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Abstract
The attempts to segment medical ultrasound im-
ages have had limited success than the attempts
to segment images from other medical imaging
modalities. In this project, we attempt to seg-
ment medical ultrasound images using convolu-
tional neural networks (CNNs) with a group of
noisy activation functions which have recently
been demonstrated to improve the performance
of neural networks. We report on the segmenta-
tion results using a U-Net-like CNN with noisy
rectified linear unit (NReLU) functions, noisy
hard sigmoid (NHSigmoid) functions, and noisy
hard tanh (NHTanh) function on a small data set.

1. Introduction
Medical ultrasound imaging is one of the mostly widely
used medical imaging modalities. Compared with other
modalities, including CT, MRI, and PET, ultrasound imag-
ing has the lowest cost and is non-radioactive. However,
the analysis of medical ultrasound images is more challeng-
ing than that with other modalities due to a few reasons.
Firstly, ultrasound images are affected by speckle, which
is an intrinsic noise associated with ultrasound imaging.
Speckle gives ultrasound images a granular texture, lim-
iting the ideal image SNR to be merely 1.91, and reduces
image contrast as well as perceived resolution. In addi-
tion, compared to CT and MRI, the data collected by ul-
trasound scanners usually represents two-dimensional (2D)
cross-sections of anatomy, rather than 3D. Therefore, the
information of ultrasound image data is limited.

In this project, we segment medical ultrasound images. The
inputs are medical ultrasound images. We train CNNs us-
ing these images and human segmentation results in the
training set. The CNNs are then used to to segment ul-
trasound images in the test set, and the outputs are segmen-
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tation masks. The predicted masks are then compared with
ground truth masks for the images in the test set. Quan-
titative measurement of the segmentation quality was con-
ducted to explore the performance of the algorithm.

2. Related Work
Previous effort in the automatic segmentation of medical
ultrasound images has been focused on prostate, abdomi-
nal, or cardiac images, in which there is either strong con-
trast between region of interest and background, or there is
a strong feature. Recently, Yang et al. (Yang et al., 2016)
demonstrated the segmentation of prostate images using a
fine-grained recurrent neural networks with very high Dice
coefficients. Chen et al. (Chen et al., 2016) proposed an
iterative multi-domain regularized deep learning method to
segment cardiac ultrasound images, which has very high
contrast and clear boundaries. The method leverages the
transfer learning from cross domains and enhances the fea-
ture representations. Yu et al. (Yu et al., 2016) tackle a sim-
ilar problem with dynamic convolutional neural networks.
Cheng et al. (Cheng & Malhi, 2016) explored the use of
transfer learning in segmentation of abdominal ultrasound
images. Mechon-Lara et al (Menchón-Lara & Sancho-
Gómez, 2015) utilized deep learning in the segmentation
of carotid artery.

All these research share one strong assumption. In all im-
ages, it is assumed that the regions of interest (ROIs) (e.g.
cardiac chambers or prostates) exist. This assumption may
be valid in their desired applications, but is not necessarily
valid in medical ultrasound images in general. One chal-
lenge in ultrasound scans is to find the target. In clinical
settings, recorded images may not have the ROIs. This
brings additional challenges to the training and prediction,
which is not discussed in the previous research.

3. Dataset and Features
In this project, we used one publicly available dataset from
one of the Kaggle challenges (Kaggle, 2016). It contains
ultrasound images acquired on human necks, and the aim is
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Figure 1. One example of (a) the medical ultrasound images in
the dataset, and (b) segmentation of the image by trained human
volunteers. The segmented nerves are represented in red.

to segment a collection of nerves called the Brachial Plexus
(BP). The data set contains a training set that has been seg-
mented by trained volunteers, and a test set. One example
of the original image and its segmentation by human vol-
unteers are shown in Fig. 1. Each image has 420 × 580
pixels.

The dataset imposes additional challenges to the segmenta-
tion task. As shown by the example, the region of interest
(ROI) does not have a clear boundary against surroundings,
and shares very similar texture with the rest of the image.
No obvious feature is present. In addition, as described
by the Kaggle challenge website, human mislabeling are
to be expected. Participants of the challenge reported ob-
vious mistakes by volunteers that segmented the images.
False positives and false negatives in the identification of
the nerves were reported as well. These factors contribute
to the challenges of the task.

