SAMPLE OR SUGGESTED CURRICULUM ALIGNED TO OUTCOMES-BASED EDUCATION (OBE) FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING

PROGRAM SPECIFICATIONS

I. Program Description

1.1 Degree Name:

Graduates of the program shall be given the Degree of Bachelor of Science in Civil Engineering (BSCE)

1.2 Nature of the Field of Study

Civil Engineering is a profession that applies the basic principles of Science in conjunction with mathematical and computational tools to solve problems associated with developing and sustaining civilized life on our planet. Civil Engineering works are generally one-of-a-kind projects; they are often grand in scale; and they usually require cooperation among professionals of many different disciplines. The completion of a civil engineering project involves the solution of technical problems in which information from numerous sources and myriad non-technical factors play a significant role. Some of the most common examples of civil engineering works include bridges, buildings, dams, airports, ports and harbors, highways, tunnels, towers and water distribution systems. Civil Engineers are concerned with flood controls, landslide, air and water pollution, and the design of facilities to withstand earthquakes and other natural hazards.

Civil Engineering is one of the broadest engineering disciplines both in terms of the range of problems that fall within its preview and in the range of knowledge required to solve those problems.

Refer to Annex I for the Competency Standards for Civil Engineering practice.

1.3 Program Educational Objectives

Program Educational Objectives (PEOs) are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve within a few years of graduation. PEOs are based on the needs of the program's constituencies and these shall be determined, articulated, and disseminated to the general public by the unit or department of the HEI offering the BSCE program. The PEOs should also be reviewed periodically for continuing improvement.

1.4 Specific Professions/careers/occupations for graduates

The scope of the practice of Civil Engineering is defined in the Civil Engineering Law of 1950 or R.A. 544 and embrace services in the form of consultation, design, preparation of plans, specifications, estimates, erection, installation and supervision of the construction of streets, bridges, highways, railroads, airports and hangars, port works, canals, river and shore improvements, lighthouses, and dry docks; buildings, fixed structures for irrigation, flood protection, drainage, water supply and sewerage works; demolition of permanent structures; and tunnels. The enumeration of any work in this section shall not be construed as excluding any other work requiring civil engineering knowledge and application.

The teaching, lecturing and reviewing of a professional civil engineering subjects in the curriculum of the BSCE degree or a subject in the Civil Engineering licensure examination given in any school, college, university or any other educational institution is also considered as practice of Civil Engineering.

1.5 Allied Fields

The allied programs to BS Civil Engineering are Architecture, Electrical Engineering, Geodetic Engineering, Mechanical Engineering, Sanitary Engineering, Management Engineering and Industrial Engineering.

II. Institutional and Program Outcomes

The minimum standards for the BS Civil Engineering program are expressed in the following *minimum* set of institutional and BSCE program outcomes.

2.1 Institutional outcomes

- a) Graduates of professional institutions must demonstrate a service orientation in one's profession,
- b) Graduates of colleges must participate in various types of employment, development activities, and public discourses, particularly in response to the needs of the communities one serves
- c) Graduates of universities must participate in the generation of new knowledge or in research and development projects
- d) Graduates of State Universities and Colleges must, in addition, have the competencies to support "national, regional and local development plans." (RA 7722).
- e) Graduates of higher educational institutions must preserve and promote the Filipino historical and cultural heritage.

A PHEI, at its option, may adopt mission-related program outcomes that are not included in the minimum set.

2.2 BSCE Program Outcomes

- By the time of graduation, the students of the program shall have the ability to:
- a) apply knowledge of mathematics and science to solve civil engineering problems;
- b) design and conduct experiments, as well as to analyze and interpret data;
- c) design a system, component, or process to meet desired needs within realistic constraints, in accordance with standards;
- d) function in multidisciplinary and multi-cultural teams;
- e) identify, formulate, and solve civil engineering problems;
- f) understand professional and ethical responsibility;
- g) communicate effectively civil engineering activities with the engineering community and with society at large;
- h) understand the impact of civil engineering solutions in a global, economic, environmental, and societal context
- i) recognize the need for, and engage in life-long learning
- j) know contemporary issues;
- k) use techniques, skills, and modern engineering tools necessary for civil engineering practice;
- know and understand engineering and management principles as a member and leader of a team, and to manage projects in a multidisciplinary environment;
- m) understand at least one specialized field of civil engineering practice.

III. Sample Performance Indicators

Performance Indicators are specific, measurable statements identifying the performance(s) required to meet the outcome; confirmable through evidence.

	PROGRAM OUTCOMES	PEI	RFORMANCE INDICATORS
		1	Perform engineering calculations manually and by use of applicable software.
а	Ability to apply knowledge of mathematical and science to solve engineering problems	2	Analyze flows in civil engineering solution
		3	Apply academic theory into engineering applications to develop proposals to solve engineering problems

IV. Program Assessment and Evaluation

Program Assessment refers to one or more processes that identify, collect, and prepare data to evaluate the attainment of Program Outcomes and Program Educational Objectives.

