
2018 IEEE/ACM 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (scalA)

Shift-Collapse Acceleration of Generalized
Polarizable Reactive Molecular Dynamics for

Machine Learning-Assisted Computational Synthesis
of Layered Materials

Abstract — Reactive molecular dynamics is a powerful
simulation method for describing chemical reactions. Here, we
introduce a new generalized polarizable reactive force-field
(ReaxPQ+) model to significantly improve the accuracy by
accommodating the reorganization of surrounding media. The
increased computation is accelerated by (1) extended Lagrangian
approach to eliminate the speed-limiting charge iteration, (2) shift-
collapse computation of many-body renormalized n-tuples, which
provably minimizes data transfer, (3) multithreading with round-
robin data privatization, and (4) data reordering to reduce
computation and allow vectorization. The new code achieves (1)
weak-scaling parallel efficiency of 0.989 for 131,072 cores, and (2)
eight-fold reduction of time-to-solution (T2S) compared with the
original code, on an Intel Knights Landing-based computer. The
reduced T2S has for the first time allowed purely computational
synthesis of atomically-thin transition metal dichalcogenide layers
assisted by machine learning to discover a novel synthetic
pathway.

Keywords — Applications/ Computational materials science and
engineering; Algorithms/Hybrid/heterogeneous/accelerated
algorithms and other high-performance algorithms.

I. INTRODUCTION: IMPORTANCE OF THE PROBLEM
Reactive molecular dynamics (RMD) is a powerful

simulation method for describing material processes involving
chemical reactions, with a wide range of applications in physics,
chemistry, biology and materials science [1]. RMD simulation
follows time evolution of the positions, 𝐫" = {𝐫%|𝑖 = 1,… ,𝑁},
of N atoms by numerically integrating Newton’s equations of
motion, where the atomic force law is mathematically encoded
in the interatomic potential energy E(rN). Reliable interatomic
potentials are key to accurately describing thermomechanical
and chemical properties of materials. The first principles-
informed reactive force-field (ReaxFF) model significantly
reduces the computational cost, while reproducing the energy
surfaces and barriers as well as charge distributions of quantum-
mechanical (QM) calculations [1].

The most intensive computation in RMD simulation arises
from a charge-equilibration (QEq) scheme [2] to describe charge
transfer between atoms, thereby enabling the study of reduction
and oxidation reactions. QEq treats atomic charges as dynamic
variables, 𝑞" = {𝑞%|𝑖 = 1, … ,𝑁}. The charges and the resulting
force law are determined by minimizing the potential energy
with respect to qN at every RMD time step. This variable N-
charge problem is commonly solved iteratively, e.g., with the
conjugate gradient (CG) method [3]. Though recent
advancements in parallel ReaxFF algorithms [4-6] have enabled
large RMD simulations [7] involving multimillion atoms, QEq
computation remains to be the major bottleneck for studying
long time trajectories of such large RMD simulations.

Despite enormous success of the QEq-based ReaxFF model,
one critical issue has remained unsolved, namely accurate
description of electric polarizability. Polarization of the
surrounding medium essentially dictates the rate of reduction
and oxidation reactions, as is articulated, e.g., in the Nobel
lecture by Rudolph Marcus [8]. A recently proposed polarizable
reactive force-field (ReaxPQ) model based on a polarizable
charge equilibration (PQEq) scheme significantly improves the
accuracy of describing redox reactions by accommodating the
reorganization of surrounding media [9]. When applied to
prediction of electronic polarizabilities, however, the ReaxPQ
model alone was found inadequate. This partly arises from the
fact that the original ReaxPQ model determines the polarization
of a nucleus core and an electronic shell within each atom by
considering only the internal electric field produced by atomic
charges but not an externally applied electric field. To remedy
this deficiency, we here introduce a generalization of the
ReaxPQ model named ReaxPQ+, in which atomic polarizations
respond to both internal and external electric fields, thereby
achieving near quantum accuracy for tested cases.

The improved accuracy of the new ReaxPQ+ model is
accompanied by significant increase of the computational cost.

Kuang Liu†, Subodh Tiwari†, Chunyang Sheng†, Aravind Krishnamoorthy†, Sungwook Hong†,
Pankaj Rajak†, Rajiv K. Kalia†, Aiichiro Nakano†, Ken-ichi Nomura†, Priya Vashishta†,

Manaschai Kunaseth‡, Saber Naserifar§, William A. Goddard III§, Ye Luo*, Nichols A. Romero*,
Fuyuki Shimojo¶

† Collaboratory for Advanced Computing and Simulations, University of Southern California
‡ National Science and Technology Development Agency, Thailand

§ Materials and Process Simulation Center, California Institute of Technology
* Argonne Leadership Computing Facility, Argonne National Laboratory

¶ Department of Physics, Kumamoto University, Japan
†{liukuang, sctiwari, chunyangs, kris658, sungwooh, rajak, rkalia, anakano, knomura, priyav}@usc.edu,
‡manaschai@nanotec.or.th, §naseri@caltech.edu, §wag@wag.caltech.edu, *{yeluo, naromero}@anl.gov,

¶shimojo@kumamoto-u.ac.jp

Compared to the original QEq scheme, which only deals with
atom-centered charge-charge interactions, PQEq computation in
the ReaxPQ+ model is quadrupled, since it considers core-core,
core-shell, shell-core and shell-shell charge interactions for
every atomic pair. In this paper, we accelerate this heavy
ReaxPQ+ computation using (1) an extended Lagrangian
approach to eliminate the speed-limiting charge iteration [10],
(2) a new extension of the shift-collapse (SC) algorithm [11]
named renormalized SC (RSC) to compute dynamic n-tuples
with provably minimal data transfers, (3) multithreading with
round-robin data privatization, and (4) data reordering to reduce
computation and allow vectorization. The accelerated code
achieves (1) weak-scaling parallel efficiency of 0.989 for
131,072 cores, and (2) eight-fold reduction of the time-to-
solution (T2S) compared with the original code, on an Intel
Knights Landing (KNL)-based supercomputer.

