
S E R V E R L E S S O N K U B E R N E T E S 1

Serverless
on Kubernetes
Joep Piscaer

Take a quick walk
through the IT jungle!

EXECUTIVE SERIES

The
Gorilla
Guide to...

®

Express Edition

Compliments of

INSIDE THE GUIDE:

• How Serverless is Changing the Game
• Getting the Most out of Kubernetes
• Fission and Kubernetes Offer Freedom of Choice

THE GORILLA GUIDE TO...

Serverless on Kubernetes
Express Edition

AUTHOR
Joep Piscaer

Copyright © 2018 by ActualTech Media

All rights reserved. This book or any portion thereof may not be
reproduced or used in any manner whatsoever without the express
written permission of the publisher except for the use of brief
quotations in a book review.

Printed in the United States of America.

ACTUALTECH MEDIA
Okatie Village Ste 103-157

Bluffton, SC 29909

www.actualtechmedia.com

Chapter 1: The Serverless Revolution 5
Serverless Greases the DevOps Wheel 9

Serverless’s Big Benefits 11

Chapter 2: The Serverless Landscape 16
The Players 16

AWS Lambda 17

Microsoft Azure Functions 19

Google Cloud Functions 20

The Alternatives 21

Introducing Fission 22

Functions 24

Environment 25

Trigger 25

Technical Overview 26

Chapter 3: Serverless in the Cloud and
On-Premises 29

Kubernetes and Serverless: Like Peanut Butter
and Jelly 29

Avoiding Lock-In 30

Freedom of Choice with Kubernetes
and Fission 33

Faster, Easier Development 34

TABLE OF CONTENTS

Deployment and Operations 35

Monitoring and Metrics 36

Balancing Cost and Performance 37

Chapter 4: Serverless in the Real World 39
Example 1: Banking Site 39

Example 2: Carpool 41

Example 3: Internet of Things 42

The Unstoppable Force 42

CHAPTER 1

The Serverless Revolution
Serverless computing is a code execution model

that abstracts away all the infrastructural plumbing

underneath the code, allowing the developer to focus

solely on their code. A serverless application is run

by a platform that hides the implementation details

from the user. These applications are made up of

independent smaller services, many of which are

event-driven, short-lived, and stateless.

Serverless is a level of abstraction of, and a decoupling

from, the underlying infrastructure constructs. In a

microservice architecture, monolithic applications are

broken up into small services that can be developed,

deployed, and scaled individually.

Serverless architectures are at the extreme end of the

microservice spectrum, being even more fine-grained

and loosely coupled. Serverless functions complement

more traditional microservice and virtual machine (VM)-

based approaches and regular third-party cloud services

for event queueing, messaging, databases, and more.

S E R V E R L E S S O N K U B E R N E T E S 6

With serverless, the organization or person writing the

code doesn’t have to care about the infrastructure un-

derneath. As such, it’s a form of utility computing.

The serverless architecture is a boon for developers,

allowing them to focus on just the code rather than all

the surrounding plumbing like containers, deployment

scripts, and monitoring. As is always the case,

Functions-as-a-Service (FaaS) is a

technology for serverless computation.

In a FaaS system, the unit of execution is

a function of code written in a programming

language (most FaaS systems support a wide

range of languages). A developer specifies

one or more functions and the conditions

(events) under which those functions shall

execute. Since it is serverless, the FaaS

system automatically provisions resources

to host and execute the functions when

the specified conditions are met, and later

tears them down when no longer needed.

Since FaaS is the most widely used form

of serverless, this guide will use those two

terms interchangeably.

S E R V E R L E S S O N K U B E R N E T E S 7

though, there are trade-offs in language support, code

compatibility, performance, and cost.

One way to understand FaaS is to compare it to the

popular ‘IFTTT’, or ‘If This, Then That’ web service

that allows you glue together devices, web apps and

more based on Triggers (this) and Actions (that).1 IF-

TTT is popular in home automation scenarios, creat-

ing interaction between the environment (the weather,

time of day) and IoT devices like thermostats, video

door bells, and lighting systems.

Serverless serves similar “glue between services” use

cases, and was first popularized in mobile app devel-

opment to stitch together databases, authentication,

and other commodity services that make up the back-

1 https://ifttt.com/

APP

VM

Physical Machine

...

IaaS

Non-controllable

PaaS Serverless (FaaS)

PROVIDERS DO MORE, TENANTS DO LESS

Server Scaling Uptime

APP

VM

Physical Machine

...

Scaling Uptime

APP

VM

Physical Machine

...

