HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

PHYSICS PAPER 1

(Sample Paper)

Time allowed: 2 hours 30 minutes This paper must be answered in English

GENERAL INSTRUCTIONS

- 1. There are **TWO** sections, A and B, in this Paper. Section A consists of multiple-choice questions in this question book, while Section B contains conventional questions printed separately in Question-Answer Book B. You are advised to finish Section A in about 60 minutes.
- 2. Answers to Section A should be marked on the Multiple-choice Answer Sheet while answers to Section B should be written in the spaces provided in Question-Answer Book B. The Answer Sheet for Section A and the Question-Answer Book for Section B must be handed in separately at the end of the examination.

SECTION A (MULTIPLE-CHOICE QUESTIONS)

INSTRUCTIONS FOR SECTION A

- 1. Read the instructions on the Answer Sheet carefully. Stick a barcode label and insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words **'END OF SECTION A'** after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS.** You should use an **HB** pencil to mark all your answers on the Answer Sheet. Wrong marks must be completely erased.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 36 questions. Questions marked with "*" involve knowledge of the extension component. The back cover of this question paper contains a list of data, formulae and relationships which you may find useful.

1.

2.

*3.

Cynthia places a piece of carpet on a tiled floor. After a while, she stands in bare feet with one foot on the tiled floor and the other on the carpet as shown above. She feels that the tiled floor is colder than the carpet. Which of the following best explains this phenomenon?

- A. The tile is a better insulator of heat than the carpet.
- B. The tile is at a lower temperature than the carpet.
- C. The specific heat capacity of the tile is smaller than that of the carpet.
- D. Energy transfers from Cynthia's foot to the tile at a greater rate than that to the carpet.

The graph shows the variation in temperature of equal masses of two substances P and Q when they are separately heated by identical heaters. Which deduction is correct?

- A. The melting point of *P* is lower than that of *Q*.
- B. The specific heat capacity of *P* in solid state is larger than that of *Q*.
- C. The specific latent heat of fusion of *P* is larger than that of *Q*.
- D. The energy required to raise the temperature of P from room temperature to boiling point is more than that of Q.

As the gas in a vessel of fixed volume is heated, it gradually leaks out. The gas in the vessel changes from state X to state Y along the path XY shown in the plot of pressure against absolute temperature. What percentage of the original mass of the gas leaks out from the vessel in this process ?

A. 10%
B. 20%
C. 25%
D. 50%

C. 25%

D. 5

HKDSE-PHY 1A-2 (Sample Paper)

- *4. Two vessels contain hydrogen gas and oxygen gas respectively. Both gases have the same pressure and temperature and are assumed to be ideal. Which of the following physical quantities must be the same for the two gases ?
 - A. The volume of the gas
 - B. The mass per unit volume of the gas
 - C. The r.m.s. speed of the gas molecules
 - D. The number of gas molecules per unit volume

A fish is hung on a light string as shown above. The tension in the string is 10 N. Find the total weight of the fish and the hook.

A. 20 sin 70° N
B. 20 cos 70° N
C. 10 sin 70° N
D. 10 cos 70° N

6.

5.

A 1 kg block is pulled by a horizontal force of 5 N and moves with an acceleration of 2 m s^{-2} on a rough horizontal plane. Find the frictional force acting on the block.

- A.
 zero

 B.
 2 N

 C.
 3 N

 D.
 7 N
- 7. Patrick is driving along a straight horizontal road. At time t = 0, he observes that an accident has happened. He then applies the brakes to stop his car with uniform deceleration. The graph shows the variation of the speed of the car with time.

Find the distance travelled by the car from time t = 0 to 5.0 s.

A.	29.4 m
B.	40.6 m
C.	46.2 m
D.	81.2 m

HKDSE-PHY 1A-3 (Sample Paper)

A block remains at rest on a rough inclined plane. Which diagram shows all the forces acting on the block ?

Note : W = gravitational force acting on the block,

- R = normal reaction exerted by the inclined plane on the block, and
- F = friction acting on the block.

9. Kelvin is standing on a balance inside a lift. The table shows the readings of the balance in three situations.

Motion of the lift	Reading of the balance
moving upwards with a uniform speed	R_1
moving downwards with a uniform speed	R_2
moving upwards with an acceleration	R_3

Which relationship is correct?

A.	$R_1 = R_2 > R_3$
B.	$R_3 > R_1 = R_2$
C.	$R_1 > R_2 > R_3$
D.	$R_3 > R_1 > R_2$

Figure (a) shows a uniform plank supported by two spring balances P and Q. The readings of the two balances are both 150 N. P is now moved 0.25 m towards Q (see Figure (b)). Find the new readings of P and Q.