The reduced T2S has allowed computational synthesis of
atomically-thin transition-metal dichalcogenide (TMDC) layers
with unprecedented fidelity. Functional layered materials (LM)
will dominate materials science in this century [12]. The
attractiveness of LMs lies not only in their outstanding
electronic, optical, magnetic and chemical properties, but also in
the possibility of tuning these properties in desired ways by
building van der Waals (vdW) heterostructures composed of
unlimited combinations of atomically-thin layers. To rationally
guide the synthesis of stacked LMs by chemical vapor
deposition (CVD), exfoliation and intercalation, “computational
synthesis” should encompass large spatiotemporal scales. Such
layered materials genome (LMG) has been chosen as one of the
designated applications of the United States’ first exaflop/s
computer A21 when it is introduced in 2021 [13]. This paper for
the first time demonstrates purely computational synthesis of
TMDC-based LM, which is assisted by machine learning to
discover a novel synthetic pathway. This opens up a possibility
to computationally explore new synthetic pathways to novel
TMDC-LMs and vdW heterostructures.

II. APPLICATION AND ALGORITHMIC INNOVATIONS
A. Generalized Polarizable Reactive Force Field (ReaxPQ+)

In the ReaxPQ+ model, the potential energy
𝐸/0𝐫ij1, 0𝐫ijk1, 0𝐫ijkl1, {𝑞%}, 0BOij12 is a function of relative
positions of atomic pairs rij, triplets rijk and quadruplets rijkl, as
well as atomic charges qi and bond orders BOij between atomic
pairs. The potential energy includes Coulombic energy ECoulomb.
In the PQEq scheme used in the original ReaxPQ model, electric
polarization is described using a Gaussian-shaped electron
density (shell) that can polarize away from the nuclei core in
response to internal electric fields produced by atoms [9]. Here,
each atom i is partitioned into two charged sites (i.e., core and
shell). The core (ρic) consists of two parts: ρi with a variable total

charge (qi) and ρiZ with a fixed total charge (Zi). The shell (ρis) is
massless and has a fixed total charge of -Zi. The shell and core
of an atom are connected by an isotropic harmonic spring with
force constant Ks (Fig. 1).

At each time step, the atomic charges qN are determined by
minimizing ECoulomb subject to the conditions that the
electrochemical potentials, ¶ECoulomb/¶qi, are equal among all
atoms. The Coulombic energy is given by

𝐸Coulomb({𝐫%4, 𝐫%5, 𝑞%}) = ∑ 8𝜒%:𝑞% +
<
=
𝐽ii:𝑞%= +

<
=
𝐾@𝑟%4,%5= B"

%C<

+∑ [𝑇(𝑟%4,F4)𝐶%4,F4(𝑟%4,F4)𝑞%4𝑞F4%HF
−𝑇(𝑟%4,F5)𝐶%4,F5(𝑟%4,F5)𝑞%4𝑍F
−𝑇(𝑟%5,F4)𝐶%5,F4(𝑟%5,F4)𝑞F4𝑍%
+𝑇(𝑟%5,F5)𝐶%5,F5(𝑟%5,F5)𝑍%𝑍F]

 (1)

where ric, ris, 𝜒%: and 𝐽%%: are the core position, shell position,
electronegativity and hardness of the i-th atom. In Eq. (1), ria,jb
(i, j = 1,…, N; a, b = core(c) or shell(s)) are charge-charge
distances. The electrostatic energy between two Gaussian
charges is given in terms of the error function 𝐶ia,jb/𝑟%L,FM2, and
the Coulombic interaction is screened using a taper function T(r)
[9]. As was mentioned in the introduction, the core-core, core-
shell, shell-core and shell-shell charge interactions in Eq. (1)
quadruple the charge computation over the conventional
ReaxFF model.

In the original ReaxPQ, the shell position ris for the i-th atom
is obtained by balancing the effect of the electrostatic field due
to all other atoms (i.e., inter-atomic interactions) with intra-
atomic interactions involving only the core and shell:
 𝐅inter = − O

O𝐫PQ
0∑ 𝑇(𝑟%L,FM)𝐶ia,jb/𝑟%L,FM2𝑞ia𝑞jbiaHjb 1 (2)

 𝐅intra = − O
O𝐫PQ

R<
=
𝐾5𝑟%4,%5= S (3)

We solve Finter = Fintra to determine ris using Newton-
Raphson method. Fig. 2(a) compares time evolution of the
PQEq energy for 1, 10 and 100 iterations of Newton-Raphson
method, where the previous shell positions are used as initial
guess. Fig. 2(a) shows that single iteration suffices to obtain the
accuracy of 10-4 kcal•mol-1/atom. We have also confirmed the
accuracy of solution by comparing the shell position and charge
of each atom. We have applied this ReaxPQ model to compute
the dielectric constants 𝜖 of various materials and found that the
model generally underestimates the values.

Fig. 2. (a) PQEq energy with 1, 10 and 100 iterations of Newton-Raphson
method. (b) Atomic charges after 1 ps of MD simulation with converged RMD
(blue) and XRMD (red) methods.

In order to improve the accuracy of describing the dielectric
response of materials, we here introduce a generalized
polarizable reactive force-field (ReaxPQ+) model, in which ris

PQEq Energy Extended Lagrangian

(a) (b)

Fig. 1. Schematic of the response of core (green) and shell (yellow) charges to
an external electric field in the new PQEq+ model.

is determined by solving 𝐅inter + 𝐅external = 𝐅intra , i.e., by
explicitly including the effect of an external electric field	𝓔,
 𝐅external = ∑ 𝑞%L𝓔L (4)
In both the original ReaxPQ and new ReaxPQ+ models,
polarization is calculated as
 𝐏 = ∑ 𝑞%L(𝐫%L − 𝐫%L:)%L (5)
where 𝐫%L: is the charge position in the absence of external
electric field 𝓔.

