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Shift-Collapse Acceleration of Generalized 
Polarizable Reactive Molecular Dynamics for 

Machine Learning-Assisted Computational Synthesis 
of Layered Materials 

 

Abstract — Reactive molecular dynamics is a powerful 
simulation method for describing chemical reactions. Here, we 
introduce a new generalized polarizable reactive force-field 
(ReaxPQ+) model to significantly improve the accuracy by 
accommodating the reorganization of surrounding media. The 
increased computation is accelerated by (1) extended Lagrangian 
approach to eliminate the speed-limiting charge iteration, (2) shift-
collapse computation of many-body renormalized n-tuples, which 
provably minimizes data transfer, (3) multithreading with round-
robin data privatization, and (4) data reordering to reduce 
computation and allow vectorization. The new code achieves (1) 
weak-scaling parallel efficiency of 0.989 for 131,072 cores, and (2) 
eight-fold reduction of time-to-solution (T2S) compared with the 
original code, on an Intel Knights Landing-based computer. The 
reduced T2S has for the first time allowed purely computational 
synthesis of atomically-thin transition metal dichalcogenide layers 
assisted by machine learning to discover a novel synthetic 
pathway. 

Keywords — Applications/ Computational materials science and 
engineering; Algorithms/Hybrid/heterogeneous/accelerated 
algorithms and other high-performance algorithms. 

I. INTRODUCTION: IMPORTANCE OF THE PROBLEM 
Reactive molecular dynamics (RMD) is a powerful 

simulation method for describing material processes involving 
chemical reactions, with a wide range of applications in physics, 
chemistry, biology and materials science [1]. RMD simulation 
follows time evolution of the positions, 𝐫" = {𝐫%|𝑖 = 1,… ,𝑁}, 
of N atoms by numerically integrating Newton’s equations of 
motion, where the atomic force law is mathematically encoded 
in the interatomic potential energy E(rN). Reliable interatomic 
potentials are key to accurately describing thermomechanical 
and chemical properties of materials. The first principles-
informed reactive force-field (ReaxFF) model significantly 
reduces the computational cost, while reproducing the energy 
surfaces and barriers as well as charge distributions of quantum-
mechanical (QM) calculations [1]. 

The most intensive computation in RMD simulation arises 
from a charge-equilibration (QEq) scheme [2] to describe charge 
transfer between atoms, thereby enabling the study of reduction 
and oxidation reactions. QEq treats atomic charges as dynamic 
variables, 𝑞" = {𝑞%|𝑖 = 1, … ,𝑁}. The charges and the resulting 
force law are determined by minimizing the potential energy 
with respect to qN at every RMD time step. This variable N-
charge problem is commonly solved iteratively, e.g., with the 
conjugate gradient (CG) method [3]. Though recent 
advancements in parallel ReaxFF algorithms [4-6] have enabled 
large RMD simulations [7] involving multimillion atoms, QEq 
computation remains to be the major bottleneck for studying 
long time trajectories of such large RMD simulations. 

Despite enormous success of the QEq-based ReaxFF model, 
one critical issue has remained unsolved, namely accurate 
description of electric polarizability. Polarization of the 
surrounding medium essentially dictates the rate of reduction 
and oxidation reactions, as is articulated, e.g., in the Nobel 
lecture by Rudolph Marcus [8]. A recently proposed polarizable 
reactive force-field (ReaxPQ) model based on a polarizable 
charge equilibration (PQEq) scheme significantly improves the 
accuracy of describing redox reactions by accommodating the 
reorganization of surrounding media [9]. When applied to 
prediction of electronic polarizabilities, however, the ReaxPQ 
model alone was found inadequate. This partly arises from the 
fact that the original ReaxPQ model determines the polarization 
of a nucleus core and an electronic shell within each atom by 
considering only the internal electric field produced by atomic 
charges but not an externally applied electric field. To remedy 
this deficiency, we here introduce a generalization of the 
ReaxPQ model named ReaxPQ+, in which atomic polarizations 
respond to both internal and external electric fields, thereby 
achieving near quantum accuracy for tested cases. 

The improved accuracy of the new ReaxPQ+ model is 
accompanied by significant increase of the computational cost. 
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Compared to the original QEq scheme, which only deals with 
atom-centered charge-charge interactions, PQEq computation in 
the ReaxPQ+ model is quadrupled, since it considers core-core, 
core-shell, shell-core and shell-shell charge interactions for 
every atomic pair. In this paper, we accelerate this heavy 
ReaxPQ+ computation using (1) an extended Lagrangian 
approach to eliminate the speed-limiting charge iteration [10], 
(2) a new extension of the shift-collapse (SC) algorithm [11] 
named renormalized SC (RSC) to compute dynamic n-tuples 
with provably minimal data transfers, (3) multithreading with 
round-robin data privatization, and (4) data reordering to reduce 
computation and allow vectorization. The accelerated code 
achieves (1) weak-scaling parallel efficiency of 0.989 for 
131,072 cores, and (2) eight-fold reduction of the time-to-
solution (T2S) compared with the original code, on an Intel 
Knights Landing (KNL)-based supercomputer. 

The reduced T2S has allowed computational synthesis of 
atomically-thin transition-metal dichalcogenide (TMDC) layers 
with unprecedented fidelity. Functional layered materials (LM) 
will dominate materials science in this century [12]. The 
attractiveness of LMs lies not only in their outstanding 
electronic, optical, magnetic and chemical properties, but also in 
the possibility of tuning these properties in desired ways by 
building van der Waals (vdW) heterostructures composed of 
unlimited combinations of atomically-thin layers. To rationally 
guide the synthesis of stacked LMs by chemical vapor 
deposition (CVD), exfoliation and intercalation, “computational 
synthesis” should encompass large spatiotemporal scales. Such 
layered materials genome (LMG) has been chosen as one of the 
designated applications of the United States’ first exaflop/s 
computer A21 when it is introduced in 2021 [13]. This paper for 
the first time demonstrates purely computational synthesis of 
TMDC-based LM, which is assisted by machine learning to 
discover a novel synthetic pathway. This opens up a possibility 
to computationally explore new synthetic pathways to novel 
TMDC-LMs and vdW heterostructures. 