	Reading of P/N	Reading of Q/N
A.	100	200
B.	150	150
C.	200	100
D.	200	150

HKDSE-PHY 1A-4 (Sample Paper)

10.

- 11. Which of the following pairs of forces is/are example(s) of action and reaction ?
 - The centripetal force keeping a satellite in orbit round the earth and the weight of the satellite. (1)
 - (2)The air resistance acting on an object falling through the air with terminal velocity and the weight of the object.
 - The forces of attraction experienced by two parallel wires carrying currents in the same (3) direction.
 - (1) only A.
 - (3) only B.
 - C. (1) and (2) only
 - D. (2) and (3) only
- 12. Two small identical objects P and Q are released from rest from the top of a building 80 m above the ground. O is released 1 s after P. Neglecting air resistance, what is the maximum vertical separation between *P* and *Q* in the air ?
 - A. 5 m
 - Β. 10 m
 - C. 35 m
 - 45 m D.
- A car P of mass 1000 kg moves with a speed of 20 m s⁻¹ and makes a head-on collision with a car Q of 13. mass 1500 kg, which was moving with a speed of 10 m s⁻¹ in the opposite direction before the collision. The two cars stick together after the collision. Find their common velocity immediately after the collision.
 - 2 m s⁻¹ along the original direction of P 2 m s⁻¹ along the original direction of QA.
 - B.
 - 14 m s⁻¹ along the original direction of \tilde{P} C.
 - 14 m s⁻¹ along the original direction of QD.

*14.

A simple pendulum is held at rest in a horizontal position. It is then released with the string taut. Which statement about the tension in the string is **not correct** when the pendulum reaches its vertical position?

- The tension equals the weight of the pendulum bob in magnitude. A.
- The tension attains its greatest value. B.
- The tension does not depend on the length of the pendulum. C.
- D. The tension depends on the mass of the pendulum bob.

The diagram shows the image of a clock in a plane mirror. What is the time displayed by the clock ?

A.	3:58
B.	4:02
C	7.50

C. D. 7:58 8:02

Cecilia uses a magnifying glass to read some small print. Which diagram shows how the image of the print is formed?

16.

The solid curve in the diagram shows a transverse wave at a certain instant. After 0.05 s, the wave has travelled a distance of 2.0 cm and is indicated by the dashed curve. Find the wavelength and frequency of the wave.

	Wavelength/cm	Frequency/Hz
A.	8	2.5
B.	16	2.5
C.	8	5
D.	16	5

P direction of propagation Q R

The figure shows the shape of a transverse wave travelling along a string at a certain instant. Which statement about the motion of the particles P, Q and R on the string at this instant is correct?

- A. Particle *P* is moving downwards.
- B. Particle *Q* is stationary.
- C. Particle *R* attains its maximum acceleration.
- D. P and Q are in phase.

19.

18.

String *XY* is fixed at both ends. The distance between *X* and *Y* is 45 cm. Two identical sinusoidal waves travel along *XY* in opposite directions and form a stationary wave with an antinode at point *P*. The figure shows the string when *P* is 2 mm, its maximum displacement, from the equilibrium position. What is the amplitude and wavelength of each of the **travelling waves** on the string ?

	Amplitude	Wavelength
A.	1 mm	30 cm
B.	1 mm	15 cm
C.	2 mm	30 cm
D.	2 mm	15 cm

- 20. A Young's double-slit experiment was performed using a monochromatic light source. Which change would result in a greater fringe separation on the screen ?
 - (1) Using monochromatic light source of longer wavelength
 - (2) Using double slit with greater slit separation
 - (3) Using double slit with larger slit width
 - A. (1) only
 - B. (1) and (2) only
 - C. (2) and (3) only (1) (2)
 - D. (1), (2) and (3)
- 21. An object is placed at the focus of a concave lens of focal length 10 cm. What is the magnification of the image formed ?
 - A. 0.5
 - B. 1.0
 - C. 2.0
 - D. infinite
- 22. Which of the following statements about sound waves is/are correct?
 - (1) Sound waves are longitudinal waves.
 - (2) Sound waves are electromagnetic waves.
 - (3) Sound waves cannot travel in a vacuum.
 - A. (2) only
 - B. (3) only
 - C. (1) and (2) only
 - D. (1) and (3) only

23.

When monochromatic light is passed through a diffraction grating, a pattern of maxima and minima is observed as shown. Which combination would produce the largest angle θ between the first-order maxima?

	Grating (lines per mm)	Colour of light used
A.	200	blue
B.	200	red
C.	400	blue
D.	400	red

24. Two conducting spheres are hanging freely in air by insulating threads. In which of the following will the two spheres attract each other ?

Note : 'N' denotes that the sphere is uncharged.