TABLE I. Computed dielectric constants.
Material ReaxPQ ReaxPQ+ QM

Polyethylene (PE) 1.01 2.25 2.37
C=O defect (PE) 1.02 2.74 2.78
C-Cl defect (PE) 1.01 2.40 2.53
MoS2 (in plane)

MoS2 (out of plane)
1.03
1.03

14.3
5.68

15.4*
7.43*

Polyvinylidene
fluoride (PVDF) 1.02 2.56 2.52

Alumina 1.03 3.17 2.98
*Surface Science Reports, vol. 70, pp. 554-586, Dec 2015.

We have tested the accuracy of the ReaxPQ+ model by
computing the dielectric constants 𝜖 of poly-ethylene (PE),
molybdenum disulfide (MoS2) and other polymer and ceramic
materials. Table I compares dielectric constants computed with
the original ReaxPQ and new ReaxPQ+ models against those
obtained by first-principles QM calculations. As noted
otherwise, the QM value has been computed by us using a
quantum molecular dynamics (QMD) code [14] based on
density functional theory (DFT), in which dielectric constants
are calculated using a Berry-phase approach [15]. The table
shows that the new ReaxPQ+ results agree much better with the
QM results, compared with the original ReaxPQ results. The
improved accuracy has been confirmed for broad organic and
inorganic materials with varying moiety, anisotropy and defects,
which will be published elsewhere.

B. Extended-Lagrangian Acceleration of ReaxPQ+
As shown above, charge-interaction computation in

ReaxPQ+ is quadrupled compared to that in the conventional
ReaxFF model. The increased computational cost necessitates
innovative algorithms to speed up the computation.

First, we adapt the extended-Lagrangian reactive molecular
dynamics (XRMD) algorithm [10], which was originally
proposed for the conventional ReaxFF model, to the new
ReaxPQ+ model. The problem is that an excessively large
number of CG iterations are required to reach sufficient
convergence of charges qN to guarantee the conservation of the
total energy as a function of time. Insufficiently converged
charges act as an artificial heat sink, and the resulting broken
time reversibility causes the total energy to drift over time. A
similar trade-off between the computational speed and energy
conservation is encountered in first-principles QMD
simulations, where insufficient convergence of the iterative
refinement of electronic wave functions causes serious energy
drift. Niklasson proposed an extended Lagrangian scheme [16]
that achieves excellent long-time energy conservation with
drastically reduced number of iterations. In fact, an extended
Lagrangian scheme with no iteration (i.e., requiring only one
evaluation of energy gradient per QMD time step) has been
demonstrated [17]. The key idea is to introduce auxiliary wave
functions as dynamic variables that are numerically integrated
by time-reversible, symplectic integration schemes to address

the broken reversibility problem, while the auxiliary wave
functions are constrained to iteratively determined wave
functions by a harmonic potential. Successful elimination of the
speed-limiting charge iteration in the ReaxFF model was
achieved by Nomura et al. by adapting the extended-Lagrangian
scheme [10]. The XRMD algorithm has drastically improved
energy conservation while substantially reducing the time-to-
solution. In addition, XRMD accurately describes atomic
trajectories and charges. The average difference of atomic
positions was 0.08 Å after 1 ps of simulation between XRMD
and fully converged RMD methods [10]. Fig. 2(b) compares
atomic charges obtained by XRMD algorithm with those by
RMD using extremely high CG tolerance (10-8) which show an
excellent agreement. In this paper, we adapt the XRMD
algorithm to the new ReaxPQ+ model, where auxiliary charges
are applied only to the variable part, qi, of the charges.

C. Renormalized Shift-Collapse Acceleration of ReaxPQ+
Our second algorithmic innovation is a generalization of the

shift-collapse (SC) algorithm [11], named renormalized SC
(RSC). SC algorithm provably minimizes data transfer for
computation of dynamic n-tuples in parallel computing based on
spatial (or domain) decomposition. Building on translation and
reflection invariance of the set of n-tuple computations, the
algorithm applies shift and collapse algebraic transformations to
n-tuple computations so as to completely eliminate redundant
computations among computing nodes while minimizing data
transfer. Here, we apply the SC algorithm to the generalized
polarizable charge equilibration (PQEq+) subroutine that
iteratively optimizes atomic charges to minimize the Coulombic
potential energy using CG method. At the beginning of every
PQEq+ iteration, information of neighbor atoms near the
domain boundary (including atomic charges and gradients)
needs to be imported from the nearest-neighbor computing
nodes for calculating Coulombic potential used in CG iteration.
This incurs significant communication cost. For each PQEq+
iteration, Coulombic potential of the system is evaluated using
guessed atomic charges. After that, each node computes charge
gradients and consecutively updates atomic charges of all atoms
resided in its domain. PQEq+ computation is terminated when
either (1) CG residue is small enough, (2) no energy
improvement is gained between successive iterations, or (3)
maximum number of iterations is reached.

In this work, we employ two approaches to reduce the time
spent in PQEq+ subroutine. First, we apply SC algorithm to
minimize communication cost and eliminate redundant pair
evaluations within PQEq+ subroutine. Here, we also develop a
new SC approach to handle many-body renormalized n-tuple
computation in PQEq+ due to the interaction with surrounding
atoms, which has never been addressed by SC algorithm before.
Second, we store-and-reuse unchanged coefficients across
multiple CG iterations, thereby improving the efficiency of SC
computation. Details of these approaches are discussed below.