This is the only large and publicly available ultrasound im-
age data set we could find that has been segmented and is
allowed to be used. Unfortunately, the Kaggle challenge
has already ended, and the ground-truth segmentation for
the original test set is not released. Therefore, a new train-
ing set and a new test set have to be produced by splitting
the original training set. The original training set contains
5635 images. Because of the split, a training set of 3606
(64% of the original training set), a validation set of 906
(16%) and a test set of 1127 (20%) were used.

4. Methods
A CNN with structure similar to the U-Net (Ronneberger
et al., 2015) is utilized in this project. The architecture of
the U-Net is illustrated in Fig. 2. This figure is reproduced
from (Ronneberger et al., 2015). Each blue box in this fig-
ure represents a multi-channel feature map. The data pass
through the horizontal lines simultaneously. The deep blue
arrows represents activation functions. Originally, ReLU
were used. In the current study, noisy activation functions
were used to replace them. The implementation was based
on a publicly available modification (Tyantov, 2016), us-
ing Theano and Keras. The package is used as a starting
point of the project, because it provides the preprocessing

Figure 2. The architecture of U-Net. Illustration only. Numbers
may be different from actual implementation in the project. This
figure is reproduced from (Ronneberger et al., 2015). Each blue
box in this figure represents a multi-channel feature map. The data
pass through the horizontal lines simultaneously. The deep blue
arrows represents activation functions. Originally, ReLU were
used. In this study, noisy activation functions were used to replace
them. In addition, the inception blocks were used to replace the
original blocks of U-Net.

code to read data and the evaluation of the results using the
Dice coefficients. In this implementation, batch normaliza-
tion, Inception block, and the use of Dice coefficient loss
function were used.

U-Net is chosen for this project for a number of reasons.
Most importantly, the unique architecture of U-Net makes
it suitable for biomedical image segmentation tasks. The
architecture of of modified U-Net used in this project has
two major components: the contracting path shown in the
left half of Fig. 2, and an expansive path shown in the
right half of Fig. 2. The contracting path is similar to
other CNNs, which contains the repeated applications of
two 3 × 3 convolutions followed by the noisy activation
functions, and a convolution with stride 2 for downsam-
pling. The expansive path is almost the reverse of the con-
tracting path. It starts with an upsampling of the feature
maps, and a 2 × 2 convolution that reduces the number of
the feature maps, a concatenation with the cropped feature
maps from the contracting path, and two 3×3 convolutions
followed by the noisy activation functions. An additional
1×1 convolution layer is used as the last step to map feature
vectors to the desired number of classes. This architecture
produces high precision segmentation, because the expan-
sive path has a large number of feature channels, which
facilitates the passing of information to higher resolution
layers. Thus, the high resolution features in the contract-
ing path can be combined with the upsampled output and
provide better localization of segmentation.

In addition, U-Net has been shown to have superior perfor-
mance in biomedical image segmentation tasks where the
number of training samples is limited (ISBI, 2012). How-
ever, during the trial experiment, U-Net has been less suc-
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Figure 3. One example of noisy activation functions. The noisy
tanh function, as well as tanh function and hard tanh functions are
shown in this figure. Only zero-mean noise is shown.

cessful in this project than in previous reported projects.
The Dice coefficients are approximately 0.4-0.5. We no-
ticed that the challenges presented by the medical ultra-
sound images were novel to this network. The texture, the
lack of boundaries or features, and the human segmenta-
tion errors in the training set make the task difficult. In
order to improve the performance of it, we explore the pos-
sibility to use the noisy activation functions to push the al-
gorithms out of local minima and improve its segmentation
accuracy. Noisy activation functions (Gulcehre et al., 2016)
were recently proposed and demonstrated to improve the
performance the neural networks. Briefly, they can be con-
structed by cropping activation functions and adding noise
to the saturated zone of the cropped functions. The noise
serve to push the algorithm out of local minima and make
the algorithm explore a larger area.