II. APPLICATION AND ALGORITHMIC INNOVATIONS 
A. Generalized Polarizable Reactive Force Field (ReaxPQ+) 

In the ReaxPQ+ model, the potential energy 
𝐸/0𝐫ij1, 0𝐫ijk1, 0𝐫ijkl1, {𝑞%}, 0BOij12  is a function of relative 
positions of atomic pairs rij, triplets rijk and quadruplets rijkl, as 
well as atomic charges qi and bond orders BOij between atomic 
pairs. The potential energy includes Coulombic energy ECoulomb. 
In the PQEq scheme used in the original ReaxPQ model, electric 
polarization is described using a Gaussian-shaped electron 
density (shell) that can polarize away from the nuclei core in 
response to internal electric fields produced by atoms [9]. Here, 
each atom i is partitioned into two charged sites (i.e., core and 
shell). The core (ρic) consists of two parts: ρi with a variable total 

charge (qi) and ρiZ with a fixed total charge (Zi). The shell (ρis) is 
massless and has a fixed total charge of -Zi. The shell and core 
of an atom are connected by an isotropic harmonic spring with 
force constant Ks (Fig. 1). 

At each time step, the atomic charges qN are determined by 
minimizing ECoulomb subject to the conditions that the 
electrochemical potentials, ¶ECoulomb/¶qi, are equal among all 
atoms. The Coulombic energy is given by 
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where ric, ris, 𝜒%:  and 𝐽%%:  are the core position, shell position, 
electronegativity and hardness of the i-th atom. In Eq. (1), ria,jb 
(i, j = 1,…, N; a, b = core(c) or shell(s)) are charge-charge 
distances. The electrostatic energy between two Gaussian 
charges is given in terms of the error function 𝐶ia,jb/𝑟%L,FM2, and 
the Coulombic interaction is screened using a taper function T(r) 
[9]. As was mentioned in the introduction, the core-core, core-
shell, shell-core and shell-shell charge interactions in Eq. (1) 
quadruple the charge computation over the conventional 
ReaxFF model. 

In the original ReaxPQ, the shell position ris for the i-th atom 
is obtained by balancing the effect of the electrostatic field due 
to all other atoms (i.e., inter-atomic interactions) with intra-
atomic interactions involving only the core and shell: 
 𝐅inter = − O

O𝐫PQ
0∑ 𝑇(𝑟%L,FM)𝐶ia,jb/𝑟%L,FM2𝑞ia𝑞jbiaHjb 1 (2) 
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O𝐫PQ
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=
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We solve Finter = Fintra to determine ris using Newton-
Raphson method. Fig. 2(a) compares time evolution of the 
PQEq energy for 1, 10 and 100 iterations of Newton-Raphson 
method, where the previous shell positions are used as initial 
guess. Fig. 2(a) shows that single iteration suffices to obtain the 
accuracy of 10-4 kcal•mol-1/atom. We have also confirmed the 
accuracy of solution by comparing the shell position and charge 
of each atom. We have applied this ReaxPQ model to compute 
the dielectric constants 𝜖 of various materials and found that the 
model generally underestimates the values. 

 
Fig. 2.  (a) PQEq energy with 1, 10 and 100 iterations of Newton-Raphson 
method.  (b) Atomic charges after 1 ps of MD simulation with converged RMD 
(blue) and XRMD (red) methods. 

In order to improve the accuracy of describing the dielectric 
response of materials, we here introduce a generalized 
polarizable reactive force-field (ReaxPQ+) model, in which ris 

PQEq Energy Extended Lagrangian
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Fig. 1.  Schematic of the response of core (green) and shell (yellow) charges to 
an external electric field in the new PQEq+ model. 



is determined by solving 𝐅inter + 𝐅external = 𝐅intra , i.e., by 
explicitly including the effect of an external electric field	𝓔, 
 𝐅external = ∑ 𝑞%L𝓔L  (4) 
In both the original ReaxPQ and new ReaxPQ+ models, 
polarization is calculated as 
 𝐏 = ∑ 𝑞%L(𝐫%L − 𝐫%L: )%L  (5) 
where 𝐫%L:  is the charge position in the absence of external 
electric field 𝓔. 

TABLE I. Computed dielectric constants. 
Material ReaxPQ ReaxPQ+ QM 

Polyethylene (PE) 1.01 2.25 2.37 
C=O defect (PE) 1.02 2.74 2.78 
C-Cl defect (PE) 1.01 2.40 2.53 
MoS2 (in plane) 

MoS2 (out of plane) 
1.03 
1.03 

14.3 
5.68 

15.4* 
7.43* 

Polyvinylidene 
fluoride (PVDF) 1.02 2.56 2.52 

Alumina 1.03 3.17 2.98 
*Surface Science Reports, vol. 70, pp. 554-586, Dec 2015. 

We have tested the accuracy of the ReaxPQ+ model by 
computing the dielectric constants 𝜖  of poly-ethylene (PE), 
molybdenum disulfide (MoS2) and other polymer and ceramic 
materials. Table I compares dielectric constants computed with 
the original ReaxPQ and new ReaxPQ+ models against those 
obtained by first-principles QM calculations. As noted 
otherwise, the QM value has been computed by us using a 
quantum molecular dynamics (QMD) code [14] based on 
density functional theory (DFT), in which dielectric constants 
are calculated using a Berry-phase approach [15]. The table 
shows that the new ReaxPQ+ results agree much better with the 
QM results, compared with the original ReaxPQ results. The 
improved accuracy has been confirmed for broad organic and 
inorganic materials with varying moiety, anisotropy and defects, 
which will be published elsewhere. 