SC algorithm utilizes 3-step communication, thereby
significantly reducing both bandwidth and latency costs when
compared to the 6-step communication (i.e. halo exchange) in
conventional full-shell (FS) method [18]. Computation pattern
of SC algorithm also eliminates redundant pair evaluations.
Evaluating Coulombic potential using SC algorithm is rather
straightforward. The computation follows SC computation

pattern for two-body interaction, which includes pairs of
resident atoms and pairs of atoms in the neutral territory (NT)
[19]. Typically, contribution from pairs in NT region needs to
be sent back to its resident node. However, the return of
contribution is not required in this situation. Here, only overall
sum of Coulombic potential contributions from every node is
needed, which can be efficiently achieved by using the
MPI_AllReduce function in the message passing interface
(MPI) standard. Nevertheless, subsequent computation after
obtaining total Coulombic potential requires special treatment
for many-body computation within the CG subroutine. Namely,
computation of charge gradient g(i) for a particular atom i
requires sum of contributions over all neighbor atoms of i:
 𝑔(𝑖) = ∑ 𝐻%F𝑞FFϵZ[\(%) (6)
where Hij denotes charge Hessian of atom pair i and j, and
NBR(i) is the neighbor list of atoms i. Computing g(i) involves
many-body renormalization because it requires Hij contributions
from all neighbor atoms in NBR(i); see Fig. 3(a). However, in
SC computation, atoms near the lower domain boundary may
not have complete neighbor-atom information in the node it
resides. In fact, neighbor-atom information is completed when
combining partial neighbor lists (PNBR) from multiple
computing nodes. As such, gradient calculation in SC
algorithmic framework gSC(i) is defined as
 𝑔]^(𝑖) = ∑ 𝐻%F𝑞F𝑗ϵ`Z[\abc(𝑖) + ∑ R∑ 𝐻%𝑗d𝑞𝑗d𝑗dϵPNBRe

NT(𝑖) S	f 	(7)
where PNBRRES(i) denotes partial neighbor list of atom i in the
node that atom i resides. PNBRf

NT(i) denotes partial neighbor list
of atom i in NT region from node k, which is not in the same
node that i resides. Therefore, to complete g(i) calculation in SC
framework, partial g(i) contribution based on PNBRNT(i) must
be sent back to the node that owns i (resident node); see Fig.
3(b). Although this incurs extra communication (additional 3-
way communication for returning gSC(i) contribution), this is
still no larger than the 6-way communication in conventional FS
method. Furthermore, FS computation pattern yields substantial
computational overhead from redundant pair evaluations to
build complete NBR in every computing node. On the other
hand, SC algorithm performs only essential pair evaluations
without redundancy. This is expected to significantly reduce
running time inside PQEq+ subroutine, while maintaining the
same communication cost.

For each PQEq+ iteration, Coulombic potential energy
between atoms i and j based on (1) takes the following form:

𝐸Coulomb(𝑖, 𝑗) = 𝐸core-core(𝑖, 𝑗) + 𝐸core-shell(𝑖, 𝑗)
+ 𝐸core-shell(𝑗, 𝑖) + 𝐸shell-shell(𝑖, 𝑗)

 𝐸core-core(𝑖, 𝑗) = 𝑇/𝑟%g,Fg2𝐶%g,Fg/𝑟%g,Fg2𝑞%𝑞F

 𝐸core-shell(𝑖, 𝑗) = −𝑇/𝑟%g,F@2𝐶%g,F@/𝑟%g,F@2𝑞%𝑍F (8)
 𝐸shell-shell(𝑖, 𝑗) = 𝑇/𝑟%@,F@2𝐶%@,F@/𝑟%@,F@2𝑍%𝑍F
Here, 𝑇/𝑟%L,FM2 and 𝐶%h,Fi/𝑟%L,FM2 are computed using a costly
table lookup as a function of core/shell distance. However, only
qi is changing across PQEq+ iterations, while 𝑇/𝑟%L,FM2 and
𝐶%h,Fi/𝑟%L,FM2 remain unchanged (i.e. atomic/shell positions are
fixed). Therefore, we save considerable computation time by
storing these four unchanged coefficients 𝑇/𝑟%L,FM2𝐶%L,FM/𝑟%L,FM2
for each atomic pair throughout PQEq+ iterations.

III. PARALLEL IMPLEMENTATION AND PERFORMANCE
OPTIMIZATIONS

We have implemented RMD simulation based on the new
algorithmically-accelerated ReaxPQ+ model in section II in a
scalable parallel RMD code named RXMD [4]. In this code,
computations are parallelized using spatial decomposition,
where the simulated system is decomposed into spatially
localized subsystems and each processor is assigned
computations associated with one subsystem. Message passing
is used to exchange necessary data for the computations between
processors, utilizing the MPI standard. Specifically, before
computing the forces on atoms in a subsystem, atomic positions
within the interaction cutoff radius within the boundaries of the
neighboring subsystems are copied from the corresponding
processors (i.e., inter-process atom caching). After updating the
atomic positions according to time-stepping, some atoms may
have moved out of its subsystem. These moved-out atoms are
migrated to the proper neighbor processors (i.e., inter-process
atom migration). The RXMD code is written in Fortran 90.

For large granularity (the number of atoms per spatial
subsystem, N/D > 102), spatial decomposition (i.e., each
processor is responsible for the computation of the forces on the
atoms within its subsystem) suffices. For finer granularity (N/D
~ 1), on the other hand, neutral-territory (NT) [19] or other
hybrid decomposition schemes is more efficient. As discussed
in section II, we use the SC scheme [11], which is a
generalization of NT for general dynamic n-tuple computation.