In the case of Program Outcomes Assessment, the defined Performance Indicators shall be connected to Key Courses (usually the Demonstrating or "D" courses in the Curriculum map), and an appropriate Assessment Methods (AM) may be applied. These methods may be direct or indirect depending on whether the demonstration of learning was measured by actual observation and authentic work of the student or through gathered opinions from the student or his peers. Refer to the Sample Matrix Connecting Performance Indicators with Key Courses and Assessment

	PERFORMANCE INDICATORS	KEY COURSES	ASSESSMENT METHODS
1	Perform engineering calculations manually and by use of applicable software.	Steel and timber design	Problem Set
2	Analyze flows in civil engineering solution	Reinforced Concrete Design	Plate
3	Apply academic theory into engineering applications to develop proposals to solve engineering problems	Theory of Structures 2	Final Examination

For the Assessment of Program Educational Objectives, the stakeholders of the program have to be contacted through surveys or focus group discussion to obtain feedback data on the extent of the achievement of the PEOs.

Program Evaluation pertains to one or more processes for interpreting the data and evidence accumulated from the assessment. Evaluation determines the extent at which the Program Outcomes and the Program Educational Objectives are achieved by comparing actual achievement versus set targets and standards. Evaluation results in decisions and actions regarding the continuous improvement of the program.

KEY COURSES	ASSESSMENT METHODS	TARGET STANDARDS
Steel and timber design	Problem Set	At least 30% of the students will get a score of 50%
Reinforced Concrete Design	Plate	At least 30% of the students will get a score of 70%
Theory of Structures 2	Final Examination	At least 50% of the students will get a score of 60%

Sample Matrix Connecting Assessment Methods with Set Targets and Standards

Other Methods of Program Assessment and Evaluation may be found in the CHED Implementation Handbook for Outcomes-Based Education (OBE) and Institutional Sustainability Assessment (ISA).

V. Continuous Quality Improvement

There must be a documented process for the assessment and evaluation of program educational objectives and program outcomes.

The comparison of achieved performance indicators with declared targets or standards of performance should serve as basis for the priority projects or programs for improving the weak performance indicators. Such projects and programs shall be documented as well as the results of its implementation. This regular cycle of documentation of projects, programs for remediation and their successful implementation shall serve as the evidence for Continuous Quality Improvement.

CURRICULUM

I. Curriculum Description

The Civil Engineering curriculum is designed to meet the BSCE Program Outcomes stated in Article IV, Section 6.2. This is articulated in a Curriculum Map discussed in Section 12. The curriculum must develop engineers who have a background in mathematics, natural, physical and allied sciences. As such the curriculum contains courses in mathematics, physics, chemistry and statistics. The Civil Engineering curriculum also contains language courses, social sciences and humanities. This is to ensure that the Civil Engineering graduate is articulate and understands the nature of his/her special role in society and the impact of their work on the environment. The curriculum is designed to guarantee a certain breadth of knowledge of the Civil Engineering disciplines through a set of core courses and to ensure depth and focus in certain disciplines through primary and secondary areas of specialization. The curriculum develops the basic engineering tools necessary to solve problems in the field of Civil Engineering.

II. Sample Curriculum

2.1 Curriculum Outline

Classification/ Field / Course	Minimum N	lo. of Hours	Minimum Credit	
Classification/ Field / Course	Lecture	Laboratory	Units	
I. TECHNICAL COURSES				
A. Mathematics				
College Algebra	3	0	3	
Advanced Algebra	2	0	2	
Plane and Spherical Trigonometry	3	0	3	
Analytic Geometry	2	0	2	
Solid Mensuration	2	0	2	
Differential Calculus	4	0	4	
Integral Calculus	4	0	4	
Differential Equations	3	0	3	
Probability and Statistics	3	0	3	
Sub-Total	26	0	26	

Classification/ Field / Course		lo. of Hours	Minimum Credit Units	
	Lecture	Laboratory		
B. Natural/Physical Sciences				
General Chemistry	3	3	4	
Physics 1	3	3	4	
Physics 2	3	3	4	
Sub-Total:	9	9	12	
C. Basic Engineering Sciences				
Engineering Drawing	0	3	1	
Computer Fundamentals and Programming	0	6	2	
Computer – Aided Drafting	0	3	1	
Statics of Rigid Bodies	3	0	3	
Dynamics of Rigid Bodies	2	0	2	
Mechanics of Deformable Bodies	3	0	3	
Engineering Economy	3	0	3	
Engineering Management	3	0	3	
Environmental Engineering	2	0	2	
Safety Management	1	0	1	
Sub-Total:	17	12	21	
D. Allied Courses				
Basic Mechanical Engineering	3	0	3	
Basic Electrical Engineering	3	0	3	
Sub-Total:	6	0	6	
E. Professional Courses				
1. Planning				
Surveying 1 (Elementary and Higher Surveying)	3	3	4	
Surveying 2 (Engineering Surveys)	3	3	4	
Civil Engineering Project	1	6	3	
Building Design 1	1	3	2	

Classification/ Field / Course	Lecture/ L	lo. of Hours aboratory	Minimum Credit Units
Building Design 2	Lecture 1	Laboratory 3	2
Sub-Total:	9	18	15
2. Design			
Advanced Engineering Mathematics for CE	3	0	3
Geotechnical Engineering 1 (Soil Mechanics)	3	3	4
Geotechnical Engineering 2 (Foundation)	3	3	4
Structural Theory 1	3	3	4
Structural Theory 2	3	3	4
Structural Design 1 (Reinforced Concrete)	3	3	4
Structural Design 2 (Steel and Timber Design)	3	3	4
Mechanics of Fluids	2	3	3
Hydraulics	2	3	3
Hydrology	3	0	3
Water Resources Engineering	3	0	3
Highway Engineering	3	0	3
Transportation Engineering	3	0	3
Sub-Total:	37	24	45
3. Construction			
Construction Materials and Testing	2	3	3
Construction Method and Project Management	3	3	4
CE Laws, Contracts, Specifications and Ethics	3	0	3
Sub-Total:	8	6	10
4. Electives			
Technical Elective 1	3	0	3
Technical Elective 2	3	0	3
Technical Elective 3	3	0	3

