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Abstract 
  
 The Standard for the Exchange of Earthquake Data (SEED) is a commonly used 

file format in the seismology field. Steim1 and Steim2 compression schemes, i.e. lossless 

data compressions, are used in SEED format and are written in Data Description 

Language (DDL), which has computational limitations making it difficult to implement 

many standard compression algorithms. Steim1 and Steim2 are fixed compression 

methods, which assign each incoming data sample to fewer bits than 32-bit, regardless of 

the essence of the data. This project modified the Tunstall compression scheme to gain a 

better compression ratio of seismic data and rewrote the compressed data in the DDL of 

SEED format file. This project pre-computed the statistic s on seismic profile bases and, 

accordingly, wrote the Modified Tunstall data compression description. This strategy 

improves compression ratios over Steim1 and Steim2. The average compression ratio of 

the Modified Tunstall Coding in this project was 3.18 when the length of the output 

codeword was fixed at 10 or 11 bits. The Modified Tunstall Coding showed better 

compression than Steim1 by an average of 30.78% and Steim2 by an average of 5.16%. 

When comparing the Modified Tunstall Coding with the Linear Prediction Coding, which 

is not possible to implement in DDL, the Modified Tunstall Coding was only 7.95% 

worse on average.  

 

.   
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1. Introduction 
 

Progress in computer technology has inspired and changed human life. In the last 

decade, especially with the growth of the Internet, humans have gradually and principally 

relied upon storing and transmitting information in electronic ways. Information 

represented by bytes has gradually become more extensively used in a digital form. 

Consequently, people can now gather information easily and quickly. Computer 

technology’s impact on humans and society is affecting and transforming life more than 

we realize. However, it requires large electronic depositories. A prerequisite for this 

mandatory memory storage is knowing how to store this information. One of the best 

ways to resolve the escalating need for memory storage is to represent information within 

a compact size. The Internet and networking are now commonly used far and wide, yet 

the digital informational format is still limited by transmission speed. 

 

A. Overview 
 

 This project applied the Tunstall compression scheme by observing the statistics 

of the seismic data, which is a sequence of integers, and then, using the statistics, wrote 

Modified Tunstall Coding. The compressed data was written in Data Description 

Language (DDL), which is part of the Standard for the Exchange of Earthquake Data 

(SEED) format (see Figure 0). The creation of Modified Tunstall Coding in DDL is 

intended for the convenient of SEED users who may not know what underlies SEED or 

DDL. The intention of this project was to improve the compression ratios of Steim1 and 

Steim2 compression schemes. The improvement resulted in a modification of Tunstall 

Coding into DDL of SEED.  

 The description of this project includes three parts: 1. Introducing the background 

of data compression and the innate of the seismic data; and then focusing attention on 

DDL of SEED; 2. Illustrating the design of the modified compression scheme based on 

the limitation of DDL; and 3. Measuring and comparing, through experimentation, the 

compression performance, and writing the new compression scheme in DDL. 
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Figure 0. Project Overview 
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 A brief introduction starts with data compression and seismic data. It continues 

with illustrations of acquiring and selecting seismic data to obtain an understanding of the 

essence of the seismic data. Then the project focuses on the DDL of SEED format. A 

description of these endeavors constitutes the first part of this paper: “1. Introduction,” “2. 

SEED Format,” “3. Acquiring and Selecting the Seismic Data,” and “4. The Data 

Description Language of SEED.” 

 SEED format is widely used in the seismic field. To be supported in SEED, the 

data format must be expressible in SEED DDL.  How would this project benefit the large 

populations of SEED users? This question led to the fine tuning of this project. This led 

to other questions: What can the DDL language of SEED do? How can this project 

efficiently make the compression scheme of DDL represent the data? These inquiries 

guided the design discussed in the second part of this project.  

 The compression scheme expressed in DDL requires simple computations to fit 

the limitations of DDL. Tunstall coding was found to fit DDL. However, applying 

Tunstall Coding may result in the use of a large size of the Codeword Table, which needs 

to be stored as part of the compression and results in of a poor compression ratio. 

Therefore, the deficiency of Tunstall Coding motivated this project to modify the existing 

coding to fit the design criterions of this project. This paper details the encoding and 

decoding of Modified Tunstall Coding, as well as why the Modified Coding was 

designed by analyzing the seismic data. The second part of the paper comprises four 
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sections: “5. Tunstall Coding,” “6. Encoding Modified Tunstall,” “7. Decoding Modified 

Tunstall,” and “8. Why the Design of Modified Tunstall.” 

 Finally, the last part of this paper addresses the comparison of the compression 

ratio of Modified Tunstall coding, the Linear Prediction Coding, and Steim1 and Steim2. 

The last Section of this project embedded Modified Tunstall Coding in DDL to make it 

convenient for SEED users who may not know what underlies SEED or DDL. This part 

of the paper collects four Sections: “9. Compression Ratio of Modified Tunstall Coding,” 

“10. Comparing Modified Tunstall with Linear Prediction Coding,” “11. Comparing 

Modified Tunstall with Steim1 and Steim2,” and “12. Writing Modified Tunstall in 

DDL.” 

 

B. Data Compression 
 

Data compression is often referred to as coding. The primary objective of coding 

is to minimize the amount of data transmission and/or to conserve storage space. Most 

source messages, such as text, image, and video, are naturally redundant. Normally, the 

desired information is expressed in excess data amounts of the actual need. Data 

compression allows devices to perform (process) original data in reduced bits by 

identifying the data’s structure. Data compression, currently, is mainly classified as 

lossless or lossy schemes. Lossless data compression retrieves information in the same 

form as the original; while, lossy involves some loss of data [1]. When the original data 

exactly equals the decompressed data, the process is called lossless compression, while 

lossy compression shows the original data do not equal the decompressed data [2]. One 

of the criteria to evaluate the performance of a compression scheme is to examine the 

compression ratio. How to measure the compression ratio will be introduced in a later 

section of this paper. Retrieving lossless data is required in certain fields, such as medical 

research, geophysics, and telemetry data communication. Seismographs produce integer 

values that have unique characteristics. These characteristics differentiate seismographic 

(seismic) data from the still images and video data that are the focus of most lossy 

compression efforts. Seismographic data mainly requires lossless compression. This 

project only involves in the lossless compression scheme.  
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C. Seismographic Data 
 

A seismograph measures ground motion produced by earthquakes, volcanoes, and 

other sources. Ground motions typically last from several tens of seconds to many 

minutes, depending on the size of the earthquake and the sensitivity of the seismograph. 

Seismography records and measures simply-processed or unprocessed earth motion data. 

A seismograph station processes data twenty-four hours per day, seven days per week, 

and then reports it to anywhere in the world. A seismograph laboratory simulates 

seismograms that are routinely recorded during any 24-hour period of an earthquake 

laboratory is functioning. The height of the recorded waves on the seismogram (wave 

amplitude) greatly magnifies representation of the actual ground motion. A seismograph 

produces seismogram records which report the ground motions over the passage of time. 

The horizontal axis of a seismogram represents the time in seconds, and the vertical axis 

corresponds to the ground displacement in millimeters. A straight line in a seismogram, 

called “noise,” means no ground motion reading. Data from a seismograph registers not 

only earthquakes; it may include other noise, such as rock falls, ice quakes, or electrical 

noise from telephone lines. Such noise or vibration is usually easy to distinguish from an 

earthquake. 

A recording of an earthquake has recognizable characteristics. Typically, one can 

recognize the arrival of different wave types: Primary waves (P-wave), the fastest 

traveling waves; Secondary waves (S-wave), shear waves; and Surface waves.  

Seismographic data is composed of signed 32-bit integers. Each data sample 

consists of four bytes binary storage under normal, non-compression conditions. Without 

compression, a seismic station with 3 components recoding at 20 samples per second, 

exceeds 20 megabits per day. A network with 100 stations could produce 2 gigabits per 

day. However, an analysis of the characters of the seismic data may allow the data to be 

represented by fewer bits. In general, a seismogram shows that seismic data are highly 

related within a time series. They are highly predictable in a sequence of consecutive 

samples if the previous few samples are known. 

Seismic data are transferred from a station processor to a data collection center, 

then to a data management center, and, finally, to an end user. One of the most important 

organizations, the Data Management Center (DMC) at Incorporated Research Institutions 



Newman                       Seismographic Data Compression  8

for Seismology (IRIS), collects seismic data “from a variety of Data Collection Centers 

and is responsible for the long term archive and distribution of all IRIS generated data” 

[3].  

 

2. SEED Format 
 

The DMC of IRIS has adopted the Standard for the Exchange of Earthquake Data 

(SEED) [4], which was defined by the Federation of Digital Seismographic Networks 

(FDSN) to help earthquake research communities to exchange, between institutions, 

unprocessed digital seismologic data. SEED format became an international standard for 

the exchange of digital seismic data. The majority of seismic data, stored in or archived 

from DMC, are in FDSN SEED format. SEED is the principal format for the DMC 

datasets. Seismologists use SEED format to transmit seismic data by electronic means, 

such as a packet switching network. SEED includes Steim1 and Steim2 data compression 

schemes. Part of SEED includes a language, Data Description Language (DDL), which 

parses and disassembles native data format. DDL commands are part of SEED format. 

Large populations of the seismologic field depend on DDL, which is embedded in SEED 

format, for their research on seismic data. If this project provides exactly the necessary 

DDL commands as a part of a SEED file, then SEED’s users do not need to change the 

way they read the data; the users can still read the data. The intent is to make the process 

convenient for the large populations and the SEED users who do not need to know DDL 

language nor understand how DDL works. Consequently, this project’s intent was to 

design a new compression scheme, embedded in DDL language, which describes how to 

read this data. 

 The IRIS SEED reading program (RDSEED) [5] was developed to help 

researchers convert their datasets into trace formats for which analysis tools already 

existed. RDSEED is a commonly used tool that can extract many different types of data, 

such as AH, CSS, and SAC ASCII, from a FDSN SEED format volume. This project 

requested seismic data from the DMC of IRIS and extracted the data by applying 

RDSEED. The target of this project was to create an efficient data compression scheme 

and to replace the Steim1 or Steim2 compression schemes of DDL. Once the new scheme 
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was expressible in DDL and replaced Steim1 or Steim2 of DDL, then the new DDL 

would be able to decode data by SEED reading programs. This new scheme would enable 

users of RDSEED to read data compressed using the new SEED format, which would 

benefit all RDSEED users by conserving their storage space and reducing time to 

transform data and/or computation time. The details of DDL are illustrated in the Section 

“4. Data Description Language of SEED.”  

