on the maximum number of error protocol entries for the particular product.

Offset value	Length of the	Return values
	message	
00 00h	8	Number of stored error messages
00 01h	8	First part of the most recently occurring error
01 01h	8	Second part of the most recently occurring error
00 02h	8	First part of the error protocol entry no. 2
01 02h	8	Second part of the error protocol entry no. 2
	8	
00 xxh	8	First part of the oldest error protocol entry
01 xxh	8	Second part of the oldest error protocol entry
T-11- 444 00		

Table 111: Offset selection for the error protocol.

The higher value offset byte indicates whether the first part of the error message (00h) or the second part (01h) will be given.

The lower value offset byte indicates the desired error number.

Transaction	Regis	Register											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									7C	CC	00	01	01
Wait for FREL = 1													
Read		Bytes	0 - 7 of	the err	or proto	col ent	ry #1						
Write									7C	CC	01	01	01
Wait for FREL = 1													
Read		Bytes a	8 - 15 o	f the er	ror prot	ocol en	try #1						

Table 112: Reading the error protocol entries.

7.2.3.12. Usage histogram

This resource gives histogram values of encoder parameters. The histogram values indicate how often a parameter value was measured during the lifetime of the encoder.

Direct read access to usage histogram returns the defining values:

Defining value	Offset	Value
RID		0CDh
Resource name	0	"USAGEHIS"
Data size	1	4
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	20h – structure with 16 bytes

Table 113: Usage histogram defining values.

Recorded encoder parameters are measured at one minute intervals and stored every 20 minutes in a non-volatile memory.

The following table contains the encoder parameters that can be recorded in a histogram and stored. In addition, the range limits and the resolution of the histogram are given.

Encoder parameters	Min. class	Max. class	Width of histogram class
Temperature	< -40 °C	>= 120 °C	10 °C
LED current	0 to 5 mA	>= 50 mA	5 mA
Supply voltage	< 6.0 V	>= 14.0 V	1.0 V
Rotation speed	0 to 500 min ⁻¹	>= 10,000 min ⁻¹	500 min ⁻¹

Table 114: Encoder parameter histograms definitions.

The values of the usage histograms are each stored in 4 bytes.

The values for the usage histograms are given in the following format:

Byte	Value	Description
3/2/1	00 00 00h	Number of parameter values in the histogram class
	-	
	FF FF FFh	
0	00h	Identification of histogram class
	-	
	FFh	

Table 115: Value definitions in usage histograms.

The identification of the histogram class is transmitted in the offset value with an identification for the requested encoder parameter. The identification of the histogram class depends on the encoder parameter selected (see the following table).

Encoder parameters	Histogram class	Identification of histogram class
Temperature	< -40 °C	00h
	-40 to -30 °C	01h
	-30 to -20 °C	02h
	-20 to -10 °C	03h
	-10 to 0 °C	04h
	0 to 10 °C	05h
	10 to 20 °C	06h
	20 to 30 °C	07h
	30 to 40 °C	08h
	40 to 50 °C	09h
	50 to 60 °C	0Ah
	60 to 70 °C	0Bh
	70 to 80 °C	0Ch
	80 to 90 °C	0Dh
	90 to 100 °C	0Eh
	100 to 110 °C	0Fh
	110 to 120 °C	10h
	>= 120 °C	11h
LED current	0 to 5 mA	00h
	5 to 10 mA	01h
	10 to 15 mA	02h
	15 to 20 mA	03h
	20 to 25 mA	04h
	25 to 30 mA	05h
	30 to 35 mA	06h
	35 to 40 mA	07h
	40 to 45 mA	08h
	45 to 50 mA	09h
	> 50 mA	0Ah
Supply voltage	< 6.0 V	00h
	6.0 to 7.0 V	01h
	7.0 to 8.0 V	02h
	8.0 to 9.0 V	03h
	9.0 to 10.0 V	04h
	10.0 to 11.0 V	05h
	11.0 to 12.0 V	06h
	12.0 to 13.0 V	07h
	13.0 to 14.0 V	08h
	> 14.0 V	09h

Rotation speed	0 to 500 min ⁻¹	00h
	500 to 1000 min ⁻¹	01h
	1000 to 1500 min ⁻¹	02h
	1500 to 2000 min ⁻¹	03h
	2000 to 2500 min ⁻¹	04h
	2500 to 3000 min ⁻¹	05h
	3000 to 3500 min ⁻¹	06h
	3500 to 4000 min ⁻¹	07h
	4000 to 4500 min ⁻¹	08h
	4500 to 5000 min ⁻¹	09h
	5000 to 5500 min ⁻¹	0Ah
	5500 to 6000 min ⁻¹	0Bh
	6000 to 6500 min ⁻¹	0Ch
	6500 to 7000 min ⁻¹	0Dh
	7000 to 7500 min ⁻¹	0Eh
	7500 to 8000 min ⁻¹	0Fh
	8000 to 8500 min ⁻¹	10h
	8500 to 9000 min ⁻¹	11h
	9000 to 9500 min ⁻¹	12h
	9500 to 10,000 min ⁻¹	13h
	> 10,000 min ⁻¹	14h

Table 116: Histogram classes.

The offset value must be given in the following format:

Bits	Value	Definition
0 to 7	00h to FFh	Identification of histogram class
8 to 11	0h	Request temperature
	1h	Request LED current
	2h	Request supply voltage
	3h	Request rotation speed

Table 117: Selection of the histogram offset.

Transaction	Regis	ter	-		-					-	-	-	
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									78	CD	00	07	01
Wait for FREL = 1	•	•				•	•	•	•				
Read	07	mea	umber (sureme) to 30°	ents									
Write									78	CD	03	04	01
Wait for FREL = 1	•	•		•	·	·			•				
Read	04	Number of measurements 2000 to 2500 rpm		ents									

Table 118: Reading histogram entries.

7.2.4. Administration resources

The administration resources of the DSL motor feedback system provide access to the encoder options settings.

7.2.4.1. Reset/shut-down

An indirect write access to this resource causes a reset or a shut-down of the DSL motor feedback system.

Direct read access to reset returns the defining values:

Defining value	Offset	Value
RID		100h
Resource name	0	"RESET"
Data size	1	0
Read access level	2	15
Write access level	3	0
Time overrun	4	150
Data type	5	01h - empty

Table 119: Reset defining values.

The effect of a reset is that the encoder is initialized in the same way as at switch-on (see section 6.1). Following a reset command, no report is returned.

It should be noted that after the reset the initializing time of the encoder as well as the maximum time overrun need to be taken into account.

Shutting down causes the encoder to discontinue all communication.

It should be noted that after shut-down, the encoder no longer reacts to any command until it has been switched off and on again.

The offset value allows selection of the desired function (reset or shut-down):

Value	Definition
0	Motor feedback system reset
1	Motor feedback system shut-down

Table 120: Function selection.

Before carrying out a reset or shut-down, all relevant data is saved. This includes lifetime data and the usage histogram.

It should be noted that the shut-down function can be used to reliably store all lifetime data before a planned shut-down.

Transaction	Regi	ster	1	1	1		1	1	1	1		1	1
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									11	00	00	00	01
Wait for FREL =	1												

Table 121: Reset write command.

7.2.4.2. Set position

Using this resource, an arbitrary position value can be allocated to the current mechanical shaft position and the current position offset can be read.

With synchronous servo drives, the position information is used for motor commutation. The incorrect use of this resource can adversely affect the motor. This function should only be called up by the motor manufacturers.

Direct read access to set position returns the defining values:

Defining value	Offset	Value
RID		101h
Resource name	0	"SETPOS"
Data size	1	8
Read access level	2	0
Write access level	3	2
Time overrun	4	100
Data type	5	06h – 64 bit, unsigned

Table 122: Set position defining values.

There is no synchronization for movements in progress. This function may only be used when the encoder shaft is stationary.

During a write access, the current position is set for the transmitted value. The position value to be allocated to the current shaft position is transmitted as an unsigned 40 bit value. Only values in the measurement range of the DSL motor feedback system are valid. During a read access, the offset value currently being used is transmitted in the same format.

The position value for this command must be given in the following format:

Byte	Value	Description				
4 to 0	00 0000 0000 to	New position value for the current mechanical shaft position. The position value is right justified.				
Table 122: Set position definition						

Table 123: Set position definition.

Transaction	Regi	Register											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write	Byte	e 0 to 4 d	of the ta	rget pos	sition	00	00	00	1D	01	00	00	01
Wait for EREL = 2	1												

Table 124: Set write command position.

An encoder protocol reset is carried out after this has been done.

7.2.4.3. Set access level

This resource is used to set or read the encoder access level. The access level determines which functions are accessible for the user application. The access level required for each function is set out in the resources list (section 7.2).

Offset	Value
	104h
0	"SETACCESS"
1	8
2	0
3	0
4	70
5	18h – structure with 8 bytes
	0 1 2 3 4

Direct read access to Set access level returns the defining values:

Table 125: Set access level defining values.

After switch-on or after a reset, the access level is always set to "0", i.e. to the lowest (public) access rights.

To alter the access level, the corresponding access key must be transmitted to the DSL encoder. The access level is retained until another level is set using this resource.

The table below sets out the access levels and the standard access keys available with which the appropriate level can be set.

Access level	Standard access key	Usage
0	No access key necessary	Publicly accessible system functions
1	31 31 31 31h	Protected system functions - "operator" level
2	32 32 32 32h	Protected system functions - "maintenance" level
3	33 33 33 33h	Protected system functions - "authorized client" level
4	34 34 34 34h	Protected system functions - "service" level

Table 126: Access levels and standard access keys.

The access level is given in the following format:

Byte	Value	Description
7/6/5/4	0000 0000 to FFFF FFFFh	Access keys for the requested access level
3/2/1		Reserved for later use
0	00h to 04h	Requested access level

Table 127: Set access level definition.

The currently set access level can be determined using a read access. This access level is returned in byte 0 of the long message.

For this resource, access to the offset base is not meaningful as the size of the resource data is smaller than the maximum for a "long message" transaction.

Transaction	Regi	ster	T	r	r	r	r	1	1	r	r	1	r
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write	01	00	00	00	31	31	31	31	1D	04	00	00	01

Table 128: Set access level (in this example: 01h with access key 31313131h).

Transaction	Regis	ster			-								
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									55	04	00	00	01
Wait for FREL = 1													
Read	00	00											

Table 129: Reading the current access level (in this example: 00h).

7.2.4.4. Change access key

This resource is used to change the access key required to set the appropriate access level. The access level determines which functions are accessible for the user application. The access level required for each function is set out in the resources list (section 7.2).

Direct read access to change access key returns the defining values:

Defining value	Offset	Value
RID		105h
Resource name	0	"CHNGKEY"
Data size	1	8
Read access level	2	15
Write access level	3	0
Time overrun	4	90
Data type	5	18h – structure with 8 bytes

Table 130: Change access key defining values.

To change the access key, both the old and the new access keys for the target access level as well as the access level itself must be transmitted to the DSL encoder.

It should be noted that the access key for any level can be changed irrespective of the access level currently selected.

The access key is changed when data in the following format is transmitted:

Byte	Value	Description
7/6/5/4	0000 0000 to	Old access key
	FFFF FFFFh	
3/2/1/0	0000 0000 to	New access key
	FFFF FFFFh	-

Table 131: Change access key definition.

A read access to this resource is not possible.

The offset value indicates the target access level of the key change.

Offset value Description						
0-4	Target access level					

Table 132: Selection of access level.

Transaction	Regis	Register											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write	12	34	56	78	31	31	31	31	3D	05	02	00	01
Wait for FREL =	1												

Table 133: Changing the access key (in this example for access level 02h, changing from 31313131h to 12345678h).

7.2.4.5. User-defined warnings

This resource allows the user to program warnings to be set when thresholds are exceeded or certain bits of the DSL motor feedback system parameters change.

All user-defined thresholds or bit masks are checked once per second. The number of available user-defined warnings is set out in the product data sheet.

If a user-defined warning is triggered, this appears as a motor feedback system error message (see section 6.6.4) and is recorded in the error protocol (see section 7.2.3.11).

Direct read access to user-defined warnings returns the defining values:

Offset	Value
	107h
0	"UWARNING"
1	8
2	0
3	2
4	90
5	18h – structure with 8 bytes
	0 1 2 3 4

Table 134: User-defined warnings defining values.