Grain size for each MPI rank is limited by the cutoff length
of interaction. To further accelerate the computation within MPI
rank, we introduce an additional layer of shared-memory
parallelism using the Open Multi-Processing (OpenMP)
application programming interface. This hierarchical
MPI+OpenMP implementation allows RXMD to take
advantage of the simultaneous multithreading support provided
by modern processors to achieve better utilization of the
computing resources within each processor. With
multithreading, the most computationally expensive bond-order
and force computations within RXMD are greatly accelerated,
serving to reduce the overall runtime. A secondary benefit of
multithreading is that it allows MPI ranks to be exchanged for
local threads, thereby reducing the total number of ranks in a
MPI job and similarly reducing the communication and atom-
caching overheads at large scales. To obtain the best time-to-
solution (T2S) on each Intel Knights Landing (KNL) node, we
performed timed run for several possible configurations of MPI
ranks and OpenMP threads, as shown in Fig. 4(a). In this test,
the product of the number of MPI ranks and that of OpenMP
threads is fixed to 64. The best T2S was observed for the

Fig. 3. Illustration of many-body renormalized n-tuple computation of g(i) based
on (a) conventional full neighbor list (NBR) and (b) partial neighbor lists
(PNBRRES and PNBRNT) used in the RSC algorithm.

combination of 16 MPI ranks and 4 OpenMP threads on each
node, which will be used in subsequent benchmark tests.

Fig. 4. (a) Runtime comparison between different configurations of MPI ranks
and OpenMP threads on 1 node to identify the optimal combination. Total
number of processes is 64. (b) Average runtime per step for the original
ReaxPQ+ and new ReaxPQ+SC implementations on 96 and 1,440 cores.
ReaxPQ+SC reduces time-to-solution 5.0- and 5.7-fold below ReaxPQ+ for 96-
and 1,440-core benchmarks, respectively. The numbers denote runtimes.

A. Performance Improvement by Algorithmic Accelerations
We first test the effect of SC acceleration described in

section II.C. Fig. 4(b) shows the average runtime per time step
on 96 cores (left) and 1,440 cores (right). In each case, the left
and right bars show the total runtime without (ReaxPQ+) and
with (ReaxPQ+SC) SC acceleration, respectively. The figure
also shows partial runtimes for polarizable charge-equilibration
(PQEq) calculation, which has become the speed-limiting step
in the new ReaxPQ+ model in order to achieve the improved
accuracy demonstrated in section II.A, as well as for non-bonded
(ENbond) and other force calculations. We observe that the SC-
accelerated ReaxPQ+SC is 5.0 and 5.7 times faster than the
original implementation, ReaxPQ+, on 96 and 1,440 cores,
respectively (N/P = 672). We should note that this significant
speedup is a result of the following two improvements. First, the
SC framework minimized the computation by removing
redundant pair calculations, which is especially beneficial for
fine granularity (i.e., small number of atoms per computing
node). The reduced communication in ReaxPQ+SC is
highlighted by the increased relative performance with
ReaxPQ+ from 5.0 to 5.7 fold when the number of cores
increases from 96 to 1,440. Second, the computation was further
reduced by reusing Coulombic coefficients.

B. Improving Thread Scalability by Round-Robin Data
Privatization
In molecular dynamics (MD) simulations like RMD,

interatomic forces need to be updated at every time step, which
consumes substantial computing. With shared-memory
programming, force calculation is parallelized by distributing
computations to threads. Because of Newton’s third law of
motion, it is possible that different threads compute pair
interactions involving a common atom and update the force on
that atom simultaneously, thereby causing memory conflict. To
avoid such race conditions, OpenMP provides atomic directive
to handle concurrent memory access with a few locks.

In the RXMD code, interatomic forces for all atoms within
an MPI process are stacked in an array f of length n, where n is
the total number of atoms per MPI rank. Array f is shared and
atomically accessed by threads in force-calculation module (Fig.
5(a)). However, overhead of concurrent memory access to array

f can become performance bottleneck as the simulation size
grows. We observed that the cumulative CPU time of atomic
operations accounts for 40% of the total runtime. Fig. 5(b)
shows how a thread-privatization scheme addresses this issue
[20]. Specifically, the program allocates a private copy,
f_private, of array f for each thread and accesses f_private
individually. When a piece of calculated force data on a common
atom needs to be updated by more than one threads, these
threads write partial results to their own arrays concurrently,
thereby eliminating atomic operations.

Fig. 5. (a, b) Data privatization. All threads write to the global force array using
atomic operations (a), or each thread writes to private array (b). (c) Round-robin
reduction with non-overlapping chunks for improving data privatization.

Once the force module finishes all of its computation, we
need to aggregate the partial results to the global array, for which
we adopt a round-robin approach. As shown in Fig. 5(c),
f_private is divided into p chunks of equal length except for the
last one for a remainder, where p is the number of threads. In
every round, each thread is in charge of a unique chunk and
transfers data to the global array at the corresponding location.
It then circles through the array chunk by chunk until the entire
f_private is transferred. This data reduction is implemented in a
single-instruction multiple-data (SIMD) manner. The non-
overlapping chunk design prevents memory conflicts, while
maintaining thread scalability by enhancing cache locality.
Though data privatization requires additional memory allocation
that grows as O(np) (p is the number of threads), it is justified
for the target application of computational synthesis. Here,
minimizing T2S is essential for describing long-time growth
process, rather than simulating the largest possible system to
saturate the memory.

C. Promoting Data Parallelism by Data Alignment
The Coulombic energy is updated in every PQEq+ iteration.

In the algorithm in Table II, the procedure contains a doubly-
nested loop over atoms i and j. The outer loop over i is mapped
to parallel threads via OpenMP loop parallelism. The inner loop
over j in the original RXMD code was executed sequentially. To
promote data parallelism (SIMD) on AVX-512 vector lanes (see
the experimental platform in section IV.A), we apply SIMD
operations on j loop. However, atoms j in the neighbor list of
atom i are irregularly stored, and accordingly successive data
accesses by index j are non-contiguous in memory, resulting in
inefficient cache performance. Here, we notice two facts:
PQEQ+ neighbor list is only updated once every time step (the
outmost loop); and the index in neighbor list is closely
distributed, albeit randomly stored, in a number of groups. To
take advantage of this property, we here use quicksort to
rearrange the neighbor list at every PQEq+ initialization phase
such that atoms j are sorted in ascending order, thus irregular
access is avoided. Fig. 6 illustrates the modified neighbor list.