25. The table shows three electrical appliances which Clara used in a certain month :

Appliance	Rating	Duration
Air-conditioner	220 V, 1200 W	250 hours
television	220 V, 250 W	80 hours
computer	220 V, 150 W	60 hours

Calculate the cost of electricity used. Note : 1 kW h of electricity costs \$ 0.86.

A.	\$ 62.25
B.	\$ 73.79
C.	\$ 282.94
D.	\$ 536.64

- 26. If a 15 A fuse is installed in the plug of an electric kettle of rating '220 V, 900 W', state what happens when the kettle is plugged in and switched on.
 - A. The kettle will not operate.
 - B. The kettle will be short-circuited.
 - C. The output power of the kettle will be increased.
 - D. The chance of the kettle being damaged by an excessive current will be increase

27.

In the above circuit, the bulbs are identical. The reading of ammeter A_1 is 1 A. Find the readings of ammeters A_2 and A_3 .

	Reading of A ₂	Reading of <i>A</i> ³
A.	2 A	2 A
B.	2 A	3 A
C.	0.5 A	1 A
D.	0.5 A	1.5 A

The figure shows a simple motor. Which of these changes would increase the turning effect of the coil?

- (1) using a stronger magnet
- reducing the resistance of the rheostat
- (2) (3) using a coil with a smaller number of turns
 - (1) and (2) only A.
 - Β. (1) and (3) only
 - С. (2) and (3) only
 - D. (1), (2) and (3)

Which diagram shows the magnetic field pattern around a flat circular current-carrying coil, in the plane shown?

29.

A student wants to measure the resistance of a resistor R and sets up the circuit shown. The student made which of these mistakes setting up the circuit ?

- The polarity of the ammeter was reversed. (1)
- The polarity of the voltmeter was reversed. (2)
- (3) The voltmeter was connected across both R and the rheostat.
 - A. (1) only
 - (2) only B.
 - C. (1) and (3) only
 - D. (2) and (3) only

31.

The figure shows conducting rods PQ and RS placed on two smooth, parallel, horizontal conducting rails. A uniform magnetic field is directed into the plane of the paper. PQ is given an initial velocity to the right and left to roll. Which statement is **INCORRECT**?

- A. The induced current is in the direction PQRS.
- B. The magnetic force acting on rod PQ is towards the left.
- C. Rod RS starts moving towards the right.
- D. Rod PQ moves with a uniform speed.

The figure shows the location of an isolated charge of size +Q. The size (in an arbitrary unit) of the electric field strength is marked at certain points. What is the size (in the same arbitrary unit) of the electric field strength at *X* and *Y*?

	electric field strength at X	electric field strength at Y
A.	72	30
B.	72	36
C.	90	30
D.	90	36

32.

- *33. Power is transmitted over long distances at high alternating voltages. Which statements are correct ?
 - (1) Alternating voltages can be stepped up or down efficiently by transformers.
 - (2) For a given transmitted power, the current will be reduced if a high voltage is adopted.
 - (3) The power loss in the transmission cables will be reduced if a high voltage is adopted.
 - A. (1) and (2) only
 - B. (1) and (3) only
 - C. (2) and (3) only
 - D. (1), (2) and (3)

34. Which of these is a nuclear fusion reaction ?

A.

$$\begin{array}{rcl}
& & & & & & \\ & & & & \\ & & & & \\ B. & & & & \\ & & & 1 \\ B. & & & & \\ & & & 1 \\ C. & & & & \\ & & & 1^{4} \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H \rightarrow \begin{array}{r} & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ \end{array} H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n \rightarrow \begin{array}{r} & & & \\ H + n$$

- *35. On which of the following does the activity of a radioactive source depend ?
 - (1) the nature of the nuclear radiation emitted by the source
 - (2) the half-life of the source
 - (3) the number of active nuclides in the source
 - A. (1) only
 - B. (3) only
 - C. (1) and (2) only
 - D. (2) and (3) only
- 36. Different absorbers are placed in turn between a radioactive source and a Geiger-Muller tube. Three readings are taken for each absorber. The following data are obtained:

Absorber		Count rate / s ⁻¹	
-	200	205	198
paper	197	202	206
5 mm aluminium	112	108	111
25 mm lead	60	62	58
50 mm lead	34	36	34

What type(s) of radiation does the source emit?

