

Workload Estimates

- Number procedures per week
 - 3 patients per hour
 - 1 to 5 procedures per patient
- Body% and Head%
- · Contrast and non-contrast scans
- 120kVp vs other kVp
- Scan parameters of protocol

Multi-Slice Helical CT Shielding

- · Thinner slice protocols may require more dose - create more scatter
 - More photons needed to generate adequate photon statistics per slice (smaller voxels, higher noise)
 - Environmental radiation levels typically
 - increase with increase in beam width

 However, fewer rotations are needed to produce

Multi-Slice Helical CT Shielding · Over-scan at ends of volume add scatter - Worst with widest beams · Ceiling and floor deserve close scrutiny

Barrier Determination

- NCRP 147, section 5.6, pg 94
- CTDI method
- DLP method
- Scatter plots

Use Caution with Scatter Plots

- Choice of plot (Head vs Body)
- · Normalization of data
 - kVp of plot vs clinical
 - mAs per scan
 - Beam width of plot vs clinical
- Total mAs per scan
 - Pitch, rotation, total beam-on time
 - Accounts for scan acquisition time for diff beam width

Question

Do I really need to put lead in the ceiling of a 64-slice CT scan room?

Method

- Calculate the unshielded weekly exposure rate at 0.5 m beyond the floor above
 - Find the maximum weekly exposure at 1 m from isocenter and inverse-square this out to the occupied area beyond the barrier.
- Perform barrier thickness calculations
 - Occupancy, permissible dose, attenuation of concrete, etc.

Example

- 180 Procedures/week
 - 150 Abdomen & Pelvis
 - 30 Head

L= 60cm + 0.4*30cm

- 40% w&w/o contrast
- 13.0' (4.2 m) ceiling height (finished floor to finished floor) D_{sec}= 3.7m
- GE LightSpeed 16
- · Ignores overscan at ends!
 - Effect Worsens with wider beams (64-slice)

Protocols Pitch Beam Table (mm) (mm/rot) Time (sec) kVp mΑ Head 120 240 1.0 1.375 10 13.75 Body 120 265 0.8 0.938 20 18.75

	NCRF	9 147 D	LP Method	d	
	Procedure	CTDI _{Vol} (mGy)	Scan Length (L, cm)	DLP (mGy-cm)	
	Head	60	20	1200	
	Body	15	35	525	
	Abdomen	25	25	625	
	Pelvis	7	20	500	
	Body (Chest, Abdomen, or Pelvis)			550	
•		✓✓ MDACC Imagin	g Physics \		26

Unshielded Weekly Exposure at Barrier

 Average Air Kerma/procedure at 1m (K¹_{sec}) - 40% w&w/o contrast

$$K_{\text{sec}}^{1}$$
 (head) = 1.4 * κ_{head} * DLP
= 1.4 * 9x10⁻⁵ cm⁻¹ * 1200 mGy-cm
= 0.15 mGy

$$K_{\text{sec}}^{1}$$
 (body) = 1.4 * 1.2 * κ_{body} * DLP
= 1.4 * 1.2 * $3x10^{-4}$ cm⁻¹ * 550 mGy-cm
= 0.28 mGy

Unshielded Weekly Exposure at Barrier

- Weekly Air Kerma (K_{sec}) at Ceiling:
 - 30 head procedures/wk
 - 150 body procedures/wk
 - $-D_{sec}$ = 4.2 m + 0.5 m 1 m = 3.7 m

$$K_{\text{sec}}$$
 (head) = 30 * 0.15 mGy * (1m/3.7m)²
= 0.33 mGy

$$K_{sec}$$
 (body) = 150 * 0.28 mGy * (1m/3.7m)²
= 3.04 mGy

Unshielded Weekly Exposure at Barrier

• Weekly Air Kerma (K_{sec}) at Ceiling:

$$K_{sec}$$
 (Total) = K_{sec} (head) + K_{sec} (body)

$$K_{sec}$$
 (Total) = 0.33 mGy + 3.03 mGy

$$K_{sec}$$
 (Total) = 3.37 mGy

Required Transmission (B)

P = Maximum permissible weekly exposure T = Occupancy Factor

$$= \frac{0.02 \text{ mGy}}{3.37 \text{ mGy} * 1} = 5.9 \text{x} 10^{-3}$$

Existing Shielding

- Determine attenuation of existing barriers with Tc-99m source and Na-I detector
- Determine lead-equivalence of barrier
- Floors and ceilings
 - Find lead equivalence from documentation of concrete thickness.
 - If necessary, Find thickness by drilling a test hole and measuring.
 - Always assume light weight concrete, unless proven otherwise (30% less dense than standard density, coefficients used in NCRP 147)

MDACC Imaging Physics \

Existing Shielding • Subtract existing lead-equivalence from total required • Convert to 1/32 inch multiples (round up) • Total lead to add = (Total required) – (Existing) = 1.37 mm – 0.45 mm = 0.9 mm Round up to 1/16" Pb

					ods	
	DLP NCRP 147		CTDI ₁₀₀		Scatter plot	
	Head	Body	Head	Body	Head	Body
K ¹ _{sec} @ 1m	4.5	42	2.0	101	2.9	95
Weekly kerma @ 3.7m	3.37		7.53		7.11	
Total Barrier (mm Lead)	1.4		1.7		1.7	

Ceiling Considerations

- Pb mounting in ceiling is manually applied and très cher! (very expensive!)
- Isotropic distribution is conservative, but not so realistic
- Consider % of scans helical w/o gantry tilt (tilted axials usually for Head only)
- Smaller area of ceiling to cover = smaller cost ...
 THIS time
- Additional cost possibly incurred in future renovation

------/ MDACC Imaging Physics \

