

Seismographic Data Compression

--Applying Modified Tunstall Coding--

Shu-Fang Newman
Computing and Software Systems

Institute of Technology
University of Washington, Tacoma

Date: December 12, 2006

 Committee:

 Edwin Hong, Ph. D., UWT Computing Software and Systems
 Moshe Rosenfeld, Ph. D., UWT Computing Software and Systems

Newman Seismographic Data Compression 2

Seismographic Data Compression

Table of Contents

Seismographic Data Compression.. 1
--Applying Modified Tunstall Coding-- ... 1

Table of Contents.. 2
Abstract ... 3
1. Introduction... 4

A. Overview.. 4
Figure 0. Project Overview ... 5
B. Data Compression .. 6
C. Seismographic Data.. 7

2. SEED Format .. 8
3. Acquiring and Selecting the Seismic Data.. 9
4. Data Description Language of SEED ... 10
5. Tunstall Coding... 12

Figure 1. Prefix-free Tree.. 14
Figure 2. Tunstall Prefix-free Tree ... 16
Table 1. Output Codeword Table Corresponding to the Tunstall Tree 17

6. Encoding Modified Tunstall ... 17
Figure 3. Design of Modified Tunstall Coding... 18
Table 2. Partition Differences into Ranges ... 20

7. Decoding Modified Tunstall ... 22
8. Why the Design of Modified Tunstall .. 23
9. Compression Ratio of Modified Tunstall Coding... 26

Table 3. Compression Ratios of Modified Tunstall .. 28
10. Comparing Modified Tunstall with Steim1 and Steim2 ... 29

Table 4. Comparison of Steim1/Steim2 and Modified Tunstall 32
Table 5. Comparison of Steim1, 2 and MTC at DGAR/PTCN Stations 33

11. Comparing Modified Tunstall with Linear Prediction Coding............................... 34
Table 6. Comparison of LPC and Modified Tunstall at DGAR/PTCN Station........ 36

12. Rewriting Modified Tunstall Coding in DDL .. 37
Figure 4. View of the Dictionary Header.. 37
Figure 5. Snapshot of an Example of the Dictionary Header 39
Figure 6. View of the ADCH of Figure 5 ... 40
Figure 7. View of key 3 .. 41
Table 7. SEED Compression Ratios of Steim and MTC .. 42

13. Conclusion .. 42
14. References ... 43
Appendix I: Application of Predictcode.m ... 44
Appendix II: The List of Selected File Names ... 45
Appendix III: Seismic Data Request Form... 46

Newman Seismographic Data Compression 3

Abstract

 The Standard for the Exchange of Earthquake Data (SEED) is a commonly used

file format in the seismology field. Steim1 and Steim2 compression schemes, i.e. lossless

data compressions, are used in SEED format and are written in Data Description

Language (DDL), which has computational limitations making it difficult to implement

many standard compression algorithms. Steim1 and Steim2 are fixed compression

methods, which assign each incoming data sample to fewer bits than 32-bit, regardless of

the essence of the data. This project modified the Tunstall compression scheme to gain a

better compression ratio of seismic data and rewrote the compressed data in the DDL of

SEED format file. This project pre-computed the statistic s on seismic profile bases and,

accordingly, wrote the Modified Tunstall data compression description. This strategy

improves compression ratios over Steim1 and Steim2. The average compression ratio of

the Modified Tunstall Coding in this project was 3.18 when the length of the output

codeword was fixed at 10 or 11 bits. The Modified Tunstall Coding showed better

compression than Steim1 by an average of 30.78% and Steim2 by an average of 5.16%.

When comparing the Modified Tunstall Coding with the Linear Prediction Coding, which

is not possible to implement in DDL, the Modified Tunstall Coding was only 7.95%

worse on average.

.

Newman Seismographic Data Compression 4

1. Introduction

Progress in computer technology has inspired and changed human life. In the last

decade, especially with the growth of the Internet, humans have gradually and principally

relied upon storing and transmitting information in electronic ways. Information

represented by bytes has gradually become more extensively used in a digital form.

Consequently, people can now gather information easily and quickly. Computer

technology’s impact on humans and society is affecting and transforming life more than

we realize. However, it requires large electronic depositories. A prerequisite for this

mandatory memory storage is knowing how to store this information. One of the best

ways to resolve the escalating need for memory storage is to represent information within

a compact size. The Internet and networking are now commonly used far and wide, yet

the digital informational format is still limited by transmission speed.

A. Overview

 This project applied the Tunstall compression scheme by observing the statistics

of the seismic data, which is a sequence of integers, and then, using the statistics, wrote

Modified Tunstall Coding. The compressed data was written in Data Description

Language (DDL), which is part of the Standard for the Exchange of Earthquake Data

(SEED) format (see Figure 0). The creation of Modified Tunstall Coding in DDL is

intended for the convenient of SEED users who may not know what underlies SEED or

DDL. The intention of this project was to improve the compression ratios of Steim1 and

Steim2 compression schemes. The improvement resulted in a modification of Tunstall

Coding into DDL of SEED.

 The description of this project includes three parts: 1. Introducing the background

of data compression and the innate of the seismic data; and then focusing attention on

DDL of SEED; 2. Illustrating the design of the modified compression scheme based on

the limitation of DDL; and 3. Measuring and comparing, through experimentation, the

compression performance, and writing the new compression scheme in DDL.

Newman Seismographic Data Compression 5

Figure 0. Project Overview

Steim in
DDL

Uncompressed
data

SEED ASCII

Standard
Decoder

Steim
encoded

Data

MTC Table
in DDL

New SEED

MTC
Encoder

MTC
encoded

Data

 A brief introduction starts with data compression and seismic data. It continues

with illustrations of acquiring and selecting seismic data to obtain an understanding of the

essence of the seismic data. Then the project focuses on the DDL of SEED format. A

description of these endeavors constitutes the first part of this paper: “1. Introduction,” “2.

SEED Format,” “3. Acquiring and Selecting the Seismic Data,” and “4. The Data

Description Language of SEED.”

 SEED format is widely used in the seismic field. To be supported in SEED, the

data format must be expressible in SEED DDL. How would this project benefit the large

populations of SEED users? This question led to the fine tuning of this project. This led

to other questions: What can the DDL language of SEED do? How can this project

efficiently make the compression scheme of DDL represent the data? These inquiries

guided the design discussed in the second part of this project.

 The compression scheme expressed in DDL requires simple computations to fit

the limitations of DDL. Tunstall coding was found to fit DDL. However, applying

Tunstall Coding may result in the use of a large size of the Codeword Table, which needs

to be stored as part of the compression and results in of a poor compression ratio.

Therefore, the deficiency of Tunstall Coding motivated this project to modify the existing

coding to fit the design criterions of this project. This paper details the encoding and

decoding of Modified Tunstall Coding, as well as why the Modified Coding was

designed by analyzing the seismic data. The second part of the paper comprises four

Newman Seismographic Data Compression 6

sections: “5. Tunstall Coding,” “6. Encoding Modified Tunstall,” “7. Decoding Modified

Tunstall,” and “8. Why the Design of Modified Tunstall.”

 Finally, the last part of this paper addresses the comparison of the compression

ratio of Modified Tunstall coding, the Linear Prediction Coding, and Steim1 and Steim2.

The last Section of this project embedded Modified Tunstall Coding in DDL to make it

convenient for SEED users who may not know what underlies SEED or DDL. This part

of the paper collects four Sections: “9. Compression Ratio of Modified Tunstall Coding,”

“10. Comparing Modified Tunstall with Linear Prediction Coding,” “11. Comparing

Modified Tunstall with Steim1 and Steim2,” and “12. Writing Modified Tunstall in

DDL.”

B. Data Compression

Data compression is often referred to as coding. The primary objective of coding

is to minimize the amount of data transmission and/or to conserve storage space. Most

source messages, such as text, image, and video, are naturally redundant. Normally, the

desired information is expressed in excess data amounts of the actual need. Data

compression allows devices to perform (process) original data in reduced bits by

identifying the data’s structure. Data compression, currently, is mainly classified as

lossless or lossy schemes. Lossless data compression retrieves information in the same

form as the original; while, lossy involves some loss of data [1]. When the original data

exactly equals the decompressed data, the process is called lossless compression, while

lossy compression shows the original data do not equal the decompressed data [2]. One

of the criteria to evaluate the performance of a compression scheme is to examine the

compression ratio. How to measure the compression ratio will be introduced in a later

section of this paper. Retrieving lossless data is required in certain fields, such as medical

research, geophysics, and telemetry data communication. Seismographs produce integer

values that have unique characteristics. These characteristics differentiate seismographic

(seismic) data from the still images and video data that are the focus of most lossy

compression efforts. Seismographic data mainly requires lossless compression. This

project only involves in the lossless compression scheme.

Newman Seismographic Data Compression 7

C. Seismographic Data

A seismograph measures ground motion produced by earthquakes, volcanoes, and

other sources. Ground motions typically last from several tens of seconds to many

minutes, depending on the size of the earthquake and the sensitivity of the seismograph.

Seismography records and measures simply-processed or unprocessed earth motion data.

A seismograph station processes data twenty-four hours per day, seven days per week,

and then reports it to anywhere in the world. A seismograph laboratory simulates

seismograms that are routinely recorded during any 24-hour period of an earthquake

laboratory is functioning. The height of the recorded waves on the seismogram (wave

amplitude) greatly magnifies representation of the actual ground motion. A seismograph

produces seismogram records which report the ground motions over the passage of time.

The horizontal axis of a seismogram represents the time in seconds, and the vertical axis

corresponds to the ground displacement in millimeters. A straight line in a seismogram,

called “noise,” means no ground motion reading. Data from a seismograph registers not

only earthquakes; it may include other noise, such as rock falls, ice quakes, or electrical

noise from telephone lines. Such noise or vibration is usually easy to distinguish from an

earthquake.

A recording of an earthquake has recognizable characteristics. Typically, one can

recognize the arrival of different wave types: Primary waves (P-wave), the fastest

traveling waves; Secondary waves (S-wave), shear waves; and Surface waves.

Seismographic data is composed of signed 32-bit integers. Each data sample

consists of four bytes binary storage under normal, non-compression conditions. Without

compression, a seismic station with 3 components recoding at 20 samples per second,

exceeds 20 megabits per day. A network with 100 stations could produce 2 gigabits per

day. However, an analysis of the characters of the seismic data may allow the data to be

represented by fewer bits. In general, a seismogram shows that seismic data are highly

related within a time series. They are highly predictable in a sequence of consecutive

samples if the previous few samples are known.