A user-defined warning is configured by selecting the offset value for configuring the warning (see below):

Byte	Value	Meaning
7/6/5/4		Reserved
3/2	0000 to FFFFh	Offset value of the monitored resource
0 (bit 1/0) / 1	000 to 3FFh	Resources index of the monitored resource
0 (bit 7/6/5)		Type of warning:
	0	Warning switched off
	1	Warning if monitored resource below threshold
	2	Warning if monitored resource above threshold
	3	Warning if monitored resource bit is deleted
	4	Warning if monitored resource bit is set
	5 to 7	Reserved
0 (bit 4/3/2)		Threshold data format:
	0	Not applicable
	1	16 bit, unsigned
	2	32 bit, unsigned
	3	64 bit, unsigned
	4	Not applicable
	5	16 bit, with sign
	6	32 bit, with sign
	7	64 bit, with sign

 Table 135: User-defined warning configuration bits.

The threshold or the bit mask for the user-defined warning is set by selecting the offset value for thresholds (see below) and transmitting the threshold in the following format:

Byte	Value	Meaning
7 to 0	Any	Threshold or bit mask for 64 bit value
3 to 0	Any	Threshold or bit mask for 32 bit value
1/0	Any	Threshold or bit mask for 16 bit value

Table 136: Setting value of user-defined warning.

Alternatively, the currently set values of a user-defined warning can be read in the same format.

The offset value indicates which user-defined warning is to be processed and whether the configuration bits or the value are affected.

Offset value	Meaning
00h	Configuration bits for user-defined warning 1
01h	Configuration bits for user-defined warning 2
0Fh	Configuration bits for user-defined warning 16
10h	Threshold/bit mask for user-defined warning 1
11h	Threshold/bit mask for user-defined warning 2
1Fh	Threshold/bit mask for user-defined warning 16

 Table 137: User-defined warning offset value.

Transaction	Regis	ster											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write	34	C1	00	00	00	00	00	00	39	07	00	00	01
Wait for FREL = 1													
Transaction	Regis	ster											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write	03	E8	00	00	00	00	00	00	39	07	00	10	01
Wait for FREL = 1													

Table 138: Writing a user-defined warning (here: switch on warning 1 if encoder temperature above 100 °C).

7.2.4.6. Factory settings

This resource allows all DSL motor feedback system user-defined settings to be reset to the factory settings.

The following values are reset by this command:

- Position offset (see section 7.2.4.2)
- Changed access key (see section 7.2.4.4)
- User-defined warnings (see section 7.2.4.5)
- Counter (see section 7.2.5.1)
- All user files (see section 7.2.6)
- User settings for SensorHub I/Os (see section 7.2.7.2)

The "factory settings" command deletes all user-defined settings and data. Use this function with care.

It should be noted that lifetime information, the error protocol and the usage histogram are not affected by this command.

Direct read access to factory settings returns the defining values:

Defining value	Offset	Value
RID		108h
Resource name	0	"FACRESET"
Data size	1	8
Read access level	2	15
Write access level	3	2
Time overrun	4	255
Data type	5	0Bh - string

 Table 139: Factory settings defining values.

To revert to factory settings, a write command with specified code word must be sent to this resource.

Byte	Value	Meaning					
0 to 7	"RESETALL"	Code word to revert to factory settings					
Table 140: Fastery acting definition							

 Table 140: Factory settings definition.

A read access to this resource is not possible.

Transaction	Regi	ster		1	1	1	1	1	1	1	1	1	1
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write	52	45	53	45	54	41	4C	4C	1D	08	00	00	01

Wait for FREL = 1 Table 141: Factory settings.

8017595/YE98

7.2.4.7. User-defined encoder index

This resource is used to set or read the user-defined encoder index. This index can be freely programmed by the user and is indicated when the encoder is switched on in the ENC ID register (see section 5.3.10).

The user-defined encoder index can be used to distinguish between several DSL Master instances occurring in an FPGA. This is required for safety-related use.

Direct read access to user-defined encoder index returns the defining values:

Defining value	Offset	Value
RID		109h
Resource name	0	"ENCIDENT"
Data size	1	2
Read access level	2	0
Write access level	3	3
Time overrun	4	90
Data type	5	04h – 16 Bit, unsigned

Table 142: User-defined encoder index defining values.

The user-defined encoder index can be between 0 and 25. Inputting a higher value will cause an error message.

The user-defined encoder index is given in the following format:

Byte	Value	Description
7 to 2		Reserved for later use
1/0	0 to 15	Requested user-defined encoder index
	Other values	Reserved for later use
	Other values	

Table 143: User-defined encoder index definition.

A previously set user-defined encoder index can be identified using a read access. The default value is "0".

For this resource, access to the offset base is not meaningful as the size of the resource data is smaller than the maximum for a "long message" transaction.

Transaction	Regis	ster	1		1	1	1	'n	1	1	n	n	
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									55	09	00	00	01
Wait for FREL = '	=1												
Read	00	00											

Table 144: Reading the current user-defined encoder index (in this example: 00h).

7.2.4.8. Position filter setting

This resource is used to adjust or read the DSL motor feedback system position filter setting. In each one of these systems there is a filter with a low pass characteristic that reduces the position value identification interference. Here, more effective filtering must be balanced against a consequent long delay to the signal that affects acceleration.

The position filter characteristic depends on individual encoder types and is specified in the related data sheet.

Direct read access to position filter setting returns the defining values:

Offset	Value
	10Ah
0	"POSFILT"
1	4
2	0
3	3
4	90
5	05h – 32 bit, unsigned
	0 1 2 3 4

 Table 145: Position filter setting defining values.

The position filter is set in the following format:

Byte	Value	Description
3 to 0	3000 to 37500	Mechanical filter limit frequency, measured in
		rotations per minute (rpm)

Table 146: Position filter definition.

A previously set position filter can be identified using a read access.

For this resource, access to the offset base is not meaningful as the size of the resource data is smaller than the maximum for a "long message" transaction.

Transaction	Regis	ster											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									59	0A	00	00	01
Wait for FREL = 1													
Read	00	00	88	B8									

Table 147: Reading the current position filter (in this example: 35000).

7.2.5. Counter resources

The counter installed in the HIPERFACE DSL[®] motor feedback system is a 32 bit counter for user purposes that can be incremented as required. The counter can be read, incremented and reset.

7.2.5.1. Read counter

This resource indicates the value of a user-defined counter. The counter value is given as a 32 bit unsigned value.

Direct read access to read counter returns the defining values:

Defining value	Offset	Value					
RID		120h					
Resource name	0	"READCNT"					
Data size	1	4					
Read access level	2	0					
Write access level	3	15					
Time overrun	4	70					
Data type	5	05h – 32 bit, unsigned					
Table 148: Boad counter defining values							

 Table 148: Read counter defining values.

The counter value is given in the following format:

Byte	Value	Description
3/2/1/0	0000 0000 to FFFF FFFFh	Value of the user-defined counter

Table 149: Read counter definition.

For this resource, access to the offset basis is not meaningful as the resource data can be read using a "long message" transaction.

Transaction	Regi	ster	I		I								
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									59	20	00	00	01
Wait for FREL = 1													
Read		Counte	er (32 bit)									

 Table 150: Reading the counter.

7.2.5.2. Increment counter

This resource increments the user-defined 32 bit counter. If the incrementation causes an overrun of the counter, error message 35 appears (see section 6.6.4) and the value of the counter remains at the maximum value.

Direct read access to increment counter returns the defining values:

Defining value	Offset	Value					
RID		121h					
Resource name	0	"INCCOUNT"					
Data size	1	0					
Read access level	2	15					
Write access level	3	0					
Time overrun	4	90					
Data type	5	01h - empty					
Table 454, Increment counter defining values							

 Table 151: Increment counter defining values.

The incrementation is carried out using a write command to this resource that contains no data (length of the long message = 0).

Transaction	Regi	ster											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									11	21	00	00	01
Wait for EREL -	1				I	1		1			00	00	

Wait for FREL = $\frac{1}{2}$

 Table 152: Command to increment the counter.

7.2.5.3. Reset counter

This resource carries out a reset of the user-defined 32 bit counter.

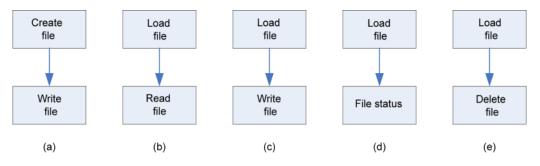
Direct read access to reset counter returns the defining values:

Defining value	Offset	Value
RID		122h
Resource name	0	"RESETCNT"
Data size	1	0
Read access level	2	15
Write access level	3	1
Time overrun	4	105
Data type	5	01h - empty

Table 153: Reset counter defining values.

The reset is carried out using a write command to this resource that contains no data (length of the long message = 0).

Transaction	Regis	ster											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									11	22	00	00	01
Wait for FREL = 1													
Read	00	00											


Table 154: Command to reset the counter.

7.2.6. Data storage resources

The user has access to user-defined files to be stored for miscellaneous purposes via the DSL motor feedback system data storage resources.

User data is stored in the non-volatile memory (EEPROM) and protected automatically by CRC checksums. The CRC mechanism provides the user with a very high level of reliability for error detection in relation to the storage of user data.

The following figure contains workflows for handling data storage. Each step represents an individual resource access (long message).

Figure 34: Workflows for data storage

(a) Writing to a new file, (b) Reading from a file, (c) Writing to an existing file,

(d) Polling the status of an existing file, (e) Deleting a file

7.2.6.1. Load file

To be able to access an existing file, it must first be loaded using this resource.

Defining value	Offset	Value
RID		130h
Resource name	0	"LOADFILE"
Data size	1	8
Read access level	2	15
Write access level	3	1
Time overrun	4	130
Data type	5	0Bh - string

Direct read access to load file returns the defining values:

Table 155: Load file defined values.

It should be noted that only one file can be loaded at a time. When loading a new file, any hitherto loaded file is discarded.

A file remains loaded until another file is loaded or the DSL motor feedback system is reset or shut down.

A file is specified with its file name that is transmitted to the long message data buffer. If the file name is unknown, the "directory" resource (see section 7.2.6.5) can be used to search for existing files.

The file name can be up to 8 bytes long. Each byte represents one ASCII character. The end of the file name (when less than 8 bytes) is indicated by the character "\0" (00h). It should be noted that upper or lower case characters are valid.

A file can only be loaded if the currently set access level (see section 7.2.4.3) permits the reading of writing of a file. Access rights are determined when a file is created or changed (see section 7.2.6.4).

Byte	Value	Description
0 to 7	Variable	Name of the file to be loaded
T-11.450 1.	- I Charles Contribution	

Table 156: Load file definition.

Offset-based access enables it to be determined whether or not a verification of the checksums is carried out by the DSL motor feedback system when a file is loaded.

If an error is detected when the verification is carried out, the motor feedback system responds to the "long message" with an error message (4315h, see section 6.6.5). If the verification is not carried out, it is not certain that subsequent read access to the loaded file will produce valid data.

Offset value	Description
0000h	Checksums are verified
0010h	Checksums are not verified
Other values	Reserved

Table 157: Selection of the offset for load file.

Transaction	Regis	ster	1	1	1			1	1	I	1	1	1
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write	F		L	E	1	00	00	00	1D	30	00	00	01
Wait for FREL = 1													
Read													

Table 158: Example of loading a file (in this example: Loading a file with the name "FILE1").

7.2.6.2. Read/write file

Read and write access to a user file is possible via this resource.

Defining value	Offset	Value
RID		131h
Resource name	0	"RWFILE"
Data size	1	8 (Total size depends on file size)
Read access level	2	0 (User determines actual
		access level)
Write access level	3	0 (User determines actual
		access level)
Time overrun	4	140
Data type	5	0Bh - string

Direct read access to read/write file returns the defining values:

Table 159. Read/write file defining values.

Before a file can be read or written to, the file must be loaded (see section 7.2.6.1).

Read or write procedures can be carried out by access to any addresses within the file. If an address given for reading causes the file size to be exceeded, an error message is returned. If an address given for writing causes the file size to be exceeded, the file is automatically enlarged. The largest address allowed for this attachment of data is the size of the file.

If the remaining EEPROM memory space is insufficient to accept the enlarged file, access is stopped and an error message is returned (4314h, see section 6.6.5).

By setting the length value for a long message, 2, 4 or 8 bytes can be read, or written in a long message.

The data from a read access or the data for a write access is stored in the long message buffer.

Byte	Value	Description
7 to 0	Variable	Data from, or for a file

Table 160: Definition of reading and writing a file.

The offset value indicates the target address for the read or write access. It should be noted that the files may be a maximum of 32768 bytes in size.

Offset value	Description
0 to 32767	Address for the read or write access
T-11. 404 00	

Table 161: Offset value for reading or writing a file.

Transaction	Regis	ster	-		-		-	-	-	-		-	-
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write	11	22	33	44	55	66	77	88	3D	31	33	00	01
Wait for FREL = 1													
Read													

Table 162: Reading or writing to a file (in this example: write 8 bytes to address 0033h).

7.2.6.3. File status

This resource returns the status of the currently loaded file (see section 7.2.6.1).