- A. β only
- B. γ only
- C. β and γ only
- D. α , β and γ

END OF SECTION A

Data

speed of light in vacuum	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
acceleration due to gravity	$g = 9.81 \text{ m s}^{-2}$ (Close to the Earth)
universal gravitational constant	$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
charge of electron	$e = 1.60 \times 10^{-19} \mathrm{C}$
electron rest mass	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
permittivity of free space	$\varepsilon_{\rm o} = 8.85 \times 10^{-12} {\rm C}^2 {\rm N}^{-1} {\rm m}^{-2}$
permeability of free space	$\mu_{\rm o} = 4\pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
Planck constant	$h = 6.63 \times 10^{-34} \mathrm{J s}$
molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Stefan constant	$\sigma = 5.67 \times 10^{-8} \mathrm{W} \mathrm{m}^{-2} \mathrm{K}^{-4}$
Avogadro constant	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
atomic mass unit	$u = 1.661 \times 10^{-27} \text{ kg}$
(1 u is equivalent to 931 MeV)	

Rectilinear motion

For uniformly accelerated motion :

$$v = u + at$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

Mathematics

Equation of a straight line	y = mx + c
Arc length = $r \theta$	
Surface area of cylinder	$= 2\pi rh + 2\pi r^2$
Volume of cylinder	$= \pi r^2 h$
Surface area of sphere	$= 4\pi r^2$
Volume of sphere	$= \frac{4}{3}\pi r^3$
For small angles, $\sin \theta \approx$	$\tan \theta \approx \theta$ (in radians)

				-	
A1.	$E = mc \ \Delta T$	energy transfer during heating and cooling	D3.	$V = \frac{Q}{4\pi\varepsilon_0 r}$	electric potential due to a point charge
A2.	$E = l \Delta m$	energy transfer during change of state	D4.	$E = \frac{V}{d}$	energy field between parallel plates (numerically)
A3.	pV = nRT	equation of state for an ideal gas	D5.	$I = nA \upsilon Q$	general current flow equation
A4.	$pV = \frac{1}{3} Nmc^2$	kinetic theory equation	D6.	$R = \frac{\rho l}{A}$	resistance and resistivity
A5.	$E_k = \frac{3RT}{2N_A}$	molecular kinetic energy	D7.	$R = R_1 + R_2$	resistors in series
B1.	$F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$	force	D8.	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	resistors in parallel
B2.	moment = $F \times d$	moment of a force	D9.	$P = IV = I^2 R$	power in a circuit
B3.	$E_{\rm P} = mgh$	gravitational potential energy	D10.	$F = BQ\upsilon\sin\theta$	force on a moving charge in a magnetic field
B4.	$E_{\rm K} = \frac{1}{2}mv^2$	kinetic energy	D11.	$F = BIl \sin \theta$	force on a current-carrying conductor in a magnetic field
В5.	F = kx	Hooke's law	D12.	$V = \frac{BI}{nQt}$	Hall voltage
B6.	$P = F_{\mathcal{V}} = \frac{W}{t}$	mechanical power	D13.	$B = \frac{\mu_0 I}{2\pi r}$	magnetic field due to a long straight wire
B7.	$a = \frac{v^2}{r} = \omega^2 r$	centripetal acceleration	D14.	$B = \frac{\mu_0 NI}{l}$	magnetic field inside a long solenoid
B8.	$F = \frac{Gm_1m_2}{r^2}$	Newton's law of gravitation	D15.	$\varepsilon = N \frac{\Delta \Phi}{\Delta t}$	induced e.m.f.
C1.	$\Delta y = \frac{\lambda D}{a}$	fringe width in double-slit interference	D16.	$\frac{V_s}{V_p} \approx \frac{N_s}{N_p}$	ratio of secondary voltage to primary voltage in a transformer
C2.	$d\sin\theta = n\lambda$	diffraction grating equation	E1.	$N = N_0 e^{-kt}$	law of radioactive decay
C3.	$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$	equation for a single lens	E2.	$t_{\frac{1}{2}} = \frac{\ln 2}{k}$	half-life and decay constant
D1.	$F = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r^2}$	Coulomb's law	E3.	A = kN	activity and the number of undecayed nuclei
D2.	$E = \frac{Q}{4\pi\varepsilon_0 r^2}$	electric field strength due to a point charge	E4.	$E = mc^2$	mass-energy relationship
Astronom	ny and Space Sci	ence	Ene	rgy and Energy	Use
	$\frac{Mm}{r}$ gravitationa		$\frac{Q}{t} =$	$=k\frac{A(T_H-T_C)}{d}$	rate of energy transfer by conduction
	⁴ Stefan's law		U =	$\frac{k}{d}$	thermal transmittance U-value
$\frac{\Delta g}{f_0} \approx \frac{r}{c}$	Doppler eff	ect	<i>P</i> =	$\frac{1}{2}\rho Av^3$	maximum power by wind turbine
Atomic V	Vorld		Med	lical Physics	
$\frac{1}{2}m_e v_{\max}$	$h^2 = hf - \phi$ Eins	stein's photoelectric equation	$\theta =$	$\frac{1.22\lambda}{d}$	Rayleigh criterion (resolving power)
$E_n = -\frac{12}{n}$	$\frac{3.6}{a^2}$ eV energy level	l equation for hydrogen atom	powe	$er = \frac{1}{f}$	power of a lens
1	$\frac{h}{mv}$ de Broglie f			$\log \frac{I}{I_o}$	intensity level (dB)
a 1.22/	Doulsish	iterion (resolving power)	Z = p		acoustic impedance
$v \approx \frac{1}{d}$	- Kayleign Cr	nerion (resorving power)	α=	$\frac{I_{\rm r}}{I_{\rm o}} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$	intensity reflection coefficient
			<i>I</i> =	$I_{o}e^{-\mu x}$	transmitted intensity through a medium

Please stick the barcode label here.