Classification/ Field / Course		lo. of Hours Laboratory	Minimum Credit Units	
	Lecture	Laboratory		
Technical Elective 4	3	0	3	
Sub-Total:	12	0	12	
TOTAL PROFESSIONAL COURSES	66	48	82	
II NON-TECHNICAL COURSES				
A. Social Sciences				
Social Science 1	3	0	3	
Social Science 2	3	0	3	
Social Science 3	3	0	3	
Social Science 4	3	0	3	
Sub-Total:	12	0	12	
B. Humanities				
Humanities 1	3	0	3	
Humanities 2	3	0	3	
Humanities 3	3	0	3	
Sub-Total:	9	0	9	
C. Languages				
English 1	3	0	3	
English 2	3	0	3	
English 3 (Technical Communication)	3	0	3	
Pilipino 1	3	0	3	
Pilipino 2	3	0	3	
Sub-Total:	15	0	15	
D. Mandated Course				
Life and Works of Rizal	3	0	3	
Sub-Total:	3	0	3	
E. Physical Education				
P.E. 1,2,3,4			8	
Sub-Total:			8	
F. National Service Training Program			2	
NSTP 1,2			6	
Sub-Total:			6	
	400		202	
GRAND TOTAL	163	69	200	

SUGGESTED TECHNICAL ELECTIVES:

A. STRUCTURAL ENGINEERING

Earthquake Engineering

Prestressed Concrete Design Bridge Engineering Special Topics in Structural Engineering

C. CONSTRUCTION ENGINEERING AND MANAGEMENT

Entrepreneurship for Engineers Construction Cost Engineering Database Management In Construction Special Topics in Construction Engineering & Management

B. WATER RESOURCES ENGINEERING

Irrigation, Flood Control & Drainage Engineering Sanitary Engineering Water & Waste Water Engineering Special Topics in Water Resources

D. TRANSPORTATION ENGINEERING

Transportation Planning Transportation Systems Design Highway Design and Traffic Safety Special Topics in Transportation Engineering

E. GEOTECHNICAL AND GEO-ENVIRONMENTAL ENGINEERING

Geosynthetics in Geotechnical Engineering Geotechnical Earthquake Engineering Geotechnical Aspects of Landfill Design Special Topics in Geotechnical and Geoenvironmental Engineering

Course Specifications for the Special Topics of the Technical Electives shall be developed by the HEIs in accordance with their needs but shall likewise be submitted to CHED.

SUMMARY OF THE BSCE		of Hours	Total No. of
Classification/ Field	Lecture	Laboratory	Units
I. TECHNICAL COURSES			
A. Mathematics	26	0	26
B. Natural/Physical Sciences	9	9	12
C. Basic Engineering Sciences	17	12	21
D. Allied Courses	6	0	6
E. Professional Course	66	48	82
Sub- Total	124	69	147
II. NON- TECHNICAL COURSES			
A. Social Sciences	12	0	12
B. Humanities	9	0	9
C. Languages	15	0	15
D. Life and Works of Rizal	3	0	3
E. Physical Education			8
F. NSTP			6
Sub-Total	39	0	53
GRAND TOTAL	163	69	200

SUMMARY OF THE BSCE CURRICULUM

2.2 Program of Study

The institution may enrich the sample/model program of study depending on the needs of the industry, provided that all prescribed courses required in the curriculum outlines are offered and pre-requisite are complied with.

The sample Program of Study listed below is meant for HEIs operating on a Semestral System. HEIs with CHED approved trimester or quarter term systems may adjust their courses and course specifications accordingly to fit their delivery system, as long as the minimum requirements are still satisfied.

The HEIs are also encouraged to include other courses to fulfill their institutional outcomes, as long as the total units for the whole program shall not exceed 200 units, including P.E., and NSTP.

1st Year – First Semester

Subjects	No	o. of Hours	Units	Prerequisite/
Subjects	Lec	Laboratory	Units	(Co-requisite)
College Algebra	3	0	3	None
Plane and Spherical	3	0	3	None
Trigonometry				None
Gen. Chemistry	3	3	4	None
Engineering Drawing	0	3	1	None
English 1	3	0	3	None
Pilipino 1	3	0	3	None
PE 1			2	None
Total	15	6	19	

1st Year – Second Semester

Subjects	No	. of Hours	Units	Prerequisite/	
Subjects	Lec	Laboratory	Units	(Co-requisite)	
Advanced Algebra	2	0	2	College Algebra	
Analytic Geometry	2	0	2	College Algebra, Plane and Spherical Trigonometry	
Solid Mensuration	2	0	2	College Algebra, Plane and Spherical Trigonometry	
English 2	3	0	3		
Pilipino 2	3	0	3		
Humanities 1	3	0	3		
Physics 1	3	3	4	College Algebra, Plane and Spherical Trigonometry	
PE 2			2	PE 1	
Total	18	3	21		