Direct read access to file status returns the defining values:

Defining value	Offset	Value
RID		132h
Resource name	0	"FILESTAT"
Data size	1	4
Read access level	2	0
Write access level	3	15
Time overrun	4	70
Data type	5	14h – structure with 4 bytes
Table 162, Eile status d	afining value	

Table 163: File status defining values.

A write access to "file status" returns the file access rights and the size of the file.

The file status is given in the following format:

Byte	Value	Description
3/2	0000 to FFFFh	File size in bytes
1		Reserved for later use
0, bits 7 to 4		Write access rights
	0	Public
	1	Operator
	2	Maintenance
	3	Authorized client
	4	Service
	5 – 14	Reserved for later use
	15	No write operation permitted
0, bits 3 to 0		Read access rights
	0	Public
	1	Operator
	2	Maintenance
	3	Authorized client
	4	Service
	5 – 14	Reserved for later use
	15	No read operation permitted

Table 164: Definition of reading and writing a file.

For this resource, access to the offset basis is not meaningful as the resource data can be read using a "long message" transaction.

Transaction	Regis	ster											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									59	32	00	00	01
Wait for FREL = 1													
Read	20	00	File siz 35h 00										

Table 165: File status (in this example: File with read access 0, write access 2, file size 53 bytes).

7.2.6.4. Create/delete/change file

This resource is used for the creation, changing or deletion of a user file.

Direct read access to create/delete/change file returns the defining values:

Defining value	Offset	Value
RID		133h
Resource name	0	"MAKEFILE"
Data size	1	8
Read access level	2	15
Write access level	3	0 (User determines actual
		access level)
Time overrun	4	130
Data type	5	0Bh - string

Table 166: Create/delete/change file defining values.

A user file must have been previously created before it can be loaded, written to or read from.

Before a file can be changed or deleted, the file must be loaded (see section 7.2.6.1).

To **create a file**, the name must be set in the long message buffer. Unallocated characters of the file name are set to "00h". If there is a user file with the name given already present, the procedure to create the file is canceled with an error message. The name may only consist of printable ASCII characters (20h - 7Eh). The name must be at least one character long.

Byte	Value	Description
7 to 0	Variable	Name of the file to be created
Table 167. Cr	acto filo definition	

Table 167: Create file definition.

The offset value is also used to create a file.

Bits	Value	Definition
14 – 10		Reserved for later use
9 – 8	11b	Create file
7 – 4		Write access rights
	0	Public
	1	Operator
	2	Maintenance
	3	Authorized client
	4	Service
	5 – 14	Reserved for later use
	15	No write operation permitted
3 – 0		Read access rights
	0	Public
	1	Operator
	2	Maintenance
	3	Authorized client
	4	Service
	5 – 14	Reserved for later use
	15	No read operation permitted

Table 168: Offset value for creating a file.

To change a file, only the offset value is used.

Bits	Value	Definition
14 – 10		Reserved for later use
9 - 8	01b	Change file
7 – 4		Write access rights
	0	Public
	1	Operator
	2	Maintenance
	3	Authorized client
	4	Service
	5 – 14	Reserved for later use
	15	No write operation permitted
3-0		Read access rights
	0	Public
	1	Operator
	2	Maintenance
	3	Authorized client
	4	Service
	5 – 14	Reserved for later use
	15	No read operation permitted

Table 169: Offset value for changing a file.

To delete a file, the file name (of the currently loaded file) must be set in the long message buffer.

Byte	Value	Description
7 to 0	Variable	Name of the file to be deleted

Table 170: Delete file definition.

The offset value is also used to delete a file.

Bits	Value	Definition
14 – 10		Reserved for later use
9 – 8	00b	Delete file
7 – 0		Reserved for later use
1 0		Reserved for later use

Table 171: Offset value for deleting a file.

Transaction	Regis	Register											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write	F	I	L	E	1	00	00	00	3D	33	10	03	01
Wait for EREL -	1												

 Wait for FREL = 1

 Table 172: Creating a file (in the example: Creation of a file with the name "FILE1", read access

 0, write access 1).

7.2.6.5. Directory

When this resource is accessed, a list of the existing user files is returned. Direct read access to directory returns the defining values:

Defining value	Offset	Value
RID		134h
Resource name	0	"DIR"
Data size	1	8
Read access level	2	0
Write access level	3	15
Time overrun	4	130
Data type	5	18h – structure with 8 bytes

Table 173: Directory defining values.

In "directory", only those files are listed that are accessible at the access level set (read or write access).

In addition, by accessing "directory", the current size of the filled and empty user stores can be read.

It should be noted that due to the file header, the user files normally fill more physical stores than their pure data content.

The type of data required by the user is set in the offset value during read access to this resource.

Bits	Value	Definition
14 – 8		Reserved for later use
7 – 0	00h	Return number of files as well as filled and empty
	01h	user stores
	02h	Return name of first user file
		Return name of second user file
	FFh	Return name of 255th user file

Table 174: Offset value for "directory".

The "directory" basic data (offset = 00h) is returned in the long message buffer as follows:

Byte	Value	Description
7/6		Reserved for later use
5/4	0 - 65535	Number of filled bytes in the user store
3/2	0 – 65535	Number of empty bytes in the user store
1		Reserved for later use
0	0 – 255	Number of user files

Table 175: Definition of "directory" ("directory" basic data).

The data from the user files (offset > 00h) is returned in the long message buffer as follows:

Byte	Value	Description					
7 – 0	Variable	File name					
Table 470, Definition of Julian stamul (Jate from wear files)							

 Table 176: Definition of "directory" (data from user files).

HIPERFACE DSL®

Transaction	Regis	Register											
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write									7D	34	00	00	01
Wait for FREL = 1													
Read	# file 02h	00	Empty 1E40h		Used 0123	store h	00	00					

 Table 177: "Directory" (in this example: Read directory basic data - 2 user files, 123h bytes filled, 1E40h bytes empty).

7.2.7. SensorHub resources

SensorHub resources refer to additional external sensors that are connected to the motor feedback system.

The actual connectivity for external sensors depends on the individual product variant and is specified in the product data sheet.

Connectivity for external sensors is divided into two categories:

- Simple I/Os (inputs, outputs) are connected directly to a suitable DSL motor feedback system. Included in this category, for example, are temperature sensors, temperature switches or digital I/Os. Motor feedback systems with simple I/O connections are generally standard products.
- Enhanced sensors are connected to an external SensorHub component, which itself has a defined interface to the DSL motor feedback system. This architecture is used if several external sensors, or sensors with complex interfaces, are to be connected (e.g. torque or acceleration sensors). SensorHub components are normally customer-specific and are developed in collaboration with SICK.

The following figures give block diagrams for these scenarios:

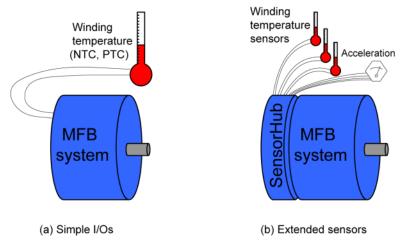


Figure 35: SensorHub categories

7.2.7.1. Access simple I/Os

This resource enables access to simple I/Os connected directly to the motor feedback system.

Direct read access to access simple I/Os returns the defining values:

Defining value	Offset	Value
RID		200h
Resource name	0	"ACCESSIO"
Data size	1	4
Read access level	2	0
Write access level	3	0
Time overrun	4	70
Data type	5	05h – 32 bit, unsigned

Table 178: Access simple I/Os defining values.

The availability of read or write access depends on the product variant. Access to an input or output in a non-specific direction produces an error message (see section 6.6.4, error 41h).

In general, simple I/Os can carry out one of the following functions:

Direction	Signal type	Example	
Input	Digital	Switch	
Output	Digital	Braking control	
Input	Analog	Temperature sensor	

Table 179: Functions of simple I/Os.

The model name, number and measurement characteristics of simple I/Os for any product variant are specified in the product data sheet. For analog inputs, this also lists the data format and the units of the values measured.

Signals for digital I/Os are specified as follows:

Byte	Value	Description	
0	00h	Set to 0 (output) / Value = 0 (input)	
	01h	Set to 1 (output) / Value = 1 (input)	
	02h to FFh	Reserved	
1 to 3		Reserved	

Table 180: Definition of access simple I/Os.

The offset value gives the I/O number to be accessed. It should be noted that the number of I/Os and the associated I/O numbers are specified in the product data sheet.

Offset value	Description		
0 to 127	I/O number		

Table 181: Offset value for access simple I/Os.

Transaction	Regi	ster		1	1	1	1	1	1	1	1	1	
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write	01	00	00	00	00	00	00	00	3A	00	00	00	01

Wait for FREL = 1

 Table 182: "Simple access I/Os" (here: Set digital output with I/O number #0).

7.2.7.2. Manage simple I/Os

This resource enables access to the management functions for simple I/Os connected to the motor feedback system.

Direct read access to manage simple I/Os returns the defining values:

Defining value	Offset	Value
RID		201h
Resource name	0	"MANAGEIO"
Data size	1	4
Read access level	2	0
Write access level	3	2
Time overrun	4	90
Data type	5	05h – 32 bit, unsigned
Table 192, Managa simple	1/On defini	

 Table 183: Manage simple I/Os defining values.

The availability of this function depends on the product variant and is specified in the product data sheet.

The offset value determines the requested management function. It should be noted that any additional management functions are specified in the product data sheet.

Offset value	Description
0	Input filter I/O 0
1	Input filter I/O 1
2 to 32767	Reserved

Table 184: Offset value for manage simple I/Os.

The input filter function enables the user to set the low pass characteristic of an analog input. The value of 1 to 100 specifies as a percentage (%) the weighting of new measured values to previously averaged measurements. Examples:

- 100 indicates that there was no filtering.
- 50 indicates that each new measurement will be calculated with a weighting of 50:50 against previous measurements.
- 1 indicates that each new measurement will be calculated with a weighting of 1% against previous measurements.

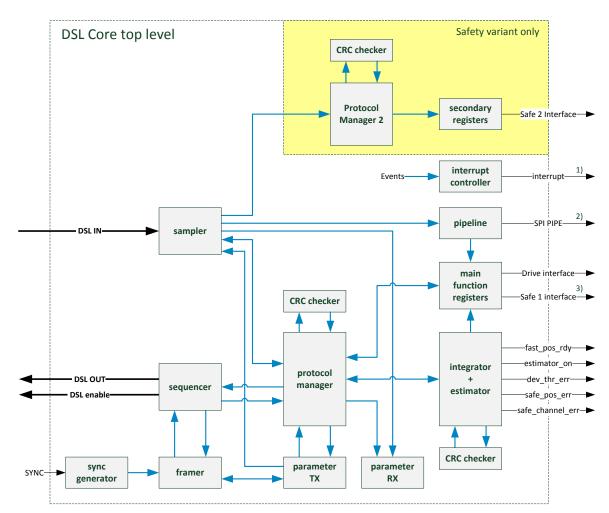
The values for the input filter functions are determined as follows:

Byte	Value	Description
0	0	Reserved
	1 to 100	Filter characteristics of the analog input
	101 to 255	Reserved
1 to 3		Reserved

Table 185: Definition of manage simple I/Os (input filter).

Transaction	Regis	ster					1	-	1	T	-	n	1
	PC_BUFFER0	PC_BUFFER1	PC_BUFFER2	PC_BUFFER3	PC_BUFFER4	PC_BUFFER5	PC_BUFFER6	PC_BUFFER7	PC_ADD_H	PC_ADD_L	PC_OFF_H	PC_OFF_L	PC_CTRL
Write	32	00	00	00	00	00	00	00	3A	01	00	00	01

Wait for FREL = 1


 Table 186: "Manage simple I/Os" (here: Set filter value 50 for analog input with I/O number #0).

8. FPGA IP-Core

The HIPERFACE DSL[®] interface is installed in the frequency inverter system via a special protocol logic circuit, known as the DSL Master. The circuit is installed in an FPGA component and is supplied as an Intellectual Property Core (IP Core). The IP Core of the DSL master is supplied in a form such that it can be freely connected within the FPGA. If there is sufficient space within the FPGA used, the DSL Master can be installed in the same component as the frequency inverter application.

To be able to join different components to the IP Core, e.g. internal FPGA buses, various open-source interface blocks are supplied with the IP Core.

Figure 36 shows the block circuit diagram of the DSL Master circuit without the interface blocks. Signal characteristics are listed in table 187, functional characteristics in table 188.