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

PHYSICS PAPER 1 (Sample Paper) Section B : Question-Answer Book B

This paper must be answered in English

INSTRUCTIONS

- (1) Write your Candidate Number in the space provided on Page 1.
- (2) Stick barcode labels in the spaces provided on Pages 1, 3, 5, 7 and 9.
- (3) This section carries 84 marks. Answer ALL questions.
- (4) Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- (5) Supplementary answer sheets will be provided on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet. Tie them loosely but securely with a string INSIDE this Question-Answer Book.
- (6) The diagrams in this section are **NOT** necessarily drawn to scale.

Candidate Number

	Marker's Use Only	Examiner's Use Only
	Marker No.	Examiner No.
Question No.	Marks	Marks
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
Total		

Answer ALL questions. Parts marked with "*" involve knowledge of the extension component. Write your answers in the spaces provided. 1. chamber balloon to vacuum pump Figure 1.1 A balloon containing 0.01 m³ of gas at a pressure of 100 kPa is placed inside a chamber. Air is slowly pumped out from the chamber while the temperature remains unchanged. Explain, in terms of molecular motion, how the gas inside the balloon exerts a pressure on its *(a) inner surface. (2 marks) _____ *(b) Find the final pressure inside the balloon when its volume is doubled. (2 marks) *(c) Sketch a graph to show the relationship between the pressure p inside the balloon and the volume V of the balloon. (2 marks) p / kPa 150 100 50 V/m^3 0.01 0 0.02 0.03

Answers written in the margins will not be marked.

Answers written in the margins will not be marked.

Answers written in the margins will not be marked.

Please stick the barcode label here.

HKDSE-PHY 1B-7 (Sample Paper)

7. Amy uses the motor of a toy fan as a simple generator. She connects a bulb to the two terminals of the motor. This is shown in Figure 7.1. bulb blade motor electric wires Figure 7.1 The bulb lights up when the blades are turned rapidly. Explain why and state the energy conversion taking place in this process. (4 marks) Answers written in the margins will not be marked.

Please stick the barcode label here.

(b) Calculate the magnetic field B through coil C when there is a leakage current of 0.5 A from the load to the Earth. The magnetic field B due to a current-carrying conductor is 1500 times larger in soft iron. (2 marks) (c) Electrical appliances are usually equipped with fuses. When a short circuit occurs between the live and neutral wires, the fuse blows but the earth leakage circuit breaker does not operate. Explain these observations. (2 marks) Answers written in the margins will not be marked.

11. (a) A spacecraft with an astronaut on board is launched on a rocket. The rocket with the spacecraft has an initial mass of 4.80×10^5 kg at take-off. The rocket engine expels hot exhaust gas at a constant speed of 2600 m s⁻¹ downwards relative to the rocket. Assume that 1.15×10^3 kg of gas is expelled in the first 0.5 s. (Neglect air resistance.) (i) Calculate the average thrust (the upward force) acting on the rocket due to the exhaust gas during the first 0.5 s. (2 marks) Figure 11.1 Answers written in the margins will not be marked (ii) On Figure 11.1, draw and label an arrow for each force acting on the rocket. Assuming that the change in mass of the rocket during the first 0.5 s is negligible, estimate the acceleration of the rocket. (3 marks)

(b)	The spacecraft of mass 7.80×10^3 kg now enters a circular orbit of radius <i>r</i> around the Earth.	
	Figure 11.2	
	• •	
		·
	Given : radius of the orbit $r = 6.71 \times 10^6$ m	arks)
(c)	Give ONE reason why an aircraft is unable to fly in space like a rocket. (1 n	nark)
		*(i) How long does it take for the spacecraft to orbit the Earth 14 times ? (3 m Given : radius of the Earth $R_E = 6.37 \times 10^6$ m

Iris uses the apparatus shown in Figure 12.1 to study the lifetime of AA-size cells when used to power a bulb. She connects a cell and a switch to the bulb and uses a voltage sensor to measure the voltage across the bulb.