SECOND YEAR

2nd Year – First Semester

Subjects	No	o. of Hours	Units	Prerequisite/	
Subjects	Lec	Laboratory	Units	(Co-requisite)	
Differential Calculus	4	0	4	Analytic Geometry, Solid Mensuration, Advanced Algebra	
Physics 2	3	3	4	Physics 1	
English 3 (Technical Communication)	3	0	3	English 1, English 2	
Humanities 2	3	0	3		
Social Science 1	3	0	3		
Computer Fundamentals and Programming	0	6	2	2 nd Year Standing	
PE 3			2		
NSTP 1			3		
Total	16	9	24		

2nd Year – Second Semester

Subjects	No	of Hours	Units	Prerequisite/
Subjects	Lec	Laboratory	Units	(Co-requisite)
Integral Calculus	4	0	4	Differential Calculus
Probability & Statistics	3	0	3	College Algebra 1
Basic Electrical Engineering	3	0	3	College Algebra, Plane and Spherical Trigonometry, Physics 2
Humanities 3	3	0	3	
Social Science 2	3	0	3	
Life and Works of Rizal	3	0	3	
PE 4			2	
NSTP 2			3	
Total	19	0	24	

THIRD YEAR

3rd Year – First Semester

Subjects	No	of Hours	Units	Prerequisite/			
Subjects	Lec	Laboratory	Units	(Co-requisite)			
Differential Equations	3	0	3	Integral Calculus			
Statics of Rigid Bodies	3	0	3	Physics 1, Integral Calculus			
Basic Mechanical Engineering	3	0	3	College Algebra, Plane and Spherical Trigonometry, Physics 2			
Surveying 1	3	3	4	Advanced Algebra, Plane and Spherical Trigonometry, Engineering Drawing			
Social Science 3	3	0	3				
Engineering Economy	3	0	3	Third Year Standing			
Total	18	3	19				

3rd Year – Second Semester

Subjects	No	. of Hours	Units	Prerequisite/
Subjects	Lec	Laboratory	Units	(Co-requisite)
Advanced Engineering Mathematics for CE	3	0	3	Differential Equations
Dynamics of Rigid Bodies	2	0	2	Statics of Rigid Bodies
Mechanics of Deformable Bodies	3	0	3	Statics of Rigid Bodies
Surveying 2	3	3	4	Surveying 1
Environmental Engineering	2	0	2	Gen. Chemistry
Safety Management	1	0	1	Third year Standing
Social Science 4	3	0	3	Social Science 3
Engineering Management	3	0	3	Third Year Standing
Total	20	3	21	

FOURTH YEAR

4th Year – First Semester

Subjects	No	. of Hours	Units	Prerequisite/
Subjects	Lec	Laboratory	Units	(Co-requisite)
Structural Theory 1	3	3	4	Mechanics of Deformable Bodies
Geotechnical Engineering 1 (Soil Mechanics)	3	3	4	Mechanics of Deformable Bodies
Mechanics of Fluids	2	3	3	Dynamics of Rigid Bodies Differential Equations
Building Design 1	1	3	2	Engineering Drawing
Highway Engineering	3	0	3	Surveying 2
Construction Materials & Testing	2	3	3	Mechanics of Deformable Bodies
Total	14	15	19	

4th Year – Second Semester

Subjects	No	of Hours	Units	Prerequisite/
Subjects	Lec	Laboratory	Units	(Co-requisite)
Structural Theory 2	3	3	4	Structural Theory 1
Structural Design 1 (Reinforced Concrete)	3	3	4	Structural Theory 1 (Structural Theory 2)
Hydraulics	2	3	3	Mechanics of Fluids
Hydrology	3	0	3	Mechanics of Fluids
Building Design 2	1	3	2	Building Design 1
Computer-Aided Drafting	0	3	1	3 rd Year Standing
Total	12	15	17	

FIFTH YEAR

5th Year – First Semester

Subjects	No	. of Hours	Units	Prerequisite/
Subjects	Lec	Laboratory	Units	(Co-requisite)
Construction Method & Project Management	3	3	4	5 th Year Standing
Geotechnical Engineering 2 (Foundation Engineering)	3	3	4	Geotechnical Engineering 1
Transportation Engineering	3	0	3	Highway Engineering
Structural Design 2 (Steel & Timber)	3	3	4	Structural Theory 2
Civil Engineering Project	1	6	3	5 th Year Standing
Total	13	15	18	

5th Year – Second Semester

Subjects	No	of Hours	Units	Prerequisite/
Subjects	Lec	Laboratory	Units	(Co-requisite)
Water Resources Engineering	3	0	3	Hydraulics
CE Laws, Contracts, Specification & Ethics	3	0	3	5 th Year Standing
Technical Elective 1	3	0	3	
Technical Elective 2	3	0	3	
Technical Elective 3	3	0	3	
Technical Electric 4	3	0	3	
Total	18	0	18	

Total = 200 Units

* The nth Year Standing means that the student must have completed at least 75% of the load requirements of the previous year level.

** At least two of the Technical Electives must be under the same track or area of specialization

III. Sample Curriculum Map

Refer to Annex II for the Minimum Program Outcomes and a Sample Curriculum Map. The HEI may develop their own Curriculum Map.