The details of noisy activation functions can be found in
(Gulcehre et al., 2016). In this report, we only present
a summary that is relevant to the implementation of the
project. The noisy activation functions were produced by
two steps: 1) clipping the original activation function (e.g.
tanh function) to be a piecewise linear function using first-
order Talor series expansion (termed hard functions), and
2) adding noise to the saturated zone of the activation func-
tions, where the first order derivative is 0 (Gulcehre et al.,
2016). As an example, Fig. 3 shows a comparison of tanh,
hard tanh, and noisy hard tanh functions. The tanh func-
tion is clipped into a hard tanh function with the following
form:

max(min(tanh(x), 1)− 1). (1)

Noisy hard tanh function is obtained by adding noisy to the
saturated part of the hard tanh function

More complicated development on the noisy activation
function include the use of hyper-parameters to influence
the mean of the added noise:

φ(x, ξ) = αh(x) + (1− α)u(x) + d(x)σ(x)ξ, (2)

where, u(x) is the original activation function, h(x) is the

clipped version of u(x), α is the hyper-parameter that ad-
justs the mean of the added term, d(x) = −sgn(x)sgn(1−
α), and σ(x) = c(sigmoid(u(x) − h(x)) − 0.5)2. An ex-
planation on the rationale of this form is beyond the scope
of this report. Please refer to (Gulcehre et al., 2016) for
details.

In order to study the impact of noisy activation function
(Gulcehre et al., 2016) on the training and performance of
the CNN, noisy activation functions were added to the im-
plementation using zero-mean Gaussian noise. Noisy hard
sigmoid (NHSigmoid), hard noisy tanh (NHTanh), and
noisy ReLU (NReLU) functions have been added. Gaus-
sian noise with a mean (α) of 0 and various power (σ2) was
added. NReLU has been proposed and analyzed in previ-
ous research (Nair & Hinton, 2010) and serves as a com-
parison for further analysis of the results produced using
NTanh and NSigmoid. The number of epochs to achieve
convergence and the Dice coefficients measured on the test
set after each epoch are recorded. In addition, 5-fold cross-
validation was used. The final segmentation result of each
image is a mask, which has the value of 1 for the ROI and
0 otherwise.

The Dice coefficient is used as the metrics of the segmenta-
tion quality. It has been extensively used in the evaluation
of medical image segmentation and it is also specified by
the Kaggle challenge. It is defined as (Zhang et al., 2015)

2 · |X ∩ Y |
|X|+ |Y |

, (3)

in which, |X| and |Y | represent the numbers of positive
elements in the segmentation masks generated by the code
and from the human volunteer, respectively. |X ∩ Y | is the
number of the shared positively elements in X and Y . This
measures the overlap of the predictions of the algorithm
and the ground truth from human volunteers.

The algorithm was executed on a Dell workstation using
Nvidia M4000 graphics card with 8 GB graphic memory.
Because of the memory limit, a mini-batch size of 32 was
used. A maximum of 50 epochs were specified, and only
20-30 were typically used to achieve convergence. Each
epoch took approximately 5-8 minutes on the specified ma-
chines. The total training time for each set of parameters
was 120-240 minutes. The Dice coefficients, false positive
rate, and false negative rates were recorded and analyzed.

5. Results and Discussions
Fig. 4 shows examples of three different segmentation
cases: (a) true positive case, where the algorithm correctly
detects and locate the region of interest (ROI); (b) false neg-
ative, where the algorithm does not detect the nerve in the
image; and (c) False positive case. The algorithm indicates
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(a) True positive (b) False negative (c) False positive

Figure 4. Three examples of segmentation results by human volunteers and the algorithm. Red area:ground truth from human volunteer
segmentation. Blue area: segmentation results by the algorithm. (a) True positive case. The algorithm correctly detects the nerves and
achieve high agreement with the segmentation by human volunteers. Dice Coefficient = 0.90. (b) False negative case. The algorithm
does not detect the nerve in the image. This is the case that should be avoided at all costs, because it may lead to injuries to patients. (c)
False positive case. The algorithm indicates the existence of nerves in images where the nerves do not exist. In both (b) and (c), the Dice
coefficients are 0.
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Figure 5. Dice coefficients as a function of epochs for (a) NReLU and (b) NHTanh functions. In general, the Dice coefficients increases
with epoches. NHTanh has better performance than NReLU.

the existence of nerves in images where the nerves do not
exist. Of all cases, (a) is the ideal one, and (b) is the one
that needs to be avoided at all costs, because it may lead to
injuries to patients.

Fig. 5 shows the Dice coefficients as a function of epochs
measured on the validation set for (a) NReLU and (b)
NHTanh functions. In general, the Dice coefficients in-
creases with epoches. NHTanh has better performance than
NReLU. As noise levels increase, the algorithm achieves
higher Dice coefficients at convergence at the cost of more
epochs.