 

 

3. Acquiring and Selecting the Seismic Data  
 

 One of the major tasks to perform a better data compression scheme is by 

identifying the data’s structure. To do this and prior to acquiring seismographic data, it is 

best to understand and facilitate what type of seismographic data is available. A 

seismographic networking organization may operate a heterogeneous mix of seismometer 

types to monitor a variety of types of earthquake activities. A seismometer may measure 

signals from 10-3 samples per second (Hz) to 80 Hz; it depends upon a variety of usage 

purposes for seismographic data. The Broad Band type of data was chosen for this project 

because it commonly applies to the field of seismology and usually includes a large range 

of amplitudes. A Broad Band sensor records waveforms from regional earthquakes and 

teleseismic events for research purposes. The Broad Band type of data by the DMC of 

IRIS is archived to most frequencies from 10 Hz to 80 Hz. The Broad Band files are 

identified by suffixes: BHZ, HHZ, BHE, HHE, BHN, or HHN.  

 This project selected the Broad Band channel data from the DMC on four stations: 

two stations in the II Network, DGAR (Diego Garcia, Chagos Islands, India Ocean) and 

PTCN (Pitcairn Island, South Pacific), and another stations, ANMO (Albuquerque, New 

Mexico, USA), and MAJO (Matsushiro, Japan) in the IU Network. The chosen starting 

time was 00 hours 00 minutes 00 seconds on January 1, 2006 and ended at 00 hours 00 

minutes 00 seconds on January 2, 2006. (See Appendix III for the actual Seismic Data 

request form.) 
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 The requested files, from the DMC, of this project are in SEED format. One 

example of the WebRequest form for requesting data from DMC of IRIS is listed in 

Appendix II at http://www.iris.edu/data/WebRequest.htm.  

 Files formatted in SEED are usually compressed either in Steim1 or Steim2 of 

DDL. To read SEED files for the further analytical purposes, this project ran all the files 

in RDSEED 4.6 on a Unix computer specifying the parameter of the d options (retrieve 

all selected data, selection by list of record numbers), the parameter of outputting the 

SAC_ASC (SAC ASCII) format, and leaving other parameters as default. After running 

the decompression files using RDSEED, the output files for the particular seismogram 

were named by the first recoded data of the beginning time, station and component (see 

Appendix II) as yyyy.ddd.hh.mm.ss.ffff.SSSSS.CCC, where yyyy is the year, ddd is the 

Julian day, hh.mm.ss.ffff is the starting recorded time of the day, SSSSS is the station 

name, and CCC is the component name. For example: A SAC ASCII data output format 

file named 2006.031.13.30.20.0104.IU.ANMO.10.BH1.Q.SAC_ASC reveals the data is 

produced beginning from the year of 2006 at 13 hours 30 minutes 20:0104 seconds of the 

31st Julian day at the location 01 of the BH1 component of the station ANMO of the IU 

network. The recovered files from a SEED-formatted file may be decompressed into 

more then one file by RDSEED. The number of file depends on the initial recoding time 

and the given components of the station. The recovered file includes data headers and 

data records. Seismic data records are a sequence of integers.  

 All the chosen channels in this project were BHE, BHZ, BHN, BH1, and BH2 

Broad Band files. The location in each channel might be recorded as a 00, 01 or 10 

location. 01 and 10 location involved 40 samples per second (Hz), and 00 location 

involved 20 Hz.  

 

4. Data Description Language of SEED  
  

 The actual seismic data in DDL language is represented as a sequence of integer 

differences. If users correctly interpret DDL, the final output will be a sequence of code 

which will turn out to be integer differences. DDL is a language, but part of SEED format 

can include DDL. To be supported in SEED, the data format must be expressible in 
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SEED DDL. Writing data in DDL is one part of SEED format. Readers can write data in 

Data Description language, and then the language itself will descript how to decode the 

data. SEED format includes DDL.  

 One of advantages of using DDL is intending to be convenient for users. DDL 

commands are part of SEED format. The users of DDL do not need to change the way 

they read the SEED data, and they can still use the new format and process the data in 

their original way. This project’s intend was to provide the necessary DDL commands as 

part of the SEED file. In addition to the majority of the researchers widely adapting 

SEED format, this project aimed to develop the new compression scheme, which replaces 

Steim1 and Steim2 in DDL and executes the decompression job for SEED. The SEED 

users may not know the underlying of SEED format, nor DDL, but the users would gain a 

better compression ratio. In order to be supported in SEED, the experimented-upon files 

of this project were written and replaced in DDL of SEED.  

DDL supports several different data families, such as integer, integer differences 

compression, and text. Any compression scheme expressed in DDL can be read by any 

SEED reader. This paper only concentrates on the related coding, which is defined in 

DDL as Family 50: integer differences compression. However, the language is a simple 

assembling language. DDL cannot perform conditional looping for decoding data. It 

supports only fundamental operations to resemble the Steim1 and Steim2 Compression 

Algorithm in Family 50. To fit the limitations of the language, a thorough study of DDL 

is critical.  

Family 50 of DDL, integer differences compression, is basically designed to 

decode Steim1 and Steim2 compression algorithms. The Family is composed of several 

records called keys. Keys descript how to decompress the seismic data. Two keys, key 1 

and key 2, are specially defined in the Family 50. A number of control type keys, after 

the first two keys to a specified key, are designed to interpret the compressed data by all 

possible compression key values (control codes) derived in key 2. Each key has a unique 

number to provide different control code. Keys are separated by tildes, ~.  

The first key, key 1, of the integer differences compression instructs to access the 

forward integration constant (the first piece of the data) and the reverse integration 

constant (the last piece of the data). Key 2 of the Family 50 provides information on how 
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to interpret the control codes and how to carry out the request of the control codes. Key 3 

to the rest of the keys excludes the last key and describes how to decompress data 

according to the compression keys’ value. The last key is an optional key. It is used for 

cleaning up operations or actions that have to be done at the end of reading a block. This 

project did not use the last key.  

Each key of Family 50, excluding the first two keys, starts with an upper-case 

alphabet (field) which is followed by the value of the control code. Each key provides a 

couple of fields. A field in keys contains the actual parser information for operations to 

carry out. Fields contain commands about how to interpret the actual data and how to 

instruct and decode them. Each field has a single upper-case alphabet symbol followed by 

numeric parameters separated by a comma. Fields within a specified key are divided by 

one space. 

DDL does not support many operations (primitives) in the fields. Especially, DDL 

can not perform conditional looping for decoding data. This constraint makes it 

impossible to implement many of the standard compression techniques in DDL, which 

involve more complicated computations. The fields of DDL only contain operations, such 

as copying/recording primitives, extraction primitives, sign primitives, and a few other 

primitives. The copying/recording primitives copy bytes/bits from the input data stream 

into a working buffer, while the extraction primitives extract specified bytes/bits from the 

working buffer as numbers by applying offset and scale factors. DDL also includes 

primitives of repeating successive fields and discards the results or the contents of the 

working buffer.  

 The studying of DDL language helped this project to understand the following 

fact: The design’s criterion of the compression scheme expressed in DDL requires simple 

computations to fit the limitations of DDL. The next section introduces Tunstall Coding, 

and the sixth section explains  why this project modified Tunstall Coding to fit DDL.  

 

5. Tunstall Coding 
 

Tunstall Coding provides the lossless data compression scheme. A natural way to 

compress the sequence of symbols is to assign more frequent symbols to fewer codeword 
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bits and less frequent symbols to more codeword bits. Tunstall Coding takes the natural 

idea in a different way, which makes Tunstall Coding unique in the following way. 

Tunstall Coding uses the natural idea in reverse order: assign a set of input strings, which 

are about the same frequency, to fixed- length codeword bits. The set of input strings is a 

prefix-free set of varying length strings.  

It is important to be a prefix-free set to ensure unique encodeability on a sequence 

of symbols that will be encoded. “Encodeability” means to take any sequence of symbols 

and to divide them uniquely into input strings. “Unique encodeability” means that the 

project is able to encode any sequence of symbol into input string in only one way. 

Readers may note that “a sequence of symbols” is not the codewords. This project intent 

was to have a set of strings that could be used to encode any sequence of symbols, or any 

sequence of symbols that are able to uniquely divide into input codewords (input strings) 

from the set.   

All output codewords of Tunstall Coding have an equivalent length. One 

advantage of the variable-to-fixed length code is error resilience. Unlike the fixed-to-

variable length codes, a single bit flip cannot destroy the variable-to-fixed- length code. 

The errors in fixed-length codewords do not propagate; a single bit flip only introduces 

one error in the output.  

A convenient way to represent a prefix-free set of input strings is to create a tree.  

To construct the prefix-free tree, begin from a single node (the root node) and then add 

branches (edges) for each different symbol. Each edge corresponds to a symbol (different 

symbol). These branches end in leaf nodes. Each leaf node of the tree represents an input 

string which is composed from the symbols. To add branches and leaf nodes, repeat this 

instruction to expand the tree to the desired number of leaves by exploring specific leaf 

nodes, one at a time. Once expanded, the leaf node changes to an internal node. Be aware 

that no input string is terminated at any internal node in the prefix-free tree. The input 

string can be obtained by traversing the tree from the root to the internal node(s) and to 

the desired leaf nodes; write respectively each corresponding symbol of the branches to 

compose the input string. All the leaves of the tree represent the prefix-free set of input 

strings. An example of the prefix-free tree is shown in Figure 1, where each leaf node 

represents a prefix-free input string.  
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A prefix-free tree can be built to help the Tunstall algorithm to represent the map 

from sequence of symbols to the prefix-free set of input strings. The mapping of the 

prefix-free Tunstall tree and the output Codeword Table will be illustrated in the last 

paragraph of this section; meanwhile, the concept of drawing the prefix-free Tunstall tree 

will be described in the following paragraph.  

 

Figure 1. Prefix-free Tree 
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First, let m be the initial alphabet size of the sequence of symbols, which is 

desired to be compressed. Let the length of the targeted output codewords be n, where 2n 

> m. (Note: Carefully choose the length n:  If n is too big then the compression result 

may be poor; if n is too small, then the size of the codeword table may not be large 

enough to represent all the symbols.) Calculate the probability of each symbol. Form a 

prefix-free tree, as previous ly instructed, beginning with a root and m leaves, where each 

edge is labeled with the m alphabet size and each leaf node represents the input string. 