Figure 36: Block circuit diagram of the DSL Master IP Core

1) interrupt_s generated for safety version in addition to interrupt

2) Optional interface, SPI only

3) Interface only available in Safety variant

HIPERFACE DSL®

IP Core clock – "clk"	
Frequency	75.0 MHz
Frequency tolerance	± 100 ppm
IP Core reset – "rst"	High active
Minimum reset duration after switch on/loading	20 ns
HIPERFACE DSL® interface	
"dsl_out"	Based on RS-485 specification, see
"dsl_in"	application schematics
"dsl_en"	
Typical signal transmission rate	9,375,000 baud
Drive interface	
"online_status_d(15:0)"	
"hostd_a(6:0)"	
"hostd_di(7:0)"	
"hostd_do(7:0)"	drive interface signals
"hostd_r"	
"hostd_w"	
"hostd_f"	
SPI PIPE interface - optional, configurable by the u	user
"pipipe_clk" "pipipe_clk"	Deceder ODI en exification
"pipipe_miso"	Based on SPI specification
"pipipe_ss" Maximum SPI clock	10 MHz
Control signals	
Digital input – "sync"	Synchronization to drive clock
Sync signal cycle time	12.1 1950 µs
Minimum sync signal duration	40 ns
Maximum jitter sync frequency	
Digital output – "sync_locked"	± 2 system clock cycles, 26 ns Drive clock synchronization indicator
Digital output – sync_locked Digital output – "interrupt"	Interrupt configurable by the user, high active
Digital output – "link"	DSL interface indicator, high active
Digital output – "fast_pos_rdy"	Indicator fast position value availability Indicator position estimator deviation
Digital output – "dev_thr_err"	threshold crossed
	Byte sequence selection for register
Digital input – "bigend"	addresses
Test signals	000100000
Digital output "estimator_on"	Indicator for active position estimator
Digital output "safe_channel_err"	Indicator for safety frame transmission errors
Digital output "safe_pos_err"	Indicator for safe position update errors
Digital output sale_pos_en Digital output "acceleration_err"	Indicator for transmission error of fast position
	Indicator for crossing of fast position error
Digital output "acc_thr_err"	counter threshold
<u> </u>	Indicator for 8b/10b encoding transmission
Digital output "encoding_err"	fault

Parameter		Value		Units	Remarks
Falameter	Minimum	Typical	Maximum	Units	itemarks
System clock	74.9925	75.0000	75.0075	MHz	± 100 ppm
Characteristics of the interface				•	
Wire transmission rate		9.375		MBd	
Reset duration	0.02	0.06		μs	Reset is High active
Recovery time following			727		
communications failure			121	μs	
Characteristics of the motor feedb	ack system				
Position resolution per revolution		23	40	Bit	The total can be
Number of resolved revolutions		16	40	Bit	a maximum of 40 bit
Rotation speed			262,000	rad/s	24 bit/rotation
Acceleration			670,000	rad/s ²	24 bit/rotation
					Time between SYNC
Sampling latency		10.5		μs	edge and valid position
					present
Characteristics of the host interfac				_	
Cycle time of the frequency inverter	12.1		1 950	μs	In SYNC mode
Packet cycle time	12.1		27	μs	In SYNC mode
Packet cycle time		11.52		μs	In free-running mode
					The SYNC signal mus
Duration of the SYNC signal	0.04			μs	be inactive for at least
					0.04 µs per cycle.
Jitter of the SYNC signal frequency		26		ns	\pm 2 system clock
		20		110	cycles
Characteristics of the SPI PIPE int	erface			1	-
Clock of SPI PIPE			10	MHz	
Characteristics of the parameter c				1	
Theoretical transmission rate	166		334	kBd	
Duration of access to the	167		1600	μs	"Short message"
communications resource	107		1000	۳ 0	Choremosouge
Duration of access to the encoder			75	ms	"Long message"
resource			10		Long moodage
Characteristics of the SensorHub			T		
Transmission rate	334		669	kBd	

Table 188: Functional characteristics of the DSL Master IP Core

 $^{^1}$ These numbers depend on the base transmission rate chosen by the user. The numbers given are calculated using SYNC mode with a packet cycle time of 12.5 $\mu s.$

HIPERFACE DSL®

The following table contains a description of the pin functions of the DSL Master IP Core.

Pin description	Туре	Function	Note
rst	Input	Master reset (High active)	
clk	Input	Clock input	
sync	Input	Drive cycle for position sampling trigger	
bigend	Input	Byte sequence selection	
-		register addresses	
interrupt	Output	Configurable interrupt	
link	Output	Connection display	
fast_pos_rdy	Output	Indicator fast position value availability	
sync_locked	Output	Drive cycle indicator	
online_status_d(15:0)	Output	IP-Core status bits	
hostd_a(6:0)	Input	Address bus	
hostd_di(7:0)	Input	Databus input	
hostd_do(7:0)	Output	Databus output	
hostd_r	Input	Selection read access	
hostd_w	Input	Selection write access	
hostd_f	Input	Selection freeze register	
aux_signals(4:0)	Output	Interface relevant internal signals	
sample	Output	Test signal line sampler	
estimator_on	Output	Position estimator indicator	
safe_channel_err	Output	Safe position channel error indicator	
safe_pos_error	Output	Safe position update error indicator	
acceleration_err	Output	Fast position transmission fault	
		indicator	
acc_thr_err	Output	Fast position error counter indicator	
encoding_err	Output	Encoding fault indicator	
dev_thr_err	Output	Error signal "Max. estimated position	
		deviation"	
spipipe_ss	Input	Selection SensorHub-SPI	
spipipe_clk	Input	Clock for SensorHub SPI	
spipipe_miso	Output	SensorHub SPI, master input	
		data/slave output data	
dsl_in	Input	DSL link, input data	
dsl_out	Output	DSL link, output data	
dsl_en	Output	DSL link transceiver, activation	

Table 189: Pin functions of the IP Core

8.1. Interface blocks

Various interface blocks for the IP Core allow simpler access for differing drive architectures. SICK provides two different interface blocks as open-source VHDL modules. This enables individual modifications and adaptations. There are examples for a parallel or serial interface.

This section describes the connections between the interface blocks and the IP Core.

The figure below shows possible combinations of interface blocks.

Figure 37: Combination examples of interface blocks

8.1.1. Serial interface block

As an example, a serial interface block is supplied together with the IP Core. In this example, a Full Duplex "Serial Peripheral Interface (SPI)" is installed.

The figure and table below show the interface signals.

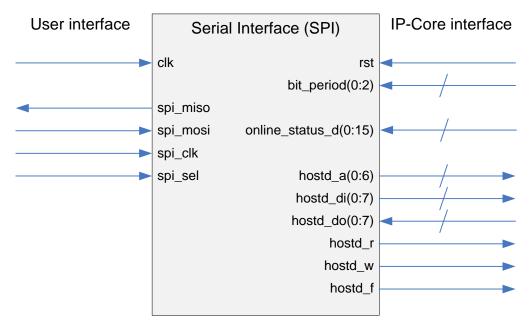


Figure 38: Serial interface block signals

Pin name	Model	Function	Note
	name		
Host interface			
clk	Input	Clock input	
spi_miso	output	SPI data output	
spi_mosi	Input	SPI data input	
spi_clk	Input	SPI clock	
spi_sel	Input	SPI selection	
IP Core interface			
rst	Input	Internal reset	Connect to IUO(1) of the IP Core
bit_period(2:0)	Input	Internal state machine	Connect to IUO(4:2) of the IP Core
online_status_d(15:0)	Input	Internal status IP Core	
hostd_a(6:0)	output	Register block address bus	
hostd_di(7:0)	output	Data bus interface to core	
hostd_do(7:0)	Input	Data bus core to interface	
hostd_r	output	Read access requirement	
hostd_w	output	Write access requirement	
hostd_f	output	Freeze register selection	

 Table 190: Serial interface block signals

The signal characteristics of the serial interface block are set out in the table below:

Parameter		Value			Comments	
	Minimum	Typical	Maximum	Units		
Clock spi_clk			10	MHz		
Clock phase (PHA)	PHA = 1, s	PHA = 1, scanning during falling clock edge				
Clock polarity (POL)	POL = 0, b	POL = 0, base value of the clock is 0				
Data endianness	MSB is clo	MSB is clocked out first				
Table 404, ODI Intenferen alean						

Table 191: SPI interface characteristics

The SPI interface block implements the following register based transactions:

- Read individual register
- Read several registers with random access
- Write to individual register
- Write to several registers (automatic increment)
- Read/write sequence

It must be noted that during a read/write sequence, the write operation must always be the final transaction.

At the beginning of each transaction, the DSL Master transmits the online-status via spi miso in two bytes.

8.1.1.1. Time control of the SPI

When accessing the SPI interface, the following specifications for time control must be adhered to:

Each transaction via SPI is included in spi_sel by a "1" level. With each spi_sel reset, a new transaction is started. This causes the online-status to be retransmitted in the first two bytes.

The time sequence is shown in the following time sequence diagram and in table 192.

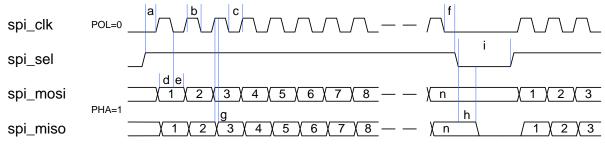


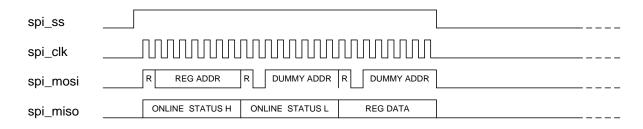
Figure 39: Time control of the SPI

The time control is given in the table below:

Diagram position	Description	Minimum	Maximum	Units
а	Setting spi_sel before spi_clk	25		ns
b	Time for spi_clk high	50		ns
С	Time for spi clk low	50		ns
d	Setting spi_mosi before	10		ns
	spi_clk low			
е	Keep spi_mosi at spi_clk low	25		ns
f	Keep spi_sel at spi_clk low	260		ns
g	Delay spi_miso at spi_clk high	25	60	ns
h	Delay spi_miso at spi_sel low	25	60	ns
i	Time for spi sel low	50		ns

Table 192: Time control of the SPI

8.1.1.2. Dummy read process


Due to the transmission of the online-status, read transactions need less time for transmission via <code>spi_mosi</code> than when receiving via <code>spi_miso</code>. Therefore, when receiving via <code>spi_miso</code>, dummy read transactions must be inserted into <code>spi_mosi</code> to avoid unwanted extra transactions.

A read access to register 3Fh has no effect and must be used for this purpose.

8.1.1.3. Read individual register

Using the SPI transaction "Read individual register", an individual register can be read in the IP Core of the DSL Master.

Symbol	Meaning
R	Access bit: Read ("1")
REG ADDR	Register address (00h to 7Fh)
DUMMY ADDR	Register address for the dummy read process (3Fh)
ONLINE STATUS H	Online-status – High byte
ONLINE STATUS L	Online-status – Low byte
REG DATA	Register content

8.1.1.4. Read several registers

Using the SPI transaction "Read several registers", several registers can be read in the IP Core of the DSL Master. Registers can be selected for reading in any sequence desired.

Symbol	Meaning
R	Access bit: Read ("1")
REG ADDR x	Register address (00h to 7Fh), no. x
DUMMY ADDR	Register address for the dummy read process (3Fh)
ONLINE STATUS H	Online-status – High byte
ONLINE STATUS L	Online-status – Low byte
REG DATA x	Content of register x

spi_ss		
spi_clk		
spi_mosi	R REG ADDR 1 R REG ADDR 2 R DUMMY ADDR R DUMMY ADDR]
spi_miso	ONLINE STATUS H ONLINE STATUS L REG DATA 1 REG DATA 2]

8.1.1.5. Write to individual register

Using the SPI transaction "Write to individual register", an individual register can be written to in the IP Core of the DSL Master.

Symbol	Meaning
W	Access bit: Write ("0")
REG ADDR	Register address (00h to 7Fh)
REG DATA	Register content
ONLINE STATUS H	Online-status – High byte
ONLINE STATUS L	Online-status – Low byte
spi_ss	
spi_clk	
spi_mosi ^W R	EG ADDR REG DATA
spi_miso ONLINE	STATUS H ONLINE STATUS L

8.1.1.6. Write to several registers (automatic increment)

Using the SPI transaction "Write to several registers", several registers can be written to in the IP Core of the DSL Master. During the transaction only the address of the starting register is transmitted. With each register data byte, the IP Core raises the addresses automatically.

If several registers are written to in any desired order, care must be taken that for each new sequence new SPI transactions are started.

