
Sequential Logic,Finite State Machines
Instructor: Nick Riasanovsky

Nick’s Lecture Feedback

• 2 Big Takeaways:
– My lectures are too fast

• Understood and I will go slower from now on

– Cool it with the analogies
• Understood! But with a couple topics you will still see

some analogies
• Only ones with a clear and easy to understand

relationship
• No more Harry Potter explanations

27/5/2018 CS61C Su18 - Lecture 10

Questions

• Pretty seem overall to be satisfied with the
number of questions we answer

• We LOVE to answer your questions but this is
some of what make lectures have a time
crunch
– Going too fast is still a me problem I’ll fix

• If you have a question that expands beyond
the material in the course please consider
using the piazza lecture thread

37/5/2018 CS61C Su18 - Lecture 10

Midterm Grades

• Midterm Grades are released on gradescope
• Regrades available after lecture, due by Tues
• You did great, this exam was hard

47/5/2018 CS61C Su18 - Lecture 10

Great Idea #1: Levels of
Representation & Interpretation

7/5/2018 CS61C Su18 - Lecture 10 5

lw t0, 0(x2)
lw t1, 4(x2)
sw t1, 0(x2)
sw t0, 4(x2)

Higher-Level Language
Program (e.g. C)

Assembly Language
Program (e.g. RISCV)

Machine Language
Program (RISCV)

Hardware Architecture Description
(e.g. block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

We are here

• Hardware is made up of transistors and wires
– Building blocks of all higher-level blocks

• Synchronous Digital Systems
– All signals are seen as either 0 or 1

– Consist of two basic types of circuits:

• Combinational Logic (CL)

– AND, OR, XOR

– Use Truth Tables -> Boolean Algebra

• Sequential Logic (SL)

Review

7/5/2018 CS61C Su18 - Lecture 10 6

Converting Combinational Logic

7/5/2018 CS61C Su18 - Lecture 10 7

Circuit
Diagram

Truth
Table

Boolean
Expressi

on

This is difficult to
do efficiently!

Try all input combinations

So
P

or
 P

oS

W
ire inputs to proper gates

(easiest to use AND, OR, and NOT)

Tr
y a

ll
in

pu
t

co
m

bi
na

tio
ns

Propagate signals

through gates

Boolean Algebra
simplification

Question: What is the MOST simplified Boolean
Algebra expression for the following circuit?

B (A + C)(A)

B + AC(B)

AB + B + C(C)

A + C(D)

8

Question: What is the MOST simplified Boolean
Algebra expression for the following circuit?

B (A + C)(A)

B + AC(B)

AB + B + C(C)

A + C(D)

9

Q = AB + (B+C) * BC
By distributing the BC into (B+C) we get:
Q = AB + (BBC + CBC)
Using the multiplicative idempotent law
again we know that B*B = B and that
C*C=C so we get:
Q = AB + (BC + BC)
Using the additive idempotent law (B + B
= B) we get:
Q = AB + BC
By factoring out the B, we get the final
answer of
Q = B(A+C)

AB

B+C

BC

AB + (B+C)BC

(B+C)BC

Review

7/5/2018 CS61C Su18 - Lecture 10 10

• Hardware is made up of transistors and wires
– Building blocks of all higher-level blocks

• Synchronous Digital Systems
– All signals are seen as either 0 or 1

– Consist of two basic types of circuits:

• Combinational Logic (CL)

– AND, OR, XOR

– Use Truth Tables -> Boolean Algebra

• Sequential Logic (SL)

• Sequential Logic (SL)
– Pulse of a Clock controls flow of information

– Allows us to keep state (the basis of memory)

– Understand how to efficiently use our hardware

• Finite State Machines
– Abstract away combinational and sequential logic

into functions
• These functions take in a stream of bits, do something

with them, and output something deterministic

Today’s Menu

7/5/2018 CS61C Su18 - Lecture 10 11

Agenda

• Transistors, Switching Networks
• Combinational Logic Representations

– Truth Tables
– Boolean Algebra

• Meet the Staff
• Sequential Logic

– Timing Terminology
– State Elements

7/5/2018 CS61C Su18 - Lecture 9 12

Type of Circuits

• Synchronous Digital Systems consist of two
basic types of circuits:
• Combinational Logic (CL)

