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Linear Algebra Background

Linear Spaces

A vector space V is a set of elements called vectors x ∈ V that may
be multiplied by a scalar c and added, e.g.,

z = αx + βy

I will denote scalars with lowercase letters and vectors with lowercase
bold letters.

Prominent examples of vector spaces are Rn (or more generally Cn),
but there are many others, for example, the set of polynomials in x .

A subspace V ′ ⊆ V of a vector space is a subset such that sums and
multiples of elements of V ′

remain in V ′
(i.e., it is closed).

An example is the set of vectors in x ∈ R3 such that x3 = 0.
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Linear Algebra Background

Image Space

Consider a set of n vectors a1, a2, · · · , an ∈ Rm and form a matrix by
putting these vectors as columns

A = [a1 | a2 | · · · | am] ∈ Rm,n.

I will denote matrices with bold capital letters, and sometimes write
A = [m, n] to indicate dimensions.

The matrix-vector product is defined as a linear combination of
the columns:

b = Ax = x1a1 + x2a2 + · · ·+ xnan ∈ Rm.

The image im(A) or range range(A) of a matrix is the subspace of
all linear combinations of its columns, i.e., the set of all b′s.
It is also sometimes called the column space of the matrix.
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Linear Algebra Background

Dimension

The set of vectors a1, a2, · · · , an are linearly independent or form a
basis for Rm if b = Ax = 0 implies that x = 0.

The dimension r = dimV of a vector (sub)space V is the number of
elements in a basis. This is a property of V itself and not of the basis,
for example,

dimRn = n

Given a basis A for a vector space V of dimension n, every vector of
b ∈ V can be uniquely represented as the vector of coefficients x in
that particular basis,

b = x1a1 + x2a2 + · · ·+ xnan.

A simple and common basis for Rn is {e1, . . . , en}, where ek has all
components zero except for a single 1 in position k.
With this choice of basis the coefficients are simply the entries in the
vector, b ≡ x.
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Linear Algebra Background

Kernel Space

The dimension of the column space of a matrix is called the rank of
the matrix A ∈ Rm,n,

r = rank A ≤ min(m, n).

If r = min(m, n) then the matrix is of full rank.

The nullspace null(A) or kernel ker(A) of a matrix A is the subspace
of vectors x for which

Ax = 0.

The dimension of the nullspace is called the nullity of the matrix.

For a basis A the nullspace is null(A) = {0} and the nullity is zero.
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Linear Algebra Background

Orthogonal Spaces

An inner-product space is a vector space together with an inner or
dot product, which must satisfy some properties.

The standard dot-product in Rn is denoted with several different
notations:

x · y = (x, y) = 〈x, y〉 = xTy =
n∑

i=1

xiyi .

For Cn we need to add complex conjugates (here ? denotes a complex
conjugate transpose, or adjoint),

x · y = x?y =
n∑

i=1

x̄iyi .

Two vectors x and y are orthogonal if x · y = 0.

A. Donev (Courant Institute) Lecture III 9/2020 8 / 71



Linear Algebra Background

Part I of Fundamental Theorem

One of the most important theorems in linear algebra is that the sum
of rank and nullity is equal to the number of columns: For A ∈ Rm,n

rank A + nullity A = n.

In addition to the range and kernel spaces of a matrix, two more
important vector subspaces for a given matrix A are the:

Row space or coimage of a matrix is the column (image) space of its
transpose, im AT .
Its dimension is also equal to the the rank.
Left nullspace or cokernel of a matrix is the nullspace or kernel of its
transpose, ker AT .
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Linear Algebra Background

Part II of Fundamental Theorem

The orthogonal complement V⊥ or orthogonal subspace of a
subspace V is the set of all vectors that are orthogonal to every vector
in V.

Let V be the set of vectors in x ∈ R3 such that x3 = 0. Then V⊥ is
the set of all vectors with x1 = x2 = 0.

Second fundamental theorem in linear algebra:

im AT = (ker A)⊥

ker AT = (im A)⊥
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Linear Algebra Background

Linear Transformation

A function L : V → W mapping from a vector space V to a vector
space W is a linear function or a linear transformation if

L(αv) = αL(v) and L(v1 + v2) = L(v1) + L(v2).