The probability of the input string is the occurrence of its associated symbols. While the 

total number of leaves of the tree is less than or equal to 2n – m, expand the highest 

probability of the leaf node, which is the highest probability of all of the current leaves, to 

have m children, where the new edges are labeled with the m symbols and each new 

input codeword increases one symbol more than its parents. Stop when the number of 
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leaves is greater than 2n - m. The probability at each leaf node is the probability of the 

occurrence of its associated symbols. (Note: The next desired expanded leaf is chosen 

from the highest probability of all of the current leaves; the probabilities of the m new 

leave nodes equal each probability of their newly labeled edges times the previous ly 

chosen highest probability.) Each path from the root to a leaf node produces the 

probability of an input string which is the product of each edge’s probability. Each input 

string on the tree will map to one unique codeword.  

An input string can be obtained by traversing the tree from the root to the internal 

node(s) and to the desired leaf nodes. The collection of the input string introduces a 

prefix-free set of input strings. The Codeword Table maps from input strings to output 

codewords which have n-bit fixed length. Applying the Codeword Table transforms the 

sequence of symbols into an output codeword to compress the desired data. For 

decodeability, compressed output requires more than the codewords: The output 

comprises the Codeword Table and the transformed n-bit length codewords.  

The following example explains and clarifies the details of building the prefix-

free tree and the Codeword Table. Let the desired compressed sequence of symbols 

contain only three symbols a, b and c, where the probabilities are p(a) = 0.1, p(b) = 0.4 

and p(c) = 0.5. Form a tree from the three symbols. Let the target length of the codeword 

be 4-bit, and then expand the tree until the leaves reach, but not exceed 24 - 3. The first 

level of the tree has three edges a, b and c which respectively follows their own codeword 

which resides on each leaf.   

p(a)  = 0.1 

p(b) = 0.4 

p(c) = 0.5 

 

b c

b ca

root

a

 

Since p(c) is greater than p(b) and p(a), explore the leaf with the highest probability p(c) 

and begin to expand the c leaf to have three more children ca, cb and cc. The probabilities 

of these leaves are obtained from the highest probability p(c) times the new edges’ 

probabilities p(c), p(b), and p(a).  
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Each leaf node of the second level of the tree 

    p(ca) = p(c) * p(a)  = 0.5 * 0.1 =  0.05 

    p(cb) = p(c) * p(b)  = 0.5 * 0.4 =  0.20 

    p(cc) = p(c) * p(c)  = 0.5 * 0.5 =  0.25 

b c

b

ca cb cc

ca

c

root

a

ba

 

Choose the b leaf and follow the expanding procedure, since p(b) > p(cc) > p(cb) > p(a) > 

p(ca). The probabilities of the new leaves are calculated as follows. 

 

The new leaf nodes  

    p(ba) = p(b) * p(a)  = 0.4 * 0.1 =  0.04 

    p(bb) = p(b) * p(b)  = 0.4 * 0.4 =  0.16 

    p(bc) = p(b) * p(c)  = 0.4 * 0.5 =  0.20 

c

b

ca cb cc

ca

c

root

a

ba

b

ba bb bc

cba

 

 

In this stage, the tree has only 7 leaves which are less than 24 – 3 = 13; the expanding 

work needs to be continued. The next chosen leaf is the cc string because p(cc) > p(bc)> 

p(cb)> p(bb)> p(a)> p(ba). (Note: The nodes b and c, at the first level of the tree with 

probability 0.5 and 0.4, are no longer identified as leaves; instead, they become internal 

nodes.) The input string only terminates at the leaves instead of at the internal nodes. 

Because the number of leaves are less than or equal to 13, apply the same processes to 

expand the highest probability over all, where 13 is obtained from 24 – 3. Stop to 

expanding the tree when the number of leaves reaches 15, where 15 > 24 – 3, as Figure 2 

shows. 

 

Figure 2. Tunstall Prefix-free Tree  
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To make the Codeword Table, begin by choosing an arbitrary leaf from the Tunstall tree. 

Example: Begin with the bba string, which traverses from the root through the internal 

nodes b and bb to the bba leaf (see Figure 2). Let the first explored output codeword be 

0000 in binary. The input string bba corresponds to 0000 in the Output Codeword Table. 

(Notice: The output codeword, 0000, has 4-bit length, which was defined initially in the 

beginning of this paragraph.) Follow the same procedure to complete the table by 

developing any undiscovered leaf and assign each input string a consecutive binary 

number (see Table 1). 

 

Table 1. Output Codeword Table Corresponding to the Tunstall Tree 
 

Input string bba bbb bbc bca bcb bcc cba cbb 
Output codeword 0000 0001 0010 0011 0100 0101 0110 0111 
Input string cbc cca ccb ccc a ba ca  
Output codeword 1000 1001 1010 1011 1100 1101 1110  

         

6. Encoding Modified Tunstall  
 
 The Modified Tunstall Coding1 applied the Tunstall compression scheme by pre-

computing the statistics on the profile bases of the seismic data. This section illustrates 

the basic design principles of Modified Tunstall Coding and gives an example to 

demonstrate the design. The effects of these pre-computational statistics of Modified 

Tunstall Coding are demonstrated on compression and shown in the section “10. 

Comparing Modified Tunstall with Steim1 and Steim2.”   

 In order to encode a sequence of integers using Tunstall Coding, each different 

integer must be assigned to a unique symbol. It is impractical to represent every various 

signed 32-bit integer into an assorted symbol, which may require up to 232 different 

symbols. The modification of Tunstall for a sequence of integers, especially for the 

seismic data, is necessary. This project mainly modified Tunstall Coding as one symbol 

                                                 
1 Edwin Hong, PhD, of the University of Washington, Tacoma provided initial guidance toward the idea for 
this original work. 
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representing a range of integers. If all input strings in a range have the same probability 

of occurring, and the length of the range is a power of two then no further compression is 

possible (assuming a memoryless model). Tunstall Coding is an optimal variable-to-fixed 

length for a memoryless source and its achieved rate is close to the entropy.  The ranges 

of Modified Tunstall Coding are designed to be to the power of two. Therefore, each 

integer’s datum is represented as one representing symbol and one residual. The absolute 

value of the residual, a positive decimal number, is a number no larger than the size of 

the range. For negative differences, the residual is negative.  (Note: The number in this 

paper, unless specified, is in decimal.) When a residual converts to a binary number, it is 

called a bit string. The conversions are shown in later paragraphs.) The length of the 

corresponding bit string is displayed in Table 2. Because the representing symbol is 

encoded, but the residual is not, each length of a bit string is allocated the power of two; 

it is expected that all lengths to the power of two will be used and that all of the different 

combinations of the bit strings represent the different possibilities.  

To accommodate the limitations of DDL and to gain a better integer seismic data 

compression, this project modified Tunstall Coding in the following five processes (see 

Figure 3):  

Figure 3. Design of Modified Tunstall Coding  
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data
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(1).  Read each piece of input data sample, a sequence of integers, which is desired to 

be compressed. Calculate the difference between current input data and previous 

input data where         
                   the difference = current input data – previous input data.  
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(2).  Each difference is transformed to two parts of codewords: output codeword and 

output bit string. Design the mapping from a range of integers to a corresponding 

symbol and assign the length of the bit string to the symbol (see Table 2). (The 

reason for designing the set of ranges of Table 2 is illustrated in the last paragraph 

of the section “7. Acquiring and Selecting the Seismic Data.”) By applying Table 

2, the reader can find the corresponding range wherein each difference falls. 

Represent each difference as the found symbol. Calculate the residuals by 

subtracting the absolute value of the magnitude 2r for positive differences or -2r 

for negative differences, where r is the length of the corresponding bit string.                                        
If the difference is positive, then the residual =  value of positive difference – 2r  . (see Table 2)                                            

If the difference is negative, then the residual =  value of negative difference + 2r. (see Table 2)  

(Note: The negative difference residuals are negative.)                                                                                                

Convert every absolute value of the residuals to a binary bit string where the 

length of the bit string is r. Respectively, store the pair symbol and binary 

sequence for further use.                                                                                          

A couple of examples for demonstrating the conversion of differences to the 

symbols with binary sequences are as follows: The number of difference, 3, falls 

into the range of 0 to 127 as defined by Table 2. Represent the difference, 3, by 

the symbol “a” where the magnitude of the “a’s” range is 0. Now the residual 3 

comes from 3 minus 0. Convert the value of residual 3 to the binary bit string 

0000011. (Notice: The length of corresponding bit string is 7 by the design of 

Table 2. Therefore, the binary sequence is coded in seven digits 0000011 instead 

of two digits 11.) Clearly at this stage, number 3 is represented as the pair  

      (a, 0000011). Apply the same behaviors to convert differences 254 and -600 to be   

      the pairs (symbol, bit strings).    

                 Ex.1. 254 = 128 + 126 = 27 + 126  

                                  Convert 254 to => (b, 1111110(binary)) 

                 Ex.2. -600 = - (512 + 88 ) = - (29 + 88 )  

                                  Convert -600 to => - (D + 001011000(binary)) = (D, 001011000(binary)) 

Converting a negative number to a symbol with binary sequences may seem a bit 

complicated in this project. But an equivalent way of converting them is to take 

the absolute value of the negative number to the pair (symbol, bit strings) and 



Newman                       Seismographic Data Compression  20

change the lower-case symbol to an upper-case symbol. (Notice: If the converted 

symbol is a lower-case symbol, then the lower-case symbol implies the number of 

the difference is a non-negative number (see Ex.1) by the design of Table 2; 

otherwise, an upper-case symbol must correspond with a negative value (see 

Ex.2).) Consequently, the negative number -600 can be represented as (D, 

001011000) pair without a negative sign because of the upper-case D. Later in the 

process of decoding, when an upper-case symbol is encountered, then the 

negative sign should be applied to the decoded number.    

(3).  Calculate the probability of each symbol that is obtained from (2). 

(4).  Run the Tunstall algorithm. 

(5).  Transform the original data and yield the output codewords with their 

corresponding bit strings; these are recorded in pairs. Each pair consists of one 

codeword and a sequence of bit strings. (Note: If an output codeword is 

transformed from the leaf of the first level of the Tunstall tree, then there is only 

one single bit string in that pair; otherwise, the number of the bit strings depends 

on the number of levels.) These regulations are defined according to Table 2. The 

encoded output comprises two segments: the codeword table and the combination 

of the pairs (output codewords, bit strings).  