– Output is a function of the inputs only, not the history
of its execution

– e.g. circuits to add A, B (ALUs)

• Sequential Logic (SL)
– Circuits that “remember” or store information

– a.k.a. “State Elements”

– e.g. memory and registers (Registers)

7/5/2018 CS61C Su18 - Lecture 9 13

Hardware Design Hierarchy

7/5/2018

system

datapath control

state
registers

combinational
logic

multiplexer comparator
code

registers

register logic

switching
networks

CS61C Su18 - Lecture 9 14

• Signals transmitted over wires continuously

• Transmission is effectively instantaneous
– Implies that any wire only contains one value at

any given time

Signals and Waveforms: Clocks

7/5/2018

Rising Edge Falling Edge

Clock period
(CPU cycle time)

CS61C Su18 - Lecture 9 15

Signals and Waveforms

7/5/2018

All signals
change after
clock “triggers”

Stack
signals
on top
of each
other

CS61C Su18 - Lecture 9 16

Signals and Waveforms: Grouping

A group of wires when
interpreted as a bit field
is called a bus

X

7/5/2018

Clock triggers

CS61C Su18 - Lecture 9 17

Uses for State Elements

• Place to store values for some amount of
time:
– Register files (like in RISCV)

– Memory (caches and main memory)

• Help control flow of information between
combinational logic blocks
– State elements are used to hold up the movement

of information at the inputs to combinational logic
blocks and allow for orderly passage

7/5/2018 CS61C Su18 - Lecture 9 18

7/5/2018

Want: S=0;
 for X1,X2,X3 over time...
 S = S + Xi

An example of why we would need to control
the flow of information.

Assume:
• Each X value is applied in succession, one per cycle
• The sum since time 1 (cycle) is present on S

SUMX
i

S

Accumulator Example

CS61C Su18 - Lecture 9 19

7/5/2018

No!
1) How to control the next iteration of the ‘for’ loop?
2) How do we say: ‘S=0’?

Feedback

X

First Try: Does this work?

CS61C Su18 - Lecture 9 20

7/5/2018

Rough
timing
…

Time

Second Try: How About This?
A Register is the state
element that is used here
to hold up the transfer
of data to the adder

Delay through Register and Adder

CS61C Su18 - Lecture 9 21

7/5/2018

• n instances of a “Flip-Flop”
– Output flips and flops between 0 and 1

• Specifically this is a “D-type Flip-Flop”
– D is “data input”, Q is “data output”
– In reality, has 2 outputs (Q and•Q), but we only

care about 1
• http://en.wikibooks.org/wiki/Practical_Electronics/Flip-flops

Register Internals

CS61C Su18 - Lecture 9 22

http://en.wikibooks.org/wiki/Practical_Electronics/Flip-flops

Flip-Flop Timing Behavior (1/2)

• Edge-triggered D-type flip-flop
– This one is “positive edge-triggered”

• “On the rising edge of the clock, input d is sampled and
transferred to the output. At other times, the input d is ignored
and the previously sampled value is retained.”

• Example waveforms:

7/5/2018 CS61C Su18 - Lecture 9 23

Flip-Flop Timing Terminology (1/3)

• Camera Analogy: non-blurry digital photo
– Don’t move while camera shutter is opening

– Don’t move while camera shutter is closing

– Check for blurriness once image appears on the
display

7/5/2018 CS61C Su18 - Lecture 10 24

Flip-Flop Timing Terminology (2/3)

• Camera Analogy: Taking a photo
– Setup time: don’t move since about to take

picture (open camera shutter)

– Hold time: need to hold still after shutter opens
until camera shutter closes

– Time to data: time from open shutter until image
appears on the output (viewfinder)

7/5/2018 CS61C Su18 - Lecture 9 25

Flip-Flop Timing Terminology (3/3)

• Now applied to hardware:
– Setup Time: how long the input must be stable

before the CLK trigger for proper input read

– Hold Time: how long the input must be stable
after the CLK trigger for proper input read