Any linear transformation L can be represented as a multiplication by
a matrix L

L(v) = Lv.

For the common bases of V = Rn and W = Rm, the product w = Lv
is simply the usual matix-vector product,

wi =
n∑

k=1

Likvk ,

which is simply the dot-product between the i-th row of the matrix
and the vector v.
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Linear Algebra Background

Matrix algebra

wi = (Lv)i =
n∑

k=1

Likvk

The composition of two linear transformations A = [m, p] and
B = [p, n] is a matrix-matrix product C = AB = [m, n]:

z = A (Bx) = Ay = (AB) x

zi =
n∑

k=1

Aikyk =

p∑
k=1

Aik

n∑
j=1

Bkjxj =
n∑

j=1

(
p∑

k=1

AikBkj

)
xj =

n∑
j=1

Cijxj

Cij =

p∑
k=1

AIkBkj

Matrix-matrix multiplication is not commutative, AB 6= BA in
general.
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Linear Algebra Background

The Matrix Inverse

A square matrix A = [n, n] is invertible or nonsingular if there exists
a matrix inverse A−1 = B = [n, n] such that:

AB = BA = I,

where I is the identity matrix (ones along diagonal, all the rest zeros).

The following statements are equivalent for A ∈ Rn,n:

A is invertible.
A is full-rank, rank A = n.
The columns and also the rows are linearly independent and form a
basis for Rn.
The determinant is nonzero, det A 6= 0.
Zero is not an eigenvalue of A.
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Linear Algebra Background

Matrix Algebra

Matrix-vector multiplication is just a special case of matrix-matrix
multiplication. Note xTy is a scalar (dot product).

C (A + B) = CA + CB and ABC = (AB) C = A (BC)

(
AT
)T

= A and (AB)T = BTAT

(
A−1

)−1
= A and (AB)−1 = B−1A−1 and

(
AT
)−1

=
(
A−1

)T
Instead of matrix division, think of multiplication by an inverse:

AB = C ⇒
(
A−1A

)
B = A−1C ⇒

{
B = A−1C

A = CB−1
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Linear Algebra Background

Vector norms

Norms are the abstraction for the notion of a length or magnitude.

For a vector x ∈ Rn, the p-norm is

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

and special cases of interest are:

1 The 1-norm (L1 norm or Manhattan distance), ‖x‖1 =
∑n

i=1 |xi |
2 The 2-norm (L2 norm, Euclidian distance),

‖x‖2 =
√

x · x =
√∑n

i=1 |xi |
2

3 The ∞-norm (L∞ or maximum norm), ‖x‖∞ = max1≤i≤n |xi |

1 Note that all of these norms are inter-related in a finite-dimensional
setting.

A. Donev (Courant Institute) Lecture III 9/2020 15 / 71



Linear Algebra Background

Matrix norms

Matrix norm induced by a given vector norm:

‖A‖ = sup
x6=0

‖Ax‖
‖x‖

⇒ ‖Ax‖ ≤ ‖A‖ ‖x‖

The last bound holds for matrices as well, ‖AB‖ ≤ ‖A‖ ‖B‖.
Special cases of interest are:

1 The 1-norm or column sum norm, ‖A‖1 = maxj
∑n

i=1 |aij |
2 The ∞-norm or row sum norm, ‖A‖∞ = maxi

∑n
j=1 |aij |

3 The 2-norm or spectral norm, ‖A‖2 = σ1 (largest singular value)

4 The Euclidian or Frobenius norm, ‖A‖F =
√∑

i,j |aij |
2

(note this is not an induced norm)
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Conditioning of linear systems

Matrices and linear systems

It is said that 70% or more of applied mathematics research involves
solving systems of m linear equations for n unknowns:

n∑
j=1

aijxj = bi , i = 1, · · · ,m.

Linear systems arise directly from discrete models, e.g., traffic flow
in a city. Or, they may come through representing or more abstract
linear operators in some finite basis (representation).
Common abstraction:

Ax = b

Special case: Square invertible matrices, m = n, det A 6= 0:

x = A−1b.

