Secondary One Express Mathematics

End of Year Examination (Set 2)

Paper 1

1. (i) Given that $a: b=6: 5$ and $b: c=10: 3$, find the value of $a: c$.
(ii) The ratio of Angel's age to Benny's age is $6: 5$ and the ratio of Benny's age to Charlie's age is $10: 3$. Given that Angel is 20 years old, find Charlie's age.

Answer (a)
(b)
2. (a) Express 630 as a product of its prime factors.
(b) Hence find the smallest integer m, such that $630 m$ is a perfect square.
(c) Find the smallest integer k in index notation, such that $\left(630+630^{2}\right) k$ is a perfect cube.
Hint: 631 is a prime number.
(b)
(c)
3. Use your calculator to evaluate $\frac{\sqrt{3.56}}{\sqrt[3]{7.56}+1}$ giving your answer correct to 3 significant figures.
4. Consider the sequence $38,36,34,32, \ldots$.
(a) Find the next two terms
(b) Write down an expression, in term of n, for the $n^{\text {th }}$ term of the sequence.
(c) Find the $50^{\text {th }}$ term.

(b)
(c)
5. In a cycling competition, the total distance the participants are required to cycle is 120 km . Samuel cycles at an average speed of $17 \mathrm{~km} / \mathrm{h}$.
(a) Express
(i) 120 km in m,
(ii) $15 \mathrm{~km} / \mathrm{h}$ in m / s.
(b) Calculate the time taken for Samuel to complete the competition, giving your answer in hours and minutes, correct to the nearest minute.

Answer (ai)
(aii)
(b)
6. Box A is 20% larger than box B while box C is 10% smaller than box B. Find the ratio of the size of Box A to that of Box C.
7. Given that $h=8$, evaluate $\frac{\sqrt{2 h}+6}{2}-3+h$.

Answer
8. Kelvin is y years old and Danny is 5 years younger than Kelvin.

Find an expression, in its simplest form, for the sum of the boys' ages.
(a) at the present time
(b) in three years time
(b)
9. (a) Expand and simplify $3 k^{2}-1-3 k(k-1)$.
(b) (i) Factorise $a^{2} b-a b^{2}$ completely.
(ii) Hence evaluate $100^{2} \times 99-100 \times 99^{2}$, without the use of calculator.
(bi)
(bii)
10. Simplify the following algebraic expressions,
(i) $\frac{2 x}{5}-\frac{2 x}{3}+\frac{5 x}{6}$
(ii) $\frac{5}{9}-\frac{h-5}{3}$
(b).
11. Write down the equations of the straight lines l_{1} and l_{2}.

Answer (a)
(b)
12. In the figure, $\angle A B C=95^{\circ}, \angle C D E=160^{\circ}$ and $A B$ is parallel to $D E$.

Find acute $\angle B C D$.

Answer $\angle B C D=$
[3]
13. Find the area of the shaded region in the following diagram.

14.

The diagram above shows a plot of land such that $A B$ is parallel to $D C, A B=10 \mathrm{~m}$, $A D=7 \mathrm{~m}, D C=14 \mathrm{~m}$ and $B C=8 \mathrm{~m}$. The shaded circle is a pond and the unshaded part is planted with grass.
(a) Find the area of the land that is planted with grass.
(b) Given that the cost of grass is $\$ 3.27$ per m^{2}, find the cost of the grass planted on the plot of land.
(b)
15. The pie chart below shows the expenditure of a tourist when he came to Singapore.
(a) Calculate the angle of the sector representing 'Sight-seeing'.
(b) If he spent a total of $\$ 2000$, how much did he spend on hotel?
(c) Describe an advantage of using a pie chart rather than a bar graph to represent the information.

(b)
(c)

Set 2

Mark Scheme Secondary 1 End of Year Examination

Question	Method	Marks
1 i	$\begin{aligned} & \mathrm{a}: \mathrm{b}=12: 10 \\ & \mathrm{~b}: \mathrm{c}=10: 3 \end{aligned}$ $\text { Therefore a: } \begin{aligned} \mathrm{c} & =12: 3 \\ & =4: 1 \end{aligned}$	$\begin{aligned} & {[\mathbf{M 1]}} \\ & {[\mathrm{A} 1]} \end{aligned}$
1ii	$20 \div 4=5$ Charlie is 5 years old.	[B1]
2a	$630=2 \times 3^{2} \times 5 \times 7$	[B1]
2b	$m=2 \times 5 \times 7=350$	[B1]
2c	$\begin{aligned} \left(630+630^{2}\right) k & =630(1+630) k \\ & =630 \times 631 \times k \\ & =2 \times 3^{2} \times 5^{2} \times 7 \times 631 \times k \\ & \therefore k=2^{2} \times 3 \times 7^{2} \times 631^{2} \end{aligned}$	$\begin{aligned} & {[\mathrm{M} 1]} \\ & {[\mathrm{A} 1]} \end{aligned}$
3	$\begin{aligned} \frac{\sqrt{3.56}}{\sqrt[3]{7.56}+1} & =0.63686 \\ & =0.637 \text { (to } 3 \text { s.f.) } \end{aligned}$	$\begin{aligned} & {[\mathrm{M} 1]} \\ & {[\mathrm{A1}]} \end{aligned}$
4a	30, 28	[B1]
4b	$\begin{aligned} T_{n} & =38+(n-1)(2) \\ & =2 n+36 \end{aligned}$	[B1]
4c	$\begin{aligned} T_{50} & =2(50)+36 \\ & =136 \end{aligned}$	[B1]
5a	120000 m	[B1]
5b	$4.72 \mathrm{~m} / \mathrm{s}$ (to 3 sf)	[B1]
5b	$\begin{aligned} & \text { Time }=120 \div 7=7.058 \mathrm{~h} \\ & 0.058 \mathrm{~h} \times 60=3.529 \mathrm{~min} \\ & \text { Therefore, } 7.058 \mathrm{~h}=7 \mathrm{~h} 4 \mathrm{~min} \text { (correct to nearest minute) } \end{aligned}$	[M1] [A1]
6	Let Box A's volume be $x \mathrm{~cm}^{3}$ Box B's volume be $1.2 x \mathrm{~cm}^{3}$ Box A's volume be $0.9 x \mathrm{~cm}^{3}$	[M1] (any 1 of Box B or Box C correct)