Controllable

Server Server Scaling Uptime

Figure 1: Comparing service architectures.

https://ifttt.com/

S E R V E R L E S S O N K U B E R N E T E S 8

end of an app. It continues to be used in similar ways

today, building IoT back-ends, APIs, and data pro-

cessing pipelines.

Not only do they serve similar use cases, their

architectures are even similar with triggers (this),

and functions (that). We’ll dive into specifics of the

serverless architecture later.

A Clean Slate
A key characteristic of serverless

is its statelessness. Functions are

invoked from a clean state every

time; any persistent state required

for the function needs to be external-

ly stored. This is similar to the twelve-factor app con-

cept1 for building Software-as-a-Service (SaaS) apps.

Generally, functions will use a database, and a distrib-

uted cache or object store to store state across requests.
1 https://12factor.net/

https://12factor.net/

S E R V E R L E S S O N K U B E R N E T E S 9

Serverless Greases the DevOps
Wheel
Although at first glance serverless may seem counter-

intuitive for those in DevOps-culture organizations

where development teams do their own operations,

it really isn’t. Serverless decouples the bits that make

up the runtime (language-specific environments,

containers, operating systems, VMs, physical hardware,

networks, storage, and so on) and the tooling in the

developer’s pipeline (to build, test, and deploy code)

from the actual code put in production, minimizing the

Waste Not
Looking at this from the lean

software development perspec-

tive1, we see that most steps

in the developer pipeline are

‘waste.’ Waste, in this context, re-

fers to technically necessary steps, like

compiling or packaging, that provide no value to the

customer. Even if those steps increase the quality of the

code, like writing unit tests or deployment specifica-

tions, they provide little actual customer value.

1 https://en.wikipedia.org/wiki/Lean_software_development

https://en.wikipedia.org/wiki/Lean_software_development

S E R V E R L E S S O N K U B E R N E T E S 1 0

operational part of the development workflow. It frees

the coder from any concern about the plumbing.

This isn’t to say that operations aren’t done anymore,

but rather that it’s abstracted away from the developer.

The function still has to be monitored, deployed,

secured, supported, scaled, and debugged; these things

are still happening, but they’re merely packaged up as

part of the service or platform.

This means that it’s important to reduce variation

and other waste in the pipeline, as this leads to better

customer value, delivered more quickly.

The comparisons to serverless computing are obvious:

serverless removes a tremendous amount of waste from

the developer pipeline by abstracting and standardizing.

Also, as any developer can tell you, shortening the

pipeline from writing a line of code to putting it in

production is a major advantage. Any optimization

in the compilation, testing and packaging portions of

the pipeline seriously enhances developer speed and

efficiency. It also contributes to creating short and

specific feedback cycles, which helps improve quality of

the code, as the developer doesn’t have to switch context

between different features they might be working on.

S E R V E R L E S S O N K U B E R N E T E S 1 1

While cost benefits are often cited as the major reason for

using FaaS, it’s reduction in lead time that may be the

most exciting improvement. Instead of spending time on

inefficiencies, product development teams can now focus

more time on continuous experimentation, which will

lead to more innovation and greater market advantages.

Serverless’ Big Benefits
The biggest advantage of serverless computing is

the clear separation between the developer and the

operational aspects of putting code into production.

This simplified model of “who does what” in the layer

cake of the infrastructure underneath the code lets

the operational folks standardize their layers (e.g.,

container orchestration and container images), while

the developers are free to develop and run code without

any hassle.

Because of the small and highly standardized surface area

between development and operations, operational folks

have greater control over what’s running in production.

Thus, they can respond more quickly to updates and up-

grades, security patches, or changing requirements.

The use of container technologies like Docker and Ku-

bernetes has increased developer velocity and signifi-

cantly decreased the complexity of building, deploying,

S E R V E R L E S S O N K U B E R N E T E S 1 2

and managing the supporting infrastructure as com-

pared to VM-based approaches. But despite these ad-

vances, there is still a lot of relative friction from the

developer standpoint in terms of going through required

steps that add no direct value to their workflow, like

building a container for every new code release or man-

aging auto-scaling, monitoring, and logging. Even with

a perfect pipeline, these jobs become naturally inert, re-

quiring additional work to change them for a new re-

lease, software version upgrade, or security patch.