      Table 2. Partition Differences into Ranges 
 

Ranges of  
Integers  

Representing 
Symbol 

Number of bits 
in 

Corresponding 
Bit string 

Ranges of 
Integers  

Representing 
Symbol 

Number of bits 
in 

Corresponding 
Bit string 

0 to (27 -1) a 7 -1 to -(27 -1) A 7 
27 to (28-1) b 7 -27 to -(28-1) B 7 

28 to (29-1) c 8 -28 to -(29-1) C 8 

29 to (210-1) d 9 -29 to -(210-1) D 9 

210 to (211-1) e 10 -210 to -(211-1) E 10 
211 to (212-1) f 11 -211 to -(212-1) F 11 
212 to (213-1) g 12 -212 to -(213-1) G 12 
213 to (214-1) h 13 -213 to -(214-1) H 13 
214 to (215-1) i 14 -214 to -(215-1) I 14 
215 to (216-1) j 15 -215 to -(216-1) J 15 
216 to (217-1) k 16 -216 to -(217-1) K 16 
217 to (218-1) l 17 -217 to -(218-1) L 17 
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 The following example clearly illustrates the processes of compressing a sequence 

of data by using the previous ly defined Modified Tunstall Coding and then producing a 

compressed data which includes a codeword table, codewords, and bit strings.   

(1).  Read a sequence of data, which in this project is a sequence of integer seismic 

data,   

8704, 8507, 8438, 8444…  

      and calculate the differences 

8507 - 8704 = -197 

8438 – 8507 = -69 

8444 – 8438 = 6  

(Notice: The differences are 8704, -197, -69, 6… instead of -197, -69, 6…. 

Because of the decodeability, one must copy the first datum 8704 as the first 

difference, rather than –197; without recording the first piece of data, it would be 

impossible to retrieve the original sequence of data.) 

(2).  Look up Table 2 to transform the differences. The difference 8704 falls in the 

range of 8192 to 16383, and the representing symbol is “h” as shown in Table 2. 

Convert the residual, 8704 – 8192 = 512, to the binary sequence as 

0001000000000. 

8704 = 8192 + 512 = h + 0001000000000(binary) => (h, 0001000000000(binary)). 

The second difference, -197, falls in the range of -128 to -255 and the 

representing symbol is “B.”  
-197 = - (128 – (-69) ) = - (27 – (-69) ) => (B, 1000101(binary)). 

The number of the difference, -197, is represented by the pair (B, 1000101). The 

third difference, -69, is represented by the pair of (A, 1000101). Number 6 is (a, 

0000110) and so on. Subsequently, follow the previous ly Modified Tunstall 

explanations, found in preceding steps (3) and (4), to make a Tunstall tree by 

calculating probabilities of the symbols. 

(4).  Using the last step, create the Codeword Table according to the Tunstall tree, 

where the size of the Table is not greater than 2n - m. (Note: Each alphabet 

symbol is assigned as an n-bit length codeword, see Table 1.) 

(5). Finally, transform the sequence of data and yield the output codewords with     
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bit strings. To be clear, the encoded output includes the Codeword Table 

described in step (4) and output codewords combined with bit strings. 

 

7. Decoding Modified Tunstall  

 
 Decoding Modified Tunstall requires the Codeword Table and the output 

codewords combined with bit strings. Initially, read one n-bit length codeword at a time, 

where n is the default length of the codeword, look up the range of integer of Codeword 

Table, and then find the representing symbol. Take one representing symbol of the input 

string at a time and convert it to the absolute value of the magnitude of the matching 

range by the following conditions:  

      (0). Define the Modified ASCII Value as  

              Modified ASCII Value = ASCII value of the symbol – 97 (for lower-case character) …(1)  

         or     Modified ASCII Value = ASCII value of the symbol – 65 (for upper-case character) …(2)  

(1).  If the result of the ASCII value of this symbol minus the ASCII value of symbol 

a, 97, is a non-negative number, then the symbol must be a lower-case character 

which means the Modified ASCII Value is a non-negative number (see formula 

(1)).                                                   

(2).  Otherwise, the symbol must be an upper-case character which determines that the 

Modified ASCII Value is a negative number (see formula (2)).                                                             

(Keep in mind: After retrieving the upper-case ASCII value of the absolute value 

of the magnitude matching range, a negative sign is required to perform the 

retrieving value, which will be negative.)                                                                

Recall that the length of the bit string in Table 2 starts at the basic length 7. Therefore, for 

the first step, retrieve an output codeword as the input string; then locate the symbol(s) of 

the input string to the absolute value of the magnitude matching range(s). Because the 

basic length of bit string is 7, therefore 6 (7 minus 1) has to be added to Modified ASCII 

Value (see formula (1) and (2)), if the ASCII value of the symbol does not equal 0; 

otherwise, the Modified ASCII Value is 7. The Modified ASCII Value in this stage is not 

the final difference data yet because the bit string binary code needs to be transformed 

into a decimal number.  
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if            lower-case Modified ASCII Value = 0  return      bit string in decimal  

else if     upper-case Modified ASCII Value = 0   return     -bit string in decimal 

else if    lower-case Modified ASCII Value > 0                                                                              

                                                         return      bit string in decimal + 2  Modified ASCII Value  

            else                                                   return   - (bit string in decimal + 2 Modified ASCII Value) 

(Be aware: An upper-case character represents a negative number by the design of 

Modified Tunstall Coding. Therefore, the returning value needs to be modified as a 

negative number by adding a negative sign for the entire number  

                                                 (bit string in decimal + 2 value of upper-case).) 

If the difference is not the very first piece of data, the difference needs further recovering.  

 Apply the same processes to continuously read every pair of the output codeword 

and the bit string(s), if any exist. Continuously, transform them to symbol(s); then 

convert the symbol(s) to the absolute value of the magnitude in the matching range and 

then adjust it as previously instructed with the decimal value of bit string to obtain 

differences. The final adjustment is the decoded number added to a negative sign when 

an upper-case symbol is encountered; otherwise, the retrieved values remain positive or 

zero. In this stage, the differences of the original data have been retrieved. To obtain the 

sequence of the original data from the differences, simply copy the first data as the 

previous-data. Take the next data and set it as the current-data. Add the previous-data and 

the current-data; copy the result as the next decoded data. Then, the current-data becomes 

the previous-data; the next data of the encoded output becomes the current-data. Repeat 

the processes until the end of the encoded output. The copied sequence of numbers will 

be losslessly equal to the original data, if the processes are applied correctly.  

 

8. Why the Design of Modified Tunstall 
 
 This project designed Modified Tunstall Coding based upon the pre-computed 

statistics and rewrote the compressed data in DDL. The limitations of DDL restrained one 

of the main design principles of Modified Tunstall Coding. This project then addressed 

how to make DDL efficiently represent the differences of the seismic data and gain the 

optimal compression ratio. The intention of this design is illustrated in this section. The 
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Codeword Table of Modified Tunstall Coding needs to be stored as part of the 

compression. This section also clarifies other design principles of Modified Tunstall 

Coding by giving the reasons for reducing the Codeword Table and grouping the ranges 

of the differences on Table 2.  

 In order to work with DDL, as illustrated earlier in the section “4. Data 

Description Language of SEED,” the design of this project requires simple computations 

to fit the limitation of DDL. In general, a method using less computation results in poor 

compression; a method using more computation, such as linear prediction which 

performs a good compression, may not be handled by the simple primitives of DDL. To 

accommodate the limitation of DDL, this project chose to modify Tunstall Coding and 

made it efficient to represent data. Also, there were other reasons, such as keeping the 

size of the Codeword Table small. These reasons for the design are illustrated in the 

following paragraphs.  

 The differences in the sequence of integers of seismographic data between 

consecutive samples are generally much smaller than a 32-bit integer. Typically, the 

differences in the sequence of integers of seismic data require 13 bits or fewer to 

represent them [4]. If each difference is a 13-bit integer, at the worst case, the total 

differences may need 213 different symbols to encode them. If the reader expands the 213 

different symbols to be the initial alphabet size of the sequence of symbols in the Tunstall 

tree, then a large size Codeword Table can be expected. As introduced earlier in the 

Section of “5. Tunstall Coding,” the size of the Tunstall tree, defined as 2n, has to be 

greater than the size of the different symbols m, where n is the desired length of output 

codeword; therefore, the size of the Codeword Table may approximate 2n, where n is 

larger than 13. 

 The Codeword Table needs to be stored as part of the compression. It is 

anticipated that an output with a large size Codeword Table will introduce a poor 

compression ratio. It is critical to reduce the table size in order to perform a fair 

compression ratio. The output of the unmodified Tunstall comprises approximately the 

2n-size Codeword Table and the pairs (output codeword, bit strings). Obviously, if the 

size of the different symbols exceeds 213, then the length of the output codeword must be 

bigger than 13 in order to have enough codewords to represent all the input data. In this 
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circumstance, both the size of the Codeword Table and the encoded pairs will be 

increased. When n increases by 1, it means the size of the Codeword Table will be 

doubled, compared with its initial size; if readers were to use it, the unmodified Tunstall 

would be destined to a poor compression ratio.  

 Tunstall Coding is known as an optimal variable-to-fixed length for memoryless 

source. The compression rate of Tunstall is close to the entropy. Tunstall Coding assigns 

a set of input strings, which are of similar frequencies, to fixed- length codeword bits. 

Modified Tunstall Coding basically takes the idea of the fixed- length codewords bits but 

maps from the codeword to the bit strings to present a piece of difference data. According 

to the SEED Reference Manual [4], 99 percent of the absolute value of the seismic 

differences could be smaller than an 8-bit. Obtaining better data compression requires 

further analysis on the differences’ frequency. How can this project distribute the 99 

percent differences evenly into each range? To answer this question relates to obtaining 

information about how to acquire and select the seismic data.  