B. Extended-Lagrangian Acceleration of ReaxPQ+ 
As shown above, charge-interaction computation in 

ReaxPQ+ is quadrupled compared to that in the conventional 
ReaxFF model. The increased computational cost necessitates 
innovative algorithms to speed up the computation. 

First, we adapt the extended-Lagrangian reactive molecular 
dynamics (XRMD) algorithm [10], which was originally 
proposed for the conventional ReaxFF model, to the new 
ReaxPQ+ model. The problem is that an excessively large 
number of CG iterations are required to reach sufficient 
convergence of charges qN to guarantee the conservation of the 
total energy as a function of time. Insufficiently converged 
charges act as an artificial heat sink, and the resulting broken 
time reversibility causes the total energy to drift over time. A 
similar trade-off between the computational speed and energy 
conservation is encountered in first-principles QMD 
simulations, where insufficient convergence of the iterative 
refinement of electronic wave functions causes serious energy 
drift. Niklasson proposed an extended Lagrangian scheme [16] 
that achieves excellent long-time energy conservation with 
drastically reduced number of iterations. In fact, an extended 
Lagrangian scheme with no iteration (i.e., requiring only one 
evaluation of energy gradient per QMD time step) has been 
demonstrated [17]. The key idea is to introduce auxiliary wave 
functions as dynamic variables that are numerically integrated 
by time-reversible, symplectic integration schemes to address 

the broken reversibility problem, while the auxiliary wave 
functions are constrained to iteratively determined wave 
functions by a harmonic potential. Successful elimination of the 
speed-limiting charge iteration in the ReaxFF model was 
achieved by Nomura et al. by adapting the extended-Lagrangian 
scheme [10]. The XRMD algorithm has drastically improved 
energy conservation while substantially reducing the time-to-
solution. In addition, XRMD accurately describes atomic 
trajectories and charges. The average difference of atomic 
positions was 0.08 Å after 1 ps of simulation between XRMD 
and fully converged RMD methods [10]. Fig. 2(b) compares 
atomic charges obtained by XRMD algorithm with those by 
RMD using extremely high CG tolerance (10-8) which show an 
excellent agreement. In this paper, we adapt the XRMD 
algorithm to the new ReaxPQ+ model, where auxiliary charges 
are applied only to the variable part, qi, of the charges. 

C. Renormalized Shift-Collapse Acceleration of ReaxPQ+ 
Our second algorithmic innovation is a generalization of the 

shift-collapse (SC) algorithm [11], named renormalized SC 
(RSC). SC algorithm provably minimizes data transfer for 
computation of dynamic n-tuples in parallel computing based on 
spatial (or domain) decomposition. Building on translation and 
reflection invariance of the set of n-tuple computations, the 
algorithm applies shift and collapse algebraic transformations to 
n-tuple computations so as to completely eliminate redundant 
computations among computing nodes while minimizing data 
transfer. Here, we apply the SC algorithm to the generalized 
polarizable charge equilibration (PQEq+) subroutine that 
iteratively optimizes atomic charges to minimize the Coulombic 
potential energy using CG method. At the beginning of every 
PQEq+ iteration, information of neighbor atoms near the 
domain boundary (including atomic charges and gradients) 
needs to be imported from the nearest-neighbor computing 
nodes for calculating Coulombic potential used in CG iteration. 
This incurs significant communication cost. For each PQEq+ 
iteration, Coulombic potential of the system is evaluated using 
guessed atomic charges. After that, each node computes charge 
gradients and consecutively updates atomic charges of all atoms 
resided in its domain. PQEq+ computation is terminated when 
either (1) CG residue is small enough, (2) no energy 
improvement is gained between successive iterations, or (3) 
maximum number of iterations is reached. 

In this work, we employ two approaches to reduce the time 
spent in PQEq+ subroutine. First, we apply SC algorithm to 
minimize communication cost and eliminate redundant pair 
evaluations within PQEq+ subroutine. Here, we also develop a 
new SC approach to handle many-body renormalized n-tuple 
computation in PQEq+ due to the interaction with surrounding 
atoms, which has never been addressed by SC algorithm before. 
Second, we store-and-reuse unchanged coefficients across 
multiple CG iterations, thereby improving the efficiency of SC 
computation. Details of these approaches are discussed below. 

SC algorithm utilizes 3-step communication, thereby 
significantly reducing both bandwidth and latency costs when 
compared to the 6-step communication (i.e. halo exchange) in 
conventional full-shell (FS) method [18]. Computation pattern 
of SC algorithm also eliminates redundant pair evaluations. 
Evaluating Coulombic potential using SC algorithm is rather 
straightforward. The computation follows SC computation 



pattern for two-body interaction, which includes pairs of 
resident atoms and pairs of atoms in the neutral territory (NT) 
[19]. Typically, contribution from pairs in NT region needs to 
be sent back to its resident node. However, the return of 
contribution is not required in this situation. Here, only overall 
sum of Coulombic potential contributions from every node is 
needed, which can be efficiently achieved by using the 
MPI_AllReduce function in the message passing interface 
(MPI) standard. Nevertheless, subsequent computation after 
obtaining total Coulombic potential requires special treatment 
for many-body computation within the CG subroutine. Namely, 
computation of charge gradient g(i) for a particular atom i 
requires sum of contributions over all neighbor atoms of i: 
 𝑔(𝑖) = ∑ 𝐻%F𝑞FFϵZ[\(%)  (6) 
where Hij denotes charge Hessian of atom pair i and j, and 
NBR(i) is the neighbor list of atoms i. Computing g(i) involves 
many-body renormalization because it requires Hij contributions 
from all neighbor atoms in NBR(i); see Fig. 3(a). However, in 
SC computation, atoms near the lower domain boundary may 
not have complete neighbor-atom information in the node it 
resides. In fact, neighbor-atom information is completed when 
combining partial neighbor lists (PNBR) from multiple 
computing nodes. As such, gradient calculation in SC 
algorithmic framework gSC(i) is defined as 
 𝑔]^(𝑖) = ∑ 𝐻%F𝑞F𝑗ϵ`Z[\abc(𝑖) + ∑ R∑ 𝐻%𝑗d𝑞𝑗d𝑗dϵPNBRe