IV. Description of Outcomes Based Teaching and Learning

Outcomes-based teaching and learning (OBTL) is an approach where teaching and learning activities are developed to support the learning outcomes (University of Hong Kong, 2007). It is a student-centered approach for the delivery of educational programs where the curriculum topics in a program and the courses contained in it are expressed as the intended outcomes for students to learn. It is an approach in which teachers facilitate and students find themselves actively engaged in their learning.

Its primary focus is the clear statement of what students should be able to do after taking a course, known as the Intended Learning Outcomes (ILOs). The ILOs describe what the learners will be able to do when they have completed their course or program. These are statements, written from the students' perspective, indicating the level of understanding and performance they are expected to achieve as a result of engaging in teaching and learning experience (Biggs and Tang, 2007). Once the ILOs have been determined, the next step in OBTL is to design the Teaching / Learning Activities (TLAs) which require students to actively participate in the construction of their new knowledge and abilities. A TLA is any activity which stimulates, encourages or facilitates learning of one or more intended learning outcome. The final OBTL component is the Assessment Tasks (ATs), which measure how well students can use their new abilities to solve real-world problems, design, demonstrate creativity, and communicate effectively, among others. An AT can be any method of assessing how well a set of ILO has been achieved.

A key component of a course design using OBTL is the constructive alignment of ILOs, TLAs, and ATs. This design methodology requires the Intended Learning Outcomes to be developed first, and then the Teaching / Learning Activities and Assessment Tasks are developed based on the ILOs.¬ (Biggs, 1999).

"Constructive" refers to the idea that students construct meaning through relevant learning activities; "alignment" refers to the situation when teaching and learning activities, and assessment tasks, are aligned to the Intended Learning Outcomes by using the verbs stipulated in the ILOs. Constructive alignment provides the "how-to" by stating that the TLAs and the assessment tasks activate the same verbs as in the ILOs. (Biggs and Tang, 1999)

The OBTL approach shall be reflected in the Course Syllabus to be implemented by the faculty.

V. Sample Syllabi for Selected Courses

The Course Syllabus must contain at least the following components:

14.1. General Course Information (Title, Description, Code, Credit Units, Prerequisites)

14.2 Links to Program Outcomes

14.3 Course Outcomes

14.4 Course Outline (Including Unit Outcomes)

14.5 Teaching and Learning Activities

14.6 Assessment Methods

14.7 Final Grade Evaluation

14.8 Learning Resources

14.9 Course Policies and Standards

14.10 Effectivity and Revision Information

See Annex III for sample syllabi for selected courses as volunteered by some institutions already implementing OBE as well as some institutions that will implement OBE.

ANNEX I

PROFILE OF DUTIES AND COMPETENCE OF CIVIL ENGINEER (ENTRY LEVEL)

GENERAL DUTIES	SPECIFIC DUTIES				COMPET	ENCIES			
GENERAL	1. Understands application of basic computer systems and associated softwares	Understandi ng of computer hardware and systems	Ability with basic algorithms and languages	Ability in Basic Application Software such as word processing, spreadsheets, presentation, computer aided design and drafting, and construction management	Ability with the Internet and online operations				
RAL	2. Communicat es effectively and efficiently	Proficiency in English and Pilipino	Ability to put down in writing thoughts, ideas, opinions, principles	Ability to verbalize thoughts, ideas, opinions, principles whether in individual or group situations	Ability to prepare technical papers, documents and reports	Ability to present technical papers and reports	Ability to create strategie s for informati on dissemin ation		

3. Applies knowledge of Mathematics and Engineering concepts	Ability of the principles of mathematics , natural, physical and applied sciences	Ability to determine appropriate engineering principles and techniques to be applied	Ability to develop appropriate mathematical or computer models	Ability to use appropriate principles and models to develop solutions			
4. Prepares and implement contract and specification documents	Understand ing of the Civil Engineering Law	Understandi ng of other laws relevant to the practice of civil engineering such as National Building Code, PD. 1594	Familiarity of relevant professional documents such as FIDIC, Manuals of Practice, DPWH "Blue Book"	Understandin g the standard contract documents such as draft construction and consultancy contracts, Instruction to Bidders, Technical Specification s, Bid Documents			
5. Selects and evaluates materials for civil engineering projects	Ability to know the range of various materials for civil engineering projects	Understand ing of relevant properties of identified materials	Understandi ng of applicable Standards	Understandi ng of measuring and testing and evaluating the results	Ability to measure, test and evaluate building and constructi on materials		

