
Winkler, Scripting in Unity3D workshop, p. 1
	

AD41700 Computer Games
Prof. Fabian Winkler
Fall 2011

Scripting in Unity3D (vers. 3.4)

The most basic concepts of scripting in Unity 3D are very well explained in Unity’s
“Using Scripts” tutorial:
http://unity3d.com/support/documentation/Manual/Scripting.html

So please begin this workshop after going through the examples in this workshop first!

The workshop ends after introducing students to the concept of the Update () function
in a behavior script, working with variables and attaching scripts to game objects.

If you are having difficulties launching a proper script editor for your scripts in Unity, go
to Unity > Preferences… and in the General panel choose Unitron as your external script
editor:

We will start by using the terrain we created in the second part of the first Unity
workshop to experiment with 2 things:

(1) a simple behavior script that changes the behavior of one game object
(2) a script that allows us to create a trigger zone by detecting a collision between a

game object and the first person controller.

Winkler, Scripting in Unity3D workshop, p. 2
	

Let’s begin with the simple behavior script that rotates a cube using the Update()
function. We need a terrain, a first person controller and a cube, so the scene should
look something like this (I scaled the cube to make the rotating movement more visible):

Next we will create a new behavior script: Asset > Create > JavaScript

We name this script “rotate” in the Project widow:

You already see the empty Update() function in the Inspector, now double click on the
script name in the project window to open it up in the Unitron script editor.

Type in the following script:

var speed = 5.0;

function Update () {
 transform.Rotate(0, speed*Time.deltaTime, 0);
}
	

Winkler, Scripting in Unity3D workshop, p. 3
	

This script updates the Y rotation angle of the game object it is attached to (the
cube/box) every time Unity renders a new frame. It is dependent on the time that has
passed from the previous frame to the current frame and thus is independent of the
frame rate at which your Unity scene will play back (i.e. it won’t turn faster on faster
computers, only more smoothly).

In the Script editor it should look like this:

Save the script when you close the editor. Then drag and drop the script onto the cube
game object in the Hierarchy window. Press the Play button and see the box spin in mid
air. Now stop the animation and select the cube that has the script attached to it in the
Hierarchy window, notice how in the Inspector the cube game object now has a new
property called Rotate (Script). The nice thing about declaring the speed variable
previously is that we can change its value interactively in the property inspector without
having to open the Unitron script editor.

Creating Trigger Zones

In the next step, we’ll create a trigger zone with the same game object (cube/box).
Triggers are useful for triggering other events in your game, like cutscenes, automatic
door opening, displaying tutorial messages, etc. For this we need to remove the rotate
script and move the box down to the ground of the terrain. To remove a script from a
game object, select the game object in the Hierarchy window and then click on the little
gear on the top right corner of the script property in the Inspector. Select “remove
component” in the pull down menu:

Next we create a new empty script: Asset > Create > JavaScript,name it “trigger_script”,
open it up in Unitron, delete the automatically filled in Update(0 function and replace it
with the following script:

Winkler, Scripting in Unity3D workshop, p. 4
	

This script is doing the following: it checks if the position of the first person controller
intersects with the position of the trigger zone (the cube/box game object). If so it
simply prints out “Bump!” in Unity’s status bar at the bottom of the screen.

This is what the script looks like in Unitron (note: the green lines are comments):

Now that the script is in place we need to attach it to the game object that we would like
to turn into a trigger zone, in this case the cube/box. Take the script in the Property
window and drag it onto the cube in the Hierarchy window. For the cube to work as a
trigger zone, it is important to select it in the Hierarchy window and then to check the
“is Trigger” box in the Box Collider property.

var target : Collider;

function OnTriggerEnter(cubeTrigger : Collider)
{
 if (cubeTrigger == target)

 {
 print("Bump!");
 }

}	

Winkler, Scripting in Unity3D workshop, p. 5
	

Now, the only thing remaining to do is to set the first person controller to the target
variable in the script. We do this by selecting the cube game object (the trigger zone) in
the Hierarchy window and navigating to the Trigger_script (Script) property in the
Inspector. Then choose “First Person Controller” from the list next to the “Target”
variable:

Now the script can check for collisions between the trigger zone (the game object it is
attached to) and the first person controller, the game object that can trigger events by
entering the trigger zone.

If you would like to render the trigger zone invisible just uncheck the game object’s
“Mesh Renderer” property in the Inspector.

Counting
Rather than just displaying the same message in the status bar upon a collision, let’s
change the script and count the number of collisions that are happening when
navigating around in the scene. For this we need a new variable in the trigger_script. I’ll
call it “numberOfHits.”

Note how declaring the “numberOfHits” variable as private it won’t show up in the
Inspector. This script is only triggered upon entering the trigger zone – “OnTriggerEnter”
– so we don’t need to worry about multiple counts per visit in the trigger zone.

var target : Collider;
private var numberOfHits : int = 0;

function OnTriggerEnter(cubeTrigger : Collider)
{
 if (cubeTrigger == target)

 {
 numberOfHits = numberOfHits + 1;
 print("Bumped: " + numberOfHits + " times!");
 }
}

Winkler, Scripting in Unity3D workshop, p. 6
	

Playing Sounds
Next, let’s use the trigger zone to play a sound every time we enter it. I downloaded a
sample .mp3 file from http://www.sounddogs.com converted it in Audacity
(http://audacity.sourceforge.net/) to AIFF and imported it into Unity as a new asset:
Asset > Import New Asset… Unity understand two types of sound files: uncompressed
(AIFF or WAV) or compressed (ogg/vorbis). Click on the sound file (mine is named beep)
in the Project window to access its properties in the Inspector. Check off the 3D sound
option and hit “Apply” in the Inspector window.