NT(𝑖) S	f 	(7) 
where PNBRRES(i) denotes partial neighbor list of atom i in the 
node that atom i resides. PNBRf

NT(i) denotes partial neighbor list 
of atom i in NT region from node k, which is not in the same 
node that i resides. Therefore, to complete g(i) calculation in SC 
framework, partial g(i) contribution based on PNBRNT(i) must 
be sent back to the node that owns i (resident node); see Fig. 
3(b). Although this incurs extra communication (additional 3-
way communication for returning gSC(i) contribution), this is 
still no larger than the 6-way communication in conventional FS 
method. Furthermore, FS computation pattern yields substantial 
computational overhead from redundant pair evaluations to 
build complete NBR in every computing node. On the other 
hand, SC algorithm performs only essential pair evaluations 
without redundancy. This is expected to significantly reduce 
running time inside PQEq+ subroutine, while maintaining the 
same communication cost. 

For each PQEq+ iteration, Coulombic potential energy 
between atoms i and j based on (1) takes the following form: 

𝐸Coulomb(𝑖, 𝑗) = 𝐸core-core(𝑖, 𝑗) + 𝐸core-shell(𝑖, 𝑗)
+ 𝐸core-shell(𝑗, 𝑖) + 𝐸shell-shell(𝑖, 𝑗) 

 𝐸core-core(𝑖, 𝑗) = 𝑇/𝑟%g,Fg2𝐶%g,Fg/𝑟%g,Fg2𝑞%𝑞F  

 𝐸core-shell(𝑖, 𝑗) = −𝑇/𝑟%g,F@2𝐶%g,F@/𝑟%g,F@2𝑞%𝑍F (8) 
 𝐸shell-shell(𝑖, 𝑗) = 𝑇/𝑟%@,F@2𝐶%@,F@/𝑟%@,F@2𝑍%𝑍F  
Here, 𝑇/𝑟%L,FM2 and 𝐶%h,Fi/𝑟%L,FM2 are computed using a costly 
table lookup as a function of core/shell distance. However, only 
qi is changing across PQEq+ iterations, while 𝑇/𝑟%L,FM2  and 
𝐶%h,Fi/𝑟%L,FM2 remain unchanged (i.e. atomic/shell positions are 
fixed). Therefore, we save considerable computation time by 
storing these four unchanged coefficients 𝑇/𝑟%L,FM2𝐶%L,FM/𝑟%L,FM2 
for each atomic pair throughout PQEq+ iterations. 

III. PARALLEL IMPLEMENTATION AND PERFORMANCE 
OPTIMIZATIONS 

We have implemented RMD simulation based on the new 
algorithmically-accelerated ReaxPQ+ model in section II in a 
scalable parallel RMD code named RXMD [4]. In this code, 
computations are parallelized using spatial decomposition, 
where the simulated system is decomposed into spatially 
localized subsystems and each processor is assigned 
computations associated with one subsystem. Message passing 
is used to exchange necessary data for the computations between 
processors, utilizing the MPI standard. Specifically, before 
computing the forces on atoms in a subsystem, atomic positions 
within the interaction cutoff radius within the boundaries of the 
neighboring subsystems are copied from the corresponding 
processors (i.e., inter-process atom caching). After updating the 
atomic positions according to time-stepping, some atoms may 
have moved out of its subsystem. These moved-out atoms are 
migrated to the proper neighbor processors (i.e., inter-process 
atom migration). The RXMD code is written in Fortran 90. 

For large granularity (the number of atoms per spatial 
subsystem, N/D > 102), spatial decomposition (i.e., each 
processor is responsible for the computation of the forces on the 
atoms within its subsystem) suffices. For finer granularity (N/D 
~ 1), on the other hand, neutral-territory (NT) [19] or other 
hybrid decomposition schemes is more efficient. As discussed 
in section II, we use the SC scheme [11], which is a 
generalization of NT for general dynamic n-tuple computation. 

Grain size for each MPI rank is limited by the cutoff length 
of interaction. To further accelerate the computation within MPI 
rank, we introduce an additional layer of shared-memory 
parallelism using the Open Multi-Processing (OpenMP) 
application programming interface. This hierarchical 
MPI+OpenMP implementation allows RXMD to take 
advantage of the simultaneous multithreading support provided 
by modern processors to achieve better utilization of the 
computing resources within each processor. With 
multithreading, the most computationally expensive bond-order 
and force computations within RXMD are greatly accelerated, 
serving to reduce the overall runtime. A secondary benefit of 
multithreading is that it allows MPI ranks to be exchanged for 
local threads, thereby reducing the total number of ranks in a 
MPI job and similarly reducing the communication and atom-
caching overheads at large scales. To obtain the best time-to-
solution (T2S) on each Intel Knights Landing (KNL) node, we 
performed timed run for several possible configurations of MPI 
ranks and OpenMP threads, as shown in Fig. 4(a). In this test, 
the product of the number of MPI ranks and that of OpenMP 
threads is fixed to 64. The best T2S was observed for the 

 
Fig. 3. Illustration of many-body renormalized n-tuple computation of g(i) based 
on (a) conventional full neighbor list (NBR) and (b) partial neighbor lists 
(PNBRRES and PNBRNT) used in the RSC algorithm. 



combination of 16 MPI ranks and 4 OpenMP threads on each 
node, which will be used in subsequent benchmark tests. 

 
Fig. 4.  (a) Runtime comparison between different configurations of MPI ranks 
and OpenMP threads on 1 node to identify the optimal combination. Total 
number of processes is 64.  (b) Average runtime per step for the original 
ReaxPQ+ and new ReaxPQ+SC implementations on 96 and 1,440 cores. 
ReaxPQ+SC reduces time-to-solution 5.0- and 5.7-fold below ReaxPQ+ for 96- 
and 1,440-core benchmarks, respectively. The numbers denote runtimes. 