(a) Draw a circuit diagram to illustrate how the apparatus is connected. Use the symbol (V) to denote the voltage sensor and the data-logger. (2 marks)

(b) Iris conducts the experiment with a zinc-carbon cell, an alkaline cell and a lithium cell separately. Figure 12.2 shows the variation of the voltage across the bulb with time for the cells. The bulb lights up as long as the voltage across it is above 0.6 V.

 (ii)	Table 12.3	3 shows the prices of the three	types of cell.	
		Type of cells	Price per cell	
		zinc-carbon	\$ 1.5	
		alkaline	\$ 3.8	
		lithium	\$25.0	
		Tal	ble 12.3	
		Tal be of cells is the best buy, ir how your calculations.		
 		be of cells is the best buy, ir		
 		be of cells is the best buy, ir		
 		be of cells is the best buy, ir		our for lighting up t (3 mar
 		be of cells is the best buy, ir		
 		be of cells is the best buy, ir		
 		be of cells is the best buy, ir		
		be of cells is the best buy, ir		
		be of cells is the best buy, ir		
		be of cells is the best buy, ir		
		be of cells is the best buy, ir		

13. Josephine conducts an investigation on transformers. Primary and secondary coils are wound on two soft-iron C-cores to form a transformer. She sets up a circuit as shown in Figure 13.1.

Figure 13.1

*(a) Josephine varies the input voltage V_1 to the transformer and records the corresponding output voltage V_2 . The results are shown in Table 13.2. Figure 13.3 shows the graph of V_2 against V_1 . Draw a conclusion for this investigation.

14.	quanti	ty of var	ious radioactive substance	nt happened at the Chernobyl Nuclear Power Star es was released and spread to neighbouring co were much higher than the normal background co	ountries. The
	(a)	State O	NE source of background ra	adiation.	(1 mark)
	(b)		the radioactive isotopes ng equation shows how Cs-	released in the accident was caesium-137 (C	Cs-137). The
			$^{235}_{92}$ U + $^{1}_{0}$ n -	$\rightarrow {}^{137}_{55}\text{Cs} + {}^{95}_{37}\text{Rb} + x{}^{1}_{0}\text{n}$	
		Given :	mass of one nuclide of	$^{235}_{92}$ U = 235.0439 u $^{137}_{55}$ Cs = 136.9071 u $^{95}_{37}$ Rb = 94.9399 u	
		1 u is e	quivalent to 931 MeV	${}^{1}_{0}n = 1.0087 u$	
		(i)	What is the value of x ?		(1 mark)
		*(ii)	Find the energy release ir	n the fission of one U-235 nuclide in MeV.	(2 marks)
		*(iii)	activity of 1.2×10^6 Bq contaminated sample wil	is 30 years. A soil sample contaminated by 0 (disintegrations per second). A physicist comm l affect the environment for more than 350 years lculations. It is known that the activity of an un	Cs-137 has an nents that the s. Justify the
			EN	D OF PAPER	

Please stick the barcode label here.

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

PHYSICS PAPER 2 (Sample Paper)

Question-Answer Book

Time allowed : 1 hour This paper must be answered in English

INSTRUCTIONS

- Write your Candidate Number in the space provided (1) on Page 1.
- Stick barcode labels in the spaces provided on (2) Pages 1, 3, 5 and 7.
- (3) Answer the questions from any TWO sections of this paper.
- (4) Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- (5) Supplementary answer sheets will be provided on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet. Tie them loosely but securely with a string INSIDE this Question-Answer Book.
- The diagrams in this section are NOT necessarily (6) drawn to scale.

Candidate N

lumber						
--------	--	--	--	--	--	--

	Marker's Use Only	Examiner's Use Only
	Marker No.	Examiner No.
Question No.	Marks	Marks
Section A 1-8		
Section A 9		
Section B 1-8		
Section B 9		
Section C 1-8		
Section C 9		
Section D 1-8		
Section D 9		

Section A : Astronomy and Space Science

- Given : 1 astronomical unit = 1.50×10^{11} m 1 parsec = 3.08×10^{16} m = 3.26 ly 1 light year = 9.46×10^{15} m
- A1. Which of the following is **NOT** contained in the astronomical object shown in the figure ?

A. Cluster of galaxies

- B. Nebula
- C. Star
- D. Star cluster

Answer :

- A2. Hong Kong's longitude and latitude are 114.1°E and 22.3°N respectively. What is the altitude of the north celestial pole when observed in Hong Kong ?
 - A. 22.3° B. 65.9° C. 67.7°

Answers written in the margins will not be marked

D. 114.1°

Answer :

- A3. Which of the following statements concerning the celestial sphere model can be used to explain why stars in the east are rising and stars in the west are setting ?
 - A. The celestial sphere rotates from west to east with a period of a day.
 - B. The celestial sphere rotates from east to west with a period of a day.
 - C. Stars move on the celestial sphere from west to east with a period of a year.D. Stars move on the celestial sphere from east to west with a period of a year.