Seismic data are transferred from a station processor to a data collection center,

then to a data management center, and, finally, to an end user. One of the most important

organizations, the Data Management Center (DMC) at Incorporated Research Institutions

Newman Seismographic Data Compression 8

for Seismology (IRIS), collects seismic data “from a variety of Data Collection Centers

and is responsible for the long term archive and distribution of all IRIS generated data”

[3].

2. SEED Format

The DMC of IRIS has adopted the Standard for the Exchange of Earthquake Data

(SEED) [4], which was defined by the Federation of Digital Seismographic Networks

(FDSN) to help earthquake research communities to exchange, between institutions,

unprocessed digital seismologic data. SEED format became an international standard for

the exchange of digital seismic data. The majority of seismic data, stored in or archived

from DMC, are in FDSN SEED format. SEED is the principal format for the DMC

datasets. Seismologists use SEED format to transmit seismic data by electronic means,

such as a packet switching network. SEED includes Steim1 and Steim2 data compression

schemes. Part of SEED includes a language, Data Description Language (DDL), which

parses and disassembles native data format. DDL commands are part of SEED format.

Large populations of the seismologic field depend on DDL, which is embedded in SEED

format, for their research on seismic data. If this project provides exactly the necessary

DDL commands as a part of a SEED file, then SEED’s users do not need to change the

way they read the data; the users can still read the data. The intent is to make the process

convenient for the large populations and the SEED users who do not need to know DDL

language nor understand how DDL works. Consequently, this project’s intent was to

design a new compression scheme, embedded in DDL language, which describes how to

read this data.

 The IRIS SEED reading program (RDSEED) [5] was developed to help

researchers convert their datasets into trace formats for which analysis tools already

existed. RDSEED is a commonly used tool that can extract many different types of data,

such as AH, CSS, and SAC ASCII, from a FDSN SEED format volume. This project

requested seismic data from the DMC of IRIS and extracted the data by applying

RDSEED. The target of this project was to create an efficient data compression scheme

and to replace the Steim1 or Steim2 compression schemes of DDL. Once the new scheme

Newman Seismographic Data Compression 9

was expressible in DDL and replaced Steim1 or Steim2 of DDL, then the new DDL

would be able to decode data by SEED reading programs. This new scheme would enable

users of RDSEED to read data compressed using the new SEED format, which would

benefit all RDSEED users by conserving their storage space and reducing time to

transform data and/or computation time. The details of DDL are illustrated in the Section

“4. Data Description Language of SEED.”

3. Acquiring and Selecting the Seismic Data

 One of the major tasks to perform a better data compression scheme is by

identifying the data’s structure. To do this and prior to acquiring seismographic data, it is

best to understand and facilitate what type of seismographic data is available. A

seismographic networking organization may operate a heterogeneous mix of seismometer

types to monitor a variety of types of earthquake activities. A seismometer may measure

signals from 10-3 samples per second (Hz) to 80 Hz; it depends upon a variety of usage

purposes for seismographic data. The Broad Band type of data was chosen for this project

because it commonly applies to the field of seismology and usually includes a large range

of amplitudes. A Broad Band sensor records waveforms from regional earthquakes and

teleseismic events for research purposes. The Broad Band type of data by the DMC of

IRIS is archived to most frequencies from 10 Hz to 80 Hz. The Broad Band files are

identified by suffixes: BHZ, HHZ, BHE, HHE, BHN, or HHN.

 This project selected the Broad Band channel data from the DMC on four stations:

two stations in the II Network, DGAR (Diego Garcia, Chagos Islands, India Ocean) and

PTCN (Pitcairn Island, South Pacific), and another stations, ANMO (Albuquerque, New

Mexico, USA), and MAJO (Matsushiro, Japan) in the IU Network. The chosen starting

time was 00 hours 00 minutes 00 seconds on January 1, 2006 and ended at 00 hours 00

minutes 00 seconds on January 2, 2006. (See Appendix III for the actual Seismic Data

request form.)

Newman Seismographic Data Compression 10

 The requested files, from the DMC, of this project are in SEED format. One

example of the WebRequest form for requesting data from DMC of IRIS is listed in

Appendix II at http://www.iris.edu/data/WebRequest.htm.

 Files formatted in SEED are usually compressed either in Steim1 or Steim2 of

DDL. To read SEED files for the further analytical purposes, this project ran all the files

in RDSEED 4.6 on a Unix computer specifying the parameter of the d options (retrieve

all selected data, selection by list of record numbers), the parameter of outputting the

SAC_ASC (SAC ASCII) format, and leaving other parameters as default. After running

the decompression files using RDSEED, the output files for the particular seismogram

were named by the first recoded data of the beginning time, station and component (see

Appendix II) as yyyy.ddd.hh.mm.ss.ffff.SSSSS.CCC, where yyyy is the year, ddd is the

Julian day, hh.mm.ss.ffff is the starting recorded time of the day, SSSSS is the station

name, and CCC is the component name. For example: A SAC ASCII data output format

file named 2006.031.13.30.20.0104.IU.ANMO.10.BH1.Q.SAC_ASC reveals the data is

produced beginning from the year of 2006 at 13 hours 30 minutes 20:0104 seconds of the

31st Julian day at the location 01 of the BH1 component of the station ANMO of the IU

network. The recovered files from a SEED-formatted file may be decompressed into

more then one file by RDSEED. The number of file depends on the initial recoding time

and the given components of the station. The recovered file includes data headers and

data records. Seismic data records are a sequence of integers.

 All the chosen channels in this project were BHE, BHZ, BHN, BH1, and BH2

Broad Band files. The location in each channel might be recorded as a 00, 01 or 10

location. 01 and 10 location involved 40 samples per second (Hz), and 00 location

involved 20 Hz.

4. Data Description Language of SEED

 The actual seismic data in DDL language is represented as a sequence of integer

differences. If users correctly interpret DDL, the final output will be a sequence of code

which will turn out to be integer differences. DDL is a language, but part of SEED format

can include DDL. To be supported in SEED, the data format must be expressible in

Newman Seismographic Data Compression 11

SEED DDL. Writing data in DDL is one part of SEED format. Readers can write data in

Data Description language, and then the language itself will descript how to decode the

data. SEED format includes DDL.

 One of advantages of using DDL is intending to be convenient for users. DDL

commands are part of SEED format. The users of DDL do not need to change the way

they read the SEED data, and they can still use the new format and process the data in

their original way. This project’s intend was to provide the necessary DDL commands as

part of the SEED file. In addition to the majority of the researchers widely adapting

SEED format, this project aimed to develop the new compression scheme, which replaces

Steim1 and Steim2 in DDL and executes the decompression job for SEED. The SEED

users may not know the underlying of SEED format, nor DDL, but the users would gain a

better compression ratio. In order to be supported in SEED, the experimented-upon files

of this project were written and replaced in DDL of SEED.

DDL supports several different data families, such as integer, integer differences

compression, and text. Any compression scheme expressed in DDL can be read by any

SEED reader. This paper only concentrates on the related coding, which is defined in

DDL as Family 50: integer differences compression. However, the language is a simple

assembling language. DDL cannot perform conditional looping for decoding data. It

supports only fundamental operations to resemble the Steim1 and Steim2 Compression

Algorithm in Family 50. To fit the limitations of the language, a thorough study of DDL

is critical.

Family 50 of DDL, integer differences compression, is basically designed to

decode Steim1 and Steim2 compression algorithms. The Family is composed of several

records called keys. Keys descript how to decompress the seismic data. Two keys, key 1

and key 2, are specially defined in the Family 50. A number of control type keys, after

the first two keys to a specified key, are designed to interpret the compressed data by all

possible compression key values (control codes) derived in key 2. Each key has a unique

number to provide different control code. Keys are separated by tildes, ~.

The first key, key 1, of the integer differences compression instructs to access the

forward integration constant (the first piece of the data) and the reverse integration

constant (the last piece of the data). Key 2 of the Family 50 provides information on how

Newman Seismographic Data Compression 12

to interpret the control codes and how to carry out the request of the control codes. Key 3

to the rest of the keys excludes the last key and describes how to decompress data

according to the compression keys’ value. The last key is an optional key. It is used for

cleaning up operations or actions that have to be done at the end of reading a block. This

project did not use the last key.

Each key of Family 50, excluding the first two keys, starts with an upper-case

alphabet (field) which is followed by the value of the control code. Each key provides a

couple of fields. A field in keys contains the actual parser information for operations to

carry out. Fields contain commands about how to interpret the actual data and how to

instruct and decode them. Each field has a single upper-case alphabet symbol followed by

numeric parameters separated by a comma. Fields within a specified key are divided by

one space.

DDL does not support many operations (primitives) in the fields. Especially, DDL

can not perform conditional looping for decoding data. This constraint makes it

impossible to implement many of the standard compression techniques in DDL, which

involve more complicated computations. The fields of DDL only contain operations, such

as copying/recording primitives, extraction primitives, sign primitives, and a few other

primitives. The copying/recording primitives copy bytes/bits from the input data stream

into a working buffer, while the extraction primitives extract specified bytes/bits from the

working buffer as numbers by applying offset and scale factors. DDL also includes

primitives of repeating successive fields and discards the results or the contents of the

working buffer.

 The studying of DDL language helped this project to understand the following

fact: The design’s criterion of the compression scheme expressed in DDL requires simple

computations to fit the limitations of DDL. The next section introduces Tunstall Coding,

and the sixth section explains why this project modified Tunstall Coding to fit DDL.

5. Tunstall Coding

Tunstall Coding provides the lossless data compression scheme. A natural way to

compress the sequence of symbols is to assign more frequent symbols to fewer codeword

Newman Seismographic Data Compression 13

bits and less frequent symbols to more codeword bits. Tunstall Coding takes the natural

idea in a different way, which makes Tunstall Coding unique in the following way.

Tunstall Coding uses the natural idea in reverse order: assign a set of input strings, which

are about the same frequency, to fixed- length codeword bits. The set of input strings is a

prefix-free set of varying length strings.

It is important to be a prefix-free set to ensure unique encodeability on a sequence

of symbols that will be encoded. “Encodeability” means to take any sequence of symbols

and to divide them uniquely into input strings. “Unique encodeability” means that the

project is able to encode any sequence of symbol into input string in only one way.

Readers may note that “a sequence of symbols” is not the codewords. This project intent

was to have a set of strings that could be used to encode any sequence of symbols, or any

sequence of symbols that are able to uniquely divide into input codewords (input strings)

from the set.

All output codewords of Tunstall Coding have an equivalent length. One

advantage of the variable-to-fixed length code is error resilience. Unlike the fixed-to-

variable length codes, a single bit flip cannot destroy the variable-to-fixed- length code.

The errors in fixed-length codewords do not propagate; a single bit flip only introduces

one error in the output.

A convenient way to represent a prefix-free set of input strings is to create a tree.