Symbol		Meanin	Meaning			
W		Access	bit: Write ("0")			
REG ADDR		Address	s of the starting re	egister (00h to 7F	⁻ h)	
REG DATA x	(Content	of register x, beg	ginning at REG A	DDR	
ONLINE STA	ATUS H	Online-s	status – High byte	Э		
ONLINE STA	ATUS L	Online-s	status – Low byte	1		_
spi_ss						
spi_clk						
spi_mosi	W RE	G ADDR	REG 1 DATA	REG 2 DATA	REG 3 DATA	
spi_miso	ONLINE	STATUS H	ONLINE STATUS L			

8.1.1.7. Read/write sequence

The SPI transaction "Read/write sequence" permits a rapid sequence of actions that consist of read processes at one or more registers and related write processes to several registers in sequence in the IP Core of the DSL Master. The SPI SS is not reset during the transaction and the online-status is not transmitted twice.

The write operation must always form the final part of the "Read/write sequence". Multiple and single read or write accesses cannot be combined.

Symbol	Meaning				
R	Access bit: Read ("1")				
W	Access bit: Write ("0")				
REG ADDR 1	Register address for read access (00h to 7Fh)				
REG ADDR 2	Register start address for write access (00h to 7Fh)				
REG DATA 2	Register content for write access				
MASTER STATUS H	Online-status – High byte				
MASTER STATUS L	Online-status – Low byte				
REG DATA 1	Register content for read access				
spi_ss					
spi_clk					
spi_mosi ^R RE	R REG ADDR 1 W REG ADDR 2 REG 2 DATA				
spi_miso	R STATUS H MASTER STATUS L REG 1 DATA				

8.1.1.8. SPI errors

If the address of the SPI interface is wrong, fault indications are issued via spi_miso.

The fault indication is shown by a "1" signal to spi_miso, after which the spi_sel is reset by the frequency inverter application.

Table 193 contains a list of the fault conditions that lead to a fault indication.

Fault condition of the SPI	Fault indication		
Incorrect number of CLK impulses	spi_miso at high level		
Write command without data	spi_miso at high level		

Table 193: SPI errors

8.1.2. Parallel interface block

As an example, a parallel interface block is supplied together with the IP Core.

The parallel interface block follows the Texas Instruments Asynchronous External Memory Interface A (EMIFA). The reference document for this interface is the User's Guide SPRUFL6E, dated April 2010.

The figure and table below show the interface signals.

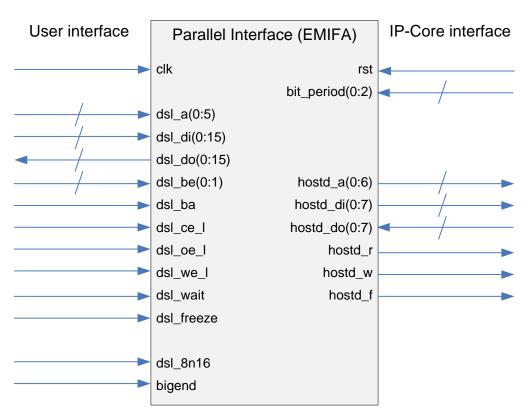
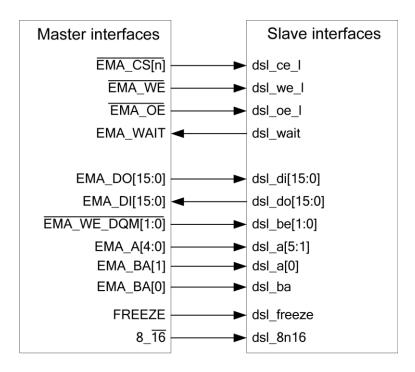


Figure 40: Parallel interface block signals

Pin name	Model	Function	Note
Host interface	name		
ema_clk	Input	Clock input	Separate clock domain to the IP Core
dsl_a(5:0)	Input	EMIFA: Address bus	
dsl_di(15:0)	Input	EMIFA: Data bus input	
dsl_do(15:0)	output	EMIFA: Data bus output	
dsl_be(1:0)	Input	EMIFA: Byte switch on	
dsl_ba	Input	EMIFA: Memory bank	
dsl_ce_l	Input	EMIFA: Slave selection	
dsl_oe_l	Input	EMIFA: Output switch on	
dsl_we_l	Input	EMIFA: Write access	
dsl_wait	output	EMIFA: Maintenance display	
dsl_freeze	Input	Freeze register	
dsl_8n16	Input	Data bus width selection	
bigend	Input	Byte sequence selection	Connect to the bigend input of the IP Core as well
IP Core interface			
rst	Input	Internal reset	Connect to IUO(1) of the IP Core
bit_period(2:0)	Input	Internal state machine	Connect to IUO(4:2) of the IP-Core
online_status_d(15:0)	Input	Internal status IP Core	
hostd_a(6:0)	output	Register block address bus	
hostd_di(7:0)	output	Data bus interface to core	
hostd_do(7:0)	Input	Data bus core to interface	
hostd_r	output	Read access requirement	
hostd_w	output	Write access requirement	
hostd_f	output	Freeze register selection	

Table 194: Parallel interface block signals

Note that the parallel interface does not implement the <code>online_status</code> signals. These signals must be recorded by the user separately to the parallel interface.


The signal characteristics of the parallel interface block are set out in the table below:

Parameter	Value			Units	
	Min. Typic		Max.		
Clock (ema_clk)			100	MHz	
Setup time	2			EMA_CLK cycles	
Strobe time	7			EMA_CLK-cycles	
Hold time	1			EMA_CLK-cycles	
Turnaround time	1			EMA_CLK-cycles	

Table 195: Characteristics of the EMIFA interface

8.1.2.1. Assignment to the host

The assignment of the signals between Host (interfaces master with EMIFA signals) and DSL Master (interfaces slave) should appear as follows:

Figure 41: Allocation of parallel interface block to host

The table below	provides	details	of the	interface	installation:
-----------------	----------	---------	--------	-----------	---------------

Interfaces signal	Installation detail
dsl_di, dsl_do	16 bit wide data bus with separate input and output direction.
dsl_a	Address bus for addressing 16 bit registers.
dsl_ba	Sub-address for 8 bit interface. If the parallel bus is used with a 16 bit wide
	EMIFA interface, only even addresses are used and this input is not used.
dsl_be_l	"Switch on single byte" inputs. These inputs are used to access individual
	bytes of a 16 bit wide EMIFA interface.
dsl_ce_l	Slave parallel bus selection. This signal can be an internally generated
	selection signal (chip enable) or part of the address decoding. If this signal is
	deactivated ('1'), no access to the DSL Master is possible.
dsl_oe_l	Input "Output switch on". This signal gives the time control for a direction
	switch of the bi-directional bus.
dsl_we_l	Input "Switch on write access". This signal gives the time control for a write
	access to the DSL Master.
dsl_wait	Waiting time Host direction The minimum requirement for the bus states of
	the parallel bus are specified in Table 9.

Table 196: Details of the parallel interface blocks

In addition to the EMIFA signals, the dsl_freeze and dsl_8n16 signals are implemented.

Interfaces signal	Value	Function
dsl_freeze		Use for consistent multi-byte access
	0	Multi-byte registers are refreshed
	1	Multi-byte registers are frozen
dsl_8n16		Use for selection of the data bus width
	0	16 bit width
	1	8 bit width

Table 197: Additional parallel interface block signals

Also, because of the selection of <code>bigend</code>, the register assignment of the DSL Master should be taken into account.

8.1.3. Basic interface specification

If a fast connection of the IP-Core registers is needed the user can develop an own interface block directly connected to the basic interface. The following signals are available for interfacing the IP Core directly:

Pin name	IP Core	Function	Note
	signal type		
hostd_a(6:0)	input	Register block address bus	
hostd_di(7:0)	input	Data in bus interface to core	
hostd_do(7:0)	output	Data out bus core to interface	
hostd_r	input	Read access identifier	
hostd_w	input	Write access identifier	
hostd_f	input	Register block freeze indicator	
bit_period(2:0)	output	Internal state machine timing	aux_signals (4:2) top level
			output

Table 198: Direct interfacing signals

8.1.3.1. General information

The main signals for accessing the basic interface are the address bus ($hostd_a$), the data in ($hostd_di$) and data out ($hostd_do$) lines as well as their respective read and write flags ($hostd_r$ and $hostd_w$). Apart from these access signals, there are two other important signals:

1) The register freeze flag (hostd_f)

This flag controls the updating of multi-byte registers inside the IP Core. When it is raised to '1', no further updates are done for those multi-byte registers. Update values are stored separately, but will not be available in their corresponding registers until the freeze flag drops to '0' again. This procedure should be used whenever a multi-byte register is read, to avoid updates in between read operations of a single set of data.

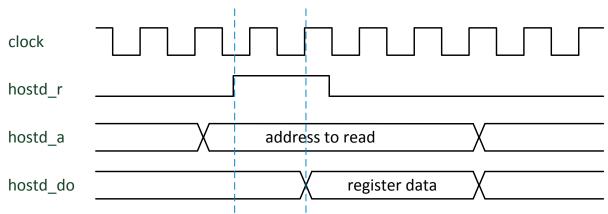
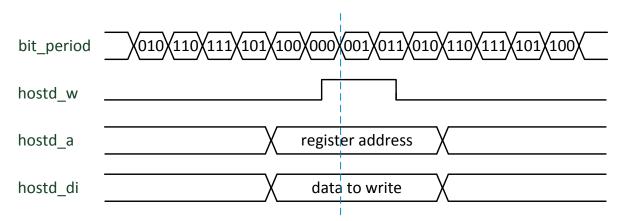
2) The internal timing reference (bit period)

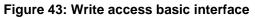
Some registers care for being read by the user, and there is a specific timing when the data from the data in line is actually written to the register on which the write command is issued. Therefore, when implementing the fastest possible communications, the user needs to be aware of these timings.

It should be noted that some commands can only be issued once per eight clock cycles of the IP Core (which translates to roughly 110 ns). If the user interface is designed in a way that guarantees the read/write flags to be always set for a significantly longer time, then the timing reference doesn't need to be monitored.

8.1.3.2. Read access timing

The read access through the basic interface must be implemented according to the diagram below.


Figure 42: Read access basic interface

The register address to be read must be set at the address bus ($hostd_a$). Then the read flag ($hostd_r$) must be set to "1". After two clock cycles (i.e. at the second rising edge of the CLK signal, max. 27 ns) the register data will be available at the data out bus ($hostd_do$). It will be kept available for as long as the address is not changed. This is the fastest reading procedure possible for the IP Core.

8.1.3.3. Write access timing

The write access through the basic interface must be implemented according to the diagram below.

For write operations it is important to monitor the <code>bit_period</code> signal when implementing the fastest possible write commands. Register address and data to write to the register must be set on their corresponding busses (hostd a and

hostd_di). Then the write flag (hostd_w) must be set to "1" and stay active while bit_period is transitioning from "000" to "001". At the time of this transition, the data in the register will be updated with the data of the data in bus. The write flag should be kept high until bit period has reached "011".

bit_period is a three bit gray counter, incrementing every clock cycle (around 13 ns). Thus, it is only possible to execute one write command every eight clock cycles, which takes about 110 ns. Of course, if the customer interface connected will issue commands significantly slower, and it is known that the write flag will be active for a time greater than 110 ns, bit_period doesn't need to be monitored. It is only needed when aiming for the most rapid interfacing.

8.1.4. Register assignment

The address assignment of the registers depends on the bigend control signal and likewise on the dsl 8n16 control signal for 16 bit wide parallel bus interfaces.

It should be noted that only 8 bit addressing is available when using the SPI interface block.