Answer :

- A4. According to the Ptolemy's geocentric model,
 - A. Jupiter moves in a circular orbit around the Earth.
 - B. The Earth-Venus distance is always smaller than the Earth-Sun distance.
 - C. The Earth-Mars distance is always smaller than the Earth-Sun distance.
 - D. It is not possible to observe Jupiter at mid-night.

Answer :

Answers written in the margins will not be marked.

A9. The Crab Nebula is an expanding, roughly spherical shell of gas in the constellation Taurus. According to a recent study, its average apparent angular size is 5.8 arc minute. The whole nebula has negligible velocity relative to the Earth, and the nebula is at a distance of 2000 pc from the Earth. The wavelength of an OIII spectral line found in the spectrum of the light emitted by the gas moving towards the Earth from around the middle part of the Crab Nebula is 374.13 nm along the line of sight of an observer on the Earth. The wavelength of the same spectral line observed in the laboratory is 375.99 nm. core of the nebula at the start direction towards the Earth expanding spherical shell of gas (a) What is the radius of the Crab Nebula ? Give your answer to two significant figures in parsecs. (2 marks) Calculate the speed of that gas which is moving towards the Earth. Give your answer in km s^{-1} to (b) two significant figures. (3 marks)

Answers written in the margins will not be marked.

A9. (c) (i)	The Crab Nebula was formed by the explosion of a star whose size was negligible compared with the present size of the nebula. Estimate the age of the Crab Nebula. Give your answer to two significant figures in years. State the assumption made in your calculation. (3 marks)
(ii)	Actually, the Chinese observed the stellar explosion which created the Crab Nebula in 1054 A.D. and so we know that its age is about 950 years. Give a possible reason to explain why the Crab Nebula's age estimated in (c)(i) is longer than 950 years. (2 marks)
	· · · · · · · · · · · · · · · · · · ·

Answers written in the margins will not be marked.

- B5. In an experiment on the photoelectric effect, a beam of monochromatic light is directed onto a metal plate to liberate electrons. The velocity of the fastest photoelectrons emitted is
 - A. directly proportional to the frequency of the incident light.
 - Β. directly proportional to the intensity of the incident light.
 - C. independent of the nature of metal.
 - independent of the intensity of the incident light. D.

Answer :

B6. The work function *W* of five metals are tabulated below.

Metal	Caesium	Barium	Calcium	Magnesium	Beryllium
$W/10^{-19} \mathrm{J}$	3.4	4.0	4.6	5.9	8.0

When monochromatic light of wavelength 400 nm is incident on each of the metals, how many of them Answers written in the margins will not be marked. would exhibit photoelectric emission ?

A. 1 B. 2 C. 3 4 D.

Answer :

Answer :

B7. Which of the following statements is/are correct ?

- (1)Photoelectric effect is an evidence that light possesses particle nature.
- (2)Electron diffraction suggests that electrons can behave like waves.
- The line spectrum of atomic hydrogen suggests that the atom has discrete energy levels. (3)
 - A. (1) and (2) only
 - (2) and (3) only Β.
 - (1) and (3) only C. D.
 - (1), (2) and (3)
- B8. Graphite is a conductor because of the 'delocalization' of electrons. Where are these delocalized electrons ?
 - formed on the surface of graphite. A.
 - formed within the carbon layers of graphite. Β.
 - C. formed homogeneously within graphite.
 - formed in a 'sea' of positive ions. D.

Answer :

9.	(a)	An electron is accelerated from rest through a potential difference V (in V). Show that its final de Broglie wavelength λ (in nm) is given by $\lambda \approx \frac{1.23}{\sqrt{V}}$. (2 marks)
	(b)	In a transmission electron microscope (TEM), electrons are accelerated by a potential difference of 50 kV.
		(i) Estimate the final de Broglie wavelength of the electrons. (1 mark)
		 (ii) Describe how the electrons are focused in the TEM and explain how the image of the sample is formed. (3 marks)
		(iii) Suggest ONE method to increase the resolving power of the TEM. Explain. (2 marks)
	(c)	State ONE daily life application of nanotechnology and discuss any potential health risks associated with it. (2 marks)