Although the default operating model is one in which

each group stays within their set boundaries, there are

possibilities to cross those lines. A typical example is when

In contrast to typical container-based

microservices approaches, the container

images – which are still operating systems

and file systems at heart – aren’t part of

the developer pipeline and lifecycle. They

are instead part of the stack the operations

team controls and manages; this is a more

natural fit, as they have necessary skills

to manage the non-functional aspects

of the infrastructure like security and

performance.

S E R V E R L E S S O N K U B E R N E T E S 1 3

Flexible Pricing
The industry pricing model for

serverless function execution is the

same across the board for major

cloud providers. Pricing varies with

the amount of memory you allocate to

your function. This is a pricing overview

across Amazon, Microsoft and Google from October 2018:

• Requests: $0.20 - $0.40 per million requests

• Compute: $0.008 - $0.06 per hour at 1 GiB of RAM

• Data ingress: $0.05 – $0.12 per GB

• API Gateway: $3.00 – $3.50 per million requests

These pricing models are a direct motivation to optimize

a function for performance: paying for execution time

directly correlates cost with performance. Any increase

in performance will not only make your customers

happy, but also reduce the operational cost.

This is a radically different pricing approach than

we’ve seen with VMs and containers: paying for only

what you actually use. When a function is idle, you’re

not paying at all, which negates the need to estimate

resource usage beforehand; scaling from zero to peak

is done dynamically and flexibly.

S E R V E R L E S S O N K U B E R N E T E S 1 4

a developer needs additional package dependencies, like

libraries, in the execution environment. In a container-

based microservices approach, this would have been

the developer’s problem; in the serverless approach,

it’s part of the solution, abstracted away from the

developer. The containers that execute the functions

are short-lived, automatically created and destroyed by

the FaaS platform based on runtime need.

This leads to a shorter pipeline and fewer objects

(like containers) that need to be changed with a

new code release, making deployments simpler and

quicker. Since there’s no need to completely rebuild

the underlying containers, as most new code releases

are loaded dynamically into existing containers,

deployment time is significantly shortened.

In addition, compiling, packaging, and deployment

are simple compared to container and VM-based ap-

proaches, which usually force an admin to redeploy

the entire container or VM. FaaS only requires a dev to

upload a ZIP file of new code; and even that can be au-

tomated, using source version control systems like Git.

There’s no configuration management tooling, rolling

restart scripts, or redeployment of containers with the

new version of the code.

S E R V E R L E S S O N K U B E R N E T E S 1 5

Time isn’t the only thing that’s saved, either. Because

of the fine-grained level of execution, FaaS services

are metered and billed per millisecond of runtime or

per number of requests (i.e., triggers). Idle functions

aren’t billed.

In other words, you don’t pay for anything but code

execution. Gone are the days of investing in data center

space, hardware, and expensive software licenses, or

long and complex projects to set up a cloud management

or container orchestration platform.

This also means that you’re not stuck with the amor-

tization of investments or long-term contracts, but

free to change consumption monthly or even daily.

This allows teams to change direction or try some-

thing new on an extremely small scale, with similarly

small operational costs associated with experimen-

tation. This fosters a culture of trying new things,

taking small steps, and learning from mistakes early,

which are basic tenets of any agile organization.

As you can see, serverless is a great option for dynamic

applications. The provider automatically scales func-

tions horizontally based on the number of incoming

requests, which is great for handling high traffic peaks.

CHAPTER 2

The Serverless Landscape

The Players
Even though serverless feels like the hot new thing,

it’s actually not new; it’s been around for about five

years. Node.js is the predominant language in the

field, but Java, Go, Python, and C# are also popular.

Different platforms provide different ways to invoke

other languages indirectly, too.

As you might expect, all big public cloud vendors have

a serverless play: Amazon has Lambda, Google has

Cloud Functions and Microsoft has Azure Functions.

The landscape is much larger than just the big service

offerings, though, as Figure 2 shows. There are many

frameworks, cloud services, and on-premises platforms

available, and the landscape is evolving quickly. This

gives you choices for building out your serverless

infrastructure. Let’s start with an overview of the ones

you’re most likely to know about.

S E R V E R L E S S O N K U B E R N E T E S 1 7

AWS Lambda
Amazon launched Lambda in 2014, which was the first

commercially available serverless platform. It’s part of

the Amazon Web Services (AWS) cloud computing port-

SERVERLESS CLOUD NATIVE LANDSCAPE

Fr
am

ew
or

k
P

la
tf

or
m

HOSTED

INSTALLABLE

Chalice

AWS Lambda

Knative Pivotal Riff

Azure Functions

AWS SAM

Figure 2: A slice of the growing serverless ecosystem.