Fig. 6 shows (a) Dice coefficients as a function of epochs
at various noise levels. (b) Dice coefficients at convergence
and the total number of epochs at convergences, both as
functions of noise levels. Fig. 6(a) show that the algo-
rithm achieves higher Dice coefficients at convergence at
the cost of more epochs. In general, NHSigmoid produces
higher Dice coefficients than NReLU or NHTanh functions.
Fig. 6(b) show that the Dice coefficients increases as we in-
crease the noise from 0. However, there is a saturation point

after which adding more noise does not result in higher
Dice coefficients. The number of epochs as a function
of noise levels follows a similar trend as the Dice coeffi-
cients, indicating that the cost of achieving higher Dice co-
efficients is more epochs. However, even at convergence,
the Dice coefficients are approximately 0.61, which is less
than ideal. This is 17% lower than the best reported on
Kaggle. Note that we have a 20% smaller training set for
this project than Kaggle challengers.

Because the results of NHSigmoid is superior to those pro-
duced with NReLU or NHTanh, NHSigmoid is chosen for
further analysis. Table 1 shows the measurement of Dice
coefficients, false negative rate, and false positive rate at
various noise levels. The false negative cases are the most
detrimental to the project, because it may lead to injuries
to patients. As for false positive cases, although we also
would like to minimize their number, they are less of a
concern. We noticed that the false negative rate of the algo-
rithm is relatively low (2-5% in most cases), which is desir-
able. However, the false positive rate is high. We hypoth-
esize that one major reason for such a high false positive
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Figure 6. Results produced using NHSigmoid functions. (a) Dice coefficients as a function of epochs at various noise levels. (b) Dice
coefficients at convergence and the total number of epochs at convergences, both as functions of noise levels. NHSigmoid produces
higher Dice coefficients than either NReLU and NHTanh.

rate is the inconsistency of ”ground truth” segmentation in
the training set. We noticed that some images have positive
identification of the nerves, while very similar ones (sus-
pected to be the following frames from video stream) may
have a negative reading by human volunteer. Participants
in the Kaggle challenge reported that manual pruning of
the data to remove such inconsistency results in significant
improvement of segmentation results. However, because of
the arbitrary nature of manual data pruning, it was not used
in this study.

Table 1. The Dice coefficients, false negative rates, and false pos-
itive rates of the algorithms trained with noisy hard sigmoid acti-
vation functions at different noise levels. Measurement was done
on the test set.

NOISE DICE COEFF. FALSE NEGATIVE FALSE POSITIVE
(δ) (%) (%) (%)

0.000 0.5241 2.00 63.77
0.001 46.61 3.30 68.00
0.005 50.31 2.96 63.77
0.010 57.94 5.23 46.96
0.050 55.81 4.44 55.08
0.080 59.06 5.43 48.37
0.100 61.83 9.57 35.34

In order to provide another perspective on the results, we
measured the Dice coefficients of the true positive cases.
Table 2 shows that in these cases, the Dice coefficients are
approximately 0.75. This indicates that in these cases, the
algorithm achieves better segmentation results. In addition,
noise activation functions results in higher Dice coefficients
if the noise level is between 0.01 and 0.1.

6. Conclusion and Future Work
We have segmented medical ultrasound images using con-
voluntional neural networks with noisy activation func-

Table 2. The Dice coefficients in true positive cases for the algo-
rithms trained with noisy hard sigmoid activation functions at dif-
ferent noise levels. Measurement was done on the test set.

NOISE (δ) DICE COEFF. (%)

0.000 71.60
0.001 69.32
0.005 71.51
0.010 76.41
0.050 74.85
0.080 76.55
0.100 76.27

tions. Compared to none-noisy activation functions, noisy
activation functions can achieve better performance in seg-
mentation in terms of Dice coefficients at the cost of com-
putation time. In general, adding noise to the activation
function results in an improvement of segmentation and
an increase of computation time, until a saturation point
is reached.

With U-Net and noisy hard sigmoid activation function, a
Dice coefficient of 0.61 can be achieved. The main type
of error is false positives. In most settings, the false nega-
tive rate of the detection and segmentation is low, which is
desirable in the particular medical application. In true pos-
itive cases, the Dice coefficients at convergence is above
0.75.

In this project, we did not explore the impact of the mean
of the noise on the performance of the algorithm. It can
be a future direction. In addition, because of the inconsis-
tency of ground truth segmentation in this project, just as
in many medical imaging tasks, a pre-processing algorithm
that cross-validate the images and remove such inconsis-
tency will be desirable.
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