 In Section “6 Encoding Modified Tunstall Coding,” the project created Table 2 to 

map differences to various length ranges. The length of ranges is designed as the power 

of two with the intention of properly taking advantage of conserving electronic data 

storage space. When all integers in a range have the same probability of occurring and the 

length of ranges is a power of two then no further compression is possible. The design’s 

intention of Modified Tunstall Coding is to group similar but unequal frequencies of each 

difference occurrence together. There were 28 files (see Appendix II) chosen for this 

paper. (The reason for choosing these files will be described in Section 9.) When 

observing one of these files, the frequencies of occurrence between -127 to 127 are 

similar. Therefore, this project maps the initial differences in ranges (see Table 2). The 

ranges are from -127 to -1, 0 to 127 and then the rest of the ranges are mapped based on 

the size of 2, starting with the size of the range as 27, 28, 29…. Typically, the differences 

in the sequence of integers of seismic data require 13 bits or fewer to represent them [4]. 

The greatest tested difference encountered in these 28 files fell in the range of 215 to  

216 - 1. However, this project made (218 - 1) as the greatest tested difference and –(218 - 1) 

as the lowest tested difference to ensure that all differences were included.  
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9. Compression Ratio of Modified Tunstall Coding 
 

 This section demonstrates in detail how to calculate the compression ratios of the 

Modified Tunstall Coding over the previously chosen files. The section also records the 

compression ratio experiments’ results of Modified Tunstall Coding for each of the 28 

files under various lengths, from 6 to 12-bit, of the fixed- length output codeword. The 

average of the optimal compression ratios at each specific output codeword results in 

3.19.  

 A way to measure the efficiency of Modified Tunstall Coding is to calculate the 

compression ratio. The compression ratio for a particular file is the number of bits 

required to represent the file before compressing it to the number of bits required to 

represent the file after compression. The compression ratio is expressed below: 

 

                      Compression ratio = the number of bits required to represent the file before compressing 
                                                        the number of bits required to represent the file after compressing 

 

This project requested seismic data in SEED format from IRIS’s DMC center. In order to 

practice on the uncompressed data, SEED files have to be converted to other formats, 

such as ASCII or SAC, through RDSEED application. The SAC format was selected for 

this project.  

 This project assumes that each piece of seismic data sample, which is an integer, 

needs a 32-bit format. Consequently, the size of the file required to represent the file 

before compression is obtained from the total integer samples times 32 bits.  

 

 size of file  before compressing = 32 * the total integer samples required 

 

 The total size required to represent the compressed file, after Modified Tunstall 

coding, needs to include the size of the Codeword Table and the combination of output 

codewords and bit strings. Note, this project supposes every alphabet symbol in the 

Codeword Table requires 8 bits storage space, and each output codeword size could be 

set in the 5- to 12-bit range. (The reason of this paper only presents the length of the 

codeword from 5 to 12 is illustrated in this Section in the paragraph following Table 3.) 
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Since the output codewords are of a fixed length, simply total the number of the output 

codewords and multiply the total with the fixed length bits. Measuring the size of the bit 

strings requires the sum of the individual length of each corresponding bit string. 

Therefore, the total size of a file after compression is written as follows: 

 

               size of file after compressing = size of Codeword Table + size of (output codewords, bit strings). 

 

The compression ratio of Modified Tunstall coding is obtained with the following 

equation: 

 
               compression ratio =  size of file before compressing / size of file after compressing 

   

 However, this project only concentrated on seismic data samples and removed all 

the data headers from each individual file. Therefore, after decompressing the files by 

RDSEED and running them in this project’s designed application, all the SAC headers 

were removed, leaving only record numbers of the seismograms contained in each 

volume. A file containing only record numbers without headers is called seismic data, in 

this project. The seismic data is a sequence of integers. For practical reasons, this project 

only targeted the large files. The experiments were performed only on large files, after 

recovering from RDSEED, which are larger than 105 bits long. For the later experiments 

on the compression schemes, 28 files, without headers and greater than 105 bits long, 

were used (see Appendix II). These 28 files are numbered from 1 through 28 for later use. 
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Table 3. Compression Ratios of Modified Tunstall  
 
                         

Files # of compression ratio at given codeword length Max. 
# samples 6 7 8 9 10 11 12 Ratio 

1 17.33 3.34 3.51 3.60 3.66 3.69 3.70 3.68 3.70 

2 17.29 2.46 2.57 2.62 2.62 2.64 2.66 2.64 2.66 
3 19.98 2.66 2.77 2.77 2.78 2.82 2.80 2.81 2.82 

4 19.98 2.57 2.66 2.67 2.68 2.70 2.71 2.69 2.71 
5 17.29 2.62 2.72 2.73 2.73 2.77 2.76 2.74 2.77 

6 34.56 3.37 3.52 3.61 3.66 3.70 3.73 3.73 3.73 

7 34.56 3.37 3.53 3.61 3.67 3.70 3.72 3.73 3.73 
8 34.56 3.32 3.45 3.52 3.60 3.64 3.66 3.63 3.66 

9 17.28 3.83 3.86 3.88 3.89 3.89 3.88 3.83 3.89 
10 17.28 3.90 3.92 3.93 3.93 3.92 3.90 3.85 3.93 

11 17.28 3.83 3.86 3.88 3.89 3.89 3.88 3.83 3.89 

12 17.28 3.34 3.50 3.60 3.66 3.69 3.70 3.68 3.70 
13 17.28 3.35 3.50 3.59 3.64 3.68 3.69 3.67 3.69 

14 17.28 3.33 3.48 3.58 3.64 3.67 3.68 3.67 3.68 
15 19.99 2.62 2.72 2.73 2.72 2.77 2.76 2.75 2.77 

16 17.28 2.43 2.53 2.57 2.57 2.58 2.60 2.59 2.60 

17 19.99 3.05 3.19 3.20 3.23 3.26 3.26 3.27 3.27 
18 19.99 3.09 3.18 3.23 3.27 3.30 3.30 3.30 3.30 

19 20.00 2.92 3.01 3.03 3.05 3.08 3.07 3.08 3.08 
20 17.28 2.59 2.73 2.78 2.78 2.83 2.83 2.83 2.83 

21 17.28 2.61 2.77 2.79 2.80 2.85 2.85 2.85 2.85 

22 17.28 2.51 2.64 2.69 2.69 2.72 2.73 2.71 2.73 
23 14.60 2.50 2.63 2.67 2.67 2.69 2.70 2.68 2.70 

24 14.59 2.68 2.78 2.78 2.79 2.84 2.82 2.81 2.84 
25 14.58 2.63 2.73 2.74 2.74 2.78 2.77 2.75 2.78 

26 14.57 2.87 2.95 2.97 2.99 3.03 3.02 3.02 3.03 

27 14.57 2.89 2.92 2.97 3.01 3.03 3.03 3.01 3.03 
28 14.56 2.74 2.82 2.83 2.86 2.87 2.87 2.88 2.88 

Average 2.98 3.09 3.13 3.15 3.18 3.18 3.17  
Average compression ratio of each max ratio   3.19 

               
                    The bold numbers highlight the maximum compression ratio. 
                      Note: See Appendix II for the list names of selected files.  
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 The main factors that influence compression ratios of Modified Tunstall Coding 

include the data’s inherent characteristics, the assigned length of the output codewords, 

and the design of the ranges. Table 3 shows the experiments’ results on the various 

assigned lengths--from 5-bit up to 12-bit--of the output codeword. Notice Tunstall 

Coding is designed so that the initial alphabet size of the sequence of symbols m has to 

be less than 2n, where n is the length of the targeted output codewords. Be aware that “the 

sequence of symbols” means the sequence of differences in this project. A large, more 

than 105 bits, seismic file normally has the initial alphabet size exceeding 25. When the 

length of the output codewords is assigned less than 5, the experiments result in a small 

Codeword Table which is too small to represent all the distinct differences. When the 

length of the output codewords n is assigned greater than 12, the compression ratios for 

the chosen 28 files decreased when compared to n = 12; the majority of the compression 

ratios decreased when n = 13, 14. When the output codewords are increased, the 

Codeword Table size is increased, the compressed length of the file will increase, and 

then the compression ratio decreases. Therefore, this paper only presents the length of the 

codewords from 5 to 12.   

 In Table 3, the best compression ratio, according to the length of the output 

codewords, results in the average of 4.22 when the output codewords are assigned to 10 

or 11-bit lengths. This project chose the best compression ratio of each specified file and 

recorded it in the last column of Table 3. The average compression ratio of each file’s 

optimal ratio, between 6- to 12-bit output codewords, is 3.19.  

 How is the performance of 3.19 compression ratio? This project took the 

Modified Tunstall Coding results to compare with coding algorithm--the Linear 

Prediction Coding in the section 11 and confirmed the quantities of the improvement of 

Modified Coding from Steim1/Steim2 in section 10.   

10. Comparing Modified Tunstall with Steim1 and Steim2  
  

 This section takes the results of Modified Tunstall Coding in the last section, 

individually comparing them with Steim1 and Steim2. The results of the comparisons are 

presented in Table 4. The average improvement of Modified Tunstall Coding is 30.78% 
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over Steim1 and 5.16% over Steim2. The last paragraph of this Section discusses the 

percentages of result s.  

 The compression algorithms applied in DDL of SEED for seismic data are Steim1 

and Steim2 compression schemes. This project has presented the new compression 

scheme, Modified Tunstall Coding, to improve Steim1 and Steim2. To understand how 

much improvement that Modified Tunstall Coding made with the other compression 

schemes requires comparison. One common way to compare is to measure the 

performances by comparing the compression ratio s among the compression schemes.  

 To measure the compression performances, this project did not use Steim1 and 

Steim2 compression algorithms that are used in SEED because they are not independent 

applications for measuring the compression ratio. Steim1 and Steim2 compression 

algorithms in SEED are written in DDL language. To rewrite them into an independent 

application takes a tremendous effort. A convenient way to find an application that adapts 

Steim1 and Steim2, steim123, is collected by the Quanterra Users Group (QUG) of the 

Northern California Earthquake Data Center at http://www.ncedc.org/qug/software/.  The 

steim123 tar file downloaded from the Web site of the QUG consists of three main 

classes: steim123.c, swrseed.c, and srdseed.c. Only the steim123.c is related, in this 

project, to compressing integer seismic data. Level 1 and Level 2 of steim123 are 

equivalent to Steim1 and Steim2 of the SEED format, respectively. This paper recodes 

Level 1 as Steim1 and Level 2 as Steim2 in the following descriptions.  