To construct the prefix-free tree, begin from a single node (the root node) and then add

branches (edges) for each different symbol. Each edge corresponds to a symbol (different

symbol). These branches end in leaf nodes. Each leaf node of the tree represents an input

string which is composed from the symbols. To add branches and leaf nodes, repeat this

instruction to expand the tree to the desired number of leaves by exploring specific leaf

nodes, one at a time. Once expanded, the leaf node changes to an internal node. Be aware

that no input string is terminated at any internal node in the prefix-free tree. The input

string can be obtained by traversing the tree from the root to the internal node(s) and to

the desired leaf nodes; write respectively each corresponding symbol of the branches to

compose the input string. All the leaves of the tree represent the prefix-free set of input

strings. An example of the prefix-free tree is shown in Figure 1, where each leaf node

represents a prefix-free input string.

Newman Seismographic Data Compression 14

A prefix-free tree can be built to help the Tunstall algorithm to represent the map

from sequence of symbols to the prefix-free set of input strings. The mapping of the

prefix-free Tunstall tree and the output Codeword Table will be illustrated in the last

paragraph of this section; meanwhile, the concept of drawing the prefix-free Tunstall tree

will be described in the following paragraph.

Figure 1. Prefix-free Tree

b c

ba

root

a

b c

cb ccca

c

ab c

ab acaa

a

b c

abb abcaba

a

b c

abab abacabaa

a

First, let m be the initial alphabet size of the sequence of symbols, which is

desired to be compressed. Let the length of the targeted output codewords be n, where 2n

> m. (Note: Carefully choose the length n: If n is too big then the compression result

may be poor; if n is too small, then the size of the codeword table may not be large

enough to represent all the symbols.) Calculate the probability of each symbol. Form a

prefix-free tree, as previous ly instructed, beginning with a root and m leaves, where each

edge is labeled with the m alphabet size and each leaf node represents the input string.

The probability of the input string is the occurrence of its associated symbols. While the

total number of leaves of the tree is less than or equal to 2n – m, expand the highest

probability of the leaf node, which is the highest probability of all of the current leaves, to

have m children, where the new edges are labeled with the m symbols and each new

input codeword increases one symbol more than its parents. Stop when the number of

Newman Seismographic Data Compression 15

leaves is greater than 2n - m. The probability at each leaf node is the probability of the

occurrence of its associated symbols. (Note: The next desired expanded leaf is chosen

from the highest probability of all of the current leaves; the probabilities of the m new

leave nodes equal each probability of their newly labeled edges times the previous ly

chosen highest probability.) Each path from the root to a leaf node produces the

probability of an input string which is the product of each edge’s probability. Each input

string on the tree will map to one unique codeword.

An input string can be obtained by traversing the tree from the root to the internal

node(s) and to the desired leaf nodes. The collection of the input string introduces a

prefix-free set of input strings. The Codeword Table maps from input strings to output

codewords which have n-bit fixed length. Applying the Codeword Table transforms the

sequence of symbols into an output codeword to compress the desired data. For

decodeability, compressed output requires more than the codewords: The output

comprises the Codeword Table and the transformed n-bit length codewords.

The following example explains and clarifies the details of building the prefix-

free tree and the Codeword Table. Let the desired compressed sequence of symbols

contain only three symbols a, b and c, where the probabilities are p(a) = 0.1, p(b) = 0.4

and p(c) = 0.5. Form a tree from the three symbols. Let the target length of the codeword

be 4-bit, and then expand the tree until the leaves reach, but not exceed 24 - 3. The first

level of the tree has three edges a, b and c which respectively follows their own codeword

which resides on each leaf.

p(a) = 0.1

p(b) = 0.4

p(c) = 0.5

b c

b ca

root

a

Since p(c) is greater than p(b) and p(a), explore the leaf with the highest probability p(c)

and begin to expand the c leaf to have three more children ca, cb and cc. The probabilities

of these leaves are obtained from the highest probability p(c) times the new edges’

probabilities p(c), p(b), and p(a).

Newman Seismographic Data Compression 16

Each leaf node of the second level of the tree

 p(ca) = p(c) * p(a) = 0.5 * 0.1 = 0.05

 p(cb) = p(c) * p(b) = 0.5 * 0.4 = 0.20

 p(cc) = p(c) * p(c) = 0.5 * 0.5 = 0.25

b c

b

ca cb cc

ca

c

root

a

ba

Choose the b leaf and follow the expanding procedure, since p(b) > p(cc) > p(cb) > p(a) >

p(ca). The probabilities of the new leaves are calculated as follows.

The new leaf nodes

 p(ba) = p(b) * p(a) = 0.4 * 0.1 = 0.04

 p(bb) = p(b) * p(b) = 0.4 * 0.4 = 0.16

 p(bc) = p(b) * p(c) = 0.4 * 0.5 = 0.20

c

b

ca cb cc

ca

c

root

a

ba

b

ba bb bc

cba

In this stage, the tree has only 7 leaves which are less than 24 – 3 = 13; the expanding

work needs to be continued. The next chosen leaf is the cc string because p(cc) > p(bc)>

p(cb)> p(bb)> p(a)> p(ba). (Note: The nodes b and c, at the first level of the tree with

probability 0.5 and 0.4, are no longer identified as leaves; instead, they become internal

nodes.) The input string only terminates at the leaves instead of at the internal nodes.

Because the number of leaves are less than or equal to 13, apply the same processes to

expand the highest probability over all, where 13 is obtained from 24 – 3. Stop to

expanding the tree when the number of leaves reaches 15, where 15 > 24 – 3, as Figure 2

shows.

Figure 2. Tunstall Prefix-free Tree

c

b

ca cb cc

ca

c

root

a

ba

b

ba bb bc

cba

cca ccb ccc

cba
cba cbb cbc

cba

bca bcb bcc

cba

bba bbb bbc

cba

The chosen string to
begin with

The chosen string to
begin with

Newman Seismographic Data Compression 17

To make the Codeword Table, begin by choosing an arbitrary leaf from the Tunstall tree.

Example: Begin with the bba string, which traverses from the root through the internal

nodes b and bb to the bba leaf (see Figure 2). Let the first explored output codeword be

0000 in binary. The input string bba corresponds to 0000 in the Output Codeword Table.

(Notice: The output codeword, 0000, has 4-bit length, which was defined initially in the

beginning of this paragraph.) Follow the same procedure to complete the table by

developing any undiscovered leaf and assign each input string a consecutive binary

number (see Table 1).

Table 1. Output Codeword Table Corresponding to the Tunstall Tree

Input string bba bbb bbc bca bcb bcc cba cbb
Output codeword 0000 0001 0010 0011 0100 0101 0110 0111
Input string cbc cca ccb ccc a ba ca
Output codeword 1000 1001 1010 1011 1100 1101 1110

6. Encoding Modified Tunstall

 The Modified Tunstall Coding1 applied the Tunstall compression scheme by pre-

computing the statistics on the profile bases of the seismic data. This section illustrates

the basic design principles of Modified Tunstall Coding and gives an example to

demonstrate the design. The effects of these pre-computational statistics of Modified

Tunstall Coding are demonstrated on compression and shown in the section “10.

Comparing Modified Tunstall with Steim1 and Steim2.”

 In order to encode a sequence of integers using Tunstall Coding, each different

integer must be assigned to a unique symbol. It is impractical to represent every various

signed 32-bit integer into an assorted symbol, which may require up to 232 different

symbols. The modification of Tunstall for a sequence of integers, especially for the

seismic data, is necessary. This project mainly modified Tunstall Coding as one symbol

1 Edwin Hong, PhD, of the University of Washington, Tacoma provided initial guidance toward the idea for
this original work.

Newman Seismographic Data Compression 18

representing a range of integers. If all input strings in a range have the same probability

of occurring, and the length of the range is a power of two then no further compression is

possible (assuming a memoryless model). Tunstall Coding is an optimal variable-to-fixed

length for a memoryless source and its achieved rate is close to the entropy. The ranges

of Modified Tunstall Coding are designed to be to the power of two. Therefore, each

integer’s datum is represented as one representing symbol and one residual. The absolute

value of the residual, a positive decimal number, is a number no larger than the size of

the range. For negative differences, the residual is negative. (Note: The number in this

paper, unless specified, is in decimal.) When a residual converts to a binary number, it is

called a bit string. The conversions are shown in later paragraphs.) The length of the

corresponding bit string is displayed in Table 2. Because the representing symbol is

encoded, but the residual is not, each length of a bit string is allocated the power of two;

it is expected that all lengths to the power of two will be used and that all of the different

combinations of the bit strings represent the different possibilities.

To accommodate the limitations of DDL and to gain a better integer seismic data

compression, this project modified Tunstall Coding in the following five processes (see

Figure 3):

Figure 3. Design of Modified Tunstall Coding

Original
data

Differences

Symbols

Residuals

Map in ranges

Codeword
Table

Output
codeword

&

Bit StringExpress in binary value

Final MTC output

DDL for
MTC

SEED

MTC
encoded

Data

Encoder

Run Tunstall Coding

(1). Read each piece of input data sample, a sequence of integers, which is desired to

be compressed. Calculate the difference between current input data and previous

input data where
 the difference = current input data – previous input data.

Newman Seismographic Data Compression 19

(2). Each difference is transformed to two parts of codewords: output codeword and

output bit string. Design the mapping from a range of integers to a corresponding

symbol and assign the length of the bit string to the symbol (see Table 2). (The

reason for designing the set of ranges of Table 2 is illustrated in the last paragraph

of the section “7. Acquiring and Selecting the Seismic Data.”) By applying Table

2, the reader can find the corresponding range wherein each difference falls.

Represent each difference as the found symbol. Calculate the residuals by

subtracting the absolute value of the magnitude 2r for positive differences or -2r

for negative differences, where r is the length of the corresponding bit string.
If the difference is positive, then the residual = value of positive difference – 2r . (see Table 2)

If the difference is negative, then the residual = value of negative difference + 2r. (see Table 2)

(Note: The negative difference residuals are negative.)

Convert every absolute value of the residuals to a binary bit string where the

length of the bit string is r. Respectively, store the pair symbol and binary

sequence for further use.

A couple of examples for demonstrating the conversion of differences to the

symbols with binary sequences are as follows: The number of difference, 3, falls

into the range of 0 to 127 as defined by Table 2. Represent the difference, 3, by

the symbol “a” where the magnitude of the “a’s” range is 0. Now the residual 3

comes from 3 minus 0. Convert the value of residual 3 to the binary bit string

0000011. (Notice: The length of corresponding bit string is 7 by the design of

Table 2. Therefore, the binary sequence is coded in seven digits 0000011 instead

of two digits 11.) Clearly at this stage, number 3 is represented as the pair

 (a, 0000011). Apply the same behaviors to convert differences 254 and -600 to be

 the pairs (symbol, bit strings).