– “CLK-to-Q” Delay: how long it takes the output to
change, measured from the CLK trigger

7/5/2018 CS61C Su18 - Lecture 9 26

7/5/2018 CS61C Su18 - Lecture 10 27

Flip-Flop Timing Behavior

Accumulator Revisited
Proper Timing (2/2)

7/5/2018

• reset signal shown
• Also, in practice X

i
 might not arrive

to the adder at the same time as S
i-1

• S
i
 temporarily is wrong, but register

always captures correct value
• In good circuits, instability never

happens around rising edge of CLK
“Undefined” (unknown) signal

CS61C Su18 - Lecture 9 28

Dealing with Waveform Diagrams

• Easiest to start with CLK on top
– Solve signal by signal, from inputs to outputs

– Can only draw the waveform for a signal if all of
its input waveforms are drawn

• When does a signal update?
– A state element updates based on CLK triggers

– A combinational element updates ANY time ANY
of its inputs changes

7/5/2018 CS61C Su18 - Lecture 10 29

Review of Timing Terms

• Clock: steady square wave that synchronizes system

• Flip-flop: one bit of state that samples every rising edge of
CLK (positive edge-triggered)

• Register: several bits of state that samples on rising edge
of CLK (positive edge-triggered); also has RESET

• Setup Time: when input must be stable before CLK trigger

• Hold Time: when input must be stable after CLK trigger

• CLK-to-Q Delay: how long it takes output to change from
CLK trigger

7/5/2018 CS61C Su18 - Lecture 10 30

Agenda

• Critical Path and Clock Frequency
• Administrivia

• Finite State Machines

• Multiplexers

• ALU Design
– Adder/Subtracter

• Bonus:
– Pipelining intro
– Handling overflow
– Logisim Introduction 31

Model for Synchronous Systems

• Combinational logic blocks separated by registers

– Clock signal connects only to sequential logic elements

– Feedback is optional depending on application

• How do we ensure proper behavior?

– How fast can we run our clock?

7/5/2018 CS61C Su18 - Lecture 10 32

When Can the Input Change?

•

7/5/2018 CS61C Su18 - Lecture 10 33

Maximum Clock Frequency

•

7/5/2018 CS61C Su18 - Lecture 10 34

Max Delay =

Min Period = Max Delay
Max Freq = 1/Min Period

CLK-to-Q Delay
+ CL Delay
+ Setup Time

+R
eg

R
eg

The Critical Path

• The critical path is the longest delay between
any two registers in a circuit

• The clock period must be longer than this
critical path, or the signal will not propagate
properly to that next register

7/5/2018 CS61C Su18 - Lecture 10 35

1
2

3

4

Critical Path =
CLK-to-Q Delay
+ CL Delay 1
+ CL Delay 2
+ CL Delay 3
+ Adder Delay
+ Setup Time

36

Question: Want to run on 1 GHz processor.
t

add
 = 100 ps. t

mult
 = 200 ps. t

setup
 = t

hold
 = 50 ps.

What is the maximum t
clk-to-q

 there can be?

550 ps(A)

750 ps(B)

500 ps(C)

700 ps(D)

37

Question: Want to run on 1 GHz processor.
t

add
 = 100 ps. t

mult
 = 200 ps. t

setup
 = t

hold
 = 50 ps.

What is the maximum t
clk-to-q

 we can use?

550 ps(A)

750 ps(B)

500 ps(C)

700 ps(D)

Bottom path is critical path:
T_clk-t-q + 100 + 200 + 100 + 50 < 1000 ps = 1ns
T_clk-t-q + 450 < 1000 ps
T_clk-t-q < 550

Administrivia
• Homework 2 due tomorrow
• Homework 3 released, due 7/16
• Homework 4 released 7/09, due 7/16

• Proj2-1 due tomorrow
– Project party tomorrow, 4-6p in the Woz

• Proj2-2 will be released tomorrow

• Please don’t leave lecture early!