We change the trigger_script script to include a new audio variable and a line that will
play back the sound:

var target : Collider;
var mySound : AudioClip;

function OnTriggerEnter(cubeTrigger : Collider)
{
 if (cubeTrigger == target)

 {
 audio.PlayOneShot(mySound);
 print("Bump!");
 }
}

Winkler, Scripting in Unity3D workshop, p. 7
	

We now have to assign the “Beep” sound file to the mySound variable in the Inspector
window. First select the cube in Hierarchy and then go to the Inspector window:

We also need to add an Audio source component to the game object that contains the
sound. Select the cube in the Hierarchy and then go to:

Component > Audio > AudioSource

In the Inspector, choose “Beep” as the Audio Clip and uncheck “Play On Awake”

You can now hit the play button and explore the scene. If you would also like to add
some background music, simply add an empty game object (Game Object > Create
Empty) and then add an Audio source Component to it (keep the empty game object
selected in the Hierarchy and then choose Component > Audio > Audio Source. Assign
the background sound file in the Inspector and this time make sure the “Play On Awake”
box is checked, so the sound loads when the scene loads. Also make sure the “Loop”
box is checked for continuous sound playback. You can learn more about audio
playback in Unity 3D in Unity’s reference manual at:
http://unity3d.com/support/documentation/Components/class-AudioSource.html

Winkler, Scripting in Unity3D workshop, p. 8
	

Changing Color
In this example we explore how a script can change the color, first of the game object it
is attached to and second of another game object.

We’ll start by creating a plain white material with the option to be rendered transparent
(this will allow us to also set the opacity interactively in a script: Assets > Create >
Material. Assign this material to the cube (the trigger zone) by dragging it onto the cube
game object in the Hierarchy. Next, select the new material (I called it “myMaterial”) and
set its shader in the Inspector Shader > Transparent > Diffuse.

Now we just have to add a couple of lines to our script:

The variable “turquoise” is of the type color and its four arguments are color values for
its red, green and blue components as well as its alpha channel (transparency
information). When we collide with the trigger zone, its material now changes from a
solid white to a transparent turquoise.

var target : Collider;
var mySound : AudioClip;
private var turquoise : Color = Color(0.0, 0.8, 0.7, 0.3);

function OnTriggerEnter(cubeTrigger : Collider)
{
 if (cubeTrigger == target)

 {
 audio.PlayOneShot(mySound);
 renderer.material.color = turquoise;
 print("Bump!");
 }
}

Winkler, Scripting in Unity3D workshop, p. 9
	

Controlling other Game Object’s Components
Let’s create a second game object behind the trigger zone, so that not the trigger zone
changes its material but the primitive behind it: Create a new sphere – Game Object >
Create Other > Sphere and place it behind the trigger zone. I also changed the initial
transparency of the trigger zone so you can see the sphere behind it but still see the
trigger zone as well. For this I created a new material, “whiteTransparent”, so I have one
material for the trigger zone (whiteTransparent) and one for the sphere (myMaterial).

I’ll change my script by adding one more variable that will reference the sphere’s
Material, called “targetMaterial”:

Now we need to assign the right material to “targetMaterial” by selecting “myMaterial” in
the Inspector after selecting the cube to which this script is attached to:

Hit the play button and see how the color of the sphere changes when you walk through
the trigger zone. You will also see that the color of the sphere is not restored to white
once it is changed. To initialize certain components before any other functions of the
script are used you can use the Awake() function. In this case we’ll use it to always
initialize the color of the sphere with white:

var target : Collider;
var mySound : AudioClip;
var targetMaterial : Material;
private var turquoise : Color = Color(0.0, 0.8, 0.7, 1.0);

function OnTriggerEnter(cubeTrigger : Collider)
{
 if (cubeTrigger == target)

 {
 audio.PlayOneShot(mySound);
 targetMaterial.color = turquoise;
 print("Bump!");
 }
}	

Winkler, Scripting in Unity3D workshop, p. 10
	

So the final script looks something like this:

Another approach would be to use some logic and conditional statements to toggle
between two colors whenever you walk through the trigger zone:

Now you are ready for the next tutorial about Instantiation (dynamic creation of game
objects) which we will use to create bullets to shoot at things…

function Awake () {
targetMaterial.color = Color.white;
}

var target : Collider;
var mySound : AudioClip;
var targetMaterial : Material;
private var turquoise : Color = Color(0.0, 0.8, 0.7, 1.0);

function Awake () {
targetMaterial.color = Color.white;
}

function OnTriggerEnter(cubeTrigger : Collider)
{
 if (cubeTrigger == target)

 {
 audio.PlayOneShot(mySound);
 targetMaterial.color = turquoise;
 print("Bump!");
 }
}

var target : Collider;
var mySound : AudioClip;
var targetMaterial : Material;
private var turquoise : Color = Color(0.0, 0.8, 0.7, 1.0);

function Awake () {
targetMaterial.color = Color.white;
}

function OnTriggerEnter(cubeTrigger : Collider)
{
 if (cubeTrigger == target)

 {
 audio.PlayOneShot(mySound);
 if (targetMaterial.color == Color.white){
 targetMaterial.color = turquoise;
 } else {
 targetMaterial.color = Color.white;
 }
 print("Bump!");
 }
}