A. Performance Improvement by Algorithmic Accelerations 
We first test the effect of SC acceleration described in 

section II.C. Fig. 4(b) shows the average runtime per time step 
on 96 cores (left) and 1,440 cores (right). In each case, the left 
and right bars show the total runtime without (ReaxPQ+) and 
with (ReaxPQ+SC) SC acceleration, respectively. The figure 
also shows partial runtimes for polarizable charge-equilibration 
(PQEq) calculation, which has become the speed-limiting step 
in the new ReaxPQ+ model in order to achieve the improved 
accuracy demonstrated in section II.A, as well as for non-bonded 
(ENbond) and other force calculations. We observe that the SC-
accelerated ReaxPQ+SC is 5.0 and 5.7 times faster than the 
original implementation, ReaxPQ+, on 96 and 1,440 cores, 
respectively (N/P = 672). We should note that this significant 
speedup is a result of the following two improvements. First, the 
SC framework minimized the computation by removing 
redundant pair calculations, which is especially beneficial for 
fine granularity (i.e., small number of atoms per computing 
node). The reduced communication in ReaxPQ+SC is 
highlighted by the increased relative performance with 
ReaxPQ+ from 5.0 to 5.7 fold when the number of cores 
increases from 96 to 1,440. Second, the computation was further 
reduced by reusing Coulombic coefficients. 

B. Improving Thread Scalability by Round-Robin Data 
Privatization 
In molecular dynamics (MD) simulations like RMD, 

interatomic forces need to be updated at every time step, which 
consumes substantial computing. With shared-memory 
programming, force calculation is parallelized by distributing 
computations to threads. Because of Newton’s third law of 
motion, it is possible that different threads compute pair 
interactions involving a common atom and update the force on 
that atom simultaneously, thereby causing memory conflict. To 
avoid such race conditions, OpenMP provides atomic directive 
to handle concurrent memory access with a few locks. 

In the RXMD code, interatomic forces for all atoms within 
an MPI process are stacked in an array f of length n, where n is 
the total number of atoms per MPI rank. Array f is shared and 
atomically accessed by threads in force-calculation module (Fig. 
5(a)). However, overhead of concurrent memory access to array 

f can become performance bottleneck as the simulation size 
grows. We observed that the cumulative CPU time of atomic 
operations accounts for 40% of the total runtime. Fig. 5(b) 
shows how a thread-privatization scheme addresses this issue 
[20]. Specifically, the program allocates a private copy, 
f_private, of array f for each thread and accesses f_private 
individually. When a piece of calculated force data on a common 
atom needs to be updated by more than one threads, these 
threads write partial results to their own arrays concurrently, 
thereby eliminating atomic operations. 

 
Fig. 5.  (a, b) Data privatization. All threads write to the global force array using 
atomic operations (a), or each thread writes to private array (b).  (c) Round-robin 
reduction with non-overlapping chunks for improving data privatization. 

Once the force module finishes all of its computation, we 
need to aggregate the partial results to the global array, for which 
we adopt a round-robin approach. As shown in Fig. 5(c), 
f_private is divided into p chunks of equal length except for the 
last one for a remainder, where p is the number of threads. In 
every round, each thread is in charge of a unique chunk and 
transfers data to the global array at the corresponding location. 
It then circles through the array chunk by chunk until the entire 
f_private is transferred. This data reduction is implemented in a 
single-instruction multiple-data (SIMD) manner. The non-
overlapping chunk design prevents memory conflicts, while 
maintaining thread scalability by enhancing cache locality. 
Though data privatization requires additional memory allocation 
that grows as O(np) (p is the number of threads), it is justified 
for the target application of computational synthesis. Here, 
minimizing T2S is essential for describing long-time growth 
process, rather than simulating the largest possible system to 
saturate the memory. 

C. Promoting Data Parallelism by Data Alignment 
The Coulombic energy is updated in every PQEq+ iteration. 

In the algorithm in Table II, the procedure contains a doubly-
nested loop over atoms i and j. The outer loop over i is mapped 
to parallel threads via OpenMP loop parallelism. The inner loop 
over j in the original RXMD code was executed sequentially. To 
promote data parallelism (SIMD) on AVX-512 vector lanes (see 
the experimental platform in section IV.A), we apply SIMD 
operations on j loop. However, atoms j in the neighbor list of 
atom i are irregularly stored, and accordingly successive data 
accesses by index j are non-contiguous in memory, resulting in 
inefficient cache performance. Here, we notice two facts: 
PQEQ+ neighbor list is only updated once every time step (the 
outmost loop); and the index in neighbor list is closely 
distributed, albeit randomly stored, in a number of groups. To 
take advantage of this property, we here use quicksort to 
rearrange the neighbor list at every PQEq+ initialization phase 
such that atoms j are sorted in ascending order, thus irregular 
access is avoided. Fig. 6 illustrates the modified neighbor list. 



After sorting, groups of atoms with sequential indices are 
adjacently placed in memory, thus the subsequent computation 
can leverage SIMD operations on our computing platform. 

TABLE II. PQEq get_hsh procedure in RXMD. 
1. do atoms i 
2.  do atoms j in i’s PQEQ+ neighbor 
3.   update Coulombic energy 

 
Fig. 6. Sorted neighbor-list followed by SIMD operation. 

Table III shows a piece of sorted neighbor list taken from an 
actual simulation and its corresponding stride. The unit stride 
(value of 1) indicates successive placement of indices. 