The goal: Calculate solution x given data A,b in the most
numerically stable and also efficient way.
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Conditioning of linear systems

Stability analysis

Perturbations on right hand side (rhs) only:

A (x + δx) = b + δb ⇒ b + Aδx = b + δb

δx = A−1δb ⇒ ‖δx‖ ≤
∥∥A−1

∥∥ ‖δb‖

Using the bounds

‖b‖ ≤ ‖A‖ ‖x‖ ⇒ ‖x‖ ≥ ‖b‖ / ‖A‖

the relative error in the solution can be bounded by

‖δx‖
‖x‖

≤
∥∥A−1

∥∥ ‖δb‖
‖x‖

≤
∥∥A−1

∥∥ ‖δb‖
‖b‖ / ‖A‖

= κ(A)
‖δb‖
‖b‖

where the conditioning number κ(A) depends on the matrix norm used:

κ(A) = ‖A‖
∥∥A−1

∥∥ ≥ 1.
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Conditioning of linear systems

Conditioning Number

The full derivation, not given here, estimates the uncertainty or
perturbation in the solution:

‖δx‖
‖x‖

≤ κ(A)

1− κ(A)‖δA‖
‖A‖

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
.

The worst-case conditioning of the linear system is determined by
κ(A).

Best possible error with rounding unit u ≈ 10−16:

‖δx‖∞
‖x‖∞

. 2uκ(A),

Solving an ill-conditioned system, κ(A)� 1 (e.g., κ = 1015!) ,
should only be done if something special is known.

The conditioning number can only be estimated in practice since
A−1 is not available (see MATLAB’s rcond function).

A. Donev (Courant Institute) Lecture III 9/2020 20 / 71
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Gauss elimination and LU factorization

GEM: Eliminating x1
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Gauss elimination and LU factorization

GEM: Eliminating x2
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Gauss elimination and LU factorization

GEM: Backward substitution
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Gauss elimination and LU factorization

GEM as an LU factorization tool

We have actually factorized A as

A = LU,

L is unit lower triangular (lii = 1 on diagonal), and U is upper
triangular.

GEM is thus essentially the same as the LU factorization method.
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Gauss elimination and LU factorization

GEM in MATLAB

% Sample MATLAB code ( f o r l e a r n i n g p u r p o s e s on ly , not r e a l computing ! ) :
f u n c t i o n A = MyLU(A)

% LU f a c t o r i z a t i o n in−p l a c e ( o v e r w r i t e A)
[ n ,m]= s i z e (A ) ;
i f ( n ˜= m) ; e r r o r ( ’ M a t r i x not square ’ ) ; end
f o r k =1:(n−1) % For v a r i a b l e x ( k )

% C a l c u l a t e m u l t i p l i e r s i n column k :
A( ( k +1):n , k ) = A( ( k +1):n , k ) / A( k , k ) ;
% Note : P i v o t e l em en t A( k , k ) assumed nonzero !
f o r j =(k +1): n

% E l i m i n a t e v a r i a b l e x ( k ) :
A( ( k +1):n , j ) = A( ( k +1):n , j ) − . . .

A( ( k +1):n , k ) ∗ A( k , j ) ;
end

end
end
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Gauss elimination and LU factorization

Pivoting
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Gauss elimination and LU factorization

Pivoting during LU factorization

Partial (row) pivoting permutes the rows (equations) of A in order
to ensure sufficiently large pivots and thus numerical stability:

PA = LU

Here P is a permutation matrix, meaning a matrix obtained by
permuting rows and/or columns of the identity matrix.

Complete pivoting also permutes columns, PAQ = LU.
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Gauss elimination and LU factorization

Gauss Elimination Method (GEM)

GEM is a general method for dense matrices and is commonly used.

Implementing GEM efficiently and stably is difficult and we will not
discuss it here, since others have done it for you!

The LAPACK public-domain library is the main repository for
excellent implementations of dense linear solvers.

MATLAB uses a highly-optimized variant of GEM by default, mostly
based on LAPACK.

MATLAB does have specialized solvers for special cases of matrices,
so always look at the help pages!