 In general, a seismometer’s output data under normal background are usually 

highly-correlated integers. Steim1 and Steim2 use this highly-correlated characteristic of 

seismic data to compress data. By applying this significant characteristic, Steim1 and 

Steim2 calculate the differences of the sequence of integers, as well as of Modified 

Tunstall Coding. A significant characteristic of the typical differences of seismic data is 

that integer differences are generally much small than 32-bit. Accordingly, Steim1 and 

Steim2 assign the first-differences into groups of numbers of variable bits long. Steim1 

codes the first-differences as groups of 8-, 16-, or 32-bit. Steim2 improved upon Steim1 

and codes groups of differences of 4-, 5-, 6-, 8-, 10-, 15-, and 30-bit. Steim1 and Steim2 

use the control codes, introduced in section “4. Data Description Language of SEED,” to 

figure the configuration of the differences.  
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 To measure the relative increase or decrease of the compression ratios of 

Modified Tunstall Coding (MTC), this project views the compression ratio of Modified 

Tunstall Coding as the initial value; the compression ratio of the other schemes, such as 

Steim1, Steim2, and Linear Prediction Coding, as the total which corresponds to 100%. 

 The percentage improvement in compression ratio between Modified Tunstall 

Coding and the other compression scheme in each specified file is calculated as: 

 
 The percentage improvement in compression ratio (%) 

                                                                                 = (MTC’s ratio – other’s ratio) * 100 / other’s ratio   

   

 According to Appendix B of RDSEED V2.4, the best compression ratio of Steim2 

is 6.74 when all the differences can be compressed in 4 bits. The same file is only 

compressed in the ratio of 3.67 when using Steim1. This maximum improvement from 

Steim1 to Steim2 is 65.40%. The calculation is shown as follows: 
                                              ( (6.74 – 3.67) * 100 / 3.67 ) % = 65.40% 

The average improvement from Steim1 to Steim2 of these chosen files is 26.27% as 

shown in Table 4. Recall: Steim2 groups 4-, 5-, 6-, 10-, 15- or 30-bits first-differences, 

but Steim1 encodes first-differences into 8-, 16- or 32-bit. This is the main reason that 

Steim2 performs better than Steim1. Another of the reasons is that the compression ratio 

of Steim2 was achieved from Steim1 on 20 Hz Broad Band data, but only 13 out of the 

28 files are 20 Hz data (see Appendix III). 

 Table 4 demonstrates that Modified Tunstall Coding compresses the 28 chosen 

files on an average of 30.78% better than Steim1. Each individually tested file confirms 

that the compression ratio of Modified Tunstall Coding is the worst at 1.00% and the best 

at 54.22% compared with Steim1. Recall: Steim1 only uses the methods, which are the 

first-differences of groups 8-, 16-, or 32-bit, but Modified Tunstall Coding encodes 

differences into 7- to 17-bit (see Table 2). The reason that Modified Tunstall Coding 

demonstrates the optimistic average percentage better than Steim1 is because Modified 

Tunstall Coding covered all the Steim1’s coding methods.  
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Table 4. Comparison of Steim1/Steim2 and Modified Tunstall  
 

 Compression ratios 
percentage improvement in 

compression ratios  

File # (1) (2) (3) (4) (5) (6) 

 Steim1 Steim2 MTC 
Steim2 over 

Steim1 
MTC over 

Steim1 
MTC over 

Steim2 

First 
order 

Entropy 

    %  % bits/symbol 

Max. 
possible 

compression 
ratios 

1 3.74 5.33 3.70 42.51 -1.00 -30.53 5.61 5.71 
2 1.87 2.05 2.66 9.63 42.32 29.83 11.60 2.76 
3 1.89 2.33 2.82 23.28 49.26 21.07 10.90 2.94 
4 1.88 2.13 2.71 13.30 44.10 27.18 11.40 2.81 
5 1.88 2.24 2.77 19.15 47.29 23.62 11.12 2.88 
6 3.64 3.85 3.73 5.77 2.48 -3.11 7.72 4.15 
7 3.65 3.87 3.73 6.03 2.19 -3.62 7.71 4.15 
8 3.39 3.69 3.66 8.85 7.90 -0.87 8.12 3.94 
9 3.74 5.51 3.89 47.33 4.05 -29.38 5.64 5.67 

10 3.74 5.61 3.93 50.00 5.04 -29.97 5.52 5.80 
11 3.74 5.34 3.89 42.78 4.05 -27.13 5.88 5.44 
12 3.71 5.33 3.70 43.67 -0.20 -30.53 5.61 5.71 
13 3.70 5.26 3.69 42.16 -0.20 -29.80 5.73 5.59 
14 3.70 4.98 3.68 34.59 -0.42 -26.01 5.94 5.39 
15 1.88 2.24 2.77 19.15 47.40 23.71 11.11 2.88 
16 1.87 1.99 2.60 6.42 39.11 30.72 11.87 2.70 
17 2.21 2.99 3.27 35.29 47.84 9.27 9.20 3.48 
18 2.36 3.05 3.30 29.24 40.01 8.34 9.05 3.54 
19 2.00 2.78 3.08 39.00 54.22 10.95 9.85 3.25 
20 1.90 2.38 2.83 25.26 49.12 19.05 10.73 2.98 
21 1.90 2.44 2.85 28.42 50.22 16.97 10.61 3.02 
22 1.88 2.15 2.73 14.36 45.10 26.88 11.24 2.85 
23 1.88 2.13 2.70 13.30 43.65 26.79 11.34 2.82 
24 1.89 2.35 2.84 24.34 50.11 20.72 10.82 2.96 
25 1.88 2.25 2.78 19.68 48.07 23.72 11.05 2.90 
26 2.05 2.71 3.03 32.20 47.56 11.63 10.11 3.17 
27 2.10 2.74 3.03 30.48 44.24 10.55 10.05 3.18 
28 1.94 2.51 2.88 29.38 48.22 14.56 10.65 3.00 

Average 2.57 3.29 3.19 26.27 30.78 5.16 9.15 3.77 
(1) The compression ratio of Steim1. 
(2) The compression ratio of Steim2. 
(3) The compression ratio of Modified Tunstall Coding. 
(4) Percentage improvement in compression ratio of Steim1 over Steim2 
(5) Percentage improvement in compression ratio of MTC over Steim1. 
(6) Percentage improvement in compression ratio of MTC over Steim2  
Notice: the highlighted rows are DGAR or PTCN stations. 
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 Modified Tunstall Coding compressed the 28 chosen files on average 5.16% 

better than Steim2 (see Table 4). When compared with Steim2, Table 4 also shows that 

Modified Tunstall Coding is worst at 30.53% and best at 30.72%. One of the main 

reasons is that Steim2 encodes groups of differences of 4-, 5- and 6-bit but Modified 

Tunstall Coding starts to encode small differences from 7-bit. When files include many 

small differences under 7-bit, the inability of Modified Tunstall Coding obviously will 

not have the optimistic average percentage.  Recall: The frequencies of occurrence 

between -127 to 127 are similar. This constraint is violated in the files of Steim2’s 

compression ratios, which are better than Modified Tunstall Coding. 

 The first order entropy of the sequence of integer differences between successive 

samples is calculated in Table 4. Assuming Modified Tunstall Coding is coded at the first 

order entropy ratio then the maximum possible compression ratio can be calculated (see 

Table 4). No Modified Tunstall Coding can improve any more than its maximum possible 

compression ratio.    

 

Table 5. Comparison of Steim1, 2 and MTC at DGAR/PTCN Stations 
 

 Compression ratios 
percentage improvement in 

compression ratios  

File # (1) (2) (3) (4) (5) (6) 

 Steim1 Steim2 MTC 
Steim2 over 

Steim1 
MTC over 

Steim1 
MTC over 

Steim2 

First 
Order 

Entropy 

    %  % bits/symbol 

Max. 
possible 

compression 
ratios 

2 1.87 2.05 2.66 9.63 42.32 29.83 11.60 2.76 
3 1.89 2.33 2.82 23.28 49.26 21.07 10.90 2.94 
4 1.88 2.13 2.71 13.30 44.10 27.18 11.40 2.81 
5 1.88 2.24 2.77 19.15 47.29 23.62 11.12 2.88 

17 2.21 2.99 3.27 35.29 47.84 9.27 9.20 3.48 
18 2.36 3.05 3.30 29.24 40.01 8.34 9.05 3.54 
19 2.00 2.78 3.08 39.00 54.22 10.95 9.85 3.25 
20 1.90 2.38 2.83 25.26 49.12 19.05 10.73 2.98 
21 1.90 2.44 2.85 28.42 50.22 16.97 10.61 3.02 
22 1.88 2.15 2.73 14.36 45.10 26.88 11.24 2.85 
26 2.05 2.71 3.03 32.20 47.56 11.63 10.11 3.17 
27 2.10 2.74 3.03 30.48 44.24 10.55 10.05 3.18 
28 1.94 2.51 2.88 29.38 48.22 14.56 10.65 3.00 

Average 1.99 2.50 2.92 25.31 46.88 17.68 10.50 3.06 
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 An observing of the data of Table 4, shows all the compression ratios of Modified 

Tunstall Coding of DGAR and PTCN stations are better than Steim2; mostly, other 

stations are worse than Steim2. This project compiles DGAR and PTCN stations from 

Table 4 into Table 5. Observing the results of Table 5, Modified Tunstall Coding 

compresses DGAR and PTCN stations’ files on average 46.88% and 17.68% better than 

Steim1 and Steim2, respectively. 

 Steim1 and Steim2 are less expensive in computation; however, they do not 

perform optimal compression ratios. In contrast, obtaining a better data compression 

scheme, in general, requires more expensive computation, such as linear prediction. It is 

challenging to design a compression scheme that does not require heavy computation to 

fit DDL requirements and limitations. Modified Tunstall Coding has suitable 

computation to be handled by DDL. This project applied Modified Tunstall Coding by 

looking at statistical differences of the seismic data. Steim1 and Steim2 simply applied a 

fixed method to assign the data to fewer than 32-bits, regardless of the essence of the data. 

The pre-computing of the statistics on profile bases made a remarkable improvement on 

the compression ratios of Modified Tunstall Coding over Steim1 and Steim2. 

11. Comparing Modified Tunstall with Linear Prediction Coding   
 
 One of the most powerful compression schemes is Linear Prediction Coding 

(LPC). Linear prediction, a mathematical operation, estimates upcoming values of a 

discrete time signal as a linear function of previous samples. In digital signal processing, 

linear prediction is often called linear predictive coding. It is a tool for representing data 

in compressed form and uses the information as a linear predictive model. 