When using the parallel bus interface block (EMIFA) with 16 bit addressing, the register addresses from Table 200: Address assignment for the DSL Master

must be assigned to the dsl_a and dsl_ba signals as follows:

Signal	Register address
dsl_a[5:0]	Bit 6:1
dsl_ba	Bit 0

 Table 199: Parallel bus register address assignment

Designation	8 bit, Big-Endian	8 bit, Little-Endian	16 bit, Big-Endian	16 bit, Little-Endian
SYS CTRL	00h	03h	00h (15:8)	02h (15:8)
SYNC CTRL	01h	02h	00h (7:0)	02h (7:0)
MASTER QM	03h	00h	02h (7:0)	00h (7:0)
EVENT H	04h	07h	04h (15:8)	06h (15:8)
EVENT L	05h	06h	04h (7:0)	06h (7:0)
MASK H	06h	05h	06h (15:8)	04h (15:8)
MASK L	07h	04h	06h (7:0)	04h (7:0)
MASK SUM	08h	OBh	08h (15:8)	0Ah (15:8)
EDGES	09h	0Ah	08h (7:0)	0Ah (7:0)
DELAY	0Ah	09h	0Ah (15:8)	08h (15:8)
VERSION	0Bh	08h	0Ah (7:0)	08h (7:0)
ENC ID2	0Dh	0Eh	0Ch (7:0)	0Eh (7:0)
ENC_ID1	0Eh	0 Dh	0Eh (15:8)	0Ch (15:8)
ENC_IDI ENC ID0	0Fh	0Ch	0Eh (13:0)	0Ch (7:0)
POS4	10h	17h	10h (15:8)	16h (15:8)
POS4 POS3	10h 11h	17h 13h	10h (15:8)	12h (15:8)
	11h 12h	13h 12h	10h (7:0) 12h (15:8)	12h (15:8) 12h (7:0)
POS2				
POS1	13h	11h	12h (7:0)	
POSO	14h	10h	14h (15:8)	10h (7:0)
VEL2	15h	16h	14h (7:0)	16h (7:0)
VEL1	16h	15h	16h (15:8)	14h (15:8)
VELO	17h	14h	16h (7:0)	14h (7:0)
SUMMARY	18h	1Eh	18h (15:8)	1Eh (7:0)
VPOS4	19h	1Fh	18h (7:0)	1Eh (15:8)
VPOS3	1Ah	1Bh	1Ah (15:8)	1Ah (15:8)
VPOS2	1Bh	1Ah	1Ah (7:0)	1Ah (7:0)
VPOS1	1Ch	19h	1Ch (15:8)	18h (15:8)
VPOS0	1Dh	18h	1Ch (7:0)	18h (7:0)
VPOSCRC_H	1Eh	1Dh	1Eh (15:8)	1Ch (15:8)
VPOSCRC_L	1Fh	1Ch	1Eh (7:0)	1Ch (7:0)
PC_BUFFER0	20h	20h	20h (15:8)	20h (7:0)
PC_BUFFER1	21h	21h	20h (7:0)	20h (15:8)
PC BUFFER2	22h	22h	22h (15:8)	22h (7:0)
PC BUFFER3	23h	23h	22h (7:0)	22h (15:8)
PC BUFFER4	24h	24h	24h (15:8)	24h (7:0)
PC BUFFER5	25h	25h	24h (7:0)	24h (15:8)
PC BUFFER6	26h	26h	26h (15:8)	26h (7:0)
PC BUFFER7	27h	27h	26h (7:0)	26h (15:8)
PC ADD H	28h	2Bh	28h (15:8)	2Ah (15:8)
PC ADD L	29h	2Ah	28h (7:0)	2Ah (7:0)
PC OFF H	2Ah	29h	2Ah (15:8)	28h (15:8)
PC OFF L	2Bh	28h	2Ah (7:0)	28h (7:0)
PC CTRL	2Ch	2Dh	2Ch (15:8)	2Ch (15:8)
PIPE S	2Dh	2Fh	2Ch (7:0)	2Eh (15:8)
PIPE D	2Eh	2Eh	2Eh (15:8)	2Eh (7:0)
PC DATA	25h	2Ch	2Eh (7:0)	2Ch (7:0)
ACC ERR CNT	38h	38h	38h (15:8)	38h (7:0)
AXACC	39h	39h	38h (7:0)	38h (15:8)
MAXACC MAXDEV H	3Ah	38h	3Ah (15:8)	3Ah (15:8)
MAXDEV_H MAXDEV L	3Bh	3Ah	3Ah (7:0)	3Ah (7:0)
птилит.	ווסכ	3Fh	JAII (/ • U)	JAII (/.U)

The table below specifies the relevant address assignment.

Table 200: Address assignment for the DSL Master

8.2. Implementation of the IP Core for Xilinx Spartan-3E/6

The DSL Master IP Core is provided by SICK for Xilinx Spartan-3E and Spartan-6 FPGA components.

Table 201 lists the requirements that must be fulfilled for the FPGA components selected.

FPGA requirements	IP Core variant	Spartan-3E	Spartan-6
Supported "Speed Grades"		-4	-3
		-5	-2
Number of "Slices" used / "Slice register"	Standard, serial	2,522	1,882
Number of "BUFG/BUFGMUX" used		1	1
Timing requirements (clk periods)		13 ns	13 ns

Table 201: Requirements of Xilinx Spartan-3E/6 FPGAs

The implementation of the IP Core is based on an installed tool-chain, that is provided by Xilinx.

Tool	Version
Xilinx ISE Design Suite	14.7
Table 202: Xilinx tool-chain	

8.2.1. Design variants

The DSL Master IP Core is supplied in two variants.

Standard

The "Standard" variant (dslm_n) is a small IP Core, but does not support any safety functions and diagnostics of the protocol and the motor feedback systems connected. Use of the "Standard" variant does **not** permit a safety relevant application to be supported using SICK motor feedback systems certified for safety applications.

Safe

The "Safe" variant (dslm_s) is a larger IP Core and supports safety functions and diagnostics in accordance with the requirements which are described in this manual and which are required for specific motor feedback systems (see the corresponding data sheet).

Both variants can be combined with various interface blocks (see section 8.1). Example projects are provided on the accompanying CD-ROM.

All IP Cores with all interface blocks are packaged as ZIP files that can be found on the accompanying CD-ROM in the "IP Core\Xilinx" folder.

Zip file

yymmdd.dslmaster_ xilinx.zip

Table 203: IP Core Xilinx Spartan-3E/6

yymmdd defines the release date of the IP Core in the format year (yy), month (mm) and day (dd).

8.2.2. Design resources

The DSL Master IP Core is supplied as a net list in NGC format. Additional design resources contain a "constraint" file that specifies the time and environmental conditions as well as a VHDL template ("wrapper") for a top level circuit that integrates the IP Core.

Path in ZIP archive	File			Resource
		dslm_n_bus	dslm_n_spi	
\ISE-sp3\	dslm_n.ngc top.ucf wrapper_n_bus.vhd wrapper_n_bus.xise wrapper_n_spi.vhd wrapper_n_spi.xise	x x x x	x x x x	IP Core, wrapper, timing constraints Spartan-3E
\ISE-sp6\	dslm_n.ngc top.ucf wrapper_n_bus.vhd wrapper_n_bus.xise wrapper_n_spi.vhd wrapper_n_spi.xise	X X X X	x x x x	IP core, wrapper, timing constraints Spartan-6
\External_Blocks	bus_ctrl.vhd spi_ctrl.vhd	х	x	Open source interface blocks

 Table 204: Design resources

```
HIPERFACE DSL<sup>®</sup>
```

If a Xilinx ISE project is loaded, the NGC net list must be copied directly into the project folder.

Please note that the NGC net lists cannot be added via the menu commands "Project > Add Source" or "Project > Add Copy of Source".

The instantiation of the NGC net list is by a "black_box" in the source code of the top level design.

In VHDL, this instantiation is in accordance with the following template:

```
component dslm_n
  port (...);
  end component;
...
attribute box_type : string;
attribute box_type of dslm_n: component is "black_box";
...
begin
...
<component_name> : dslm_n
  port map (...);
...
```

In Verilog, this instantiation is in accordance with the following template:

```
module dslm_n (...);
endmodule
...
dslm_n <module_name> (...);
//synthesis attribute box_type of dslm_n is "black_box"
...
```

8.2.3. Demo project

To get started quickly, each IP Core is supplied with a demo project for Xilinx ISE. This demo project contains all the settings to begin the installation of the IP Core with the accompanying top level design ("wrapper").

Prerequisites for the demo project are:

- All the files from the ZIP archive for the IP Core have been extracted into a folder. Any preferred location may be used for this.
- All the tools listed have been installed on the development computer.

8.2.3.1. Demo project resources

The ZIP archive contains the project file for Xilinx ISE, as well as help files that are automatically generated by Xilinx ISE.

Path in ZIP archive	File	dslm_n_bus	dslm_n_spi	Resource
\ISE_sp3\	wrapper_n_bus.xise wrapper_n_spi.xise	x	x	Xilinx ISE project file Spartan-3E
\ISE_sp6\	wrapper_n_bus.xise wrapper_n_spi.xise	x	x	Xilinx ISE project file Spartan-6

The project files for the variants are set out in the table below:

Table 205: Demo project resources

8.2.3.2. Sequence of the demo project

This chapter lists the steps that are required to carry out the demo project for the "Standard" variant with SPI interface in Xilinx ISE 12.1.

Start "ISE Project Navigator".

🌆 ISE Project Navigator (M. 53d) - [ISE Design Suite InfoCenter	n]	
ன File Edit View Project Source Process Tools Window Lay		_ 8 ×
i 🗋 ờ 🗐 🕼 i 🐰 🛅 🕼 🗶 📁 🖉 🔊	2 2 🖉 🔎 🖻 🦰 🖽 📼 🖙 🛛 🖗 😵 🔋 🕨 🕿 🛠 🔋 🖓	
Start ↔□ &×	× O	<u>^</u>
Welcome to the ISE® Design Suite	Release Overview Design Resources Documentation Project Navigator	
Use one of the options below to start working on a project. Refer to the "Additional resources" section for more information.	SE Design Suite 12 Release Overview	
	ISE Design Suite Highlights:	
Recent projects Double click on a project in the list below to open	Xilina® ISE® Design Suite 12 enables dynamic power reduction using patent pending automated clock gating technology. Design preservation flow for timing predictability. AG4-c compliant IP supports a streamlined "plug-and-play" FPGA design flow Coming in Fall 2010 Inutitive 4th generation partial reconfiguration design flow for Virtex®-6 enables lower system costs and power. System Generator support for Windows® XP and VISTA® 64-bit.	
	 High density design will see 2X faster synthesis and 1.3X faster implementation runtimes. IP Updates: Click here for a summary of IP library updates and new products. 	
	Ease of Use: Click the Documentation tab to quickly locate important ISE documentation resources.	
	What's New in Xilinx ISE Design Suite	
Project commands Open Project (Project Browser) New Project (Open Example)	 XIIIn: IEE Design Suite 12 Installation, Licensing, and Release Notes Known issues in the XIIInx ISE Design Suite 12 Release Getting Started with the ISE Design Suite Tutorials 	
Additional resources	For a complete list of Xilinx ISE Design Suite 12 documentation, refer to the Documentation tab.	
15E Design, Suite InfoCenter 15E Ouch Start Tudoriska on the Web Application Notes		
	ISE Design Suite InfoCenter	
Console		⇔□♂×
		<
		×
Console O Errors 🔔 Warnings 🐹 Find in Files Results		>
Fertig		
reiug		

Open the "Standard" project file.

Open Project		? 🗙
Suchen in:	🕞 dslm_n_spi 🖉 🗢 🖻 💣 [
à	config	
Zuletzt verwendete D	- Joanda d'Shivise	
Desktop		
Eigene Dateien		
Arbeitsplatz		
S		
Netzwerkumgeb	Dateiname: Standard_spi.xise	Öffnen
ung	Dateityp: ISE Project Files (*.xise)	Abbrechen

HIPERFACE DSL®

The "ISE Project Navigator" should appear as follows:

Yes Beige Yes <	
Design ••••••• B Constraints Project Status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status Image: status </td <td></td>	
Were: Warning: Design Strategy: Standard spl. size No Errors Were: Standard spl. size Project File: Standard spl. size No Errors Were: Standard spl. size Project File: Standard spl. size No Errors Were: Standard spl. size Project File: Standard spl. size No Errors Were: Standard spl. size Project File: Standard spl. size No Errors Were: Standard spl. size No Errors Model t.verl Utilization No Errors Were: Standard spl. size No Errors Model t.verl Utilization No Errors Were: Standard spl. size No Errors Model t.verl Utilization No Errors Were: Standard spl. size Standard spl. size No Errors No Errors Standard spl. size Standard spl. size Standard spl. size Design Stategy: Wereings: Standard spl. size Standard spl. size Status Generated Errors Warnings: Status Generated Errors Warnings: Design Stategy: Status Generated Errors	
Were @ Indemnation @ Sindation @ Final Image: Project File: Standard_spi.xise Parser Errors: No Image: Project File: Standard_spi.xise Parserre No <td< td=""><td></td></td<>	
Image: Senderd_spl Image: Se	
Image: Design Strategy: Image: Desi	
Image: Secondary Report Image: Seco	
Secondary Reports Synthesise Super Linking Secondary Reports Secondary Report Seconda	
Image: Secondary Reports Image: Secondary Report Image: Secondary	
A Processes Running Processes R	
Image: Status	
Image: Secondary Reports Image: Se	
Image: Processes Running Detailed Report Processes Running Bitgon Resort Processes Running Synthesis Aeport Processes Running Polet ARD Translation Report Processes Running Polet ARD Report Polet ARD Report Image: R	
Implement beign Synthesis Report Synthesis Report Implement beign Synthesis Report Synthesis Report Implement beign Synthesis Report Synthesis Report Implement beign Synthesis Report Secondary Reports Implement beign Synthesis Progenties Implement beign Secondary Reports Implement beign Secondary Report	
Image: Secondary Report Image: Secondary Report Image: Secondary Report Design Summary Reports Image: Secondary Report Design Summary Reports Image: Secondary Report Design Summary Reports Image: Secondary Report Design Properties Image: Secondary Report Design Summary Reports Image: Secondary Report Design Summary Reports Image: Secondary Report Design Summary Reports Image: Secondary Reports Design Properties Image: Secondary Reports Report Name Image: Secondary Reports Report Name	
No Processes Running Processes Running Processes Running Report Running Report Running Runn	
Image: Secondary Report Image: Secondary Report Image: Secondary Report Image: Secondary Report Secondary Report Image: Secondary Report	
Processes: wraper_n_spi - behavior Power Peport Power Peport Design Summary/Reports Bigen Report Bigen Report User Constraints Secondary Reports User Constraints Example Ansatz Generate Programming File Source Programming File Source Programming File Source Programming File	
Image: Synthesize - Synthes	-
Image: Secondary Reports Design Summary/Reports Image: Secondary Reports Design Vallies Image: Secondary Reports Design Properties Image: Secondary Report Design Properties Image: Secondary Rep	- 11
Implement Design Implement Design Implement Design Implement Design Imp	
Implement Design Implement Design Implement Design Implement Design Imp	
Implement Design Implement Design Implement Design Implement Design Imp	E 1
Seleta de l'ougramming me S	
Analyze Design Using ChipScope Date Generated: U1/21/2011 - U8/32:17	
Show Errors	
🖼 Start 👒 Design 🚺 Files 🐧 Libraries 😰 Design Summary 💌	
	1 fr X
Curbone The Constant of the second se	
UNFORMATION INCLUSION IN THE INFORMATION AND AND AND AND AND AND AND AND AND AN	e 👘
WINFO:ProjectMgmt:656 - Parsing design hierarchy completed successfully.	
Launching Design Summary/Report Viewer	
S Control & Humber & Ends Starburgh	\leq
🔝 Console 🥝 Errors 🔝 Warnings 🙀 Find in Files Results	>
	>