 Ex.1. 254 = 128 + 126 = 27 + 126

 Convert 254 to => (b, 1111110(binary))

 Ex.2. -600 = - (512 + 88) = - (29 + 88)

 Convert -600 to => - (D + 001011000(binary)) = (D, 001011000(binary))

Converting a negative number to a symbol with binary sequences may seem a bit

complicated in this project. But an equivalent way of converting them is to take

the absolute value of the negative number to the pair (symbol, bit strings) and

Newman Seismographic Data Compression 20

change the lower-case symbol to an upper-case symbol. (Notice: If the converted

symbol is a lower-case symbol, then the lower-case symbol implies the number of

the difference is a non-negative number (see Ex.1) by the design of Table 2;

otherwise, an upper-case symbol must correspond with a negative value (see

Ex.2).) Consequently, the negative number -600 can be represented as (D,

001011000) pair without a negative sign because of the upper-case D. Later in the

process of decoding, when an upper-case symbol is encountered, then the

negative sign should be applied to the decoded number.

(3). Calculate the probability of each symbol that is obtained from (2).

(4). Run the Tunstall algorithm.

(5). Transform the original data and yield the output codewords with their

corresponding bit strings; these are recorded in pairs. Each pair consists of one

codeword and a sequence of bit strings. (Note: If an output codeword is

transformed from the leaf of the first level of the Tunstall tree, then there is only

one single bit string in that pair; otherwise, the number of the bit strings depends

on the number of levels.) These regulations are defined according to Table 2. The

encoded output comprises two segments: the codeword table and the combination

of the pairs (output codewords, bit strings).

 Table 2. Partition Differences into Ranges

Ranges of
Integers

Representing
Symbol

Number of bits
in

Corresponding
Bit string

Ranges of
Integers

Representing
Symbol

Number of bits
in

Corresponding
Bit string

0 to (27 -1) a 7 -1 to -(27 -1) A 7
27 to (28-1) b 7 -27 to -(28-1) B 7

28 to (29-1) c 8 -28 to -(29-1) C 8

29 to (210-1) d 9 -29 to -(210-1) D 9

210 to (211-1) e 10 -210 to -(211-1) E 10
211 to (212-1) f 11 -211 to -(212-1) F 11
212 to (213-1) g 12 -212 to -(213-1) G 12
213 to (214-1) h 13 -213 to -(214-1) H 13
214 to (215-1) i 14 -214 to -(215-1) I 14
215 to (216-1) j 15 -215 to -(216-1) J 15
216 to (217-1) k 16 -216 to -(217-1) K 16
217 to (218-1) l 17 -217 to -(218-1) L 17

Newman Seismographic Data Compression 21

 The following example clearly illustrates the processes of compressing a sequence

of data by using the previous ly defined Modified Tunstall Coding and then producing a

compressed data which includes a codeword table, codewords, and bit strings.

(1). Read a sequence of data, which in this project is a sequence of integer seismic

data,

8704, 8507, 8438, 8444…

 and calculate the differences

8507 - 8704 = -197

8438 – 8507 = -69

8444 – 8438 = 6

(Notice: The differences are 8704, -197, -69, 6… instead of -197, -69, 6….

Because of the decodeability, one must copy the first datum 8704 as the first

difference, rather than –197; without recording the first piece of data, it would be

impossible to retrieve the original sequence of data.)

(2). Look up Table 2 to transform the differences. The difference 8704 falls in the

range of 8192 to 16383, and the representing symbol is “h” as shown in Table 2.

Convert the residual, 8704 – 8192 = 512, to the binary sequence as

0001000000000.

8704 = 8192 + 512 = h + 0001000000000(binary) => (h, 0001000000000(binary)).

The second difference, -197, falls in the range of -128 to -255 and the

representing symbol is “B.”
-197 = - (128 – (-69)) = - (27 – (-69)) => (B, 1000101(binary)).

The number of the difference, -197, is represented by the pair (B, 1000101). The

third difference, -69, is represented by the pair of (A, 1000101). Number 6 is (a,

0000110) and so on. Subsequently, follow the previous ly Modified Tunstall

explanations, found in preceding steps (3) and (4), to make a Tunstall tree by

calculating probabilities of the symbols.

(4). Using the last step, create the Codeword Table according to the Tunstall tree,

where the size of the Table is not greater than 2n - m. (Note: Each alphabet

symbol is assigned as an n-bit length codeword, see Table 1.)

(5). Finally, transform the sequence of data and yield the output codewords with

Newman Seismographic Data Compression 22

bit strings. To be clear, the encoded output includes the Codeword Table

described in step (4) and output codewords combined with bit strings.

7. Decoding Modified Tunstall

 Decoding Modified Tunstall requires the Codeword Table and the output

codewords combined with bit strings. Initially, read one n-bit length codeword at a time,

where n is the default length of the codeword, look up the range of integer of Codeword

Table, and then find the representing symbol. Take one representing symbol of the input

string at a time and convert it to the absolute value of the magnitude of the matching

range by the following conditions:

 (0). Define the Modified ASCII Value as

 Modified ASCII Value = ASCII value of the symbol – 97 (for lower-case character) …(1)

 or Modified ASCII Value = ASCII value of the symbol – 65 (for upper-case character) …(2)

(1). If the result of the ASCII value of this symbol minus the ASCII value of symbol

a, 97, is a non-negative number, then the symbol must be a lower-case character

which means the Modified ASCII Value is a non-negative number (see formula

(1)).

(2). Otherwise, the symbol must be an upper-case character which determines that the

Modified ASCII Value is a negative number (see formula (2)).

(Keep in mind: After retrieving the upper-case ASCII value of the absolute value

of the magnitude matching range, a negative sign is required to perform the

retrieving value, which will be negative.)

Recall that the length of the bit string in Table 2 starts at the basic length 7. Therefore, for

the first step, retrieve an output codeword as the input string; then locate the symbol(s) of

the input string to the absolute value of the magnitude matching range(s). Because the

basic length of bit string is 7, therefore 6 (7 minus 1) has to be added to Modified ASCII

Value (see formula (1) and (2)), if the ASCII value of the symbol does not equal 0;

otherwise, the Modified ASCII Value is 7. The Modified ASCII Value in this stage is not

the final difference data yet because the bit string binary code needs to be transformed

into a decimal number.

Newman Seismographic Data Compression 23

if lower-case Modified ASCII Value = 0 return bit string in decimal

else if upper-case Modified ASCII Value = 0 return -bit string in decimal

else if lower-case Modified ASCII Value > 0

 return bit string in decimal + 2 Modified ASCII Value

 else return - (bit string in decimal + 2 Modified ASCII Value)

(Be aware: An upper-case character represents a negative number by the design of

Modified Tunstall Coding. Therefore, the returning value needs to be modified as a

negative number by adding a negative sign for the entire number

 (bit string in decimal + 2 value of upper-case).)

If the difference is not the very first piece of data, the difference needs further recovering.

 Apply the same processes to continuously read every pair of the output codeword

and the bit string(s), if any exist. Continuously, transform them to symbol(s); then

convert the symbol(s) to the absolute value of the magnitude in the matching range and

then adjust it as previously instructed with the decimal value of bit string to obtain

differences. The final adjustment is the decoded number added to a negative sign when

an upper-case symbol is encountered; otherwise, the retrieved values remain positive or

zero. In this stage, the differences of the original data have been retrieved. To obtain the

sequence of the original data from the differences, simply copy the first data as the

previous-data. Take the next data and set it as the current-data. Add the previous-data and

the current-data; copy the result as the next decoded data. Then, the current-data becomes

the previous-data; the next data of the encoded output becomes the current-data. Repeat

the processes until the end of the encoded output. The copied sequence of numbers will

be losslessly equal to the original data, if the processes are applied correctly.

8. Why the Design of Modified Tunstall

 This project designed Modified Tunstall Coding based upon the pre-computed

statistics and rewrote the compressed data in DDL. The limitations of DDL restrained one

of the main design principles of Modified Tunstall Coding. This project then addressed

how to make DDL efficiently represent the differences of the seismic data and gain the

optimal compression ratio. The intention of this design is illustrated in this section. The

Newman Seismographic Data Compression 24

Codeword Table of Modified Tunstall Coding needs to be stored as part of the

compression. This section also clarifies other design principles of Modified Tunstall

Coding by giving the reasons for reducing the Codeword Table and grouping the ranges

of the differences on Table 2.

 In order to work with DDL, as illustrated earlier in the section “4. Data

Description Language of SEED,” the design of this project requires simple computations

to fit the limitation of DDL. In general, a method using less computation results in poor

compression; a method using more computation, such as linear prediction which

performs a good compression, may not be handled by the simple primitives of DDL. To

accommodate the limitation of DDL, this project chose to modify Tunstall Coding and

made it efficient to represent data. Also, there were other reasons, such as keeping the

size of the Codeword Table small. These reasons for the design are illustrated in the

following paragraphs.

 The differences in the sequence of integers of seismographic data between

consecutive samples are generally much smaller than a 32-bit integer. Typically, the

differences in the sequence of integers of seismic data require 13 bits or fewer to

represent them [4]. If each difference is a 13-bit integer, at the worst case, the total

differences may need 213 different symbols to encode them. If the reader expands the 213

different symbols to be the initial alphabet size of the sequence of symbols in the Tunstall

tree, then a large size Codeword Table can be expected. As introduced earlier in the

Section of “5. Tunstall Coding,” the size of the Tunstall tree, defined as 2n, has to be

greater than the size of the different symbols m, where n is the desired length of output

codeword; therefore, the size of the Codeword Table may approximate 2n, where n is

larger than 13.

 The Codeword Table needs to be stored as part of the compression. It is

anticipated that an output with a large size Codeword Table will introduce a poor

compression ratio. It is critical to reduce the table size in order to perform a fair

compression ratio. The output of the unmodified Tunstall comprises approximately the

2n-size Codeword Table and the pairs (output codeword, bit strings). Obviously, if the

size of the different symbols exceeds 213, then the length of the output codeword must be

bigger than 13 in order to have enough codewords to represent all the input data. In this

Newman Seismographic Data Compression 25

circumstance, both the size of the Codeword Table and the encoded pairs will be

increased. When n increases by 1, it means the size of the Codeword Table will be

doubled, compared with its initial size; if readers were to use it, the unmodified Tunstall

would be destined to a poor compression ratio.

 Tunstall Coding is known as an optimal variable-to-fixed length for memoryless

source. The compression rate of Tunstall is close to the entropy. Tunstall Coding assigns

a set of input strings, which are of similar frequencies, to fixed- length codeword bits.