	6. Understands and implements ethical practices	Awareness of his role as a responsible citizen of the nation	Understand ing of the Code of Ethics for Civil Engineers	Familiarity with the responsibilitie s to clients/emplo yer, co- professionals, the profession and the nation	Familiarity with what constitutes unprofession al and unethical conducts and their correspondin g penalties/san ctions			
GENERAL	7. Pursues life-long learning	Awareness of the need to continuousl y upgrade knowledge and skills throughout his professional life	Awareness of the various modes of obtaining continuing education					
	8. Conducts research and development projects	Understandi ng of methods of research	Understandi ng of research areas/topics in civil engineering	Ability to undertake to basic/element ary research projects				
	9. Applies basic principles of economics in	Familiarity with the basic principles	Ability to apply basic principles in various					

	civil engineering projects		projects phases					
	10. Undertakes technical feasibility studies	Understand ing of the objectives/p urpose of a technical feasibility study	Understand ing of the scope/comp onents of a technical feasibility study	Understandi ng of the application of engineering principles to a technical feasibility study	Ability to prepare schematic/pr eliminary designs			
PLANNING	11. Conducts economic and financial feasibility studies	Understandi ng the objectives/p urpose of an economic/fi nancial feasibility study	Understandi ng the scope/comp onents of an economic/fi nancial feasibility study	Awareness of the application of economic/fina ncial principles to an economic/fina ncial feasibility study				
	12. Undertakes surveys and investigation s	Understandi ng the appropriate surveys and investigatio ns required for various civil engineering projects	Familiarity with the requirement s of the various surveys and investigatio ns	Familiarity with methodologie s of carrying out the more common surveys and investigations such as topographic surveys and geotechnical investigations				

	13. Undertakes environment al studies	Understand ing of the general principles and objectives	Understand ing of the applicable laws	Understandi ng of the scope and components of environmenta l studies						
DESIGN	14. Undertakes and/or supervises structural designs of civil engineering structures	Ability to use methods of analysis relevant to structural design	Ability to use design methods relevant to structural design	Ability to formulate mathematical and computer structural models	Ablity to determine structural loads such as dead load, live load, seismic load, wind load, etc.	Ability to apply methods of analysis to the structure	Ability to apply design methods to structura 1 compone nts in accordan ce with appropri ate codes	Ability to prepare details and plans	Ability to prepare relevant documen ts such as computat ions, technical specificat ions, quantity calculati ons, bills of materials , etc.	Understa nding of computer aided design methods
	15. Undertakes and/or supervises the hydraulic design of structures	Ability to use methods of analysis relevant to hydraulic structures and systems	Ability to use design methods relevant to hydraulic structures and systems	Ablity to formulate mathematical and computer hydraulic models	Ability to determine hydraulic loads	Ability to apply methods of analysis to the hydraulic structure and systems	Ability to apply design methods to compone nts of hydrauli c structure	Ability to prepare details and plans	Ability to prepare relevant documen ts such as computat ions, technical specificat ions,	Understa nding of computer aided design methods

						s and systems in accordan ce with appropri ate codes		quantity calculati ons, bills of materials , estimates , etc.	
16. Undertakes and/or supervises the design of geotechnical engineering structures	Ability to use methods of analysis relevant to geotechnical engineering	Ability to use design methods relevant to geotechnical engineering	Ablity to formulate mathematical and computer geotechnical engineering models	Ability to determine relevant loads and material properties/be havior	Ability to apply methods of analysis to the soil and affected compone nts of the structure	Ability to prepare geotechn ical reports	Understa nding of computer aided design methods		
17. Undertakes and/or supervises design of transportatio n related infrastrcutur es	Ability to use methods of analysis relevant to transportatio n structures and systems	Ability to use design methods relevant to transportatio n structures and systems	Ability to formulate mathematical and computer structural models	Ability to determine hydraulic loads such as dead load, live load, seismic load, wind load, impact load, traffic volume, wheel load, wave action, etc.	Ability to apply methods of analysis to the transport ation structure and systems	Ability to apply design methods to compone nts of transport ation structure s and systems in accordan ce with appropri	Ability to prepare details and plans	Ability to prepare relevant documen ts such as computat ions, technical specificat ions, quantity calculati ons, bills of materials	Understan ding of computer aided design methods

and selectscontinionandFamiliarityappropriate equipmentconstruction equipmentperformancewith capacity offorsuch ascommonschedules	CONSTRUCTION / DEMOLITION	18. Undertakes and/or supervises project management 19. Plans, implements and supervises construction projects	Understandi ng of government requirement s such as permits, clearance, etc. Understandi ng of construction methods and alternatives	Ability to read and interpret construction plans and working drawings Understandi ng of quality control methods	Ability to read, interpret and revise contract documents, estimates and technical specifications Understandin g of construction schedules and programs	Understandin g of components of TOR for professional services Ability to prepare progress report and measure accomplishm ent for	Understa nding of the bidding process	ate codes Ability to prepare and update construct ion schedule s and program s	estimates , etc.	
construction projectsmixer, bulldozer, loader, etc.construction equipment21. Plans, supervisesUnderstandi ng of laborUnderstandi ng of theUnderstandin g of the	MOLITION	and selects appropriate equipment for construction projects 21. Plans,	with common construction equipment such as mixer, bulldozer, loader, etc. Underatandi	with usage and performance capacity of common construction equipment Understandi	with equipment schedules Understandin	Understandin				

implements manpower plans	wage scales	manpower requirement in construction projects	and responsibilitie s of construction personnel	schedules			
22. Plans, implements and supervises delivery of materials	Ability to prepare quantities, inventories and delivery schedules	Understandi ng of handling/sto rage requirement s					
23. Undertakes arbitration and dispute resolution	Understandi ng of arbitration/d ispute resolution methods						
24. Implements safety standards and practices	Understandi ng of relevant safety requirement s and concerns	Understandi ng of mitigation concerns					

ANNEX II - Sample Curriculum Mapping

RELATIONSHIP OF THE COURSES TO THE PROGRAM OUTCOMES

Program Outcomes

By the time of graduation, the students of the program shall have the ability to:

- a) apply knowledge of mathematics and science to solve civil engineering problems;
- b) design and conduct experiments, as well as to analyze and interpret data;
- c) design a system, component, or process to meet desired needs within realistic constraints, in accordance with standards;
- d) function in multidisciplinary and multi-cultural teams;
- e) identify, formulate, and solve civil engineering problems;
- f) understand professional and ethical responsibility;
- g) communicate effectively civil engineering activities with the engineering community and with society at large;
- h) understand the impact of civil engineering solutions in a global, economic, environmental, and societal context
- i) recognize the need for, and engage in life-long learning
- j) know contemporary issues;
- k) use techniques, skills, and modern engineering tools necessary for civil engineering practice;
- know and understand engineering and management principles as a member and leader of a team, and to manage projects in a multidisciplinary environment;
- m) understand at least one specialized field of civil engineering practice.

	Curric	ulum I	Лар										
Code	Mathematics	а	b	с	d	е	f	g	h	i	j	k	
M-01	College Algebra	I											
M-02	Advanced Algebra	I											
M-03	Plane & Spherical Trigonometry	I											
M-04	Analytic Geometry	I											
M-05	Solid Mensuration	I											
M-06	Differential Calculus	I											
M-07	Integral Calculus	I											
M-08	Differential Equations	I											
M-09	Probability & Statistics	1	I			I						I	
Code	Natural/Physical Sciences	а	b	С	d	е	f	g	h	i	j	k	
S-01	General Chemistry 1	I											
L-01	General Chemistry 1 Lab		I										
S-02	Engineering Physics 1	I											
L-02	Engineering Physics 1 Lab		I										
S-03	Engineering Physics 2	E											
L-03	Engineering Physics 2 Lab		E										
Code	Basic Engineering Sciences	а	b	С	d	е	f	g	h	i	j	k	
E-01	Engineering Drawing			I									
L-05	Computer Fundamentals & Programming 1	E	E										
L-05	Computer Fundamentals & Programming 2		E										
L-06	Computer-Aided Drafting											D	
E-02	Statics of Rigid Bodies					E							
E-03	Dynamics of Rigid Bodies					Ε							

E-04	Mechanics of Deformable Bodies					E							
E-05	Engineering Economy								D				
E-06	Engineering Management								D				
E-07	Environmental Engineering								D		D		
E-08	Safety Management								D		D		
Code	Allied Courses	а	b	С	d	е	f	g	h	i	J	k	
A-01	Basic Electrical Engineering for Civil Engineering					Ε							
A-02	Basic Electrical Engineering Laboratory for Civil Engineering					Е							
A-03	Mechanical Engineering Practices for Civil Engineering					Ε							
Code	Professional Courses	а	b	С	d	е	f	g	h	i	J	k	
P-01	Elementary and Higher Surveying					Е							
L-07	Elementary and Higher Surveying Laboratory		E										
P-03	Engineering Surveys					Е							
L-09	Engineering Surveys Laboratory		Ε										
P-04	Advanced Mathematics for Civil Engineering					E							
P-05	Geotechnical Engineering 1					Ε							
L-10	Geotechnical Engineering 1 Laboratory		D										
P-06	Geotechnical Engineering 2					Ε							
L-11	Geotechnical Engineering 2 Laboratory		D										
P-07	Theory of Structures 1	D											
P-08	Theory of Structures 2	D								D			
L-12	Theory of Structures 1 Lab		Ε										
P-09	Theory of Structures 2 Lab		Ε										
L-13	Computer Aided Structural Analysis and Design												

P-10	Mechanics Fluids					E					
L-14	Mechanics Fluids Laboratory		Ε								
P-11	Hydraulics					E					
L-15	Hydraulics Laboratory		Ε								
P-12	Hydrology					E					
P-13	Water Resources Engineering					Ε					
P-14	Highway Engineering					Ε					
P-15	Transportation Engineering					Ε					
P-16	Building Design 1			E				Е			
L-18	Building Design 1 Laboratory			Ε				E			
P-17	Building Design 2										
L-19	Building Design 2 Laboratory										
P-18	Structural Design 1 (RC)	D								D	
L-20	Structural Design 1 (RC) Laboratory		Ε								
P-19	Steel and Timber Design	D									
L-21	Steel and Timber Design Laboratory		Ε								
P-21	Construction Materials and Testing					Ε					
L-22	Construction Materials and Testing Laboratory		D								
P-22	Civil Engineering Ethics, Laws, Contracts and Specs						D				
L-23	Civil Engineering Computer Methods										
P-23	Foundation Engineering			D							
P-24	Construction Method and Project Management				D						
L-24	Construction Method and Project Management Laboratory		E								
P-25	Cost Engineering*										
P-26	Entrepreneurship for Engineers*										
P-27	Material Science*										