TABLE III. Sorted polarized neighbor list and stride. 
Index in Neighbor-list 
[888, 889, 890, 891, 892, 893, 894, 895, 896, 954, 962, 978, 998, 1002, 1017, 
1018, 1024, 1096, 1112, 1145, 1146, 1160, 1180, 1192, 1218, 1219, 1220, 
1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1232, 1234, 1235, 1236, 
1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244] 
Stride 
[1, 1, 1, 1, 1, 58, 8, 16, 20, 4, 15, 1, 6, 72, 16, 33, 1, 14, 20, 12, 26, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 

D. Additional Code Transformations and Performance 
Improvement 
In the original RXMD code, the distance between atom pairs 

are computed when creating a neighbor list, but this data is 
discarded immediately regardless the fact that such distance will 
be frequently recalculated in the subsequent force module. To 
eliminate these redundant computations, we modify the data 
structure by packing the atomic-pair distance into the neighbor 
list. Table IV illustrates the modification of neighbor list and the 
later usage of the distance data in the force-computation module. 
When accessing the index of neighboring atoms, the program 
can directly fetch drij from memory without any redundant 
computation impairing the performance. 

TABLE IV. Packing atomic-pair distance into neighbor list. 
In Neighbor-list module 
1. for each cell 
2.  for atoms i in this cell 
3.   for atom j in the supercell 
4.    compute distance drij of i and j 
5.    if drij < cutoff range 
6.     nbrlist(i) stores (j, i, drij) 
In Force module, 2-body case 
9. for atom i 
10.  for atom j in nbrlist(i) 
11.   fetch drij from nbrlist 
12.   force calculation using drij 

To assess the effect of several performance optimizations 
discussed in this section, we run a simulation of MoS2 crystal on 
512 Intel Xeon Phi KNL nodes with 10 simulation steps. Fig. 7 
compares the wall-clock time of the original code (left) with that 
of our optimized version (right) over a set of ReaxPQ+ force 
functions, including Enbond (nonbonded), Elnpr (lone-pair), 
Ehb (hydrogen-bond), E3b (3-body) and E4b (4-body) 

interactions. The most time-consuming function, E3b, has 
become 5.57 times faster, and the aggregate time of force-
computation module has achieved 4.38-fold speedup over the 
original version. Overall, these performance optimizations have 
achieved 1.55-fold speedup of the entire simulation runtime. 

 
Fig. 7. Performance improvement after data privatization and other code 
transformations. The numbers denote runtimes. 

IV. SCALABILITY AND TIME-TO-SOLUTION 
A. Experimental Platform 

We perform benchmark tests of the RXMD code with the 
accelerated ReaxPQ+ model on Theta — an Intel Xeon Phi 
Knights Landing (KNL) based supercomputer [21]. Each 
computing node contains 64 cores. Each core in turn has 32 KB 
L1 instruction cache, 32 KB L1 data cache, and two independent 
floating-point units capable of executing 512-bit wide SIMD 
instructions. The peak instruction throughput of the KNL 
microarchitecture is 2 instructions per clock cycle, and they can 
be issued back-to-back from the same thread. Two cores and a 
shared 1 MB L2 cache form a tile, and the tiles are connected 
with a 2D-mesh network-on-chip with 16 GB of high-bandwidth 
in-package multichannel DRAM memory (MCDRAM) and 192 
GB of regular DRAM. There are two memory modes of 
execution. In the cache mode, the MCDRAM is used as a cache 
to DRAM; while in the flat mode, both MCDRAM and DRAM 
form a single linear memory space. We tested our code in both 
flat and cache modes but observed no significant difference. 
Following benchmarks are performed in cache mode. 

B. Weak and Strong Scaling on Theta 
We perform an isogranular-scaling test of the ReaxPQ+ 

adapted RXMD code with hybrid MPI+OpenMP 
implementation on Theta, in which the number of atoms per MPI 
rank N/P is kept constant. We measure the wall-clock time per 
simulation time step with scaled workloads — 24,576-atom 
MoS2 system on each core. By increasing the number of atoms 
linearly with the number of cores, the wall-clock time remains 
almost constant, indicating excellent scalability. To quantify the 
parallel efficiency, we first define the speed of the RXMD code 
as a product of the total number of atoms and the number of 
RMD time steps executed per second. The isogranular (or weak-
scaling) speedup is given by the ratio between the speed of P 
core and that of 64 cores as a reference system. With the 
granularity of 24,576 atoms per core, the parallel efficiency is 
0.989 on 131,072 cores for a 3,221,225,472-atom system, shown 
in Fig. 8(a). This demonstrates a very high scalability of the 
ReaxPQ+ adapted RXMD code. 
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We next perform a strong-scaling test by simulating MoS2 
with a total of 50,331,648 atoms. In this test, the number of cores 
ranges from P = 2,048 to 32,768, while keeping the total 
problem size constant. We measure the wall-clock time per 
RMD time step as a function of P cores. The runtime is reduced 
by a factor of 12.26 on 32,768 cores compared with the 2,048 
cores run (i.e., using 16-times larger number of cores). This 
signifies a strong-scaling speedup of 12.26, with the 
corresponding strong-scaling parallel efficiency of 0.766. Fig. 
8(b) shows the measured strong-scaling speedup as a function of 
the number of ranks (blue line), while the black line denotes the 
ideal speedup. It is more difficult to achieve high strong-scaling 
parallel efficiency compared with weak-scaling parallel 
efficiency, as the comparison of Fig. 8, (a) and (b), suggests. 
This is due to the surge of communication/computation ratio as 
the workload per rank shrinks proportionally. With 64 times 
smaller system size of the weak-scaling test, the observed 
strong-scaling parallel efficiency is considered excellent. 

C. Time-to-Solution Improvement 
Our target application (see section V) is computational 

synthesis of MoS2 monolayer from MoO3 and S2 reactants. Due 
to the long time of the reaction process, no previous RMD 
simulation has been able to complete the reaction to obtain the 
MoS2 product. Reduced T2S is the key figure of merit for this 
purpose. Overall, the algorithmic acceleration in section II has 
resulted in a speedup of factor 5.0 over the original RXMD code 
for the ReaxPQ+ model. In addition, a series of code 
transformations on Theta in section III has achieved additional 
speedup of factor 1.55. Overall, the algorithmic acceleration and 
performance optimization have achieved a speedup of factor 
5.0 × 1.55 = 7.75. Namely, T2S has been reduced to 12.9% 
compared to that of the original ReaxPQ+ adapted RXMD code. 