Modified Tunstall Coding basically takes the idea of the fixed- length codewords bits but

maps from the codeword to the bit strings to present a piece of difference data. According

to the SEED Reference Manual [4], 99 percent of the absolute value of the seismic

differences could be smaller than an 8-bit. Obtaining better data compression requires

further analysis on the differences’ frequency. How can this project distribute the 99

percent differences evenly into each range? To answer this question relates to obtaining

information about how to acquire and select the seismic data.

 In Section “6 Encoding Modified Tunstall Coding,” the project created Table 2 to

map differences to various length ranges. The length of ranges is designed as the power

of two with the intention of properly taking advantage of conserving electronic data

storage space. When all integers in a range have the same probability of occurring and the

length of ranges is a power of two then no further compression is possible. The design’s

intention of Modified Tunstall Coding is to group similar but unequal frequencies of each

difference occurrence together. There were 28 files (see Appendix II) chosen for this

paper. (The reason for choosing these files will be described in Section 9.) When

observing one of these files, the frequencies of occurrence between -127 to 127 are

similar. Therefore, this project maps the initial differences in ranges (see Table 2). The

ranges are from -127 to -1, 0 to 127 and then the rest of the ranges are mapped based on

the size of 2, starting with the size of the range as 27, 28, 29…. Typically, the differences

in the sequence of integers of seismic data require 13 bits or fewer to represent them [4].

The greatest tested difference encountered in these 28 files fell in the range of 215 to

216 - 1. However, this project made (218 - 1) as the greatest tested difference and –(218 - 1)

as the lowest tested difference to ensure that all differences were included.

Newman Seismographic Data Compression 26

9. Compression Ratio of Modified Tunstall Coding

 This section demonstrates in detail how to calculate the compression ratios of the

Modified Tunstall Coding over the previously chosen files. The section also records the

compression ratio experiments’ results of Modified Tunstall Coding for each of the 28

files under various lengths, from 6 to 12-bit, of the fixed- length output codeword. The

average of the optimal compression ratios at each specific output codeword results in

3.19.

 A way to measure the efficiency of Modified Tunstall Coding is to calculate the

compression ratio. The compression ratio for a particular file is the number of bits

required to represent the file before compressing it to the number of bits required to

represent the file after compression. The compression ratio is expressed below:

 Compression ratio = the number of bits required to represent the file before compressing
 the number of bits required to represent the file after compressing

This project requested seismic data in SEED format from IRIS’s DMC center. In order to

practice on the uncompressed data, SEED files have to be converted to other formats,

such as ASCII or SAC, through RDSEED application. The SAC format was selected for

this project.

 This project assumes that each piece of seismic data sample, which is an integer,

needs a 32-bit format. Consequently, the size of the file required to represent the file

before compression is obtained from the total integer samples times 32 bits.

 size of file before compressing = 32 * the total integer samples required

 The total size required to represent the compressed file, after Modified Tunstall

coding, needs to include the size of the Codeword Table and the combination of output

codewords and bit strings. Note, this project supposes every alphabet symbol in the

Codeword Table requires 8 bits storage space, and each output codeword size could be

set in the 5- to 12-bit range. (The reason of this paper only presents the length of the

codeword from 5 to 12 is illustrated in this Section in the paragraph following Table 3.)

Newman Seismographic Data Compression 27

Since the output codewords are of a fixed length, simply total the number of the output

codewords and multiply the total with the fixed length bits. Measuring the size of the bit

strings requires the sum of the individual length of each corresponding bit string.

Therefore, the total size of a file after compression is written as follows:

 size of file after compressing = size of Codeword Table + size of (output codewords, bit strings).

The compression ratio of Modified Tunstall coding is obtained with the following

equation:

 compression ratio = size of file before compressing / size of file after compressing

 However, this project only concentrated on seismic data samples and removed all

the data headers from each individual file. Therefore, after decompressing the files by

RDSEED and running them in this project’s designed application, all the SAC headers

were removed, leaving only record numbers of the seismograms contained in each

volume. A file containing only record numbers without headers is called seismic data, in

this project. The seismic data is a sequence of integers. For practical reasons, this project

only targeted the large files. The experiments were performed only on large files, after

recovering from RDSEED, which are larger than 105 bits long. For the later experiments

on the compression schemes, 28 files, without headers and greater than 105 bits long,

were used (see Appendix II). These 28 files are numbered from 1 through 28 for later use.

Newman Seismographic Data Compression 28

Table 3. Compression Ratios of Modified Tunstall

Files # of compression ratio at given codeword length Max.
samples 6 7 8 9 10 11 12 Ratio

1 17.33 3.34 3.51 3.60 3.66 3.69 3.70 3.68 3.70

2 17.29 2.46 2.57 2.62 2.62 2.64 2.66 2.64 2.66
3 19.98 2.66 2.77 2.77 2.78 2.82 2.80 2.81 2.82

4 19.98 2.57 2.66 2.67 2.68 2.70 2.71 2.69 2.71
5 17.29 2.62 2.72 2.73 2.73 2.77 2.76 2.74 2.77

6 34.56 3.37 3.52 3.61 3.66 3.70 3.73 3.73 3.73

7 34.56 3.37 3.53 3.61 3.67 3.70 3.72 3.73 3.73
8 34.56 3.32 3.45 3.52 3.60 3.64 3.66 3.63 3.66

9 17.28 3.83 3.86 3.88 3.89 3.89 3.88 3.83 3.89
10 17.28 3.90 3.92 3.93 3.93 3.92 3.90 3.85 3.93

11 17.28 3.83 3.86 3.88 3.89 3.89 3.88 3.83 3.89

12 17.28 3.34 3.50 3.60 3.66 3.69 3.70 3.68 3.70
13 17.28 3.35 3.50 3.59 3.64 3.68 3.69 3.67 3.69

14 17.28 3.33 3.48 3.58 3.64 3.67 3.68 3.67 3.68
15 19.99 2.62 2.72 2.73 2.72 2.77 2.76 2.75 2.77

16 17.28 2.43 2.53 2.57 2.57 2.58 2.60 2.59 2.60

17 19.99 3.05 3.19 3.20 3.23 3.26 3.26 3.27 3.27
18 19.99 3.09 3.18 3.23 3.27 3.30 3.30 3.30 3.30

19 20.00 2.92 3.01 3.03 3.05 3.08 3.07 3.08 3.08
20 17.28 2.59 2.73 2.78 2.78 2.83 2.83 2.83 2.83

21 17.28 2.61 2.77 2.79 2.80 2.85 2.85 2.85 2.85

22 17.28 2.51 2.64 2.69 2.69 2.72 2.73 2.71 2.73
23 14.60 2.50 2.63 2.67 2.67 2.69 2.70 2.68 2.70

24 14.59 2.68 2.78 2.78 2.79 2.84 2.82 2.81 2.84
25 14.58 2.63 2.73 2.74 2.74 2.78 2.77 2.75 2.78

26 14.57 2.87 2.95 2.97 2.99 3.03 3.02 3.02 3.03

27 14.57 2.89 2.92 2.97 3.01 3.03 3.03 3.01 3.03
28 14.56 2.74 2.82 2.83 2.86 2.87 2.87 2.88 2.88

Average 2.98 3.09 3.13 3.15 3.18 3.18 3.17
Average compression ratio of each max ratio 3.19

 The bold numbers highlight the maximum compression ratio.
 Note: See Appendix II for the list names of selected files.

Newman Seismographic Data Compression 29

 The main factors that influence compression ratios of Modified Tunstall Coding

include the data’s inherent characteristics, the assigned length of the output codewords,

and the design of the ranges. Table 3 shows the experiments’ results on the various

assigned lengths--from 5-bit up to 12-bit--of the output codeword. Notice Tunstall

Coding is designed so that the initial alphabet size of the sequence of symbols m has to

be less than 2n, where n is the length of the targeted output codewords. Be aware that “the

sequence of symbols” means the sequence of differences in this project. A large, more

than 105 bits, seismic file normally has the initial alphabet size exceeding 25. When the

length of the output codewords is assigned less than 5, the experiments result in a small

Codeword Table which is too small to represent all the distinct differences. When the

length of the output codewords n is assigned greater than 12, the compression ratios for

the chosen 28 files decreased when compared to n = 12; the majority of the compression

ratios decreased when n = 13, 14. When the output codewords are increased, the

Codeword Table size is increased, the compressed length of the file will increase, and

then the compression ratio decreases. Therefore, this paper only presents the length of the

codewords from 5 to 12.

 In Table 3, the best compression ratio, according to the length of the output

codewords, results in the average of 4.22 when the output codewords are assigned to 10

or 11-bit lengths. This project chose the best compression ratio of each specified file and

recorded it in the last column of Table 3. The average compression ratio of each file’s

optimal ratio, between 6- to 12-bit output codewords, is 3.19.

 How is the performance of 3.19 compression ratio? This project took the

Modified Tunstall Coding results to compare with coding algorithm--the Linear

Prediction Coding in the section 11 and confirmed the quantities of the improvement of

Modified Coding from Steim1/Steim2 in section 10.

10. Comparing Modified Tunstall with Steim1 and Steim2

 This section takes the results of Modified Tunstall Coding in the last section,

individually comparing them with Steim1 and Steim2. The results of the comparisons are

presented in Table 4. The average improvement of Modified Tunstall Coding is 30.78%

Newman Seismographic Data Compression 30

over Steim1 and 5.16% over Steim2. The last paragraph of this Section discusses the

percentages of result s.

 The compression algorithms applied in DDL of SEED for seismic data are Steim1

and Steim2 compression schemes. This project has presented the new compression

scheme, Modified Tunstall Coding, to improve Steim1 and Steim2. To understand how

much improvement that Modified Tunstall Coding made with the other compression

schemes requires comparison. One common way to compare is to measure the

performances by comparing the compression ratio s among the compression schemes.

 To measure the compression performances, this project did not use Steim1 and

Steim2 compression algorithms that are used in SEED because they are not independent

applications for measuring the compression ratio. Steim1 and Steim2 compression

algorithms in SEED are written in DDL language. To rewrite them into an independent

application takes a tremendous effort. A convenient way to find an application that adapts

Steim1 and Steim2, steim123, is collected by the Quanterra Users Group (QUG) of the

Northern California Earthquake Data Center at http://www.ncedc.org/qug/software/. The

steim123 tar file downloaded from the Web site of the QUG consists of three main

classes: steim123.c, swrseed.c, and srdseed.c. Only the steim123.c is related, in this

project, to compressing integer seismic data. Level 1 and Level 2 of steim123 are

equivalent to Steim1 and Steim2 of the SEED format, respectively. This paper recodes

Level 1 as Steim1 and Level 2 as Steim2 in the following descriptions.