– And please DO NOT enter someone else’s
discussion while the room is still in use

7/5/2018 CS61C Su18 - Lecture 10 38

Agenda

• Critical Path and Clock Frequency

• Administrivia

• Finite State Machines

• Multiplexers

• ALU Design
– Adder/Subtracter

• Bonus:
– Pipelining intro
– Handling overflow
– Logisim Introduction 39

• A convenient way to conceptualize
computation over time

• Function can be represented with a state
transition diagram

• With combinational logic and
registers, any FSM can be
implemented in
hardware!

Finite State Machines (FSMs)

7/5/2018 CS61C Su18 - Lecture 10 40

. . .

• An FSM (in this class) is defined by:
– A set of states S (circles)

– An initial state s
0
 (only arrow not between

states)

– A transition function that maps from the current
input and current state to the output and the next
state (arrows between states)

• State transitions are controlled by the clock:
– On each clock cycle the machine checks the inputs

and generates a new state (could be same) and
new output7/5/2018 CS61C Su18 - Lecture 10 41

FSM Overview

7/5/2018 CS61C Su18 - Lecture 10 42

• FSM to detect 3 consecutive 1’s in the Input

Example: 3 Ones FSM

States: S0, S1, S2
Initial State: S0
Transitions of form:

input/output

Hardware Implementation of FSM

• Register holds a representation of the FSM’s state
– Must assign a unique bit pattern for each state

– Output is present/current state (PS/CS)

– Input is next state (NS)

• Combinational Logic implements transition function
(state transitions + output)

7/5/2018 CS61C Su18 - Lecture 10 43

+ =

FSM: Combinational Logic

• Read off transitions into Truth Table!
– Inputs: Current State (CS) and Input (In)

– Outputs: Next State (NS) and Output (Out)

• Implement logic for EACH output (2 for NS, 1 for Out)
7/5/2018 CS61C Su18 - Lecture 10 44

CS In NS Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1

Unspecified Output Values (1/2)

• Our FSM has only 3 states
– 2 entries in truth table are

undefined/unspecified

• Use symbol ‘X’ to mean it can
be either a 0 or 1
– Make choice to simplify final

expression

7/5/2018 CS61C Su18 - Lecture 10 45

CS In NS Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1
11 0 XX X
11 1 XX X

Unspecified Output Values (2/2)

• Let’s find expression for NS
1

– Recall: 2-bit output is just a
2-bit bus, which is just 2 wires

• Boolean algebra:
– NS

1
 = ¬CS

1
CS

0
In + CS

1
CS

0
¬In

 + CS
1
CS

0
In

– NS
1
= CS

0
In (CS

1
 + ¬CS

1
)

– NS
1
 = CS

0
In

7/5/2018 CS61C Su18 - Lecture 10 46

CS In NS Out
00 0 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10 0 00 0
10 1 00 1
11 0 XX X
11 1 XX X

Differs by 2

Is neighbor

3 Ones FSM in Hardware

• 2-bit Register needed for state

• CL: NS
1
 = CS

0
In, NS

0
 = ¬CS

1
¬CS

0
In, Out = CS

1
In

7/5/2018 CS61C Su18 - Lecture 10 47

Agenda

• Critical Path and Clock Frequency

• Administrivia

• Finite State Machines

• Multiplexers

• ALU Design
– Adder/Subtracter

• Bonus:
– Pipelining intro
– Handling overflow
– Logisim Introduction 48

Hardware Design Hierarchy

7/5/2018 CS61C Su18 - Lecture 10 49

CPU

datapath control

switching networks

signal logic

combinational logicsequential logic

MUXes PC
(state)

ALU
(compute)

registers
(data)

Data Multiplexor

• Multiplexor (“MUX”) is a selector
– Place one of multiple inputs onto output (N-to-1)

• Shown below is an n-bit 2-to-1 MUX
– Input S selects between two inputs of n bits each

7/5/2018 CS61C Su18 - Lecture 10 50

This input is passed
to output if selector
bits match shown
value

Implementing a 1-bit 2-to-1 MUX

• Schematic:

• Truth Table:

• Boolean Algebra:

• Circuit Diagram:

7/5/2018 CS61C Su18 - Lecture 10 51

s a b c
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

1-bit 4-to-1 MUX (1/2)

• Schematic:

• Truth Table: How many rows?