V. MACHINE-LEARNING GUIDED COMPUTATIONAL 
SYNTHESIS OF ATOMICALLY-THIN LAYERED MATERIALS 
The accurate description of atomic charges and polarization 

by the new ReaxPQ+ model, combined with the drastic T2S 
reduction due to algorithmic acceleration and performance 
optimization in the previous section, has opened a new avenue 
for computational synthesis of novel materials. This section 
demonstrates the capability of the resulting parallel RMD code 
for computational synthesis of atomically thin layered materials. 

We focus on atomically-thin layered materials (LMs) that 
have unique electronic structures and mechanical and transport 
properties not found in their three-dimensional counterparts, 
which makes them attractive templates for future functional 
devices [22]. The primary synthesis technique for fabrication of 
LMs is chemical vapor deposition (CVD), where one or more 
reaction precursors in the gas phase undergo chemical reactions 
at elevated temperatures inside a reaction chamber and the 
reaction product is deposited on a substrate in a colder region of 
the substrate [23]. RMD simulations can provide valuable inputs 
to rational optimization of CVD growth conditions if adequate 
length (1,000 Å) and time (10 ns) scales can be covered. 

We simulated CVD synthesis of molybdenum disulfide 
(MoS2), a prototypical 2D semiconductor, on 242,144 Intel 
Xeon Phi cores. MoS2 can be formed by the reaction of MoO3 
and S2 precursors. The initial configuration (Fig. 9(a)) consists 
of ~1.14 million atoms (129,472 Mo, 396,032 O and 620,032 S 
atoms) in a 1,037 Å ´ 1,080 Å ´ 145 Å simulation cell. Fig. 9, 
(b) and (c), shows computational synthesis of MoS2 monolayer 
by CVD and subsequent annealing. A pre-sulfurized MoO3 
sample was thermalized at 3,000 K, and then quenched to 1,000 
K in 2.2 ns. During annealing, the system was thermalized at 
1,500 K for 2 ns, then quenched to 1,000 K in 1 ns. We repeated 
the annealing cycle twice. 

We used a machine-learning approach to identify key 
reaction pathways. Fig. 9(d) shows the feed-forward neural 
network (FNN) model [24, 25] we have developed to identify 
and classify atomic structures into 1T-crystalline (green), 2H-
crystalline (red) and disordered (blue) structures in the 
synthesized MoS2 crystal. In the input layer, the local 
environment for each atom is represented by a 60-dimension 
feature vector consisting of radial and angular symmetry 
functions [26]. The first, second and third hidden layers consist 
of 350, 100 and 50 hidden units, respectively. The RELU 
activation function was used in the first and second layers, while 
a sigmoid function in the third layer. We trained the model using 

 
Fig. 8.  (a) Wall-clock time of the ReaxPQ+ adapted RXMD code, with scaled 
workloads — 24,576P-atom MoS2 on P cores (P = 64, ..., 131,072) of Theta.  (b) 
Strong-scaling speedup of the ReaxPQ+ adapted RXMD code with a fixed 
problem size — 50,331,648-atom MoS2 system on P cores (P = 2,048, ..., 
32,768) of Theta. The measured speedup values (blue) are compared with the 
ideal speedup (black). The numbers denote speedups. 

 
Fig. 9.  Machine learning-guided computational synthesis of MoS2 monolayer 
by CVD. (a) Simulation setup showing a MoO3 monolayer suspended in S2 gas. 
The atoms are colored as Mo: blue, S: yellow, and O: red.  (b, c) Close-up of 
MoS2 monolayer before (b) and after (c) annealing. The local structures are 
classified into 1T (green), 2H (red) and disordered (blue) phases. For clarity, 
gaseous environment is not shown.  (d) Neural network model for defect 
identification and classification. 



36,000-simulation datasets by minimizing the SoftMax function 
using Adam-optimizer. The results reveal a novel growth 
mechanism of 2H crystal mediated by a metastable 1T 
crystalline phase (Fig. 9(b)). Such atomistic information is 
indispensable for guiding experimental CVD synthesis with 
improved crystallinity. 

VI. CONCLUSION: BROADER APPLICATIONS ON FUTURE 
SYSTEMS 

To perform large RMD simulations incorporating dielectric 
reorganization of materials, we have proposed a new generalized 
polarizable reactive force-field (ReaxPQ+) model. The 
increased accuracy of ReaxPQ+, along with the reduced time-
to-solution achieved by algorithmic and computational 
innovations, has for the first time allowed purely computational 
synthesis of atomically-thin transition-metal dichalcogenide 
layers assisted by machine learning. This new capability opens 
up an exciting possibility of future computational synthesis of 
yet-to-exist layered materials with desired properties. As such, 
layered materials genome has been chosen as one of the 10 
designated applications of the United States’ first exaflop/s 
computer named A21 when it is introduced in 2021 [13]. The 
computational approaches developed in this paper will likely 
play an important role in the exascale materials genome. Since 
ReaxPQ+ is applicable to a wide variety of elements in the 
periodic table, the current approach applies to much broader 
applications in science and engineering. 

ACKNOWLEDGMENT 
This work was supported as part of the Computational 

Materials Sciences Program funded by the U.S. Department of 
Energy, Office of Science, Basic Energy Sciences, under Award 
Number DE-SC0014607. An award of computer time was 
provided by the Aurora Early Science Program. This research 
used resources of the Argonne Leadership Computing Facility, 
which is a DOE Office of Science User Facility supported under 
Contract DE-AC02-06CH11357. 