 In general, a seismometer’s output data under normal background are usually

highly-correlated integers. Steim1 and Steim2 use this highly-correlated characteristic of

seismic data to compress data. By applying this significant characteristic, Steim1 and

Steim2 calculate the differences of the sequence of integers, as well as of Modified

Tunstall Coding. A significant characteristic of the typical differences of seismic data is

that integer differences are generally much small than 32-bit. Accordingly, Steim1 and

Steim2 assign the first-differences into groups of numbers of variable bits long. Steim1

codes the first-differences as groups of 8-, 16-, or 32-bit. Steim2 improved upon Steim1

and codes groups of differences of 4-, 5-, 6-, 8-, 10-, 15-, and 30-bit. Steim1 and Steim2

use the control codes, introduced in section “4. Data Description Language of SEED,” to

figure the configuration of the differences.

Newman Seismographic Data Compression 31

 To measure the relative increase or decrease of the compression ratios of

Modified Tunstall Coding (MTC), this project views the compression ratio of Modified

Tunstall Coding as the initial value; the compression ratio of the other schemes, such as

Steim1, Steim2, and Linear Prediction Coding, as the total which corresponds to 100%.

 The percentage improvement in compression ratio between Modified Tunstall

Coding and the other compression scheme in each specified file is calculated as:

 The percentage improvement in compression ratio (%)

 = (MTC’s ratio – other’s ratio) * 100 / other’s ratio

 According to Appendix B of RDSEED V2.4, the best compression ratio of Steim2

is 6.74 when all the differences can be compressed in 4 bits. The same file is only

compressed in the ratio of 3.67 when using Steim1. This maximum improvement from

Steim1 to Steim2 is 65.40%. The calculation is shown as follows:
 ((6.74 – 3.67) * 100 / 3.67) % = 65.40%

The average improvement from Steim1 to Steim2 of these chosen files is 26.27% as

shown in Table 4. Recall: Steim2 groups 4-, 5-, 6-, 10-, 15- or 30-bits first-differences,

but Steim1 encodes first-differences into 8-, 16- or 32-bit. This is the main reason that

Steim2 performs better than Steim1. Another of the reasons is that the compression ratio

of Steim2 was achieved from Steim1 on 20 Hz Broad Band data, but only 13 out of the

28 files are 20 Hz data (see Appendix III).

 Table 4 demonstrates that Modified Tunstall Coding compresses the 28 chosen

files on an average of 30.78% better than Steim1. Each individually tested file confirms

that the compression ratio of Modified Tunstall Coding is the worst at 1.00% and the best

at 54.22% compared with Steim1. Recall: Steim1 only uses the methods, which are the

first-differences of groups 8-, 16-, or 32-bit, but Modified Tunstall Coding encodes

differences into 7- to 17-bit (see Table 2). The reason that Modified Tunstall Coding

demonstrates the optimistic average percentage better than Steim1 is because Modified

Tunstall Coding covered all the Steim1’s coding methods.

Newman Seismographic Data Compression 32

Table 4. Comparison of Steim1/Steim2 and Modified Tunstall

 Compression ratios
percentage improvement in

compression ratios

File # (1) (2) (3) (4) (5) (6)

 Steim1 Steim2 MTC
Steim2 over

Steim1
MTC over

Steim1
MTC over

Steim2

First
order

Entropy

 % % bits/symbol

Max.
possible

compression
ratios

1 3.74 5.33 3.70 42.51 -1.00 -30.53 5.61 5.71
2 1.87 2.05 2.66 9.63 42.32 29.83 11.60 2.76
3 1.89 2.33 2.82 23.28 49.26 21.07 10.90 2.94
4 1.88 2.13 2.71 13.30 44.10 27.18 11.40 2.81
5 1.88 2.24 2.77 19.15 47.29 23.62 11.12 2.88
6 3.64 3.85 3.73 5.77 2.48 -3.11 7.72 4.15
7 3.65 3.87 3.73 6.03 2.19 -3.62 7.71 4.15
8 3.39 3.69 3.66 8.85 7.90 -0.87 8.12 3.94
9 3.74 5.51 3.89 47.33 4.05 -29.38 5.64 5.67

10 3.74 5.61 3.93 50.00 5.04 -29.97 5.52 5.80
11 3.74 5.34 3.89 42.78 4.05 -27.13 5.88 5.44
12 3.71 5.33 3.70 43.67 -0.20 -30.53 5.61 5.71
13 3.70 5.26 3.69 42.16 -0.20 -29.80 5.73 5.59
14 3.70 4.98 3.68 34.59 -0.42 -26.01 5.94 5.39
15 1.88 2.24 2.77 19.15 47.40 23.71 11.11 2.88
16 1.87 1.99 2.60 6.42 39.11 30.72 11.87 2.70
17 2.21 2.99 3.27 35.29 47.84 9.27 9.20 3.48
18 2.36 3.05 3.30 29.24 40.01 8.34 9.05 3.54
19 2.00 2.78 3.08 39.00 54.22 10.95 9.85 3.25
20 1.90 2.38 2.83 25.26 49.12 19.05 10.73 2.98
21 1.90 2.44 2.85 28.42 50.22 16.97 10.61 3.02
22 1.88 2.15 2.73 14.36 45.10 26.88 11.24 2.85
23 1.88 2.13 2.70 13.30 43.65 26.79 11.34 2.82
24 1.89 2.35 2.84 24.34 50.11 20.72 10.82 2.96
25 1.88 2.25 2.78 19.68 48.07 23.72 11.05 2.90
26 2.05 2.71 3.03 32.20 47.56 11.63 10.11 3.17
27 2.10 2.74 3.03 30.48 44.24 10.55 10.05 3.18
28 1.94 2.51 2.88 29.38 48.22 14.56 10.65 3.00

Average 2.57 3.29 3.19 26.27 30.78 5.16 9.15 3.77
(1) The compression ratio of Steim1.
(2) The compression ratio of Steim2.
(3) The compression ratio of Modified Tunstall Coding.
(4) Percentage improvement in compression ratio of Steim1 over Steim2
(5) Percentage improvement in compression ratio of MTC over Steim1.
(6) Percentage improvement in compression ratio of MTC over Steim2
Notice: the highlighted rows are DGAR or PTCN stations.

Newman Seismographic Data Compression 33

 Modified Tunstall Coding compressed the 28 chosen files on average 5.16%

better than Steim2 (see Table 4). When compared with Steim2, Table 4 also shows that

Modified Tunstall Coding is worst at 30.53% and best at 30.72%. One of the main

reasons is that Steim2 encodes groups of differences of 4-, 5- and 6-bit but Modified

Tunstall Coding starts to encode small differences from 7-bit. When files include many

small differences under 7-bit, the inability of Modified Tunstall Coding obviously will

not have the optimistic average percentage. Recall: The frequencies of occurrence

between -127 to 127 are similar. This constraint is violated in the files of Steim2’s

compression ratios, which are better than Modified Tunstall Coding.

 The first order entropy of the sequence of integer differences between successive

samples is calculated in Table 4. Assuming Modified Tunstall Coding is coded at the first

order entropy ratio then the maximum possible compression ratio can be calculated (see

Table 4). No Modified Tunstall Coding can improve any more than its maximum possible

compression ratio.

Table 5. Comparison of Steim1, 2 and MTC at DGAR/PTCN Stations

 Compression ratios
percentage improvement in

compression ratios

File # (1) (2) (3) (4) (5) (6)

 Steim1 Steim2 MTC
Steim2 over

Steim1
MTC over

Steim1
MTC over

Steim2

First
Order

Entropy

 % % bits/symbol

Max.
possible

compression
ratios

2 1.87 2.05 2.66 9.63 42.32 29.83 11.60 2.76
3 1.89 2.33 2.82 23.28 49.26 21.07 10.90 2.94
4 1.88 2.13 2.71 13.30 44.10 27.18 11.40 2.81
5 1.88 2.24 2.77 19.15 47.29 23.62 11.12 2.88

17 2.21 2.99 3.27 35.29 47.84 9.27 9.20 3.48
18 2.36 3.05 3.30 29.24 40.01 8.34 9.05 3.54
19 2.00 2.78 3.08 39.00 54.22 10.95 9.85 3.25
20 1.90 2.38 2.83 25.26 49.12 19.05 10.73 2.98
21 1.90 2.44 2.85 28.42 50.22 16.97 10.61 3.02
22 1.88 2.15 2.73 14.36 45.10 26.88 11.24 2.85
26 2.05 2.71 3.03 32.20 47.56 11.63 10.11 3.17
27 2.10 2.74 3.03 30.48 44.24 10.55 10.05 3.18
28 1.94 2.51 2.88 29.38 48.22 14.56 10.65 3.00

Average 1.99 2.50 2.92 25.31 46.88 17.68 10.50 3.06

Newman Seismographic Data Compression 34

 An observing of the data of Table 4, shows all the compression ratios of Modified

Tunstall Coding of DGAR and PTCN stations are better than Steim2; mostly, other

stations are worse than Steim2. This project compiles DGAR and PTCN stations from

Table 4 into Table 5. Observing the results of Table 5, Modified Tunstall Coding

compresses DGAR and PTCN stations’ files on average 46.88% and 17.68% better than

Steim1 and Steim2, respectively.

 Steim1 and Steim2 are less expensive in computation; however, they do not

perform optimal compression ratios. In contrast, obtaining a better data compression

scheme, in general, requires more expensive computation, such as linear prediction. It is

challenging to design a compression scheme that does not require heavy computation to

fit DDL requirements and limitations. Modified Tunstall Coding has suitable

computation to be handled by DDL. This project applied Modified Tunstall Coding by

looking at statistical differences of the seismic data. Steim1 and Steim2 simply applied a

fixed method to assign the data to fewer than 32-bits, regardless of the essence of the data.

The pre-computing of the statistics on profile bases made a remarkable improvement on

the compression ratios of Modified Tunstall Coding over Steim1 and Steim2.

11. Comparing Modified Tunstall with Linear Prediction Coding

 One of the most powerful compression schemes is Linear Prediction Coding

(LPC). Linear prediction, a mathematical operation, estimates upcoming values of a

discrete time signal as a linear function of previous samples. In digital signal processing,

linear prediction is often called linear predictive coding. It is a tool for representing data

in compressed form and uses the information as a linear predictive model.

 To compare Modified Tunstall Coding with LPC, this project has taken the

concept of the LPC application, Predictcode.m, from the textbook, Digital Signal

Processing with Examples in Matlab by Sammel D. Stearns [7], and rewritten it to fit the

project’s needs. Predictcode.m application (see Appendix I) de-correlated data from the

input file, with a small residual, by choosing a weight vector. The residual is stored in a

separated file and is compressed by Arithmetic Coding [8]. Each compressed result is

compared with the compression ratio of Modified Tunstall Coding.