A. Donev (Courant Institute) Lecture III 9/2020 29 / 71



Gauss elimination and LU factorization

Solving linear systems

Once an LU factorization is available, solving a linear system is simple:

Ax = LUx = L (Ux) = Ly = b

so solve for y using forward substitution.
This was implicitly done in the example above by overwriting b to
become y during the factorization.

Then, solve for x using backward substitution

Ux = y.

If row pivoting is necessary, the same applies but L or U may be
permuted upper/lower triangular matrices,

A = L̃U =
(
PTL

)
U.
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Gauss elimination and LU factorization

In MATLAB

In MATLAB, the backslash operator (see help on mldivide)

x = A\b ≈ A−1b,

solves the linear system Ax = b using the LAPACK library.
Never use matrix inverse to do this, even if written as such on paper.

Doing x = A\b is equivalent to performing an LU factorization and
doing two triangular solves (backward and forward substitution):

[L̃,U] = lu(A)

y = L̃\b
x = U\y

This is a carefully implemented backward stable pivoted LU
factorization, meaning that the returned solution is as accurate as the
conditioning number allows.
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Gauss elimination and LU factorization

GEM Matlab example (1)

>> A = [ 1 2 3 ; 4 5 6 ; 7 8 0 ] ;
>> b=[2 1 −1] ’ ;

>> x=Aˆ(−1)∗b ; x ’ % Don ’ t do t h i s !
ans = −2.5556 2 .1111 0 .1111

>> x = A\b ; x ’ % Do t h i s i n s t e a d
ans = −2.5556 2 .1111 0 .1111

>> l i n s o l v e (A, b ) ’ % Even more c o n t r o l
ans = −2.5556 2 .1111 0 .1111
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Gauss elimination and LU factorization

GEM Matlab example (2)

>> [ L ,U] = l u (A) % Even b e t t e r i f r e s o l v i n g

L = 0.1429 1 .0000 0
0 .5714 0 .5000 1 .0000
1 .0000 0 0

U = 7.0000 8 .0000 0
0 0 .8571 3 .0000
0 0 4 .5000

>> norm ( L∗U−A, i n f )
ans = 0

>> y = L\b ;
>> x = U\y ; x ’
ans = −2.5556 2 .1111 0 .1111
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Gauss elimination and LU factorization

Backwards Stability

Even though we cannot get x correctly for ill-conditioned linear
systems, we can still get an (not the one!) x that is a solution of the
equation to almost machine precision.

This sort of backward stability means that there is a problem nearby
the original problem such that the answer we compute x̂ is the
solution of that “perturbed” problem,

(A + δA) x̂ = b + δb.

A backwards stable method gives a residual r = Ax− b that is zero
to within the rounding unit u ≈ 10−16,

‖Ax− b‖
‖b‖

∼ ‖Ax− b‖
‖Ax‖

∼ u,

Observe that the conditioning number of the matrix does not enter
here, it can be large!
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Gauss elimination and LU factorization

Backwards Stability contd.

Gaussian elimination with partial pivoting is almost always backwards
stable in practice, but one can always check the residual after
computing the answer (always good practice to confirm you solved
the problem you thought you solved!)

Specifically, if we compute the LU factorization we are guaranteed
that

A + δA = LU where
‖δA‖
‖A‖

≤ Cu

where C is some modest constant that depends polynomially on the
number of unknowns (not exponentially).

Complete pivoting is rarely used in practice because it is expensive,
even though it will give better guarantees.
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Gauss elimination and LU factorization

Cost estimates for GEM

For forward or backward substitution, at step k there are ∼ (n − k)
multiplications and subtractions, plus a few divisions.
The total over all n steps is

n∑
k=1

(n − k) =
n(n − 1)

2
≈ n2

2

subtractions and multiplications, giving a total of O(n2)
floating-point operations (FLOPs).

The LU factorization itself costs a lot more, O(n3),

FLOPS ≈ 2n3

3
,

and the triangular solves are negligible for large systems.

When many linear systems need to be solved with the same A the
factorization can be reused.
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Beyond GEM

Matrix Rescaling and Reordering

Pivoting is not always sufficient to ensure lack of roundoff problems.
In particular, large variations among the entries in A should be
avoided.

This can usually be remedied by changing the physical units for x and
b to be the natural units x0 and b0.