 To compare Modified Tunstall Coding with LPC, this project has taken the 

concept of the LPC application, Predictcode.m, from the textbook, Digital Signal 

Processing with Examples in Matlab by Sammel D. Stearns [7], and rewritten it to fit the 

project’s needs. Predictcode.m application (see Appendix I) de-correlated data from the 

input file, with a small residual, by choosing a weight vector. The residual is stored in a 

separated file and is compressed by Arithmetic Coding [8]. Each compressed result is 

compared with the compression ratio of Modified Tunstall Coding.  
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 Arithmetic Coding is commonly used in lossless compression schemes. It is a 

flexible statistical compression method and encodes at or close to entropy when the 

probabilities of symbols are skewed. Arithmetic Coding compresses each input stream 

into a unique interval in [0, 1) while other entropy encoding schemes replace codes to 

each individual symbol. The method reads each input stream, symbol by symbol, and 

appends significant bits to the code by inputting and processing each symbol. The 

Arithmetic Coding [8] applied to this project is based on the article, “Arithmetic Coding 

Revisited” [9]. It is written in C language. 

 A general idea in compressing the chosen 13 files at DGAR and PTCN stations, 

as this project has done using Modified Tunstall, and comparing them to the prediction 

coding, is described as follows:  

(1).  Transform seismic data by applying the predictcode.m application (see  

Appendix I). This process produces the weight vector b and writes the residual e 

to a new file. (Note: The 6 values of the weight vector b require 20 bits each; 

afterward, 8 bits are required per sample.)   

(2).  Apply Arithmetic Coding [8] for the residual e file, and then the result will be a 

byte-unit file. Calculate the byte-unit file’s size in bit by multiplying by 8. 

(3).  Both weight vector and the byte-unit file in bit of the residual have to be stored as 

compression. Therefore, the total number of bits of the compressed data is  
      Compressed bits = the weight vector bits  + (2)’s Arithmetic Coding results       

(4).  Divide the bits of the original file by the total number of bits of compressed data 

to form the compression ratio of the prediction coding. 

               Compression ratio = # bits of the original file 
                                                # bits of compressed data 
 
 Table 6 demonstrates the 13 chosen files of compression ratios on Linear 

Prediction Coding and Modified Tunstall Coding at DGAR and PTCN stations. The 

average compression ratio of the Modified Tunstall Coding is lower than LPC coding at 

7.95%. As this paper described earlier, Arithmetic Coding encodes data at or close to 

entropy when the probabilities of symbols are skewed.  

 Table 6 also computes the sequence of differences’ first order entropies of the 13 

chosen files. Recall: This project assumes that each piece of seismic data sample needs a 

32-bit format. After dividing 32-bit per symbol by the first order entropy of each file, the 
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maximum possible compression ratios of each file are shown in Table 6. The 

compression ratio of LPC can potentially achieve a higher ratio than the maximum 

possible compression ratio of other schemes because LPC account for more sample-to-

sample correlation. Due to the maximum possible compression ratio, Table 6 results also 

show that the Modified Tunstall can not improve any more than an average 4.65% for 

these 13 files; even though, Table 6 shows that Modified Tunstall Coding is worse than 

LPC coding at average 7.95%. 

 One advanced improvement for further research to improve the compression ratio 

is to evenly rearrange the data differences into various ranges as was discussed in section 

“8. Why the design of the range.” The advanced improvement remains for the readers for 

further research.  

Table 6. Comparison of LPC and Modified Tunstall at DGAR/PTCN 
Station 
 

 
Compression 

ratios 
percentage improvement in 

compression ratios 
 (1) (2) (3)   (4) 

 MTC LPC 
MTC over 

LPC 
First order 

Entropy 

Max 
possible 

ratios 
MTC over 
Entropy 

   % bits/symbol %  
2 2.66 2.81 -5.29 11.60 2.76 -3.50 
3 2.82 3.03 -6.90 10.90 2.94 -3.93 
4 2.71 2.91 -6.91 11.40 2.81 -3.51 
5 2.77 2.95 -6.13 11.12 2.88 -3.77 

17 3.27 3.61 -9.50 9.20 3.48 -6.02 
18 3.30 3.64 -9.22 9.05 3.54 -6.58 
19 3.08 3.64 -15.26 9.85 3.25 -5.05 
20 2.83 3.16 -10.34 10.73 2.98 -4.96 
21 2.85 3.2 -10.81 10.61 3.02 -5.35 
22 2.73 3.01 -9.37 11.24 2.85 -4.15 
26 3.03 2.92 3.60 10.11 3.17 -4.46 
27 3.03 3.32 -8.77 10.05 3.18 -4.87 
28 2.88 3.14 -8.43 10.65 3.00 -4.29 

Average 2.92 3.18 -7.95 10.50 3.06 -4.65 
       

(1) The maximum compression ratios on the specified codeword length of MTC at DGAR/PTCN stations. 
(2) The compression ratios of Linear Prediction Coding (LPC) at DGAR/PTCN stations. 
(3) Compare the compression ratios of LPC and MTC at DGAR/PTCN stations. 
(4) Compare the compression ratios of MTC and the maximum possible ratios at DGAR/PTCN stations. 
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 12. Rewriting Modified Tunstall Coding in DDL 
  

 To ensure that Modified Tunstall Coding can be rewritten in DDL and properly 

run by SEED reader, the last part of this project rewrote the Modified Tunstall 

compression scheme in DDL. This section outlines the essential organization, the design 

of DDL code for the Modified Tunstall Coding system, and the reedited relative portion 

of DDL’s SEED format. Finally, the rewritten DDL of SEED is successfully tested by the 

RDSEED application.  

 SEED format consists of four control headers: Volume Identifier Headers, 

Abbreviation Dictionary Control Headers (ADCH), Station Control Headers, and Time 

Span Control Headers. SEED also uses data recorder headers. Each control header, 

containing information about complete a logical volume, is coded in a computer readable 

hierarchy of data structures. Each header utilizes one or more data structures, which are 

strung in specified order. The structure contains fixed and variable data fields. Figure 4 

shows the view of a data structure example of the ADCH. 

 

Figure 4. View of the Dictionary Header  
 
 

24 Variety length

Number of 
Decoder Keys

Data Family Type

Data Format 
Identifier Code

Short Description

Non-edited 
length (bytes)

Edited length 
(bytes)

  Blockette Length

Decode Keys

1 ~ 50

6 3

Logical Record 
Sequence Number Blockette Type

A

Type Code

1 1 34

 
 

 

 Each data structure contains an identification code, a length specification, and a 

sequence of related data fields. Formatted data structures are used in control headers and 

unformatted data structures are used in the header portions of data records. The actual 
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decoding command is defined in the ADCH, which abbreviates the ASCII data 

description string. For more information on SEED, see the reference manual of SEED 

format version 2.4[4]. 

 SEED format allows for one or more volumes. This implies that a SEED file may 

include one or more data records. To simplify the experiments, this project tested one 

volume at a time on a single seismometer of a specified network station. In order to 

specify the parameters of the station List, Channel List, Network List, and the Location 

ID in the SEED reader, this project simplified each individual SEED file that spanned 

only one volume, on a single seismometer of a specified network station, by RDSEED. 

The simplified processes could create one or more SEED-formatted files, which included 

one volume on a single seismometer of a specified network station. 

 To write Modified Tunstall Coding in DDL, two portions of the SEED file, the 

ADCH and the Data Record, had to be reedited. The ADCH had four sections that 

required editing. Figure 4 depicts a view of the edited and non-edited sections of the 

Dictionary Header. The ADCH is written as an alphanumeric ASCII string, which is 

recorded as “A” Type Code in the Header as Figure 4. This project searched the control 

header at the 7th byte that has “A” Type Code of the header, and then rewrote its 

Blockette Length, according to the actual length of the entire control header without 

counting the first eight bytes, at the 12th to the 15th byte. The Short Description, which is 

a short name describing the compression format applied in this file, needed to be 

rewritten starting at the 16th byte with the 50 bytes maximum length. This project placed 

a tildes, ~, at the last byte of the Short Description indicating the end of the description. 

This project copied the Data Format Identifier Code and the Data Family Type, which 

occupied a total of 7 bytes, without any change. Then it modified the Number of Decoder 

Keys, 2 bytes long, according to the actual number of decoder keys. Finally, the project 

wrote all the Decoder Keys in the sequence, one-by-one, separating each key by using a 

tilde.  
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Figure 5. Snapshot of an Example of the Dictionary Header  
 
 

  
 

To ensure that the readers are able to write the DDL code for modified Tunstall, a 

snapshot of an actual example of the ADCH is given in Figure 5. The ADCH has a 4096 

bytes length. It starts on the 1000 line at the left hand column of Figure 5 and ends at the 

1FF0 line. The details of the initial 69 bytes of the ADH are demonstrated in Figure 6. 

Overall, the data family type 050 uses 60 keys, which are located at the “Number of 

Decode Keys” of Figure 5. Family type 50 is the Integer Differences Compression. The 

60 keys include the first 2 non-control type keys and 58 of control type keys. The first 

key, key1: F1 P0 W4 D0-31 R1 P4 W4 D0-31, is separated by a tilde with the second key. 

Key 1 describes the very first constant F1 of the sequence of differences that is located at 

the 0th byte (P0) of the ADCH, and then 4 bytes are copied (W4), extracted bits 0-31 (D0-

31), from the input stream into the working buffer; the last constant (R1) of the sequence 

of differences is located at the 4th byte (P4) of the ADCH, and then 4 bytes are 

copied(W4), extracted bits 0-31(D0-31), from the input stream into the working buffer. 

Key 2, P8 B24, 0, 23-0 N4 S6, 0, illustrates that 24 bits are copied (B24, 0, 23-0) from the 
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input stream, starting from the first bit of the 8th byte (P8) to the last bit (23-0) (crossing 

byte boundaries if necessary); the 24 bits include 4 control codes (N4), which are 6-bit 

wide (S6). Note: The bits are numbered in big-endian. 