Newman Seismographic Data Compression 35

 Arithmetic Coding is commonly used in lossless compression schemes. It is a

flexible statistical compression method and encodes at or close to entropy when the

probabilities of symbols are skewed. Arithmetic Coding compresses each input stream

into a unique interval in [0, 1) while other entropy encoding schemes replace codes to

each individual symbol. The method reads each input stream, symbol by symbol, and

appends significant bits to the code by inputting and processing each symbol. The

Arithmetic Coding [8] applied to this project is based on the article, “Arithmetic Coding

Revisited” [9]. It is written in C language.

 A general idea in compressing the chosen 13 files at DGAR and PTCN stations,

as this project has done using Modified Tunstall, and comparing them to the prediction

coding, is described as follows:

(1). Transform seismic data by applying the predictcode.m application (see

Appendix I). This process produces the weight vector b and writes the residual e

to a new file. (Note: The 6 values of the weight vector b require 20 bits each;

afterward, 8 bits are required per sample.)

(2). Apply Arithmetic Coding [8] for the residual e file, and then the result will be a

byte-unit file. Calculate the byte-unit file’s size in bit by multiplying by 8.

(3). Both weight vector and the byte-unit file in bit of the residual have to be stored as

compression. Therefore, the total number of bits of the compressed data is
 Compressed bits = the weight vector bits + (2)’s Arithmetic Coding results

(4). Divide the bits of the original file by the total number of bits of compressed data

to form the compression ratio of the prediction coding.

 Compression ratio = # bits of the original file
 # bits of compressed data

 Table 6 demonstrates the 13 chosen files of compression ratios on Linear

Prediction Coding and Modified Tunstall Coding at DGAR and PTCN stations. The

average compression ratio of the Modified Tunstall Coding is lower than LPC coding at

7.95%. As this paper described earlier, Arithmetic Coding encodes data at or close to

entropy when the probabilities of symbols are skewed.

 Table 6 also computes the sequence of differences’ first order entropies of the 13

chosen files. Recall: This project assumes that each piece of seismic data sample needs a

32-bit format. After dividing 32-bit per symbol by the first order entropy of each file, the

Newman Seismographic Data Compression 36

maximum possible compression ratios of each file are shown in Table 6. The

compression ratio of LPC can potentially achieve a higher ratio than the maximum

possible compression ratio of other schemes because LPC account for more sample-to-

sample correlation. Due to the maximum possible compression ratio, Table 6 results also

show that the Modified Tunstall can not improve any more than an average 4.65% for

these 13 files; even though, Table 6 shows that Modified Tunstall Coding is worse than

LPC coding at average 7.95%.

 One advanced improvement for further research to improve the compression ratio

is to evenly rearrange the data differences into various ranges as was discussed in section

“8. Why the design of the range.” The advanced improvement remains for the readers for

further research.

Table 6. Comparison of LPC and Modified Tunstall at DGAR/PTCN
Station

Compression

ratios
percentage improvement in

compression ratios
 (1) (2) (3) (4)

 MTC LPC
MTC over

LPC
First order

Entropy

Max
possible

ratios
MTC over
Entropy

 % bits/symbol %
2 2.66 2.81 -5.29 11.60 2.76 -3.50
3 2.82 3.03 -6.90 10.90 2.94 -3.93
4 2.71 2.91 -6.91 11.40 2.81 -3.51
5 2.77 2.95 -6.13 11.12 2.88 -3.77

17 3.27 3.61 -9.50 9.20 3.48 -6.02
18 3.30 3.64 -9.22 9.05 3.54 -6.58
19 3.08 3.64 -15.26 9.85 3.25 -5.05
20 2.83 3.16 -10.34 10.73 2.98 -4.96
21 2.85 3.2 -10.81 10.61 3.02 -5.35
22 2.73 3.01 -9.37 11.24 2.85 -4.15
26 3.03 2.92 3.60 10.11 3.17 -4.46
27 3.03 3.32 -8.77 10.05 3.18 -4.87
28 2.88 3.14 -8.43 10.65 3.00 -4.29

Average 2.92 3.18 -7.95 10.50 3.06 -4.65

(1) The maximum compression ratios on the specified codeword length of MTC at DGAR/PTCN stations.
(2) The compression ratios of Linear Prediction Coding (LPC) at DGAR/PTCN stations.
(3) Compare the compression ratios of LPC and MTC at DGAR/PTCN stations.
(4) Compare the compression ratios of MTC and the maximum possible ratios at DGAR/PTCN stations.

Newman Seismographic Data Compression 37

 12. Rewriting Modified Tunstall Coding in DDL

 To ensure that Modified Tunstall Coding can be rewritten in DDL and properly

run by SEED reader, the last part of this project rewrote the Modified Tunstall

compression scheme in DDL. This section outlines the essential organization, the design

of DDL code for the Modified Tunstall Coding system, and the reedited relative portion

of DDL’s SEED format. Finally, the rewritten DDL of SEED is successfully tested by the

RDSEED application.

 SEED format consists of four control headers: Volume Identifier Headers,

Abbreviation Dictionary Control Headers (ADCH), Station Control Headers, and Time

Span Control Headers. SEED also uses data recorder headers. Each control header,

containing information about complete a logical volume, is coded in a computer readable

hierarchy of data structures. Each header utilizes one or more data structures, which are

strung in specified order. The structure contains fixed and variable data fields. Figure 4

shows the view of a data structure example of the ADCH.

Figure 4. View of the Dictionary Header

24 Variety length

Number of
Decoder Keys

Data Family Type

Data Format
Identifier Code

Short Description

Non-edited
length (bytes)

Edited length
(bytes)

 Blockette Length

Decode Keys

1 ~ 50

6 3

Logical Record
Sequence Number Blockette Type

A

Type Code

1 1 34

 Each data structure contains an identification code, a length specification, and a

sequence of related data fields. Formatted data structures are used in control headers and

unformatted data structures are used in the header portions of data records. The actual

Newman Seismographic Data Compression 38

decoding command is defined in the ADCH, which abbreviates the ASCII data

description string. For more information on SEED, see the reference manual of SEED

format version 2.4[4].

 SEED format allows for one or more volumes. This implies that a SEED file may

include one or more data records. To simplify the experiments, this project tested one

volume at a time on a single seismometer of a specified network station. In order to

specify the parameters of the station List, Channel List, Network List, and the Location

ID in the SEED reader, this project simplified each individual SEED file that spanned

only one volume, on a single seismometer of a specified network station, by RDSEED.

The simplified processes could create one or more SEED-formatted files, which included

one volume on a single seismometer of a specified network station.

 To write Modified Tunstall Coding in DDL, two portions of the SEED file, the

ADCH and the Data Record, had to be reedited. The ADCH had four sections that

required editing. Figure 4 depicts a view of the edited and non-edited sections of the

Dictionary Header. The ADCH is written as an alphanumeric ASCII string, which is

recorded as “A” Type Code in the Header as Figure 4. This project searched the control

header at the 7th byte that has “A” Type Code of the header, and then rewrote its

Blockette Length, according to the actual length of the entire control header without

counting the first eight bytes, at the 12th to the 15th byte. The Short Description, which is

a short name describing the compression format applied in this file, needed to be

rewritten starting at the 16th byte with the 50 bytes maximum length. This project placed

a tildes, ~, at the last byte of the Short Description indicating the end of the description.

This project copied the Data Format Identifier Code and the Data Family Type, which

occupied a total of 7 bytes, without any change. Then it modified the Number of Decoder

Keys, 2 bytes long, according to the actual number of decoder keys. Finally, the project

wrote all the Decoder Keys in the sequence, one-by-one, separating each key by using a

tilde.

Newman Seismographic Data Compression 39

Figure 5. Snapshot of an Example of the Dictionary Header

To ensure that the readers are able to write the DDL code for modified Tunstall, a

snapshot of an actual example of the ADCH is given in Figure 5. The ADCH has a 4096

bytes length. It starts on the 1000 line at the left hand column of Figure 5 and ends at the

1FF0 line. The details of the initial 69 bytes of the ADH are demonstrated in Figure 6.

Overall, the data family type 050 uses 60 keys, which are located at the “Number of

Decode Keys” of Figure 5. Family type 50 is the Integer Differences Compression. The

60 keys include the first 2 non-control type keys and 58 of control type keys. The first

key, key1: F1 P0 W4 D0-31 R1 P4 W4 D0-31, is separated by a tilde with the second key.

Key 1 describes the very first constant F1 of the sequence of differences that is located at

the 0th byte (P0) of the ADCH, and then 4 bytes are copied (W4), extracted bits 0-31 (D0-

31), from the input stream into the working buffer; the last constant (R1) of the sequence

of differences is located at the 4th byte (P4) of the ADCH, and then 4 bytes are

copied(W4), extracted bits 0-31(D0-31), from the input stream into the working buffer.

Key 2, P8 B24, 0, 23-0 N4 S6, 0, illustrates that 24 bits are copied (B24, 0, 23-0) from the

Newman Seismographic Data Compression 40

input stream, starting from the first bit of the 8th byte (P8) to the last bit (23-0) (crossing

byte boundaries if necessary); the 24 bits include 4 control codes (N4), which are 6-bit

wide (S6). Note: The bits are numbered in big-endian.

Figure 6. View of the ADCH of Figure 5

000002 030 3136 Modified Tunstall … Format ~ 0001 050 60

24 Variety length

Number of
Decoder Keys

Data Family Type

Data Format
Identifier Code

Short Description

Non-edited
length (bytes)

Edited length
(bytes)

 Blockette Length

Decode Keys

45

6 3

Logical Record
Sequence Number

Blockette Type

A

Type Code

1 1 34

Control type keys, key 3 to key 60, carry out the action required by the control

code derived in key 2. Key 3 to key 60, are equivalent to the stored Codeword Table of

Modified Tunstall Coding. For example, because key 3 to key 60 have similar

interpretations, this paper will take key 3 (see Figure 7) and interpret it in a more

understandable text. Key 3, T0 N0 B7, 0, 6-0 D0-6: -1: 0: 0 N1 B13, 0, 12-0 D0-12:1: 0:

8192, maps the “Ah” input string (see Table 2) to its corresponding ranges. T0 describes

how to decode data when the control code with the value 0 is encountered. To decode the

first value of difference N0, copy 7 bits, starting from the first bit to the 0th bit (B7, 0, 6-0),

and extract bits 0-6 to form unsigned integer value k1 and then apply offset 0 and scale

factors -1 as specified by code 0 (D0-6: -1: 0: 0). To decode the second difference value

N1, copy 13 bits, start from the first bit to the 6th bit (B13, 0, 12-0) and extract bits 0-12

to form unsigned integer value k2 and then apply offset 8192 and scale factors 1 as

specified by code 0 (D0-12:1: 0: 8192).