C5.	Which of these actions reduces the heat gained in the summer by buildings in Hong Ke	ong?
	 A. Increase the OTTV values of the building envelope B. Apply solar films on windows to reduce solar heat gain C. Minimise internal heat gain from indoor activities D. Improve the air-tightness of the building envelope 	Answer :
	$T_{1} = 1 + 12(7) N_{1} = \frac{-2}{2} (1 + 12) + \frac{1}{2} (1 + 12) + 1$	
C6.	The solar constant is 1367 W m ⁻² (power per unit area from the Sun reaching the oute Earth-Sun distance is 1.50×10^{11} m (i.e. 1 AU), estimate the total radiation power of the	e Sun.
	A. $3.9 \times 10^{26} \text{ W}$ B. $3.2 \times 10^{25} \text{ W}$ C. $2.3 \times 10^{25} \text{ W}$ D. $7.7 \times 10^{24} \text{ W}$	
		Answer :
C7.	In estimating the maximum power available from a wind turbine, what is assumed to t	rue?
	 The density of air is constant. The direction of wind relative to the orientation of the turbine is unchanged. The area swept by the turbine is constant. 	
	A. (1) and (2) only	
	B. (2) and (3) only C. (1) and (3) only	
	D. (1), (2) and (3)	A
		Answer :
C8.	A fuel cell cannot be classified as a Renewable Energy Source because	
	A. it is a secondary energy source.	
	B. its supply is limited.C. it is from fossil sources.	
	D. the time scale for regeneration is too long.	Answer :

C9. (a)		sion efficiencies and co	cookers are common dor sts are tabulated below:	mesue cooking devices.	Their typical
		Cooking device	Conversion efficiency	Cost	
		Gas cooker	40%	\$0.25 per MJ	
		Induction cooker	75%	\$0.90 per kW h	
	(i)	Explain how an induct	tion cooker generates heat in	a cooking vessel placed on i	t. (2 marks)
	(ii)	Give a reason why the induction cookers.	he conversion efficiency of	gas cookers is much lowe	er than that of (1 mark)
	(iii)	of 25°C to boiling.	induction cooker are used to Calculate the cost of doing thi apacity of water = 4200 J kg	is for each cooker.	
(b)	compa		preparing to replace incande s (CFLs) or light emitting die move.		

Section D : Medical Physics

The table shows the speed of sound in, and density of, different tissues.

Tissue	Speed of sound in tissue / m s ⁻¹	Density / kg m ⁻³
Fat	1450	952
Blood	1570	1025
Muscle	1580	1076
Bone	3050	2560

D1.

A man places his spectacles on a book as shown above. What kind of lenses does he wear and what defect of vision does he have ?

Lenses	Defect of vision
converging lenses	long-sightedness
converging lenses	short-sightedness
diverging lenses	long-sightedness
diverging lenses	short-sightedness

D2. Which of these contribute to the attenuation of ultrasound when it passes through body tissues ?

(1) interference

A.

Β.

C.

D.

- (2) scattering
- (3) absorption

A.	(1) and (2) only
B.	(2) and (3) only
C.	(1) and (3) only
-	

D. (1), (2) and (3)

D3. Which part of the body is most clearly imaged with ultrasound ?

- A. lung
- B. bone
- C. liver D. intestine

Answer :

Answer : ____

Answer :

Answers written in the margins will not be marked.

	D4.	Ultrasound of intensity 10 mW cm ⁻² is incident normally at a fat-muscle interface as shown. What is the intensity of the ultrasound reflected from the interface ?
		A. 0.11 mW cm ⁻² B. 0.33 mW cm ⁻² C. 0.67 mW cm ⁻² D. 0.89 mW cm ⁻²
		Answer :
	D5.	Which statements about Radionuclide Imaging (RNI) are correct ?
		 The image resolution of a radionuclide image is far worse than that of an X-ray image. RNI relies on its ability for the study of function rather than structure. A bone scan that shows a hot spot (i.e. intense increase uptake of tracer) in the bone reveals the existence of a tumour.
not be marked.		A. (1) and (2) only B. (1) and (3) only C. (2) and (3) only D. (1), (2) and (3) Answer :
ns will	D6.	Why is a rotating anode used in an X-ray tube ?
written in the margins will not be marked.		 A. To save energy B. To dissipate heat more efficiently C. To produce better image resolution D. To produce a more intense X-ray beam Answer :
\mathbf{s}	D7.	Which criteria are essential when choosing radioactive sources as medical tracers in human bodies ?
Answer		 The sources should have a short half-life. The radiation emitted should have a weak ionizing power. The radiation emitted should not be deflected by an electric field.
		 A. (1) and (2) only B. (1) and (3) only C. (2) and (3) only D. (1), (2) and (3)
		Answer :
	D8.	The half-life of Tc-99m is 6 hours. A patient is given an injection containing 5.7×10^{-18} kg of Tc-99m and the scan is taken 4 hours after the injection. Calculate how much Tc-99m remains undecayed when the scan is taken.
		A. 2.9×10^{-18} kg B. 3.3×10^{-18} kg C. 3.6×10^{-18} kg
		D. 3.8×10^{-18} kg Answer :