 

Figure 6. View of the ADCH of Figure 5  
 
 

000002 030 3136 Modified Tunstall … Format ~ 0001 050 60
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Number of 
Decoder Keys
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Control type keys, key 3 to key 60, carry out the action required by the control 

code derived in key 2. Key 3 to key 60, are equivalent to the stored Codeword Table of 

Modified Tunstall Coding. For example, because key 3 to key 60 have similar 

interpretations, this paper will take key 3 (see Figure 7) and interpret it in a more 

understandable text. Key 3, T0 N0 B7, 0, 6-0 D0-6: -1: 0: 0 N1 B13, 0, 12-0 D0-12:1: 0: 

8192, maps the “Ah” input string (see Table 2) to its corresponding ranges. T0 describes 

how to decode data when the control code with the value 0 is encountered. To decode the 

first value of difference N0, copy 7 bits, starting from the first bit to the 0th bit (B7, 0, 6-0), 

and extract bits 0-6 to form unsigned integer value k1 and then apply offset 0 and scale 

factors -1 as specified by code 0 (D0-6: -1: 0: 0). To decode the second difference value 

N1, copy 13 bits, start from the first bit to the 6th bit (B13, 0, 12-0) and extract bits 0-12 

to form unsigned integer value k2 and then apply offset 8192 and scale factors 1 as 

specified by code 0 (D0-12:1: 0: 8192).  
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Figure 7. View of key 3  
 

T0 N0 B7,0,6-0 D0-6:-1:0:0 N1 B13,0,12-0 D0-12:1:0:8192

control code copy 7 bits

first value of 
difference 

extract bit 0 - 6
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second value 
of difference 

copy 13 bits

extract bit 0 - 12
(K2+8192) * (1 )

Key 3:

 
 

 

 As this paper mentioned in section “8. Why the Design of Modified Tunstall,” the 

Codeword Table and the pair of output codewords and bit strings need to be stored as 

Modified Tunstall Coding. The Codeword Table is stored as the ADCH in DDL. The pair 

of the output codewords and bit strings is stored in the Data Record portion of SEED. 

The Data Record section can be identified by the Data Header/Quality Indicator. The 

Data Header/Quality Indicator, which is located at the 7th byte of the Data Record’s 

structure by the upper case letters “D,” “R,” or “Q,” is called Type Code in the ADCH. 

The Data Record portion has a fixed length of 48 bytes. To edit the output codewords and 

the bit strings, the data from the 49th byte until the end of the data is reedited by attaching 

the compressed data of the Modified Tunstall Coding. At this point, the writing for the 

Modified Tunstall is finished and can be read in RDSEED. 

 To give an idea to SEED users on how much improvement Modified Tunstall 

Coding in SEED format, Table 7 demonstrates SEED compression ratio on two files. File 

# 2, 2005.365.23.59.07.9980.IU.PTCN.00.BHE, is encoded in Steim2 and file #17, 

2006.001.00.00.02.5999.II.DGAR.10.BHE, is encoded in Steim1. Originally, they had a 

compression ratio at 1.97 and 2.16, respectively. File #2 and #17 were rewritten in MTC-

SEED format and compression ratios at 2.42 and 2.99, respectively, were obtained. The 

improved compression ratio of MTC-SEED format is 22.84% over Steim2-SEED and 

38.43% over Steim1-SEED. SEED has worse compression ratios in Table 7 compared 
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with Steim1, Steim2 and Modified Tunstall Coding in Table 3, 4, and 5. Two main 

reasons explain the low ratios of SEED format: (1) the headers of SEED are not 

compressed at all. (2) SEED format has fixed-reserved space in terms of Block, even 

though the whole Block is not filled. 

Table 7. SEED Compression Ratios of Steim and MTC 
 

SEED Compression Ratios SEED improvement 
File 
# 

Original 
Compression 

Scheme Steim-SEED MTC-SEED 
MTC over Steim 

% 
2 Steim2 1.97 2.42 22.84  
17 Steim1 2.16 2.99 38.43     

 

13. Conclusion 
 
 Over all in this project, Modified Tunstall Coding showed better compression 

ratios compared to Steim1 and Steim2. The comparison of Modified Tunstall Coding and 

Linear Prediction Coding demonstrates that Modified Tunstall Coding compressing 

seismic data in this project is 7.95% worse than Linear Prediction Coding for the stations 

of DGAR and PTCN. Modified Tunstall Coding can not improve any more than an 

average of 4.65% for DGAR and PTCN stations due to the result of the maximum 

possib le compression ratio.  

 The interesting and challenging part of this project has been that it project crosses 

two science fields, seismology and data compression, and demonstrates how data 

compression supports the field of the seismology. Specificly, challenges, such as lack of 

DDL documentation and bugs existing in DDL of SEED format, were encountered and 

solved in the process of writing Modified Tunstall Coding in DDL. An exciting part is, in 

conclusion, that this project demonstrated that Modified Tunstall Coding is close to the 

optimal coding. Further research, which could evenly rearrange the data differences into 

various ranges to approach the optimal compression ratios, remains for others to explore.   
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Appendix I: Application of Predictcode.m 
 
%predictcode.m is a Matlab file. 
%Took the concept from the Digital Signal Processing with Examples in Matlab By  
%Samuel D. Stearns 
 
d=textread('2006.001.00.00.00.0479.IU.ANMO.00.BH2.Q.SAC_ASC', '%d'); 
 
K = length(d); 
N = 6; 
f = [0; d(1:K-1)]; 
rff = autocovar_mat(f,N); 
rfd =crosscovar(f,d,N); 
b= rff \ rfd; 
e = d - (filter(b,1,f)); 
 
fw = fopen( '0479_recovery_round_int.txt', 'w' ); 
fprintf( fw, ' %d \n', recovery); 
fclose(fw); 
 
 
d=textread('2006.001.00.00.00.0104.IU.ANMO.10.BH1.Q.SAC_ASC', '%d'); 
K=length(d); 
N= 6; 
f=[0; d(1:K-1)]; 
Rff=autocovar_mat(f,N); 
rfd=crosscovar(f,d,N); 
b=Rff\rfd; 
 
e=[d; 0]-[0; filter(b,1,f)]; 
e_1 = e(1:end-1); 
 
fw = fopen( '0104BH1_0.txt', 'w' ); 
fprintf( fw, ' %6.0f  \n', e_1); 
fclose(fw); 
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Appendix II: The List of Selected File Names  
 
The WebRequest form for requesting data from the DMC of IRIS at 
http://www.iris.edu/data/WebRequest.htm  
 

use '?' 
when 

wildcarding 

CANNOT 
wildcard 
network  

STARTING TIME  ENDING TIME  
use '?' 
when  

wildcarding 
LOCATION 

Station  Network  Year 
YYYY 

Month 
MM  

Day 
DD  

Hour 
00  

Min 
00  

Sec 
00.0 

Year 
YYYY 

Month 
MM  

Day 
DD  

Hour 
00  

Min. 
00  

Sec. 
00.0 

Channel 
names 

 

LOC ID  
 

DGAR II 2006 01 01 00 00 00 2006 01 02 00 00 00 BH?  

PTCN II 2006 01 01 00 00 00 2006 01 02 00 00 00 BH?  

ANMO IU 2006 01 01 00 00 00 2006 01 02 00 00 00 BH?   
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Appendix III: Seismic Data Request Form  
 

File 
# Selected Files Network Station Location Channel Sample 

Rate 
1 2005.365.23.55.41.7981.IU.MAJO.00.BHE IU MAJO 00 BHE 20 Hz 
2 2005.365.23.59.07.9980.IU.PTCN.00.BHE IU PTCN 00 BHE 20 Hz 
3 2005.365.23.59.17.6855.IU.PTCN.01.BHZ IU PTCN 01 BHZ 40 Hz 
4 2005.365.23.59.21.2105.IU.PTCN.01.BHN IU PTCN 01 BHN 40 Hz 
5 2005.365.23.59.22.8480.IU.PTCN.00.BHZ IU PTCN 00 BHZ 20 Hz 
6 2006.001.00.00.00.0104.IU.ANMO.10.BH1 IU ANMO 10  BH1 40 Hz 
7 2006.001.00.00.00.0104.IU.ANMO.10.BH2 IU ANMO 10 BH2 40 Hz 
8 2006.001.00.00.00.0104.IU.ANMO.10.BHZ IU ANMO 10 BHZ 40 Hz 
9 2006.001.00.00.00.0479.IU.ANMO.00.BH1 IU ANMO 00 BH1 20 Hz 
10 2006.001.00.00.00.0479.IU.ANMO.00.BH2 IU ANMO 00 BH2 20 Hz 
11 2006.001.00.00.00.0479.IU.ANMO.00.BHZ IU ANMO 00 BHZ 20 Hz 
12 2006.001.00.00.00.0481.IU.MAJO.00.BHE IU MAJO 00 BHE 20 Hz 
13 2006.001.00.00.00.0481.IU.MAJO.00.BHN IU MAJO 00 BHN 20 Hz 
14 2006.001.00.00.00.0481.IU.MAJO.00.BHZ IU MAJO 00 BHZ 20 Hz 
15 2006.001.00.00.00.7855.IU.PTCN.01.BHE IU PTCN 01 BHE 40 Hz 
16 2006.001.00.00.00.9480.IU.PTCN.00.BHN IU PTCN 00 BHN 20 Hz 
17 2006.001.00.00.02.5999.II.DGAR.10.BHE II DGAR 10  BHE 40 Hz 
18 2006.001.00.00.02.5999.II.DGAR.10.BHN II DGAR 10 BHN 40 Hz 
19 2006.001.00.00.02.5999.II.DGAR.10.BHZ II DGAR 10 BHZ 40 Hz 
20 2006.001.00.00.03.5000.II.DGAR.00.BHE II DGAR 00 BHE 20 Hz 
21 2006.001.00.00.03.5000.II.DGAR.00.BHN II DGAR 00 BHN 20 Hz 
22 2006.001.00.00.03.5000.II.DGAR.00.BHZ II DGAR 00 BHZ 20 Hz 
23 2006.001.13.51.49.2104.IU.PTCN.01.BHN IU PTCN 01 BHN 40 Hz 
24 2006.001.13.51.56.6354.IU.PTCN.01.BHZ IU PTCN 01 BHZ 40 Hz 
25 2006.001.13.52.42.3604.IU.PTCN.01.BHE IU PTCN 01 BHE 40 Hz 
26 2006.001.13.52.55.9499.II.DGAR.10.BHE II DGAR 10  BHE 40 Hz 
27 2006.001.13.53.06.4499.II.DGAR.10.BHN II DGAR 10 BHN 40 Hz 
28 2006.001.13.53.17.6499.II.DGAR.10.BHZ II DGAR 10 BHZ 40 Hz 

 