Start the circuit synthesis:

🔤 ISE Project Navigator (M. 53d) - C:\Dokumente und Einstellun	ngen	steinsi1\Desktop\Xilinx\ISE_sp3\dslm_n_si	ni\Standard_spi.xise - [[Design S	ummary (Synth	esized)	1			_ 0	I ×
Eile Edit View Project Source Process Tools Window Lay										- 6	
	Ø	P 🗟 💫 i 🕾 🗄 🗉 🖙 i 🔑 🚱 i 🕨	🗵 📌 i 💡								
Design ↔ □ ♂ ×	6	Design Overview	wr	rapper n	spi Project Stat	us (01/2	21/2011	08:33:54)			14
View: 💿 🎒 Implementation 🔿 🞆 Simulation	_	- 📄 Summary 🗋 IOB Properties		andard spi.		rser Erro			No Errors		
Hierarchy	0	🔲 Module Level Utilization		apper_n_sp		plement	tation St	ate:	Synthesize	d	
🛐 🔄 🔄 Standard_spi	0	Timing Constraints Pinout Report		3s500e-4cp		•Erro	ors:		No Errors		
Image: Construction of the second	ÇĴ	Clock Report		. 12.1		•Wai	rnings:		7 Warnings	; (7 new)	
spi1 - spi ctrl - behavior (spi ctrl.vhd)	HT K	🛅 Static Timing		lanced			iting Res	ults:			-
Core - dsim_n (dsim_n.ngc)	30	Errors and Warnings Parser Messages		nx Default	(unlocked)		ing Cons				-
		Synthesis Messages		stem Settin			al Timing				-
	ŝ	D Translation Messages			-						-
		Place and Route Messages									
		🚺 Timing Messages			ation Summary (4
		Bitgen Messages All Implementation Messages	Logic Utilization	U	sed		ilable		ilization		
		Detailed Reports	Number of Slices			39		4656		41%	- 1
		Synthesis Report Translation Report	Number of Slice Flip Flops			50		9312		16%	
		Map Report	Number of 4 input LUTs			50		9312		33%	
		🔲 Place and Route Report	Number of bonded IOBs			18		92		19%	-
No Processes Running		Post-PAR Static Timing Report Power Report	Number of GCLKs			1		24		4%	·
Processes: wrapper_n_spi - behavior		Bitgen Report									
Design Summary/Reports		Secondary Reports			Detailed Repo	rts				E	1
3 User Constraints			Report Name	Statu	Generated		Errors	Warnings	In	nfos	
🔄 🖶 🧞 Synthesize - XST		Design Properties	Synthesis Report	Curren	: Fr 21. Jan 08:3	3:54 2011	0	7 Warnings	(7 new) 0		
Implement Design Generate Programming File		Optional Design Summary Contents	Translation Report								1
🖶 🎡 Configure Target Device		Show Clock Report Show Failing Constraints	Map Report								1
- 64 Analyze Design Using ChipScope		- Show Warnings	Place and Route Report								1
		Show Errors	Power Report								1
			Post-PAR Static Timing Repor	rt							1
			Bitgen Report								1
											-
					Secondary Rep	orts				E	
			-							_	
Start 🗠 Design 🚺 Files 陷 Libraries	Σ	Design Summary (Synthesized) 🛛 🛛								
Console										+ □	8;
Started : "Launching RTL Schematic Viewer for	uran	er n sni nar".									1
boaroca i baanoning his bonematic ficate for	or of										
											1
	_			_		_	_				>
Console 🔇 Errors 🔔 Warnings 🕅 Find in Files Results											

Start the circuit layout:

🚟 ISE Project Navigator (M.53d) - C:\Dokumente und Einstellu	ngen	steinsi1\Desktop\Xilinx\ISE_sp3\dslm_n_sp	i\Standard_spi.xis	e - [Design Summary	(Impleme	nted)]			đΧ
🔀 File Edit View Project Source Process Tools Window Lay		Help						-	- 8 ×
		🥕 🖻 🔁 🗟 🗖 🖻 🗖 🖻 🖉 🖉 🕨	∑ 🛠 i 🖓						
Design ↔ □ ₽ ×	6	Design Overview Summary		wrapper_n_spi Proj	ect Status (01/21/2011 -	08:40:05)		^
View: 💿 🏟 Implementation 🔘 🎆 Simulation	G	- 📄 IOB Properties	Project File:	Standard_spi.xise	Parser Err	ors:	No Errors		
Hierarchy	6	Module Level Utilization Timing Constraints	Module Name:	wrapper_n_spi	Implemen	tation State:	Placed and	d Routed	
G Standard_spi			Target Device:	xa3s500e-4cpg132	• Err	ors:	No Errors		
🔒 🔂 🖶 wrapper_n_spi - behavior (wrapper_n_spi.vhd)	Ç5	- 📄 Clock Report	Product Version:	ISE 12.1	• Wa	rnings:	7 Warning	s (7 new)	
Spi1 - spi_ttrl - behavior (spi_ttrl.vhd)	IDK	Static Timing Errors and Warnings	Design Goal:	Balanced	•Ro	uting Results:	All Signals	Completely Route	ad
- I top urf	30	- E Parser Messages	Design Strategy:	Xilinx Default (unlocked)	• Tin	ning Constrain	ts: Al Constra	aints Met	_
	A	- Synthesis Messages	Environment:	System Settings	• Fin	al Timing Scor	e: 0 (Timing	Report)	_
		Translation Messages Map Messages							
		- 📄 Place and Route Messages		Device Utili	zation Sum	mary			[-]
		Eining Messages Bitgen Messages	Logic Utilization	berice dan	Used	Available	Utilization	Note(s)	-
		All Implementation Messages	Number of Slice Flip Flo	05	1.550	9,312	16%	Hoce(sy	_
		Detailed Reports	Number of 4 input LUTs	•	3,171	9,312	34%		
			Number of occupied Sli		2.014	4,656	43%		_
		📄 Map Report		taining only related logic	2.014	2.014	100%		_
No Processes Running		Place and Route Report Static Timing Report		taining unrelated logic	0	,	0%		_
Processes: wrapper n. spi - behavior		🗋 Power Report	Total Number of 4 input		3,182	9,312	34%		_
Reports		Secondary Report	Number used as logi		3,171	.,			
🎽 🗄 🐲 Design Utilities		Post-Place and Route Simulation Mo	Number used as a ro	ute-thru	11				
User Constraints		Design Properties	Number of bonded IOB	6	18	92	19%		
💷 🖶 🚺 🖉 Implement Design		Enable Message Filtering	Number of BUFGMUXs		1	24	4%		
Generate Programming File		Optional Design Summary Contents	Average Fanout of Nor	n-Clock Nets	3.85				
Configure Target Device Analyze Design Using ChipScope		Show Failing Constraints			_				
		Show Errors		Performa	nce Summa				[-]
		_	Final Timing Score:	0 (Setup: 0, Hold: 0, G			Pinout Data		_
			Routing Results:	All Signals Completely F		itering cinici oy	Clock Data:	Clock Report	
			Timing Constraints:				CIOCK D'dear		
			runing conscioution						_
									~
🗺 Start 📑 Design 🖒 Files 🌔 Libraries	Σ	Design Summary (Implemented)							
Console								++	08×
INFO:NetListWriters - Xilinx recommends runnin									^
for setup by specifying the MAX field in th specifying the MIN field in the SDF file. P									
documentation for more details on specifyin	g Ml	N and MAX field in the SDF.							
INFO:NetListWriters:665 - For more information to the simulator, see your Simulator tool d									
to the simulator, see your simulator toor a	50 000	encacion.							
Process "Generate Post-Place & Route Simulatio	n Mo	del" completed successfully							
									~
									>
Console 🙆 Errors 🔬 Warnings 🐹 Find in Files Results									

8.3. Installation of the IP Core for Altera FPGAs

The DSL Master IP Core is provided by SICK for Altera FPGA components. The IP Core is available in the form of encrypted VHDL files. These can be used for synthesis on all Altera FPGAs of sufficient size.

Table 206 lists the requirements that must be fulfilled for the FPGA components selected.

IP Core variant	i.e for Cyclone III
	-7
	-8
Standard, serial	4,614
	Period: 13 ns

Table 206: Requirements for Altera FPGAs

The installation of the IP Core is based on an installed Toolchain that is provided by Altera.

Tool	Version
Quartus [®] II	v13.0

Table 207: Altera toolchain

8.3.1. Design variants

The DSL Master IP Core is supplied in two variants.

Standard

The "Standard" variant (dslm_n) is a small IP Core, but does not support any safety functions and diagnostics of the log and the motor feedback systems connected. Use of the "Standard" variant does not permit a safety relevant application to be supported using SICK motor feedback systems certified for safety applications.

Safe

The "Safe" variant (dslm_s) is a larger IP Core and supports safety functions and diagnostics in accordance with the requirements which are described in this manual and which are required for specific motor feedback systems (see the corresponding data sheet).

Both variants can be combined with various interface blocks (see section 8.1). Example projects are provided on the accompanying CD-ROM.

All IP Cores with interface blocks are packaged in a ZIP file and can be found on the accompanying CD-ROM in the "IP Core\Altera" folder

Zip file

yymmdd.dslmaster_altera.zip

Table 208: Altera IP Core variants

yymmdd defines the release date of the IP Core in the format year (yy), month (mm) and day (dd).

8.3.2. Design resources

The DSL Master IP Core is supplied as an encrypted VHDL project. The interface blocks are supplied as open source VHDL files. Additional design resources contain a file that specifies the time and environmental conditions as well as a VHDL template for a top level circuit that integrates the IP Core and the interface blocks.

Path in ZIP archive	File	dslm_n_spi	dslm_n_bus	Resource
\ (root)	dslm_n_spi.qsf dslm_n_bus.qsf	х	x	Project settings and time conditions
\wrapper	wrapper_n_spi.vhd wrapper_n_bus.vhd	x	x	VHDL template for the top level circuit "wrapper" for Altera Quartus II
\source	e_dslm_n.vhd	Х	Х	Encrypted VHDL modules
	e_auxiliary.vhd	Х	Х	
	e_check8b10b.vhd	Х	Х	
	e_crc5.vhd	Х	Х	
	e_crc16.vhd	Х	Х	
	e_dec8b10b.vhd	Х	Х	
	e_dsl_core_top.vhd	Х	Х	
	e_dslmaster.vhd	Х	Х	
	e_dualport.vhd	Х	Х	
	e_enc8b10b.vhd	Х	Х	
	e_flag.vhd	Х	Х	
	e_framer.vhd	Х	Х	
	e_globals.vhd	Х	Х	
	e_int_ctrl.vhd	Х	Х	
	e_intg.vhd	Х	Х	
	e_master_pm.vhd	Х	Х	
	e_par_mrx.vhd	х	х	
	e_par_mtx.vhd	х	х	
	e_par_pm.vhd	Х	Х	
	e_pipeline.vhd	х	х	
	e_reset_sync.vhd	х	х	
	e_sampler.vhd	Х	Х	
	e_sequencer.vhd	х	х	
<u> </u>	e_sync_gen.vhd	Х	Х	
\source\	spi_ctrl.vhd	х		Open VHDL modules
External_Blocks	bus_ctrl.vhd		Х	
Vicense	DSL_encr_license.dat	Х	Х	License file for use of the encrypted VHDL project

Table 209: Design resources

HIPERFACE DSL®

Please note: If you import the time lines from the associated qsf file into Quartus II, set the following options in the "Advanced Import Settings" dialog box:

Advanced Import Settings
Import Instance assignments from a lower-level entity Entity assignments from a lower-level entity (including IP cores) Global assignments from another project
Assignment types to import Global assignments Instance assignments All assignments to pins Back-annotated routing Promote assignments to all instances of the entity Limit promotion to instances that match only certain characters Instance wildcard:
Import options Imported assignments do not exist in current project Imported assignments overwrite any conflicting assignments Imported entity assignments replace current entity assignments OK Cancel

Please note: To compile a circuit with encrypted VHDL modules, the associated license file must be installed.