Rescaling the unknowns and the equations is generally a good idea
even if not necessary:

x = Dx x̃ = Diag {x0} x̃ and b = Dbb̃ = Diag {b0} b̃.

Ax = ADx x̃ = Dbb̃ ⇒
(
D−1

b ADx

)
x̃ = b̃

The rescaled matrix Ã = D−1
b ADx should have a better

conditioning.

Also note that reordering the variables from most important to
least important may also help.
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Beyond GEM

Efficiency of Solution

Ax = b

The most appropriate algorithm really depends on the properties of
the matrix A:

General dense matrices, where the entries in A are mostly non-zero
and nothing special is known: Use LU factorization.
Symmetric (aij = aji ) and also positive-definite matrices.
General sparse matrices, where only a small fraction of aij 6= 0.
Special structured sparse matrices, arising from specific physical
properties of the underlying system.

It is also important to consider how many times a linear system with
the same or related matrix or right hand side needs to be solved.
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Beyond GEM Symmetric Positive-Definite Matrices

Positive-Definite Matrices

A real symmetric matrix A is positive definite iff (if and only if):

1 All of its eigenvalues are real (follows from symmetry) and positive.
2 ∀x 6= 0, xTAx > 0, i.e., the quadratic form defined by the matrix A is

convex.
3 There exists a unique lower triangular L, Lii > 0,

A = LLT ,

termed the Cholesky factorization of A (symmetric LU factorization).

1 For Hermitian complex matrices just replace transposes with adjoints
(conjugate transpose), e.g., AT → A? (or AH in the book).
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Beyond GEM Symmetric Positive-Definite Matrices

Cholesky Factorization

The MATLAB built in function

R = chol(A)

gives the Cholesky factorization and is a good way to test for
positive-definiteness.

The cost of a Cholesky factorization is about half the cost of LU
factorization, n3/3 FLOPS.

Solving linear systems is as for LU factorization, replacing U with LT .

For Hermitian/symmetric matrices with positive diagonals MATLAB
tries a Cholesky factorization first, before resorting to LU
factorization with pivoting.
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Beyond GEM Symmetric Positive-Definite Matrices

Special Matrices in MATLAB

MATLAB recognizes (i.e., tests for) some special matrices
automatically: banded, permuted lower/upper triangular, symmetric,
Hessenberg, but not sparse.

In MATLAB one may specify a matrix B instead of a single
right-hand side vector b.

The MATLAB function

X = linsolve(A,B, opts)

allows one to specify certain properties that speed up the solution
(triangular, upper Hessenberg, symmetric, positive definite, none),
and also estimates the condition number along the way.

Use linsolve instead of backslash if you know (for sure!) something
about your matrix.
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Overdetermined Linear Systems
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Overdetermined Linear Systems

Non-Square Matrices

In the case of over-determined (more equations than unknowns) or
under-determined (more unknowns than equations), the solution to
linear systems in general becomes non-unique.

One must first define what is meant by a solution, and the common
definition is to use a least-squares formulation:

x? = arg min
x∈Rn
‖Ax− b‖ = arg min

x∈Rn
Φ(x)

where the choice of the L2 norm leads to:

Φ(x) = (Ax− b)T (Ax− b) .

Over-determined systems, m > n, can be thought of as fitting a
linear model (linear regression):
The unknowns x are the coefficients in the fit, the input data is in A
(one column per measurement), and the output data (observables)
are in b.
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Overdetermined Linear Systems

Normal Equations

It can be shown that the least-squares solution satisfies:

∇Φ(x) = AT [2 (Ax− b)] = 0 (critical point)

This gives the square linear system of normal equations(
ATA

)
x? = ATb.

If A is of full rank, rank (A) = n, it can be shown that ATA is
positive definite, and Cholesky factorization can be used to solve the
normal equations.

Multiplying AT (n ×m) and A (m × n) takes n2 dot-products of
length m, so O(mn2) operations
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Overdetermined Linear Systems

Problems with the normal equations

(
ATA

)
x? = ATb.

The conditioning number of the normal equations is

κ
(
ATA

)
= [κ(A)]2

Furthermore, roundoff can cause ATA to no longer appear as
positive-definite and the Cholesky factorization will fail.