After sorting, groups of atoms with sequential indices are
adjacently placed in memory, thus the subsequent computation
can leverage SIMD operations on our computing platform.

TABLE II. PQEq get_hsh procedure in RXMD.
1. do atoms i
2. do atoms j in i’s PQEQ+ neighbor
3. update Coulombic energy

Fig. 6. Sorted neighbor-list followed by SIMD operation.

Table III shows a piece of sorted neighbor list taken from an
actual simulation and its corresponding stride. The unit stride
(value of 1) indicates successive placement of indices.

TABLE III. Sorted polarized neighbor list and stride.
Index in Neighbor-list
[888, 889, 890, 891, 892, 893, 894, 895, 896, 954, 962, 978, 998, 1002, 1017,
1018, 1024, 1096, 1112, 1145, 1146, 1160, 1180, 1192, 1218, 1219, 1220,
1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1232, 1234, 1235, 1236,
1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244]
Stride
[1, 1, 1, 1, 1, 58, 8, 16, 20, 4, 15, 1, 6, 72, 16, 33, 1, 14, 20, 12, 26, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

D. Additional Code Transformations and Performance
Improvement
In the original RXMD code, the distance between atom pairs

are computed when creating a neighbor list, but this data is
discarded immediately regardless the fact that such distance will
be frequently recalculated in the subsequent force module. To
eliminate these redundant computations, we modify the data
structure by packing the atomic-pair distance into the neighbor
list. Table IV illustrates the modification of neighbor list and the
later usage of the distance data in the force-computation module.
When accessing the index of neighboring atoms, the program
can directly fetch drij from memory without any redundant
computation impairing the performance.

TABLE IV. Packing atomic-pair distance into neighbor list.
In Neighbor-list module
1. for each cell
2. for atoms i in this cell
3. for atom j in the supercell
4. compute distance drij of i and j
5. if drij < cutoff range
6. nbrlist(i) stores (j, i, drij)
In Force module, 2-body case
9. for atom i
10. for atom j in nbrlist(i)
11. fetch drij from nbrlist
12. force calculation using drij

To assess the effect of several performance optimizations
discussed in this section, we run a simulation of MoS2 crystal on
512 Intel Xeon Phi KNL nodes with 10 simulation steps. Fig. 7
compares the wall-clock time of the original code (left) with that
of our optimized version (right) over a set of ReaxPQ+ force
functions, including Enbond (nonbonded), Elnpr (lone-pair),
Ehb (hydrogen-bond), E3b (3-body) and E4b (4-body)

interactions. The most time-consuming function, E3b, has
become 5.57 times faster, and the aggregate time of force-
computation module has achieved 4.38-fold speedup over the
original version. Overall, these performance optimizations have
achieved 1.55-fold speedup of the entire simulation runtime.

Fig. 7. Performance improvement after data privatization and other code
transformations. The numbers denote runtimes.

IV. SCALABILITY AND TIME-TO-SOLUTION
A. Experimental Platform

We perform benchmark tests of the RXMD code with the
accelerated ReaxPQ+ model on Theta — an Intel Xeon Phi
Knights Landing (KNL) based supercomputer [21]. Each
computing node contains 64 cores. Each core in turn has 32 KB
L1 instruction cache, 32 KB L1 data cache, and two independent
floating-point units capable of executing 512-bit wide SIMD
instructions. The peak instruction throughput of the KNL
microarchitecture is 2 instructions per clock cycle, and they can
be issued back-to-back from the same thread. Two cores and a
shared 1 MB L2 cache form a tile, and the tiles are connected
with a 2D-mesh network-on-chip with 16 GB of high-bandwidth
in-package multichannel DRAM memory (MCDRAM) and 192
GB of regular DRAM. There are two memory modes of
execution. In the cache mode, the MCDRAM is used as a cache
to DRAM; while in the flat mode, both MCDRAM and DRAM
form a single linear memory space. We tested our code in both
flat and cache modes but observed no significant difference.
Following benchmarks are performed in cache mode.

B. Weak and Strong Scaling on Theta
We perform an isogranular-scaling test of the ReaxPQ+

adapted RXMD code with hybrid MPI+OpenMP
implementation on Theta, in which the number of atoms per MPI
rank N/P is kept constant. We measure the wall-clock time per
simulation time step with scaled workloads — 24,576-atom
MoS2 system on each core. By increasing the number of atoms
linearly with the number of cores, the wall-clock time remains
almost constant, indicating excellent scalability. To quantify the
parallel efficiency, we first define the speed of the RXMD code
as a product of the total number of atoms and the number of
RMD time steps executed per second. The isogranular (or weak-
scaling) speedup is given by the ratio between the speed of P
core and that of 64 cores as a reference system. With the
granularity of 24,576 atoms per core, the parallel efficiency is
0.989 on 131,072 cores for a 3,221,225,472-atom system, shown
in Fig. 8(a). This demonstrates a very high scalability of the
ReaxPQ+ adapted RXMD code.

35 7 11 5 6 33 43 834 18 2 17

2 5 6 7 33 34 35 438 11 17 18

neighbor index

quick sort

successive index

SIMD operation on chunks

We next perform a strong-scaling test by simulating MoS2
with a total of 50,331,648 atoms. In this test, the number of cores
ranges from P = 2,048 to 32,768, while keeping the total
problem size constant. We measure the wall-clock time per
RMD time step as a function of P cores. The runtime is reduced
by a factor of 12.26 on 32,768 cores compared with the 2,048
cores run (i.e., using 16-times larger number of cores). This
signifies a strong-scaling speedup of 12.26, with the
corresponding strong-scaling parallel efficiency of 0.766. Fig.
8(b) shows the measured strong-scaling speedup as a function of
the number of ranks (blue line), while the black line denotes the
ideal speedup. It is more difficult to achieve high strong-scaling
parallel efficiency compared with weak-scaling parallel
efficiency, as the comparison of Fig. 8, (a) and (b), suggests.
This is due to the surge of communication/computation ratio as
the workload per rank shrinks proportionally. With 64 times
smaller system size of the weak-scaling test, the observed
strong-scaling parallel efficiency is considered excellent.