S E R V E R L E S S O N K U B E R N E T E S 1 8

folio, and is tightly integrated in that ecosystem. It runs

in the AWS cloud, with no option to run on-premises

and only limited options for running locally on a devel-

oper’s machine. Future offerings may include the ability

to run Lambda functions closer to the edge. There’s also

a serverless database option, called Aurora Serverless.

This is only a sample, as there are many more. Use

cases include image processing and object uploads

to S3, updates to DynamoDB tables, responding to

website clicks, or responding to sensor data from IoT-

connected devices.

Lambda is backed by performance objectives. AWS’s

goal is to start a Lambda instance within 100 milli-

Lambda functions can be triggered by

numerous events, including:

• Database changes

• File and object storage changes

• Messages in a publish/subscribe queue

• Scheduling

• Authentication

• HTTP requests (via an API Gateway)

S E R V E R L E S S O N K U B E R N E T E S 1 9

seconds of an event, but there are limits to the total

duration of a function; it’s currently capped at fifteen

minutes. Although Lambda functions are elastic and

scale automatically, they’re also limited to 1,000 con-

current executions by default in a given region, per ac-

count. This limit can be easily reached, especially when

combining production and testing.

Microsoft Azure Functions
Microsoft’s Azure Functions is a relatively young

service, but very similar to Lambda. Since it’s part of

the Azure ecosystem, the underlying infrastructure

runs Windows, not Linux. Besides some unique

language support (C#, F#), there are two major selling

points for Azure Functions.

First is the ability to run on Azure Stack, which runs

in the data center. This puts Azure Functions much

closer to existing on-premises workloads, which

many enterprises still run (and will run for years to

come). This makes Azure Functions a great use case for

serverless developers in those organizations that run

the majority of their workloads on-premises.

The second important distinction is tight integration

with Visual Studio, Microsoft’s Integrated Development

Environment, or IDE. This integration offers the ability

to debug functions locally from a cloud-triggered

S E R V E R L E S S O N K U B E R N E T E S 2 0

event. As any developer will recognize, being able to

breakpoint a remotely running function is very useful.

Azure Functions also offers the ability to keep functions

in hot standby, mitigating cold startup latency

problems. Otherwise, functions have the same type of

runtime limitations as AWS (five minutes, by default)

and concurrent executions (200 concurrent executions

per function in a region).

Google Cloud Functions
Google’s Cloud Functions (GCF) is the newest service

of the three big cloud providers, although the PaaS-

like App Engine has been around since 2008. The

biggest difference between GCF and the others is its

trigger support, which is focused on Google’s Pub/Sub

messaging bus, the de facto standard for inter-service

communication in the Google world.

In many ways, GCF’s very similar to Lambda, but it

remains a fairly simple alternative. Google has a

Firebase-integrated version of GCF to cater to mobile

backend developers.

S E R V E R L E S S O N K U B E R N E T E S 2 1

The Alternatives
Besides the “big three,” there are other serverless

options, broadly divided into three categories:

• Other Vendors. IBM and Oracle have FaaS services in

their public clouds, too. These are similar to the three

we’ve discussed, but aren’t as widely used. There

are also a number of vendors in the twelve-factor

camp, like Auth0, that offer serverless frameworks

and services.

• Edge. A number of edge computing specialists, like

CloudFlare, have begun to offer FaaS services at the

edge. These are aimed at use cases that need close

proximity to users and devices, like IoT and web.

Lambda has a similar offering called Lambda@Edge,

running in the CloudFront content delivery network.

• Framework. Rather than being a managed service,

these frameworks fall under their own umbrella.

They offer freedom on where to run and are generally

not priced in via the consumption model. They are

mostly free and open source, or at least, not tied

to a cloud vendor’s ecosystem. These frameworks

are infrastructure-agnostic and can be used as a

building block by a service provider or as part of

an existing on-premises technology stack. These

S E R V E R L E S S O N K U B E R N E T E S 2 2

run on top of container platforms like Docker and

Kubernetes. Examples of these include OpenFaaS,

serverless.com, and Fission.

The frameworks have several key advantages over the

commercially available services, including greater control

over both the infrastructure it runs on and pricing. The

rest of this book will put the spotlight on one particular

framework and the advantages it can provide you in your

serverless journey: Fission, from Platform9.