• Boolean Expression:
e = ¬s

1
¬s

0
a + ¬s

1
s

0
b + s

1
¬s

0
c + s

1
s

0
d

7/5/2018 CS61C Su18 - Lecture 10 52

26

1-bit 4-to-1 MUX (2/2)

• Can we leverage what we’ve previously built?
– Alternative hierarchical approach:

7/5/2018 CS61C Su18 - Lecture 10 53

Subcircuits Example
• Logisim equivalent of procedure or method

– Every project is a hierarchy of subcircuits

7/5/2018 CS61C Su18 - Lecture 10 54

Incomplete wiring
shown here

Meet The Staff

6/28/2016 CS61C Su16 - Lecture 6 55

Damon Jon

Favorite Villain Manray

Protest
No pineapples on
pizza

Bring back L8 night

What are you
passionate about?

Music

What would you
want to be famous
for?

Chess

Agenda

• Critical Path and Clock Frequency

• Administrivia

• Finite State Machines

• Multiplexers

• ALU Design
– Adder/Subtracter

• Bonus:
– Pipelining intro
– Handling overflow
– Logisim Introduction 56

• Most processors contain a special logic block
called the “Arithmetic and Logic Unit” (ALU)
– We’ll show you an easy one that does ADD, SUB,

bitwise AND, and bitwise OR

• Schematic:

7/5/2018 CS61C Su18 - Lecture 10 57

Arithmetic and Logic Unit (ALU)

when S=00, R = A + B
when S=01, R = A – B
when S=10, R = A AND B
when S=11, R = A OR B

Simple ALU Schematic

7/5/2018 CS61C Su18 - Lecture 10 58

Notice that 3 values
are ALWAYS
calculated in parallel,
but only 1 makes it to
the Result

Adder/Subtractor Design

1) CL design we’ve seen before: write out truth
table, convert to Boolean, minimize logic,
then implement
– How big might truth table and/or Boolean

expression get?

2) Break down the problem into smaller pieces
that we can cascade or hierarchically layer
– Let’s try this approach instead

7/5/2018 CS61C Su18 - Lecture 10 59

Adder/Subtractor: 1-bit LSB Adder

7/5/2018 CS61C Su18 - Lecture 10 60

Carry-out bit

Adder/Subtractor: 1-bit Adder

7/5/2018 CS61C Su18 - Lecture 10 61

Here defining XOR of many inputs to be 1
when an odd number of inputs are 1

Possible
carry-in c

1

Adder/Subtractor: 1-bit Adder

7/5/2018 CS61C Su18 - Lecture 10 62

• Circuit Diagrams:

N x 1-bit Adders → N-bit Adder

7/5/2018 CS61C Su18 - Lecture 10 63

+ + +

b
0

• Connect CarryOut
i-1

 to CarryIn
i
 to chain

adders:

Two’s Complement Adder/Subtractor

7/5/2018 CS61C Su18 - Lecture 10 64

+ + +

• Subtraction accomplished by adding negated
number:

x ^ 1 = x’
(flips the bits)

This signal is only
high when you
perform subtraction

Add 1

Where did this come from?

Summary

• Hardware systems are constructed from
Stateless Combinational Logic and Stateful
“Memory” Logic (registers)

• State registers implemented from Flip-flops

7/5/2018 CS61C Su18 - Lecture 9 65

Summary

7/5/2018 CS61C Su18 - Lecture 10 66

You are responsible for the material contained
on the following slides, though we may not have
enough time to get to them in lecture.

They have been prepared in a way that should
be easily readable and the material will be
touched upon in the following lecture.

7/5/2018 CS61C Su18 - Lecture 10 67

BONUS SLIDES

Agenda

• Critical Path and Clock Frequency

• Administrivia

• Finite State Machines

• Multiplexers

• ALU Design
– Adder/Subtracter

• Bonus:
– Pipelining intro
– Handling overflow
– Logisim Introduction 68

Pipelining and Clock Frequency (1/2)

• Clock period limited by propagation delay of adder
and shifter
– Add an extra register to reduce the critical path!

