Shrinking 3D ICs – Capabilities and Frontiers of Through Silicon Via Technologies

Peter Ramm

Fraunhofer Research Institution for Modular Solid State Technologies EMFT Hansastrasse 27d, 80686 Munich

Global Activities in 3D Integration Technology

3D Integration

Definition:

Fabrication of stacked and vertically interconnected device layers

Motivations:

Form Factor

- Reduced volume and weight
- Reduced footprint

Performance

- Improved integration density
- Reduced interconnect length
- Improved transmission speed
- Reduced power consumption

The Ultimate Goal: Repartitioning of Integrated Circuits

Microelectronic Consultants of NC

3D Repartitioning of Logic

Main Driver: High Performance

Requirements:

very high density of TSVs

 \rightarrow yield and cost issues

- significant advances of current design and modeling tools
- significant advances of thermal management (e.g. heat removal)

Conventional SoC - long Global interconnect - large RC delay

- large Cp

Source: P. Garrou and P. Ramm to be published in "Handbook of 3D Integration" Vol. 3, Wiley-VCH

TSV Developments for Memory Stacks

Main Driver: High Performance

Shorter interconnect paths:

- higher speed
- less power consumption

Samsung:

Development of 4-die 8Gb DRAM stack

- 20-30 µm thinned dies
- 20 µm TSV diameter

Optical Micrograph of Samsung 1600 Mb/sec DDR3

Source: U. Kang, ISSCC 2009

Memory on Logic for e.g. Mobile Devices

Source: Samsung "3D TSV Technology & Wide IO Memory Solutions" Design Automation Conference, 2012

Application Development

Application **Development**

EMFT

3D Integration

Definition:

Fabrication of stacked and vertically interconnected device layers

Motivations:

Form Factor

- Reduced volume and weight
- Reduced footprint

Performance

- Improved integration density
- Reduced interconnect length
- Improved transmission speed
- Reduced power consumption

"More than Moore" Applications

Integration of heterogeneous technologies

Moore's Law & More

3D Integration – Definitions

Concept Categories:

- Stacking of packages (or substrates) (eq. to 3D-SIP)
- Stacking of embedded dies without TSVs (eq. to 3D-WLP)
- **3D TSV Technology** various classifications
 - TSVs prior / post stacking
 - "via first", "via middle", "via last"
 FEOL, BEOL, post BEOL TSVs

European 3D Technology Platform

Technology	e-CUBES Partner			
3D-SOC				
Through Silicon Via (TSV) Technology (ICV-SLID)	Fraunhofer EMFT (formerly IZM-M)			
Hollow Via & Gold Stud Bump Bonding (HoViGo)	SINTEF			
3D-WLP				
Thin Chip Integration (TCI/UTCS)	Imec and Fraunhofer IZM & EMFT			
Via Belt Technology Chip-in-Polymer and µInsert)	CEA-Leti			
3D-SIP				
High Performance Package-in-Package Technology (HiPPiP)	3D-PLUS			
Wirefree Die-on-Die Technology (WDoD)	3D-PLUS			
Submicron Wire Anisotropic Conductive Film Assembly (SW-ACF)	Tyndall			

Futue Fab International, Issue 34 (July 2010)
"The European 3D Technology Platform (e-CUBES)"
P. Ramm, A. Klumpp, J. Weber, M. Taklo, N. Lietaer, W. De Raedt, T. Fritzsch, T. Hilt, P. Couderc, C. Val, A. Mathewson, K. M. Razeeb, F. Stam

e-CUBES + CONCEPTION OF CONTRACT OF CONT

Via First, Middle and Last Process Flows

Semiconductor Industry Association, "The International Technology Roadmap for Semiconductors", 2011 Edition.SEMATECH:Austin, TX, 2011

3D Integration – Definitions (ITRS)

3D TSV Technology

- 3D-IC

3D Integrated **C**ircuit: stacking of transistor layers (3D connections at density

level of local interconnects)

- 3D-SIC

3D Stacked Integrated **C**ircuit (very high TSV densities)

- 3D-SOC

3D System-**O**n-**C**hip: stacking of devices or large IC blocks (global level)

Fabrication of Heterogeneous Systems

Source: EMFT

Table INTC8 Intermediate Interconnect Level 3D-SIC Roadmap

Intermediate Level, W2W 3D-stacking	2011-2014	2015-2018
Minimum TSV diameter	1-2 µm	0.8-1.5µm
Minimum TSV pitch	2-4 µm	1.6-3.0 µm
Minimum TSV depth	6-10 µm	6-10 µm
Maximum TSV aspect ratio	5:1 - 10:1	10:1 - 20:1
Bonding overlay accuracy	1.0-1.5 μm	0.5 -1 .0 μm
Minimum contact pitch	2-3 µm	2-3 µm
Number of tiers	2-3	8-16 (DRAM)