	$\begin{aligned} \frac{\operatorname{Box~A}}{\operatorname{BoxC}} & =\frac{1.2 x}{0.9 x} \\ & =\frac{1.2}{0.9} \\ & =\frac{4}{3} \end{aligned}$ Hence ratio 4:3	[A1]
7	$\begin{aligned} & \text { When } h=8 \text {, } \\ & \frac{\sqrt{2 h}+6}{2}-3+h \\ & =\frac{\sqrt{2(8)}+6}{2}-3+8 \\ & =16 \end{aligned}$	[M1] substitution [A1]
8a	Danny is $(y-5)$ years old. Total age $=y+y-5=(2 y-5)$ years	$\begin{aligned} & \hline \text { [M1] } \\ & {[\mathbf{A 1}]} \end{aligned}$
8b	In three years time, total increase in age $=6$ Total age $=(2 y-5)+6=2 y+1$ years.	[B1]
9a	$\begin{aligned} 3 k^{2}-1-3 k(k-1) & =3 k^{2}-1-3 k^{2}+3 k \\ & =3 k-1 \end{aligned}$	$\begin{aligned} & \hline \text { [M1] } \\ & {[\mathrm{A} 1]} \end{aligned}$
9 bi	$a^{2} b-a b^{2}=a b(a-b)$	[B1]
9 bii	$\begin{aligned} & \text { Let } a=100, b=99 \\ & 100^{2} \times 99-100 \times 99^{2} \\ & =(100 \times 99)(100-99) \\ & =9900 \end{aligned}$	$\begin{aligned} & \text { [M1] } \\ & {[\mathrm{A} 1]} \end{aligned}$
10i	$\begin{aligned} \frac{2 x}{5}-\frac{2 x}{3}+\frac{5 x}{6} & =\frac{12 x}{30}-\frac{20 x}{30}+\frac{25 x}{30} \\ & =\frac{17 x}{30} \end{aligned}$	$\begin{aligned} & {[\mathrm{M} 1]} \\ & {[\mathrm{A1}]} \end{aligned}$
10ii	$\begin{aligned} \frac{5}{9}-\frac{3(h-5)}{9} & =\frac{5-3 h+15}{9} \\ & =\frac{-3 h+20}{9} \end{aligned}$	$\begin{aligned} & {[\mathrm{M} 1]} \\ & \text { [A1] } \end{aligned}$
11a	$y=4$	[B1]
11b	$x=-3$	[B1]
12	Draw an auxiliary line CF such that $\mathrm{CF} / / \mathrm{DE}$. $\begin{aligned} \angle \mathrm{DCF} \quad & =180-160 \text { (int } \angle, \mathrm{CF} / / \mathrm{DE}) \\ & =20^{\circ} \end{aligned}$	[M1]

	$\begin{aligned} & \angle \mathrm{BCF}=95^{\circ}(\text { alt } \angle, \mathrm{CF} / / \mathrm{DE}) \\ & \text { Therefore, } \angle \mathrm{BCD} \\ & =95-20 \\ & \\ & \\ & \\ & =75^{\circ} \end{aligned}$	$\begin{aligned} & \hline \text { [M1] } \\ & {[\mathrm{A} 1]} \end{aligned}$
13	$\begin{aligned} & \text { Area rectangle }=11 \times 20=220 \mathrm{~cm}^{2} \\ & \text { Area Triangle }=\frac{1}{2} \times(20-5) \times 11=82.5 \mathrm{~cm}^{2} \\ & \text { Shaded region }=220-82.5=137.5 \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & {[\mathrm{M} 1]} \\ & {[\mathrm{M} 1]} \\ & {[\mathrm{A} 1]} \end{aligned}$
14a	$\begin{aligned} & \text { Radius }=7 \div 2=3.5 \mathrm{~m} \\ & \text { Area pond }=\pi(3.5)^{2}=38.5 \mathrm{~m}^{2} \\ & \text { Area Trapezium }=\frac{1}{2} \times(10+14)(7)=84 \mathrm{~m}^{2} \\ & \text { Grass region }=84-38.5 \mathrm{~m}^{2}=45.5 \mathrm{~m}^{2} \end{aligned}$	[M1] [M1] [A1]
14b	$\begin{aligned} \text { Cost } & =45.5 \times 3.27 \\ & =148.785 \\ & =148.79 \text { (nearest cent) } \end{aligned}$	$\begin{aligned} & {[\mathbf{M 1} 1]} \\ & {[\mathrm{A} 1]} \end{aligned}$
15a	Percentage sightseeing $=100-45-30-10=15 \%$ Angle sightseeing $=\frac{15}{100} \times 360^{\circ}=54^{\circ}$	$\begin{aligned} & {[\mathrm{M} 1]} \\ & {[\mathrm{A} 1]} \end{aligned}$
15b	$\text { Spent on hotel }=\frac{30}{100} \times \$ 2000=\$ 600$	[B1]
15c	A pie chart is able to show the proportion of his expenditure more clearly as compared to a bar graph.	[B1]