7/5/2018 CS61C Su18 - Lecture 10 69

Timing:

Pipelining and Clock Frequency (2/2)

7/5/2018 CS61C Su18 - Lecture 10 70

• Reduced critical path → allows higher clock freq.
• Extra register → extra (shorter) cycle to produce first

output

+ setup time + CLK-to-Q delay

+ CLK-to-Q delay

+ Adder delay

+ Shifter delay

+ setup time + CLK-to-Q delay

Pipelining Basics

• By adding more registers, break path into shorter
“stages”
– Aim is to reduce critical path
– Signals take an additional clock cycle to propagate

through each stage

• New critical path must be calculated
– Affected by placement of new pipelining registers
– Faster clock rate → higher throughput (outputs)
– More stages → higher startup latency

• Pipelining tends to improve performance
– More on this (application to CPUs) later

7/5/2018 CS61C Su18 - Lecture 10 71

Agenda

• Critical Path and Clock Frequency

• Administrivia

• Finite State Machines

• Multiplexers

• ALU Design
– Adder/Subtracter

• Bonus:
– Pipelining intro
– Handling overflow
– Logisim Introduction 72

Detecting Overflow

7/5/2018 CS61C Su18 - Lecture 10 73

• Unsigned overflow
– On addition, if carry-out from MSB is 1

– On subtraction, if carry-out from MSB is 0
• This case is a lot harder to see than you might think

• Signed overflow
1) Overflow from adding “large” positive numbers

2) Overflow from adding “large” negative numbers

Signed Overflow Examples (4-bit)

7/5/2018 CS61C Su18 - Lecture 10 74

• Overflow from two positive numbers:
• 0111 + 0111, 0111 + 0001, 0100 + 0100.

• Carry-out from the 2nd MSB (but not MSB)
• pos + pos ≠ neg

• Overflow from two negative numbers:
• 1000 + 1000, 1000 + 1111, 1011 + 1011.

• Carry-out from the MSB (but not 2nd MSB)
• neg + neg ≠ pos

• Expression for signed overflow: C
n
 XOR C

n-1

Agenda

• Critical Path and Clock Frequency

• Administrivia

• Finite State Machines

• Multiplexers

• ALU Design
– Adder/Subtracter

• Bonus:
– Pipelining intro
– Handling overflow
– Logisim Introduction 75

Logisim

• Open-source (i.e. free!) “graphical tool for
designing and simulating logic circuits”
– Runs on Java on any computer
– Download to your home computer via class login

or the Logisim website (we are using version
2.7.1)

• No programming involved
– Unlike Verilog, which is a hardware description

language (HDL)
– Click and drag; still has its share of annoying

quirks

• http://ozark.hendrix.edu/~burch/logisim/
7/5/2018 CS61C Su18 - Lecture 10 76

http://ozark.hendrix.edu/~burch/logisim/

Gates in Logisim

• Click gate type, click to place
– Can set options before placing or

select gate later to change

7/5/2018 CS61C Su18 - Lecture 10 77

Options

Types of
Gates

bus width n

inputs

labeling not necessary,
but can help

Registers in Logisim

• Flip-flops and Registers in “Memory” folder

• 8-bit accumulator:

7/5/2018 CS61C Su18 - Lecture 10 78

Wires in Logisim

• Click and drag on existing port or wire
• Color schemes:

– Gray: unconnected
– Dark Green: low signal (0)
– Light Green: high signal (1)
– Red: error
– Blue: undetermined signal
– Orange: incompatible widths

• Tunnels: all tunnels with same label are
connected

7/5/2018 CS61C Su18 - Lecture 10 79

“Splitter” used to adjust bus widths

• Connecting wires together
– Crossing wires vs. connected wires

• Losing track of which input is which
– Mis-wiring a block (e.g. CLK to Enable)

– Grabbing wrong wires off of splitter

• Errors:

7/5/2018 CS61C Su18 - Lecture 10 80

Common Mistakes in Logisim