If the normal equations are ill-conditioned, another approach is
needed.

A. Donev (Courant Institute) Lecture III 9/2020 46 / 71



Overdetermined Linear Systems

The QR factorization

For nonsquare or ill-conditioned matrices of full-rank r = n ≤ m, the
LU factorization can be replaced by the QR factorization:

A =QR

[m × n] =[m × n][n × n]

where Q has orthogonal columns, QTQ = In, and R is a
non-singular upper triangular matrix.

Observe that orthogonal / unitary matrices are well-conditioned
(κ2 = 1), so the QR factorization is numerically better (but also more
expensive!) than the LU factorization.

For matrices not of full rank there are modified QR factorizations
but the SVD decomposition is better (next class).

In MATLAB, the QR factorization can be computed using qr (with
column pivoting).
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Overdetermined Linear Systems

Solving Linear Systems via QR factorization

(
ATA

)
x? = ATb where A = QR

Observe that R is the Cholesky factor of the matrix in the normal
equations:

ATA = RT
(
QTQ

)
R = RTR

(
RTR

)
x? =

(
RTQT

)
b ⇒ x? = R−1

(
QTb

)
which amounts to solving a triangular system with matrix R.

This calculation turns out to be much more numerically stable
against roundoff than forming the normal equations (and has similar
cost).
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Overdetermined Linear Systems

Computing the QR Factorization

The QR factorization is closely-related to the orthogonalization of a
set of n vectors (columns) {a1, a2, . . . , an} in Rm, which is a common
problem in numerical computing.

Classical approach is the Gram-Schmidt method: To make a vector
b orthogonal to a do:

b̃ = b− (b · a)
a

(a · a)

Repeat this in sequence: Start with ã1 = a1, then make ã2 orthogonal
to ã1 = a1, then make ã3 orthogonal to span (ã1, ã2) = span (a1, a2):

ã1 = a1

ã2 = a2 − (a2 · a1)
a1

(a1 · a1)

ã3 = a3 − (a3 · a1)
a1

(a1 · a1)
− (a3 · a2)

a2

(a2 · a2)
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Overdetermined Linear Systems

Gram-Schmidt Orthogonalization

More efficient formula (standard Gram-Schmidt):

ãk+1 = ak+1 −
k∑

j=1

(
ak+1 · qj

)
qj , qk+1 =

ãk+1

‖ãk+1‖
,

with cost ≈ 2mn2 FLOPS but is not numerically stable against
roundoff errors (loss of orthogonality).

In the standard method we make each vector orthogonal to all
previous vectors. A numerically stable alternative is the modified
Gram-Schmidt, in which we take each vector and modify all
following vectors (not previous ones) to be orthogonal to it (so the
sum above becomes

∑m
j=k+1).

As we saw in previous lecture, a small rearrangement of
mathematically-equivalent approaches can produce a much more
robust numerical method.
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Sparse Matrices

Sparse Matrices

A matrix where a substantial fraction of the entries are zero is called a
sparse matrix. The difference with dense matrices is that only the
nonzero entries are stored in computer memory.

Exploiting sparsity is important for large matrices (what is large
depends on the computer).

The structure of a sparse matrix refers to the set of indices i , j such
that aij > 0, and is visualized in MATLAB using spy .

The structure of sparse matrices comes from the nature of the
problem, e.g., in an inter-city road transportation problem it
corresponds to the pairs of cities connected by a road.

In fact, just counting the number of nonzero elements is not enough:
the sparsity structure is the most important property that
determines the best method.
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Sparse Matrices

Banded Matrices

Banded matrices are a very special but common type of sparse
matrix, e.g., tridiagonal matrices

a1 c1 0

b2 a2
. . .

. . .
. . . cn−1

0 bn an


There exist special techniques for banded matrices that are much
faster than the general case, e.g, only 8n FLOPS and no additional
memory for tridiagonal matrices.