Newman Seismographic Data Compression 41

Figure 7. View of key 3

T0 N0 B7,0,6-0 D0-6:-1:0:0 N1 B13,0,12-0 D0-12:1:0:8192

control code copy 7 bits

first value of
difference

extract bit 0 - 6
(K1+0) * (-1)

second value
of difference

copy 13 bits

extract bit 0 - 12
(K2+8192) * (1)

Key 3:

 As this paper mentioned in section “8. Why the Design of Modified Tunstall,” the

Codeword Table and the pair of output codewords and bit strings need to be stored as

Modified Tunstall Coding. The Codeword Table is stored as the ADCH in DDL. The pair

of the output codewords and bit strings is stored in the Data Record portion of SEED.

The Data Record section can be identified by the Data Header/Quality Indicator. The

Data Header/Quality Indicator, which is located at the 7th byte of the Data Record’s

structure by the upper case letters “D,” “R,” or “Q,” is called Type Code in the ADCH.

The Data Record portion has a fixed length of 48 bytes. To edit the output codewords and

the bit strings, the data from the 49th byte until the end of the data is reedited by attaching

the compressed data of the Modified Tunstall Coding. At this point, the writing for the

Modified Tunstall is finished and can be read in RDSEED.

 To give an idea to SEED users on how much improvement Modified Tunstall

Coding in SEED format, Table 7 demonstrates SEED compression ratio on two files. File

2, 2005.365.23.59.07.9980.IU.PTCN.00.BHE, is encoded in Steim2 and file #17,

2006.001.00.00.02.5999.II.DGAR.10.BHE, is encoded in Steim1. Originally, they had a

compression ratio at 1.97 and 2.16, respectively. File #2 and #17 were rewritten in MTC-

SEED format and compression ratios at 2.42 and 2.99, respectively, were obtained. The

improved compression ratio of MTC-SEED format is 22.84% over Steim2-SEED and

38.43% over Steim1-SEED. SEED has worse compression ratios in Table 7 compared

Newman Seismographic Data Compression 42

with Steim1, Steim2 and Modified Tunstall Coding in Table 3, 4, and 5. Two main

reasons explain the low ratios of SEED format: (1) the headers of SEED are not

compressed at all. (2) SEED format has fixed-reserved space in terms of Block, even

though the whole Block is not filled.

Table 7. SEED Compression Ratios of Steim and MTC

SEED Compression Ratios SEED improvement
File

Original
Compression

Scheme Steim-SEED MTC-SEED
MTC over Steim

%
2 Steim2 1.97 2.42 22.84
17 Steim1 2.16 2.99 38.43

13. Conclusion

 Over all in this project, Modified Tunstall Coding showed better compression

ratios compared to Steim1 and Steim2. The comparison of Modified Tunstall Coding and

Linear Prediction Coding demonstrates that Modified Tunstall Coding compressing

seismic data in this project is 7.95% worse than Linear Prediction Coding for the stations

of DGAR and PTCN. Modified Tunstall Coding can not improve any more than an

average of 4.65% for DGAR and PTCN stations due to the result of the maximum

possib le compression ratio.

 The interesting and challenging part of this project has been that it project crosses

two science fields, seismology and data compression, and demonstrates how data

compression supports the field of the seismology. Specificly, challenges, such as lack of

DDL documentation and bugs existing in DDL of SEED format, were encountered and

solved in the process of writing Modified Tunstall Coding in DDL. An exciting part is, in

conclusion, that this project demonstrated that Modified Tunstall Coding is close to the

optimal coding. Further research, which could evenly rearrange the data differences into

various ranges to approach the optimal compression ratios, remains for others to explore.

Newman Seismographic Data Compression 43

14. References

[1]. D. Salomon, Data compression, New York: Springer, 2004.

[2]. K. Sayood, Introduction to data compression, CA: Morgan Kaufmann, 2000.

[3]. “IRIS Data Management Center,” n.d.; http://www.iris.edu/about/DMC/

[4]. “Standard for the Exchange of Earthquake SEED format Version 2.4 March,

2006,” n.d.; http://www.iris.edu/manuals/acrobat/T_SEED.pdf

[5]. “rdseed Manual Pages,” http://www.iris.edu/manuals/acrobat/T_rdseed.pdf

[6]. S. A. Savari, "Variable-to-fixed length codes and plurally parsable dictionaries,"

Proc. Data Compression Conference, (1999) 453-462.

[7]. S. Stearns, Digital Signal Processing with Examples in Matlab, CRC Press,

2003.

[8]. J. Carpinelli, W. Salamonsen, L. Stuiver and Radford Neal, “ArithmeticCoder,”

http://mg4j.dsi.unimi.it/docs/it/unimi/dsi/mg4j/io/ArithmeticCoder.html;

accessed April 1, 2006.

[9]. A. Moffat, R. M. Neal, and I. H.Witten, “Arithmetic coding revisited,” ACM

Transactions on Information Systems, 16, 3, Jul. 1998, pp. 256-294, Portal

Database, http://doi.acm.org/10.1145/290159.290162; accessed April 1, 2006.

Newman Seismographic Data Compression 44

Appendix I: Application of Predictcode.m

%predictcode.m is a Matlab file.
%Took the concept from the Digital Signal Processing with Examples in Matlab By
%Samuel D. Stearns

d=textread('2006.001.00.00.00.0479.IU.ANMO.00.BH2.Q.SAC_ASC', '%d');

K = length(d);
N = 6;
f = [0; d(1:K-1)];
rff = autocovar_mat(f,N);
rfd =crosscovar(f,d,N);
b= rff \ rfd;
e = d - (filter(b,1,f));

fw = fopen('0479_recovery_round_int.txt', 'w');
fprintf(fw, ' %d \n', recovery);
fclose(fw);

d=textread('2006.001.00.00.00.0104.IU.ANMO.10.BH1.Q.SAC_ASC', '%d');
K=length(d);
N= 6;
f=[0; d(1:K-1)];
Rff=autocovar_mat(f,N);
rfd=crosscovar(f,d,N);
b=Rff\rfd;

e=[d; 0]-[0; filter(b,1,f)];
e_1 = e(1:end-1);

fw = fopen('0104BH1_0.txt', 'w');
fprintf(fw, ' %6.0f \n', e_1);
fclose(fw);

Newman Seismographic Data Compression 45

Appendix II: The List of Selected File Names

The WebRequest form for requesting data from the DMC of IRIS at
http://www.iris.edu/data/WebRequest.htm

use '?'
when

wildcarding

CANNOT
wildcard
network

STARTING TIME ENDING TIME
use '?'
when

wildcarding
LOCATION

Station Network Year
YYYY

Month
MM

Day
DD

Hour
00

Min
00

Sec
00.0

Year
YYYY

Month
MM

Day
DD

Hour
00

Min.
00

Sec.
00.0

Channel
names

LOC ID

DGAR II 2006 01 01 00 00 00 2006 01 02 00 00 00 BH?

PTCN II 2006 01 01 00 00 00 2006 01 02 00 00 00 BH?

ANMO IU 2006 01 01 00 00 00 2006 01 02 00 00 00 BH?

Newman Seismographic Data Compression 46

Appendix III: Seismic Data Request Form

File
Selected Files Network Station Location Channel Sample

Rate
1 2005.365.23.55.41.7981.IU.MAJO.00.BHE IU MAJO 00 BHE 20 Hz
2 2005.365.23.59.07.9980.IU.PTCN.00.BHE IU PTCN 00 BHE 20 Hz
3 2005.365.23.59.17.6855.IU.PTCN.01.BHZ IU PTCN 01 BHZ 40 Hz
4 2005.365.23.59.21.2105.IU.PTCN.01.BHN IU PTCN 01 BHN 40 Hz
5 2005.365.23.59.22.8480.IU.PTCN.00.BHZ IU PTCN 00 BHZ 20 Hz
6 2006.001.00.00.00.0104.IU.ANMO.10.BH1 IU ANMO 10 BH1 40 Hz
7 2006.001.00.00.00.0104.IU.ANMO.10.BH2 IU ANMO 10 BH2 40 Hz
8 2006.001.00.00.00.0104.IU.ANMO.10.BHZ IU ANMO 10 BHZ 40 Hz
9 2006.001.00.00.00.0479.IU.ANMO.00.BH1 IU ANMO 00 BH1 20 Hz
10 2006.001.00.00.00.0479.IU.ANMO.00.BH2 IU ANMO 00 BH2 20 Hz
11 2006.001.00.00.00.0479.IU.ANMO.00.BHZ IU ANMO 00 BHZ 20 Hz
12 2006.001.00.00.00.0481.IU.MAJO.00.BHE IU MAJO 00 BHE 20 Hz
13 2006.001.00.00.00.0481.IU.MAJO.00.BHN IU MAJO 00 BHN 20 Hz
14 2006.001.00.00.00.0481.IU.MAJO.00.BHZ IU MAJO 00 BHZ 20 Hz
15 2006.001.00.00.00.7855.IU.PTCN.01.BHE IU PTCN 01 BHE 40 Hz
16 2006.001.00.00.00.9480.IU.PTCN.00.BHN IU PTCN 00 BHN 20 Hz
17 2006.001.00.00.02.5999.II.DGAR.10.BHE II DGAR 10 BHE 40 Hz
18 2006.001.00.00.02.5999.II.DGAR.10.BHN II DGAR 10 BHN 40 Hz
19 2006.001.00.00.02.5999.II.DGAR.10.BHZ II DGAR 10 BHZ 40 Hz
20 2006.001.00.00.03.5000.II.DGAR.00.BHE II DGAR 00 BHE 20 Hz
21 2006.001.00.00.03.5000.II.DGAR.00.BHN II DGAR 00 BHN 20 Hz
22 2006.001.00.00.03.5000.II.DGAR.00.BHZ II DGAR 00 BHZ 20 Hz
23 2006.001.13.51.49.2104.IU.PTCN.01.BHN IU PTCN 01 BHN 40 Hz
24 2006.001.13.51.56.6354.IU.PTCN.01.BHZ IU PTCN 01 BHZ 40 Hz
25 2006.001.13.52.42.3604.IU.PTCN.01.BHE IU PTCN 01 BHE 40 Hz
26 2006.001.13.52.55.9499.II.DGAR.10.BHE II DGAR 10 BHE 40 Hz
27 2006.001.13.53.06.4499.II.DGAR.10.BHN II DGAR 10 BHN 40 Hz
28 2006.001.13.53.17.6499.II.DGAR.10.BHZ II DGAR 10 BHZ 40 Hz