Source: ITRS 2011 Edition

Table INTC8 Intermediate Interconnect Level 3D-SIC Roadmap

Intermediate Level, W2W 3D-stacking	2011-2014	2015-2018
Minimum TSV diameter	1-2 µm	0.8-1.5µm
Minimum TSV pitch	2-4 μm	1.6-3.0 μm
Minimum TSV depth	6-10 µm	6-10 µm
Maximum TSV aspect ratio	5:1 - 10:1	10:1 - 20:1
Bonding overlay accuracy	1.0-1.5 μm	0.5 -1 .0 μm
Minimum contact pitch	2-3 μm	2-3 μm
Number of tiers	2-3	8-16 (DRAM)

TSV Metallization							5	Source: ITRS 2011 Edition
1.0 µm	3.5	μm	5 µm	10 µm		1	00 µm	TSV Diameter
CVD of - Cu			PVD of S	eedlayer Ti:W / Cu	& Electro	oplatin - Cu	g of	
- W - TiN						P	VD Barrie	r & Cu Liner-ECD
		CVD o	of Seedlayer - tungsten	& Electi	roplating o - Cu	of	Polymer	Isolation & Paste Fillling
				_				
10 µm 10:1			25 μm 5:1	70 μm 7:1		1(1:)0 µm 1	TSV Depth Aspect Ratio
	e	electrole	ess Seedlayer	· & Cu-ECD)	E e	Based on: Hai edited by P. G	ndbook of 3D Integration, Wiley arrou, C. Bower and P. Ramm

Permanent Bond Technologies for 3D Integration

Cu - Cu Fusion Bonding: Ziptronix

Roughness (RMS < 1.0 nm) Cleanliness (no particulate) Flatness (< 4 µm / 200 mm wafer) Bonding Conditions = 400 °C / 30 min Contact Pressure = 4000 mBar Post-Bonding Anneal: 400°C / 30 min

CMP simultaneously polishes metal and SiO2 - no ILD recess

D2W or W2W oxide (ZiBond®) bond at ambient T & P

post-bond Cu-Cu bond formation in oven anneal

Source: P. Garrou / MCNC

SLID Bonding (Solid Liquid Interdiffusion)

Thermal management of dissipated power -> no polymeric underfiller

SLID Bonding (Solid Liquid Interdiffusion)

intermetallic compound

formation of intermetallic compound; T_{melt comp} > T_{melt low}

TSV-SLID – a robust 3D TSV Technology

3D Integration – Impact on System

Based on: A. Wilde, P. Schneider, P. Ramm, DTC 2010

3D TSV Fabrication Issues

- IC degradation caused by TSV technology
 - Stress induced
 - Contamination induced (TSV, backside RDL)
- Electrical behavior and reliability of TSV
 - Electromigration
 - Damage / delamination
- Reliability of interconnect pads & RDL
 - Stress caused by device fabrication
 - Stress caused by assembly / bonding process

Thermal management

Testability of subsystems

3D MEMS/NEMS & IC Integration – a Challenge!

Heterogeneous integration partly based on completely fabricated devices \rightarrow Application of post-BeoL TSV technology ?

 \rightarrow Data on ILD and passivation layers required

Issues for reproducibility and reliability:

- Fragile mechanical structures in MEMS/NEMS devices
- Stress induced by TSVs and bonding system of thin devices

European Integrated Project e-BRAINS Best Reliable Ambient Intelligent Nanosensor Systems

supported by the European Commission under support-no. ICT-257488

Main objectives of e-BRAINS:

- Highly reliable heterogeneous systems
- Robust 3D integration processes
- Efficient system simulation & design support
- EMFT's reliability test chip for 3D TSV technologies

Technology Platforms and Applications in e-BRAINS

3D Technology is now entering a main stream

Dr. Peter Ramm, Fraunhofer EMFT Munich

© Fraunhofer

Ref.: S. Arkalgud, Future Fab Int., Issue 38, July 2011

Fraunhofer

Supply Chain Alignment

Based on: S. Arkalgud, Future Fab Int., Issue 38, July 2011

Summary

- 3D Technology is now entering a main stream
- Promising future applications
 - Memory stacks, memory/logic, ... (high density TSVs)
 - Heterogeneous MEMS/IC integration (medium density TSVs)
- Choice of 3D process depends on
 - Performance, TSV/pad pitch requirements
 - Reliability requirements
- Reliability issues related to TSV and the entire 3D TSV flow
- Process reliability, yield and thermal management are basic

requirements under 3D manufacturability

Thank You For Your Attention !

Fraunhofer EMFT Hansastraße 27d 80686 München Tel. +49 89 54759 - 539 peter.ramm@emft.fraunhofer.de www.emft.fraunhofer.de