A general matrix should be considered sparse if it has sufficiently
many zeros that exploiting that fact is advantageous:
usually only the case for large matrices (what is large?)!
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Sparse Matrices

Sparse Matrices
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Sparse Matrices

Sparse matrices in MATLAB

>> A = s p a r s e ( [ 1 2 2 4 4 ] , [ 3 1 4 2 3 ] , 1 : 5 )
A =

( 2 , 1 ) 2
( 4 , 2 ) 4
( 1 , 3 ) 1
( 4 , 3 ) 5
( 2 , 4 ) 3

>> nnz (A) % Number o f non−z e r o s
ans = 5
>> whos A

A 4 x4 120 d o u b l e s p a r s e

>> A = s p a r s e ( [ ] , [ ] , [ ] , 4 , 4 , 5 ) ; % Pre−a l l o c a t e memory
>> A(2 ,1)=2 ; A(4 ,2 )=4 ; A(1 ,3 )=1; A(4 ,3)=5; A(2 ,4)=3;
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Sparse Matrices

Sparse matrix factorization

>> B=s p r a n d ( 4 , 4 , 0 . 2 5 ) ; % D e n s i t y o f 25%
>> f u l l (B)
ans =

0 0 0 0.7655
0 0 .7952 0 0
0 0 .1869 0 0

0 .4898 0 0 0

>> B=s p r a n d ( 1 0 0 , 1 0 0 , 0 . 1 ) ; spy (B)
>> [ L , U, P]= l u (B ) ; spy ( L )
>> p = symrcm (B ) ; % Permutat ion to r e o r d e r t he rows and columns o f t he m a t r i x
>> PBP=B( p , p ) ; spy (PBP ) ;
>> [ L , U, P]= l u (PBP ) ; spy ( L ) ;
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Sparse Matrices

Random matrix B

The MATLAB function spy shows where the nonzeros are (left), and what
reordering does (right)
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Matrix B permuted by reverse Cuthill−McKee ordering
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Sparse Matrices

LU factors of random matrix B

Fill-in (generation of lots of nonzeros) is large for a random sparse matrix.
Reordering helps only a bit.
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U for random matrix B
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Sparse Matrices

Fill-In

There are general techniques for dealing with sparse matrices such as
sparse LU factorization. How well they work depends on the
structure of the matrix.

When factorizing sparse matrices, the factors, e.g., L and U, can be
much less sparse than A: fill-in.

Pivoting (reordering of variables and equations) has a dual,
sometimes conflicting goal:

1 Reduce fill-in, i.e., improve memory use.
2 Reduce roundoff error, i.e., improve stability. Typically some

threshold pivoting is used only when needed.

For many sparse matrices there is a large fill-in and iterative
methods are required.
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Sparse Matrices

Why iterative methods?

Direct solvers are great for dense matrices and are implemented very
well on modern machines.

Fill-in is a major problem for certain sparse matrices and leads to
extreme memory requirements.

Some matrices appearing in practice are too large to even be
represented explicitly (e.g., the Google matrix).

Often linear systems only need to be solved approximately, for
example, the linear system itself may be a linear approximation to a
nonlinear problem.

Direct solvers are much harder to implement and use on (massively)
parallel computers.
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Sparse Matrices

Stationary Linear Iterative Methods

In iterative methods the core computation is iterative matrix-vector
multiplication starting from an initial guess x(0).

Prototype is the linear recursion:

x(k+1) = Bx(k) + f,

where B is an iteration matrix somehow related to A (many
different choices/algorithms exist).

For this method to be consistent, we must have that the actual
solution x = A−1b is a stationary point of the iteration:

x = Bx + f ⇒ A−1b = BA−1b + f

f = A−1b− BA−1b = (I− B) x
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Sparse Matrices

Simple Fixed-Point Iteration

If we just pick a matrix B, in general we cannot easily figure out what
f needs to be since this requires knowing the solution we are after,

f = (I− B) x = (I− B) A−1b

But what if we choose I− B = A? Then we get

f = AA−1b = b

which we know.

This leads us to this fixed-point iteration is an iterative method:

x(k+1) = (I− A) x(k) + b
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Sparse Matrices

Side-note: Fixed-Point Iteration

A naive but often successful method for solving

x = f (x)

is the fixed-point iteration

xn+1 = f (xn).