Introducing Fission
Fission is an open source, Kubernetes-native serverless

functions framework with support for public, private,

and hybrid clouds. Support for Kubernetes enables

Smooth Starting
Getting started with Fission is

easy, needing just a couple of

Helm or kubectl commands to

deploy it on a laptop, in an on-

premises Kubernetes cluster or in

a cloud service. The installation steps

can be found on the project website.1

1 https://docs.fission.io/latest/installation/

https://docs.fission.io/latest/installation/

S E R V E R L E S S O N K U B E R N E T E S 2 3

the portability of Fission functions with the ability to

create once and deploy anywhere for consistency in

code development. Accelerate your software delivery

pipeline without sacrificing quality.

Fission is made up of three core concepts:

1. Functions

2. Triggers

3. Environments

An illustration of the relationship can be seen

in Figure 3.

FUNCTION

ENVIRONMENT

TRIGGER

Sync HTTP, NATS, Ka�a, Azure
Storage Queues, Kubernetes

Watches, Timers, ... NodeJS, Python, Go, Ruby,
C#, PHP, Bash (!!!), Perl

Figure 3: The core pieces of Fission.

S E R V E R L E S S O N K U B E R N E T E S 2 4

Functions
A function is something that Fission executes. It’s

the code a developer has written; for instance, a

piece of business logic. It adheres to certain technical

characteristics commonly found in event-driven

programming.

Here’s a simple example of a “Hello, world!” function

written in NodeJS:

module.exports = async function(context) {

 return {

 status: 200,

 body: “Hello, world!\n”

 };

}

Functions are generally written in an asynchronous

way, so they can run in parallel for easy horizontal

scaling. They’re also stateless by nature, assuming

anything in memory on local disks can be deleted. Any

persistence is stored externally to the function, in a file

system, object store, or database.

S E R V E R L E S S O N K U B E R N E T E S 2 5

Environments
Environments are the language-specific parts of

Fission. An environment contains just enough software

to build and run the function. It consists of a container

with the language runtime, a web server, and fission-

specific parts that allow functions to load dynamically.

Fission supports many languages out of the box. A new

language, or a customization of an existing language

environment, is as easy as creating or modifying the

underlying containers.

Trigger
Functions are invoked on the occurrence of an event; a

trigger is what configures Fission to use that event to

invoke a function. In other words, a trigger is a binding

of events to function invocations.

There are a number of types of triggers supported

by fission:

1. HTTP (specific URL or endpoint)

2. Time (cron)

3. Message Queue (based on queue topic subscription)

4. Kubernetes Watch (watches for changes in

Kubernetes objects)

S E R V E R L E S S O N K U B E R N E T E S 2 6

For HTTP requests, the fission router handles the map-

ping of triggers to functions, keeps track of which actual

containers run a given function, and forwards requests

(and sends responses back) to and from functions.

Technical Overview
You’ve seen the functional concepts of Fission; now

let’s look under the hood. Fission is made up of a set of

microservices running on Kubernetes.

Controller Router

poolmgr

“Specific”
Function pods

...

“Generic”
pods

Fission
CLI

HTTP Requests

Figure 4: Fission architecture.

S E R V E R L E S S O N K U B E R N E T E S 2 7

Fission provides CLI tools for generating these

specification files, validating them, and applying

them to a Fission installation. Note that running apply

more than once is equivalent to running it once: if the

desired state as defined in the configuration is reached,

it won’t change.

Fission Services
Fission consists of various

services, each running in

containers (see Figure 4):

• Controller. This is the brains

of Fission, and it keeps track of

functions, HTTP routes, event triggers and environ-

ment images. It serves the Fission API to the client.

• Pool Manager and other executors. It manages pools

of idle environment containers, manages the loading

of functions into these containers dynamically, and

kills idle function instances. A second type of executor

enables automatic horizontal scaling of functions.

• Router, which handles requests and routes them

to function instances. It has a cache of request and

service mappings to route traffic to an existing

container, or request an instance from the Pool

Manager where needed.

S E R V E R L E S S O N K U B E R N E T E S 2 8

• The Fission CLI. This is the user interface, used to

interact with the fission system. It uses a declarative,

file-based approach for Fission objects, like functions

and environments. This way, you can track the

Fission specifications along with the source code in

the version control system. This allows Fission to be

integrated seamlessly into the developer workflow

and existing (CI/CD) pipelines.

CHAPTER 3

Serverless in the Cloud and
On-Premises

Kubernetes and Serverless: Like
Peanut Butter and Jelly
Kubernetes is an open source solution for automating

deployment, scaling, and management of containerized

applications. And running on top of Kubernetes means

it is very portable, so it will run anywhere Kubernetes

runs: on your laptop, in a public cloud, in an on-

premises data center, or in a managed Kubernetes

service provider.