In the "Tools" menu in Quartus II, click on the "License Setup" entry. The "Options" dialog box is displayed. Under the entry "License file", select the associated license file:

Options	×
Category:	
License Setup	
Processing	
Global User Libraries (All Proje License file: C:\Data\Altera\standard\license\	NDSL_(M320_55)_encr_license.dat
🖻 Assignment Editor	
Colors Use LM_LICENSE_FILE variable: C:\Temp\	vmxe_3_6.5c\MXE\license.dat
Fonts	
Block/Symbol Editor	Web License Update
Colors License Type: Web Edition	
Fonts Subscription Expiration: 2009.10	Begin 30-day Grace Period
E- Chip Planner Host ID Tupe: Not found	
	Wait for floating licenses
Fonts Host ID Value: Not found	
🖻 Design Partition Planner	
Licensed AMPP/MegaCore functions:	
LogicLock Regions Window Vendor Product Version Expiration Co	ount Hostid Value Hostid Type
	xed Any
Fonts	
Suppression Colors	
- Colors	
Ponts	
- RTL Viewer	
- Technology Map Viewer	
Local System info	
Fonts Network Interface Card (NIC) ID: 00306eb04	16-5
Pin Planner	1003
Fonts C: drive serial number: 94de6ae5	
Programmer	
Report Window Software Guard ID: Not found	
Colors	
Fonts	
	OK Cancel

8.3.3. Demo project

To get started quickly, each IP Core is supplied with a demo project for Quartus II. This demo project contains all the settings to begin the installation of the IP Core with the accompanying top level design ("wrapper").

Prerequisites for the demo project are:

- All the files from the ZIP archive for the IP Core have been extracted into a folder. Any preferred location may be used for this.
- All the tools listed have been installed on the development computer.

8.3.3.1. Demo project resources

The ZIP archive contains the project file and project settings for Altera Quartus II, as well as help files that are automatically generated by Quartus II.

The project files for the variants are set out in the table below:

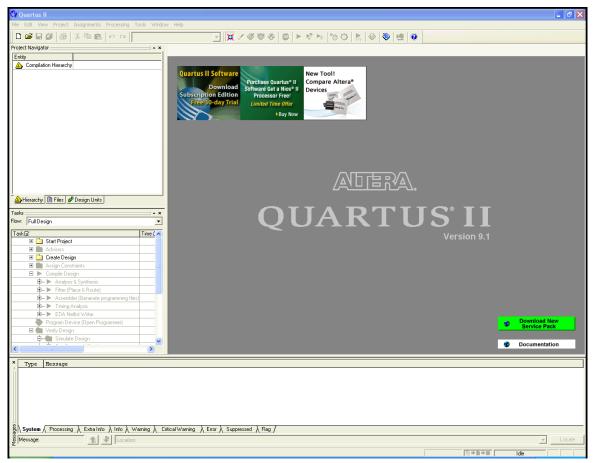
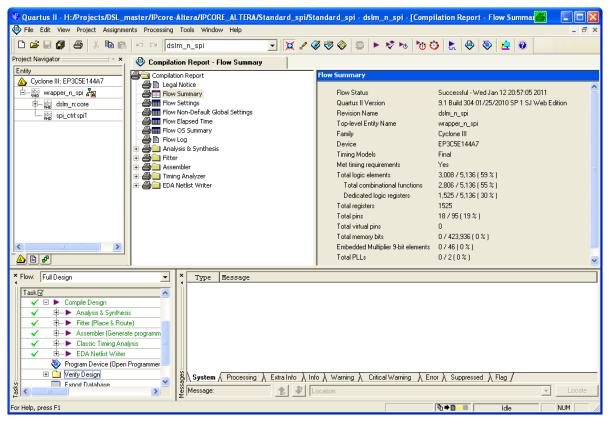

File	Resource
Standard_spi.qpf Standard_bus.qpf	Project file Altera Quartus II

Table 210: Demo project resources

8.3.3.2. Sequence of the demo project

This chapter lists the steps that are required to carry out the demo project for the "Standard" variant.

Start "Quartus II".


Open the project file "Standard_spi".

Open Project			8	×
Cerca in:	🗀 Standard_spi	_ +	🗈 💣 🎫	
Documenti recenti Desktop Documenti	constraints db db incremental_dt icense simulation source tb wrapper Standard_spi.or			
Risorse del computer				
Tisorse di rete	Nome file:		•	Apri
	Tipo file:	Quartus II Project File (*.qpf;*.quartus;*.c	qar) 💌	Annulla

Select the option "Full Design" from the "Flow" list in the "Tasks" window and start compilation of the circuit:

Tasks	- x			
Flow: Full Design	•			
Task 🖌	Time 🕻 🔨			
🕀 🧰 Start Project				
🗉 🧰 Advisors				
🕀 🧰 Create Design				
🕀 🧰 Assign Constraints				
🖃 🕨 Compile Design				
🗄 🕨 Analysis & Synthesis				
🕸 🕨 Fitter (Place & Route)				
🗄 🕨 Assembler (Generate programming files)				
🗄 🕨 Classic Timing Analysis				
🗄 🕨 EDA Netlist Writer				
🧶 Program Device (Open Programmer)				
🖃 🔄 Verify Design				
🛱 🔂 Simulate Design	~			
	>			

After successful compilation of the circuit, the screen appears as follows:

Keywords index

Α

Absolute value · 12, 56

С

Cable length · 7 Control signals · 24, 28 CRC · 36, 38, 45, 57, 144, 193

D

DSL Master IP Core · 9, 12, 18, 21, 24, 25, 28, 37, 51, 57, 71, 81

Ε

Encoder cable \cdot 15, 16, 22 Encoder ID \cdot 52 Encoder status \cdot 67, 68, 69 Encoder temperature \cdot 116, 138 Error handling \cdot 28, 87, 89, 91, 94 External sensors \cdot 8, 14

F

Free running mode · 9, 72, 77 Frequency inverter cycle · 9, 10, 11, 12, 14, 25 Frequency inverter PSDI · 9 Full-duplex SPI interface · 8

I

Interface blocks · 18 interrupt · 28, 46

L

Long message · 13, 19, 36, 37, 44, 45, 48, 58, 59, 60, 61,

0

Online Status · 35, 36, 40, 41, 42, 79, 92

Ρ

Parallel bus · 24, 35 Parameter data · 84, 193 Parameters Channel · 11 Pin functions · 20, 21 Position data · 9 Process data · 8 Protocol package · 9

Q

Quality monitoring · 37, 38, 40, 41, 42, 45, 47, 48, 72, 73

R

Resolution · 109, 129

S

Safe position · 11, 12, 31, 36, 43, 56, 81 SensorHub channel · 11 SensorHub resources · 153 Set position · 133 Short message · 12, 13, 19, 33, 37, 38, 44, 45, Speed · 38, 54, 81 SPI1 Read individual register · 165 Read several registers · 165 Read/write sequence · 167 Time control · 164 Write to individual register · 166 SYNC mode · 9, 19, 72, 78, 79, 80 SYNC signal · 56 Synchronous · 9, 12, 14, 78, 80, 123 System diagnostics · 72, 73

Т

Time sequence for SPI PIPE · 26

V

Voltage supply · 17

Glossary

8B/10B	8 bit/10 bit code (line code for transmission of 8 bits with data in 10 bit lengths to achieve DC balance)	
CRC	Cyclic Redundancy Check (algorithm to determine data checksum)	
DSL	Digital Servo Link, complete name: HIPERFACE DSL [®]	
EDIF	Electronic Design Interchange Format (format for electronic exchange of FPGA netlists)	
FIFO	First in – First out (storage method in which the first stored elements are the first to be discarded)	
FPGA	Field Programmable Gate Array (programmable digital logic component)	
IP Core	Intellectual Property Core, for integration into ICs or chip provided for FPGAs	
Long Message	Protocol component for polling parameter data of an encoder that must first be processed by the encoder.	
Motor feedback		
system	Rotary or linear encoder for use in servo drives	
RS485	Radio Sector Standard 485 (also designated as EIA-485 or TIA- 485-A standard for serial data transmission over symmetric pair cables)	
RSSI	Received Signal Strength Indicator	
SensorHub	Interface between a motor feedback system and an external sensor component in a drive system	
Short Message	Protocol component for polling directly transmitted parameter data of an encoder	
SPI	Serial Peripheral Interface (serial bus system for digital switching)	
VHDL	Very high speed integrated circuit Hardware Description Language (hardware abstraction language for FPGAs)	

HIPERFACE DSL®

Versions

Date	Version	Change	
6/27/2014	00	First issue (replacement of HIPERFACE DSL manual 8013607 and	
		IPCore DSL Master Manual 8013736)	
8/21/2014	01	Adapted parameter channel error handling description to version 1.06 of the Hiperface DSL IP Core (RET flag no longer available). Part MAX13431E no longer suggested due to decreased availability.	

Table 211: Document versions.

Notes:

Australia

Phone +61 3 9457 0600 1800 33 48 02 - tollfree E-Mail sales@sick.com.au

Belgium/Luxembourg Phone +32 (0)2 466 55 66 E-Mail info@sick.be

Brasil

Phone +55 11 3215-4900 E-Mail marketing@sick.com.br

Canada

Phone +1 905 771 14 44 E-Mail information@sick.com

Česká republika Phone +420 2 57 91 18 50 E-Mail sick@sick.cz

China

Phone +86 4000 121 000 E-Mail info.china@sick.net.cn Phone +852-2153 6300 E-Mail ghk@sick.com.hk

Danmark Phone +45 45 82 64 00 E-Mail sick@sick.dk

Deutschland Phone +49 211 5301-301 E-Mail info@sick.de

España Phone +34 93 480 31 00 E-Mail info@sick.es

France Phone +33 1 64 62 35 00 E-Mail info@sick.fr

Great Britain Phone +44 (0)1727 831121 E-Mail info@sick.co.uk

India Phone +91-22-4033 8333 E-Mail info@sick-india.com

Israel Phone +972-4-6881000 E-Mail info@sick-sensors.com

Phone +39 02 27 43 41 E-Mail info@sick.it

Italia

Japan Phone +81 (0)3 5309 2112 E-Mail support@sick.jp

Magyarország Phone +36 1 371 2680 E-Mail office@sick.hu

Nederland Phone +31 (0)30 229 25 44 E-Mail info@sick.nl Norge Phone +47 67 81 50 00 E-Mail sick@sick.no

Österreich Phone +43 (0)22 36 62 28 8-0 E-Mail office@sick.at

Polska Phone +48 22 837 40 50 E-Mail info@sick.pl

România

Phone +40 356 171 120 E-Mail office@sick.ro

Russia Phone +7-495-775-05-30 E-Mail info@sick.ru

Schweiz Phone +41 41 619 29 39 E-Mail contact@sick.ch

Singapore Phone +65 6744 3732 E-Mail sales.gsg@sick.com

Slovenija Phone +386 (0)1-47 69 990 E-Mail office@sick.si

South Africa

Phone +27 11 472 3733 E-Mail info@sickautomation.co.za

South Korea Phone +82 2 786 6321/4 E-Mail info@sickkorea.net

Suomi Phone +358-9-25 15 800 E-Mail sick@sick.fi

Sverige Phone +46 10 110 10 00 E-Mail info@sick.se

Taiwan Phone +886 2 2375-6288 E-Mail sales@sick.com.tw

Türkiye Phone +90 (216) 528 50 00 E-Mail info@sick.com.tr

United Arab Emirates Phone +971 (0) 4 88 65 878 E-Mail info@sick.ae

USA/México Phone +1(952) 941-6780 1 (800) 325-7425 - tollfree E-Mail info@sickusa.com

More representatives and agencies at www.sick.com