REFERENCES 
[1] T. P. Senftle, S. Hong, M. M. Islam, S. B. Kylasa, Y. Zheng, Y. K. Shin, 

et al., "The ReaxFF reactive force-field: development, applications and 
future directions," npj Computational Materials, vol. 2, p. 15011, Mar 4 
2016. 

[2] A. K. Rappe and W. A. Goddard, "Charge equilibration for molecular-
dynamics simulations," Journal of Physical Chemistry, vol. 95, pp. 3358-
3363, Apr 18 1991. 

[3] A. Nakano, "Parallel multilevel preconditioned conjugate-gradient 
approach to variable-charge molecular dynamics," Computer Physics 
Communications, vol. 104, pp. 59-69, Aug 1997. 

[4] K. Nomura, R. K. Kalia, A. Nakano, and P. Vashishta, "A scalable parallel 
algorithm for large-scale reactive force-field molecular dynamics 
simulations," Computer Physics Communications, vol. 178, pp. 73-87, 
Jan 15 2008. 

[5] H. M. Aktulga, S. A. Pandit, A. C. T. van Duin, and A. Y. Grama, 
"Reactive molecular dynamics: numerical methods and algorithmic 
techniques," SIAM Journal on Scientific Computing, vol. 34, pp. C1-C23, 
Jan 31 2012. 

[6] S. B. Kylasa, H. M. Aktulga, and A. Y. Grama, "Reactive molecular 
dynamics on massively parallel heterogeneous architectures," IEEE 
Transactions on Parallel and Distributed Systems, vol. 28, pp. 202-214, 
Jan 1 2017. 

[7] K. Nomura, R. K. Kalia, Y. Li, A. Nakano, P. Rajak, C. Sheng, et al., 
"Nanocarbon synthesis by high-temperature oxidation of nanoparticles," 
Scientific Reports, vol. 6, p. 24109, Apr 20 2016. 

[8] R. A. Marcus, "Electron-transfer reactions in chemistry - theory and 
experiment," Reviews of Modern Physics, vol. 65, pp. 599-610, Jul 1993. 

[9] S. Naserifar, D. J. Brooks, W. A. Goddard, and V. Cvicek, "Polarizable 
charge equilibration model for predicting accurate electrostatic 
interactions in molecules and solids," Journal of Chemical Physics, vol. 
146, p. 124117, Mar 28 2017. 

[10] K. Nomura, P. E. Small, R. K. Kalia, A. Nakano, and P. Vashishta, "An 
extended-Lagrangian scheme for charge equilibration in reactive 
molecular dynamics simulations," Computer Physics Communications, 
vol. 192, pp. 91-96, July 2015. 

[11] M. Kunaseth, R. K. Kalia, A. Nakano, K. Nomura, and P. Vashishta, "A 
scalable parallel algorithm for dynamic range-limited n-tuple 
computation in many-body molecular dynamics simulation," Proceedings 
of Supercomputing, SC13, ACM/IEEE, 2013. 

[12] A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures," 
Nature, vol. 499, pp. 419-425, Jul 25 2013. 

[13] R. F. Service, "Design for US exascale computer takes shape," Science, 
vol. 359, pp. 617-618, Feb 9 2018. 

[14] F. Shimojo, R. K. Kalia, M. Kunaseth, A. Nakano, K. Nomura, S. 
Ohmura, et al., "A divide-conquer-recombine algorithmic paradigm for 
multiscale materials modeling," Journal of Chemical Physics, vol. 140, p. 
18A529, May 14 2014. 

[15] P. Umari and A. Pasquarello, "Ab initio molecular dynamics in a finite 
homogeneous electric field," Physical Review Letters, vol. 89, p. 157602, 
Oct 7 2002. 

[16] A. M. N. Niklasson, "Extended Born-Oppenheimer molecular dynamics," 
Physical Review Letters, vol. 100, p. 123004, Mar 28 2008. 

[17] P. Souvatzis and A. M. N. Niklasson, "First principles molecular 
dynamics without self-consistent field optimization," Journal of 
Chemical Physics, vol. 140, p. 044117, Jan 28 2014. 

[18] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Second ed. 
Cambridge, UK: Cambridge University Press, 2004. 

[19] D. E. Shaw, "A fast, scalable method for the parallel evaluation of 
distance-limited pairwise particle interactions," Journal of Computational 
Chemistry, vol. 26, pp. 1318-1328, Oct 2005. 

[20] M. Kunaseth, R. K. Kalia, A. Nakano, P. Vashishta, D. F. Richards, and 
J. N. Glosli, "Performance characteristics of hardware transactional 
memory for molecular dynamics application on BlueGene/Q: toward 
efficient multithreading strategies for large-scale scientific applications," 
Proceedings of the International Workshop on Parallel and Distributed 
Scientific and Engineering Computing, PDSEC-13, Mar 20 IEEE, 2013. 

[21] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani, 
et al., "Knights Landing: second-generation Intel Xeon Phi product," 
IEEE Micro, vol. 36, pp. 34-46, Mar-Apr 2016. 

[22] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, "2D 
materials and van der Waals heterostructures," Science, vol. 353, p. 
aac9439, Jul 29 2016. 

[23] Y. M. Shi, H. N. Li, and L. J. Li, "Recent advances in controlled synthesis 
of two-dimensional transition metal dichalcogenides via vapour 
deposition techniques," Chemical Society Reviews, vol. 44, pp. 2744-
2756, May 7 2015. 

[24] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward 
networks are universal approximators," Neural Networks, vol. 2, pp. 359-
366, Jan 1989. 

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. 
Salakhutdinov, "Dropout: A Simple Way to Prevent Neural Networks 
from Overfitting," Journal of Machine Learning Research, vol. 15, pp. 
1929-1958, Jun 2014. 

[26] E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone, J. Rottler, D. 
J. Durian, et al., "Identifying Structural Flow Defects in Disordered Solids 
Using Machine-Learning Methods," Physical Review Letters, vol. 114, p. 
108001, Mar 2015. 

 

 

 