As organizations start to adopt cloud services, they

will start using a variety of services, from different

vendors, in conjunction with existing workloads in the

on-premises data center. Having a single serverless

experience across all those is good for the developer,

as it means doing away with the various services they

would otherwise have had to learn. This enables the

developer or dev team to get things done more quickly,

deliver higher quality code, and minimize additional

training efforts.

S E R V E R L E S S O N K U B E R N E T E S 3 0

The Fission framework handles container lifecycle

duties like creating and building VMs, abstracting

away most of the complexity of operating a Kubernetes

environment.

Fission itself runs as a set of microservices on top of

Kubernetes.

A well-designed serverless-based application archi-

tecture is inherently scalable, especially when deployed

to an elastic capacity provider, such as the public cloud

or a large IaaS provider. By utilizing the intelligence

in the underlying Kubernetes platform, functions can

automatically scale up or down horizontally.

Avoiding Lock-In
Most current serverless offerings are services: they’re

part of a portfolio of technologies in one of the major

clouds, and run as part of that ecosystem. These

commit customers to the cloud provider’s ecosystem,

forcing them to use cloud-specific services. This means

that functions in one cloud aren’t portable to another

cloud provider, requiring refactoring when moving a

function to a different provider.

Other providers try to tie you into their ecosystem in

subtle ways by nudging users to use ecosystem-specific

services and technologies. Fission takes the opposite

S E R V E R L E S S O N K U B E R N E T E S 3 1

route, offering all the benefits of serverless without

any of the cost or lock-in. It’s multi-cloud, multi-tool

friendly, enabling developers to choose the best tool for

the job, instead of forcing the default options in a given

cloud ecosystem. Fission gives maximum freedom in the

developer continuous integration (CI) and continuous

delivery (CD) pipeline, as well as production tooling

such as monitoring and tracing.

The Fission advantages go beyond lock-in, too.

For example, many organizations with existing

Lock-in like this happens in subtle ways;

for instance, being forced to use the

packaged (and often monetized) monitoring

solution. This almost defeats the purpose

of Kubernetes, which is a freely available

technology that works across clouds, in on-

premises environments and locally. Fission

prevents this lock-in and dependency, and

promotes decoupling, re-use of code, and

portability, all of which reduce friction during

the lifetime of the function. This allows

developers to modernize applications, even

when using on-premises infrastructure.

S E R V E R L E S S O N K U B E R N E T E S 3 2

investments in private data centers end up with

spare server capacity, like CPU and memory; that’s

just the way physical hardware is bought. Fission can

run on this idle and already paid-for server capacity,

effectively giving you a free FaaS platform. Free

serverless is a major advantage of the pay-per-use

model of public cloud providers, which can become

expensive in a hurry.

Even for on-premises Kubernetes environments

with little to no spare capacity, Fission is a good fit

economically, as expanding the data center with just

additional server capacity (leveraging other data center

investments like network and storage) is almost

certainly cheaper than a public FaaS service.

Running your serverless alongside existing containers

and integrating with container-based tooling – including

monitoring, logging, and so on – eases the operational

burden and simplifies the adoption of a serverless

framework. This allows Fission functions running on

Kubernetes to use services like message queues and

databases running on the same platform.

Most applications are a hybrid of functions and

containers. It makes sense to run different components

of an application physically near each other, where

possible. Not only does this improve latency, it also

S E R V E R L E S S O N K U B E R N E T E S 3 3

eliminates the cloud vendors’ notoriously expensive

ingress and egress fees.

Freedom of Choice with
Kubernetes and Fission
Kubernetes is taking the world by storm, quickly

replacing virtualization stacks and IaaS services with

container-based approaches. Kubernetes’ deployment

experience had a rocky start, being notoriously difficult

to install and configure, but most of that has been

overcome; many public cloud vendors and service

providers now offer a hosted and managed Kubernetes

service that negates most of this complexity. Examples

include Amazon EKS, Google GKE, and Platform9

Managed Kubernetes.

For functions running on Fission, it’s easy to take ad-

vantage of the rich Kubernetes ecosystem and the wide

range of data services it supports, like message queues

and databases, as well as integrating with underlying

infrastructure components for software-defined stor-

age and networking.

Instead of forcing tenants to use specific monetized

services, running serverless on Kubernetes provides

the option of using free and open source tooling

instead. This means running free and open source data

S E R V E R L E S S O N K U B E R N E T E S 3 4

services and middleware (databases, message queues,

key/value stores), web servers, and more. This is why

Fission also integrates with open source projects like

Prometheus, which we’ll talk about a little later.