C. Time-to-Solution Improvement
Our target application (see section V) is computational

synthesis of MoS2 monolayer from MoO3 and S2 reactants. Due
to the long time of the reaction process, no previous RMD
simulation has been able to complete the reaction to obtain the
MoS2 product. Reduced T2S is the key figure of merit for this
purpose. Overall, the algorithmic acceleration in section II has
resulted in a speedup of factor 5.0 over the original RXMD code
for the ReaxPQ+ model. In addition, a series of code
transformations on Theta in section III has achieved additional
speedup of factor 1.55. Overall, the algorithmic acceleration and
performance optimization have achieved a speedup of factor
5.0 × 1.55 = 7.75. Namely, T2S has been reduced to 12.9%
compared to that of the original ReaxPQ+ adapted RXMD code.

V. MACHINE-LEARNING GUIDED COMPUTATIONAL
SYNTHESIS OF ATOMICALLY-THIN LAYERED MATERIALS
The accurate description of atomic charges and polarization

by the new ReaxPQ+ model, combined with the drastic T2S
reduction due to algorithmic acceleration and performance
optimization in the previous section, has opened a new avenue
for computational synthesis of novel materials. This section
demonstrates the capability of the resulting parallel RMD code
for computational synthesis of atomically thin layered materials.

We focus on atomically-thin layered materials (LMs) that
have unique electronic structures and mechanical and transport
properties not found in their three-dimensional counterparts,
which makes them attractive templates for future functional
devices [22]. The primary synthesis technique for fabrication of
LMs is chemical vapor deposition (CVD), where one or more
reaction precursors in the gas phase undergo chemical reactions
at elevated temperatures inside a reaction chamber and the
reaction product is deposited on a substrate in a colder region of
the substrate [23]. RMD simulations can provide valuable inputs
to rational optimization of CVD growth conditions if adequate
length (1,000 Å) and time (10 ns) scales can be covered.

We simulated CVD synthesis of molybdenum disulfide
(MoS2), a prototypical 2D semiconductor, on 242,144 Intel
Xeon Phi cores. MoS2 can be formed by the reaction of MoO3
and S2 precursors. The initial configuration (Fig. 9(a)) consists
of ~1.14 million atoms (129,472 Mo, 396,032 O and 620,032 S
atoms) in a 1,037 Å ´ 1,080 Å ´ 145 Å simulation cell. Fig. 9,
(b) and (c), shows computational synthesis of MoS2 monolayer
by CVD and subsequent annealing. A pre-sulfurized MoO3
sample was thermalized at 3,000 K, and then quenched to 1,000
K in 2.2 ns. During annealing, the system was thermalized at
1,500 K for 2 ns, then quenched to 1,000 K in 1 ns. We repeated
the annealing cycle twice.

We used a machine-learning approach to identify key
reaction pathways. Fig. 9(d) shows the feed-forward neural
network (FNN) model [24, 25] we have developed to identify
and classify atomic structures into 1T-crystalline (green), 2H-
crystalline (red) and disordered (blue) structures in the
synthesized MoS2 crystal. In the input layer, the local
environment for each atom is represented by a 60-dimension
feature vector consisting of radial and angular symmetry
functions [26]. The first, second and third hidden layers consist
of 350, 100 and 50 hidden units, respectively. The RELU
activation function was used in the first and second layers, while
a sigmoid function in the third layer. We trained the model using

Fig. 8. (a) Wall-clock time of the ReaxPQ+ adapted RXMD code, with scaled
workloads — 24,576P-atom MoS2 on P cores (P = 64, ..., 131,072) of Theta. (b)
Strong-scaling speedup of the ReaxPQ+ adapted RXMD code with a fixed
problem size — 50,331,648-atom MoS2 system on P cores (P = 2,048, ...,
32,768) of Theta. The measured speedup values (blue) are compared with the
ideal speedup (black). The numbers denote speedups.

Fig. 9. Machine learning-guided computational synthesis of MoS2 monolayer
by CVD. (a) Simulation setup showing a MoO3 monolayer suspended in S2 gas.
The atoms are colored as Mo: blue, S: yellow, and O: red. (b, c) Close-up of
MoS2 monolayer before (b) and after (c) annealing. The local structures are
classified into 1T (green), 2H (red) and disordered (blue) phases. For clarity,
gaseous environment is not shown. (d) Neural network model for defect
identification and classification.

36,000-simulation datasets by minimizing the SoftMax function
using Adam-optimizer. The results reveal a novel growth
mechanism of 2H crystal mediated by a metastable 1T
crystalline phase (Fig. 9(b)). Such atomistic information is
indispensable for guiding experimental CVD synthesis with
improved crystallinity.

VI. CONCLUSION: BROADER APPLICATIONS ON FUTURE
SYSTEMS

To perform large RMD simulations incorporating dielectric
reorganization of materials, we have proposed a new generalized
polarizable reactive force-field (ReaxPQ+) model. The
increased accuracy of ReaxPQ+, along with the reduced time-
to-solution achieved by algorithmic and computational
innovations, has for the first time allowed purely computational
synthesis of atomically-thin transition-metal dichalcogenide
layers assisted by machine learning. This new capability opens
up an exciting possibility of future computational synthesis of
yet-to-exist layered materials with desired properties. As such,
layered materials genome has been chosen as one of the 10
designated applications of the United States’ first exaflop/s
computer named A21 when it is introduced in 2021 [13]. The
computational approaches developed in this paper will likely
play an important role in the exascale materials genome. Since
ReaxPQ+ is applicable to a wide variety of elements in the
periodic table, the current approach applies to much broader
applications in science and engineering.