In the case of a linear system, consider rewriting Ax = b as:

x = (I− A) x + b

Fixed-point iteration gives the consistent iterative method

x(k+1) = (I− A) x(k) + b

which is the same as we already derived differently.
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Sparse Matrices

Convergence of simple iterative methods

For this method to be stable, and thus convergent, the error
e(k) = x(k) − x must decrease:

e(k+1) = x(k+1)−x = Bx(k)+f−x = B
(

x + e(k)
)

+(I− B) x−x = Be(k)

We saw that the error propagates from iteration to iteration as

e(k) = Bke(0).

When does this converge? Taking norms,∥∥∥e(k)
∥∥∥ ≤ ‖B‖k ∥∥∥e(0)

∥∥∥
which means that ‖B‖ < 1 is a sufficient condition for convergence.

More precisely, limk→∞ e(k) = 0 for any e(0) iff Bk → 0.
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Sparse Matrices

Spectral Radius

Theorem: The simple iterative method converges iff the spectral
radius of the iteration matrix is less than unity:

ρ(B) < 1.

The spectral radius ρ(A) of a matrix A can be thought of as the
smallest consistent matrix norm

ρ(A) = max
λ
|λ| ≤ ‖A‖

The spectral radius often determines convergence of iterative
schemes for linear systems and eigenvalues and even methods for
solving PDEs because it estimates the asymptotic rate of error
propagation:

ρ(A) = lim
k→∞

∥∥Ak
∥∥1/k
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Sparse Matrices

Termination

The iterations of an iterative method can be terminated when:

1 The residual becomes small,∥∥∥r(k)
∥∥∥ =

∥∥∥Ax(k) − b
∥∥∥ ≤ ε ‖b‖

This is good for well-conditioned systems.
2 The solution x(k) stops changing, i.e., the increment becomes small,

[1− ρ(B)]
∥∥∥e(k)

∥∥∥ ≤ ∥∥∥x(k+1) − x(k)
∥∥∥ ≤ ε ‖b‖ ,

which can be shown to be good if convergence is rapid.

Usually a careful combination of the two strategies is employed along
with some safeguards.
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Sparse Matrices

Preconditioning

The fixed-point iteration is consistent but it may not converge or may
converge very slowly

x(k+1) = (I− A) x(k) + b.

As a way to speed it up, consider having a good approximate solver

P−1 ≈ A−1

called the preconditioner (P is the preconditioning matrix), and
transform

P−1Ax = P−1b

Now apply fixed-point iteration to this modified system:

x(k+1) =
(
I− P−1A

)
x(k) + P−1b,

which now has an iteration matrix I− P−1A ≈ 0, which means more
rapid convergence.

A. Donev (Courant Institute) Lecture III 9/2020 67 / 71



Sparse Matrices

Preconditioned Iteration

x(k+1) =
(
I− P−1A

)
x(k) + P−1b

In practice, we solve linear systems with the matrix P instead of
inverting it:

Px(k+1) = (P− A) x(k) + b = Px(k) + r(k),

where r(k) = b− Ax(k) is the residual vector.

Finally, we obtain the usual form of a preconditioned stationary
iterative solver

x(k+1) = x(k) + P−1r(k).

Note that convergence will be faster if we have a good initial guess
x(0).
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Conclusions

Conclusions/Summary

The conditioning of a linear system Ax = b is determined by the
condition number

κ(A) = ‖A‖
∥∥A−1

∥∥ ≥ 1

Gauss elimination can be used to solve general square linear systems
and also produces a factorization A = LU.

Partial pivoting is often necessary to ensure numerical stability during
GEM and leads to PA = LU or A = L̃U.

MATLAB has excellent linear solvers based on well-known public
domain libraries like LAPACK. Use them!
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Conclusions

Conclusions/Summary

For symmetric positive definite matrices the Cholesky factorization
A = LLT is preferred and does not require pivoting.

The QR factorization is a numerically-stable method for solving
full-rank non-square systems.

Sparse matrices deserve special treatment but the details depend on
the specific field of application.

In particular, special sparse matrix reordering methods or iterative
systems are often required.

When sparse direct methods fail due to memory or other
requirements, iterative methods are used instead.
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