Faster, Easier Development
The Kubernetes-based approach enables the ability

to extend Fission’s language and runtime support to

anything that runs in a container. Adding a new language

is relatively easy; you can create a new container image

or modify one of the existing environments to suit

your needs.

Fission supports many languages out of

the box, including:

• Node.js

• Python

• Go

• Ruby

• Java

• C# / .NET

• Binary (for executables or scripts)

• Perl

• PHP

• And more

S E R V E R L E S S O N K U B E R N E T E S 3 5

Deployment and Operations
Fission supports declarative deployments using build

specs. These specs describe Fission resources like

functions and triggers and allow developers to deploy

functions anywhere. This helps manage the complexity

of deployments across different environments, making

sure that a function is deployed across environments

consistently.

These build specs use Kubernetes’ custom resources and

are stored as configuration files, which can be checked

into version control. In a later release, Fission will support

automatic deployment from the source repository.

In addition, Fission automatically generates the initial

configuration. The initial configuration is a ready-to-

use template for further customization, saving the de-

veloper time initially while still being flexible.

Fission also saves time once the code is written. The

anxiety-inducing moment for every developer is

deploying to production. Automated canary deployments

help manage that risk by sending only a small amount

of traffic to the new version initially. As trust is gained,

more traffic is pushed to the new version, ultimately

removing older versions from the production roster.

Conversely, if it is found that the end-users are

S E R V E R L E S S O N K U B E R N E T E S 3 6

experiencing issues, Fission will re-route users to older,

more stable code so the issue can be resolved.

Fission has configuration settings for the distribution

of traffic between versions (and the shift over time)

and the threshold error rate.

Monitoring and Metrics
Monitoring is a traditionally tricky area for FaaS,

because of the short-term nature of containers and

functions, and the amount of engineering cloud

providers had to put into a monitoring solution for

their version of FaaS.

For many FaaS operations, this means that monitoring

solutions are very basic, and don’t integrate into

more traditional third-party monitoring solutions or

open APIs. But because of Fission’s integration with

Kubernetes and service meshes like Istio, much of

the grunt work has already been done. Fission has

integrated with Kubernetes monitoring, resulting in a

first-class monitoring experience for FaaS.

Fission aggregates function logs using Fluentd; the logs

are then stored in a database, providing a lightweight

and searchable solution.

S E R V E R L E S S O N K U B E R N E T E S 3 7

Fission is also integrated with Prometheus, the de facto

standard metrics system. Fission automatically tracks

the number of requests (function call count), timing

(execution time and overhead) and success/failure rate

metrics, response size, and error codes for all functions.

These are fed into Prometheus automatically, without

adding any code to the functions. In addition, it adds

contextual information (cold vs. hot starts) to these

metrics to allow better interpretation.

Balancing Cost and Performance
Ideally, functions that don’t run cost nothing. But we

want every service to respond quickly, even if they’re

called for the first time. Since costs for disk and memory

vary widely, there are tradeoffs in performance vs. cost

to be aware of.

For instance, how do you make sure the cost for idle

functions is small, while keeping latency low for

often-used functions?

This is the “cold start performance” problem. All FaaS

services experience this problem, and each solves it

with a different approach.

Fission’s approach is to provide a tunable cost-

performance tradeoff. It also provides a pool of pre-

warmed environments for functions.

S E R V E R L E S S O N K U B E R N E T E S 3 8

By contrast, Kubernetes-based FaaS, regardless of

where it’s running, has a simpler cost model. You

pay per-container, per-VM, or even per-server for

capacity. If you can then use spare resources sitting

unused in previously-purchased hardware, you can

change the cost structure completely.

In this scenario, optimizing for cost doesn’t mean scal-

ing back resources, limiting performance, and increas-

ing latency; instead, it means using what you already

have in a smart way, providing new ways to develop

code without breaking the bank.

This is part of a larger issue: That the

actual cost of public cloud FaaS services

depend heavily on the usage pattern of

functions. In some cases, running the same

code in containers or even VMs can be much

cheaper than running them as serverless

functions. Also, cost across clouds vary.

In many pay-per-use models, which is

popular with the public cloud, there is a real

danger of costs getting out of hand, even

when compared to containers or VMs.

CHAPTER 4

Serverless in the
Real World

In this last part of the guide, we’ll show some practical

examples of serverless. The first one is a common

banking application using web and API technologies. It

uses a database running on Kubernetes, CockroachDB,

with various functions in Fission interacting directly.