ACKNOWLEDGMENT
This work was supported as part of the Computational

Materials Sciences Program funded by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences, under Award
Number DE-SC0014607. An award of computer time was
provided by the Aurora Early Science Program. This research
used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357.

REFERENCES
[1] T. P. Senftle, S. Hong, M. M. Islam, S. B. Kylasa, Y. Zheng, Y. K. Shin,

et al., "The ReaxFF reactive force-field: development, applications and
future directions," npj Computational Materials, vol. 2, p. 15011, Mar 4
2016.

[2] A. K. Rappe and W. A. Goddard, "Charge equilibration for molecular-
dynamics simulations," Journal of Physical Chemistry, vol. 95, pp. 3358-
3363, Apr 18 1991.

[3] A. Nakano, "Parallel multilevel preconditioned conjugate-gradient
approach to variable-charge molecular dynamics," Computer Physics
Communications, vol. 104, pp. 59-69, Aug 1997.

[4] K. Nomura, R. K. Kalia, A. Nakano, and P. Vashishta, "A scalable parallel
algorithm for large-scale reactive force-field molecular dynamics
simulations," Computer Physics Communications, vol. 178, pp. 73-87,
Jan 15 2008.

[5] H. M. Aktulga, S. A. Pandit, A. C. T. van Duin, and A. Y. Grama,
"Reactive molecular dynamics: numerical methods and algorithmic
techniques," SIAM Journal on Scientific Computing, vol. 34, pp. C1-C23,
Jan 31 2012.

[6] S. B. Kylasa, H. M. Aktulga, and A. Y. Grama, "Reactive molecular
dynamics on massively parallel heterogeneous architectures," IEEE
Transactions on Parallel and Distributed Systems, vol. 28, pp. 202-214,
Jan 1 2017.

[7] K. Nomura, R. K. Kalia, Y. Li, A. Nakano, P. Rajak, C. Sheng, et al.,
"Nanocarbon synthesis by high-temperature oxidation of nanoparticles,"
Scientific Reports, vol. 6, p. 24109, Apr 20 2016.

[8] R. A. Marcus, "Electron-transfer reactions in chemistry - theory and
experiment," Reviews of Modern Physics, vol. 65, pp. 599-610, Jul 1993.

[9] S. Naserifar, D. J. Brooks, W. A. Goddard, and V. Cvicek, "Polarizable
charge equilibration model for predicting accurate electrostatic
interactions in molecules and solids," Journal of Chemical Physics, vol.
146, p. 124117, Mar 28 2017.

[10] K. Nomura, P. E. Small, R. K. Kalia, A. Nakano, and P. Vashishta, "An
extended-Lagrangian scheme for charge equilibration in reactive
molecular dynamics simulations," Computer Physics Communications,
vol. 192, pp. 91-96, July 2015.

[11] M. Kunaseth, R. K. Kalia, A. Nakano, K. Nomura, and P. Vashishta, "A
scalable parallel algorithm for dynamic range-limited n-tuple
computation in many-body molecular dynamics simulation," Proceedings
of Supercomputing, SC13, ACM/IEEE, 2013.

[12] A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures,"
Nature, vol. 499, pp. 419-425, Jul 25 2013.

[13] R. F. Service, "Design for US exascale computer takes shape," Science,
vol. 359, pp. 617-618, Feb 9 2018.

[14] F. Shimojo, R. K. Kalia, M. Kunaseth, A. Nakano, K. Nomura, S.
Ohmura, et al., "A divide-conquer-recombine algorithmic paradigm for
multiscale materials modeling," Journal of Chemical Physics, vol. 140, p.
18A529, May 14 2014.

[15] P. Umari and A. Pasquarello, "Ab initio molecular dynamics in a finite
homogeneous electric field," Physical Review Letters, vol. 89, p. 157602,
Oct 7 2002.

[16] A. M. N. Niklasson, "Extended Born-Oppenheimer molecular dynamics,"
Physical Review Letters, vol. 100, p. 123004, Mar 28 2008.

[17] P. Souvatzis and A. M. N. Niklasson, "First principles molecular
dynamics without self-consistent field optimization," Journal of
Chemical Physics, vol. 140, p. 044117, Jan 28 2014.

[18] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Second ed.
Cambridge, UK: Cambridge University Press, 2004.

[19] D. E. Shaw, "A fast, scalable method for the parallel evaluation of
distance-limited pairwise particle interactions," Journal of Computational
Chemistry, vol. 26, pp. 1318-1328, Oct 2005.

[20] M. Kunaseth, R. K. Kalia, A. Nakano, P. Vashishta, D. F. Richards, and
J. N. Glosli, "Performance characteristics of hardware transactional
memory for molecular dynamics application on BlueGene/Q: toward
efficient multithreading strategies for large-scale scientific applications,"
Proceedings of the International Workshop on Parallel and Distributed
Scientific and Engineering Computing, PDSEC-13, Mar 20 IEEE, 2013.

[21] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani,
et al., "Knights Landing: second-generation Intel Xeon Phi product,"
IEEE Micro, vol. 36, pp. 34-46, Mar-Apr 2016.

[22] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, "2D
materials and van der Waals heterostructures," Science, vol. 353, p.
aac9439, Jul 29 2016.

[23] Y. M. Shi, H. N. Li, and L. J. Li, "Recent advances in controlled synthesis
of two-dimensional transition metal dichalcogenides via vapour
deposition techniques," Chemical Society Reviews, vol. 44, pp. 2744-
2756, May 7 2015.

[24] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward
networks are universal approximators," Neural Networks, vol. 2, pp. 359-
366, Jan 1989.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, "Dropout: A Simple Way to Prevent Neural Networks
from Overfitting," Journal of Machine Learning Research, vol. 15, pp.
1929-1958, Jun 2014.

[26] E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone, J. Rottler, D.
J. Durian, et al., "Identifying Structural Flow Defects in Disordered Solids
Using Machine-Learning Methods," Physical Review Letters, vol. 114, p.
108001, Mar 2015.