Example 1: Banking Site
Each of the actions on the site, like depositing, with-

drawing, and transferring money between accounts

and balances are functions running on Fission, trig-

gered by HTTP actions.

Fission lets you easily and quickly create the various

functional areas of the site, such as creating an account

and various banking activities as functions.

1. When a user visits a web page, the browser hits the

web server’s HTTP trigger to get the HTML files.

2. Any operations on the web page send an AJAX HTTP

request to backend RESTful API functions.

S E R V E R L E S S O N K U B E R N E T E S 4 0

3. Once a function receives requests, it interacts with

the database, which launched in a different name-

space, to get/insert/update records.

4. After database operations complete, the function

response user requests with HTTP code and the

message body.

You can run this sample use case on any Fission

environment.2

2 https://github.com/fission/fission-bank-sample

Database

Browser

Transaction
functions

Account
functions

Transaction
HTTP Triggers

Account
HTTP Triggers

Web-server
function

Web-server
HTTP Triggers

AJAX AJAXAJAX

APPLICATION DIAGRAM

https://github.com/fission/fission-bank-sample

S E R V E R L E S S O N K U B E R N E T E S 4 1

Example 2: Carpool
The carpool application is a great example of combining

multiple functions into a single workflow, parallelizing

certain functions to optimize the flow.

The application tries to match a car owner offering seats

in their car with riders looking for one or more seats in

a shared carpool.

As with the previous example, you can run this sample

use case on any Fission environment.3

3 https://github.com/fission/fission-workflow-sample

Carpool
producer

Carpool
Allocator

composeforeach

CarPool
Validator

CarPool
Validator

CarPool
Validator

CarPool
Validator

CarPool
Validator

Fission Workflow
Built-in Function

Custom Written
Function

https://github.com/fission/fission-workflow-sample

S E R V E R L E S S O N K U B E R N E T E S 4 2

Example 3: Internet of Things
This use case shows how a serverless app consumes

sensor data from IoT vehicles to figure out the most

optimal route.

As with the others, you can run this sample use case on

any Fission environment.4

The Unstoppable Force
Serverless is an unstoppable force that’s changing the

way developers put code into production. It allows them

to focus on what’s important: developing business logic.

It abstracts everything the developer shouldn’t have to

4 https://github.com/fission/fission-kafka-sample

(ƒ) Ka�a
Producer

(ƒ) Distribution

(ƒ) Speed Data

(ƒ) Average Fuel

(ƒ) Average Speed

(ƒ) Ka�a Consumer

Monorepo – Spring
Boot functions

(ƒ) Web
Dashboard

jQuery, Chart.js,
Python & HTML

Apache
Ka�a

https://github.com/fission/fission-kafka-sample

S E R V E R L E S S O N K U B E R N E T E S 4 3

worry about, increasing their velocity, simplifying the

pipeline, and shortening the feedback loops.

Organizations adopting serverless are able to adopt

to changing requirements more quickly and make it

easier to do more and smaller experiments, to quickly

discover what works and what doesn’t. This leads to

better quality code, delivered faster.

The unified serverless experience of Fission allows

functions to run locally, on the developer’s laptop, in the

data center, or in the cloud by leveraging the power of the

Kubernetes platform.

The ability to run functions in spare compute capacity

in the on-premises data center has more than just

cost benefits. It also minimizes network latency and

associated network bandwidth costs.

Fission, as an open alternative to cloud-specific FaaS

services, has broad language support, but is fully

customizable and flexible to run any code you need. It

doesn’t lock you into one single cloud ecosystem, but

gives you the freedom to choose.

If you’re considering moving to serverless, you owe it

to yourself to give Fission a whirl.

	The Serverless Revolution
	Serverless Greases the DevOps Wheel
	Serverless’s Big Benefits

	The Serverless Landscape
	The Players
	AWS Lambda
	Microsoft Azure Functions
	Google Cloud Functions
	The Alternatives
	Introducing Fission
	Functions
	Environment
	Trigger
	Technical Overview

	Serverless in the Cloud and On-Premises
	Kubernetes and Serverless: Like Peanut Butter and Jelly
	Avoiding Lock-In
	Freedom of Choice with Kubernetes and Fission
	Faster, Easier Development
	Deployment and Operations
	Monitoring and Metrics
	Balancing Cost and Performance

	Serverless in the
Real World
	Example 1: Banking Site
	Example 2: Carpool
	Example 3: Internet of Things
	The Unstoppable Force