P-28	Data Management*												
P-29	Earthquake Engineering*					E							
L-25	Structural Design of Buildings*												
P-30	Bridge Engineering*												
P-31	Prestressed Concrete Design & Special Topics in RC*												
P-32	Highway Design and Traffic Safety*												
P-33	Transportation System Design, Airports, Ports & Railway*												
P-34	Transportation Planning*												
L-26	Transportation Planning Laboratory*												
P-35	Sanitary and Wastewater Engineering*												
P-36	Flood Control, Irrigation & Drainage Engineering*												
P-37	Water Supply, Water Power, Water Dev't & Planning*												
L-27	Coast & River Engineering*												
P-39	Civil Engineering Project			D		D		D					
P-42	Civil Engineering Practicum												
Code	Non-Technical Courses	а	b	С	d	е	f	g	h	i	j	К	I
N-01	Social Science 1										I		
N-02	Social Science 2										I		
N-03	Social Science 3										I		
N-04	Social Science 4										Ι		
N-05	Humanities 1												Ι
N-06	Humanities 2												Е
N-07	Humanities 3												Е
N-08	English 1							I					

N-09	English 2			Е			
N-10	English 3			Е			
N-11	Filipino 1			I			
N-12	Filipino 2			Е			
N-13	Life and Works of Jose Rizal				Е	Е	
N-14	Technical Communication			D			
N-15	P.E. 1						I
N-16	P.E. 2						Е
N-17	P.E. 3						Ε
N-18	P.E. 4						Е
N-19	NSTP 1						Ι
N-19	NSTP 2						Ε

Legend:

*Specialization Courses

Annex III - Sample Outcomes-based Syllabus

BACHELOR OF SCIENCE IN CIVIL ENGINEERING

Course Syllabus in THEORY OF STRUCTURES 2

I. Course Code:

II. Course Description

This is a course on structural analysis of determinate structures with most of the topics devoted to concepts in the analysis of statically indeterminate structures at the intermediate level. Intermediate level means that the following advanced topics are excluded, dynamics and stability, limit state analysis, second-order analysis and structural optimization. The matrix displacement method of analysis and software applications is introduced as part of this course.

Credit Units: 3Lec + 1T (tutorial – equivalent to 3 periods) = 4 Credit Units Prerequisites: Theory of Structures 1 Classification/Field: Professional course

III. Course – Program Outcome Map

I – Introductory E – Enhance D – Demonstrate

а	b	С	d	е	f	g	h	i	j	k	I
D		Ι	Ι	D	I	D	Ι	Ι		D	

IV. Course Outcomes (CO)

At the end of the course, the students shall be able to:

COs	Description	а	b	С	d	е	f	g	h	i	j	k	Ι
CO1	Carry out structural analysis calculations using the different methods discussed.	3			2	3						3	
CO2	Judge which among the methods of structural analysis is the least complicated solution for a given structure.					3							
CO3	Explain the fundamental concept behind the different structural analysis methods discussed.							3					
CO4	Check structural analysis calculations.					3						3	
1 – CO	has minor contribution to the PO 2 – CO has moderate contribution to the PO 3 – CO has major contrib	outio	n to	the	PO)		-	-	-			

VI. Course Content

Grading Period	Topics	COs	Number of Meetings	Teaching Learning Activities	Graded Activities and Assessment Tools
PRELIMS	PART 1 ANALYSIS OF STATICALLY DETERMINATE STRUCTURES ILO (Intended Learning Outcome): 1. Carry out calculations using the methods discussed in solving rotations and deflections of statically determinate structures. 2. Compare the advantages and disadvantages of each method. INTRODUCTION: • The world of Structural Engineering • Review of deformable bodies • Determinate versus Indeterminate Structures A. Unit Load Method applied to statically determinate, a. Beams b. Frames c. Trusses B. Castigliano's Theorem applied to statically determinate, a. Beams b. Frames c. Trusses B. Area-Moment Method applied to statically determinate a. Beams b. Frames c. Trusses B. Area-Moment Method applied to statically determinate a. Beams b. Frames c. Trusses C. Conjugate Beam Method applied to statically determinate a. Beams b. Frames C. Conjugate Beam Method applied to statically determinate a. Beams b. Frames c. Trusses D. Trames	CO1 CO2 CO3 CO4	14	Lecture Tutorial Video Group Presentation	Quiz Plate Exam

MIDTERMS	 PART 2 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES ILO(Intended Learning Outcome): Carry out calculations using the methods discussed in the analysis of statically indeterminate structures. Compare the advantages and disadvantages of each method. Carry out calculations using basic structural analysis software to check accuracy of manual calculations. Check structural analysis calculations presented by others. A. The Consistent Deformation method (Force Method) applied to statically indeterminate Beams Frames Trusses B. The Three-Moment Equation Method applied to statically indeterminate beams. C. The Slope Deflection Method applied to statically indeterminate 	CO1 CO2 CO3 CO4	16	Lecture Tutorial Video Group Presentation	Quiz Plate Exam
FINALS	 a. Beams b. Frames D. The Moment Distribution Method applied to statically indeterminate a. Beams b. Frames E. The Matrix Displacement Method applied to statically indeterminate a. Beams b. Frames c. Trusses F. The Column Analogy Method applied to non-prismatic beams and single cell fixed ended frames. 	CO1 CO2 CO3 CO4	17	Lecture Tutorial Video Group Presentation	Quiz Plate Exam

VI. Assessment Tools (AT)

COs	Assessment Tools	Standards
CO1	Exam	At least 70% of the students will get a score of at least 60%.
CO2	Exam	At least 70% of the students will get a score of at least 60%.
CO3	Group Presentation	At least 50% of the group will get a VG rating (Fair, Good, Very Good, and Excellent).
CO4	Plate	At least 80% of the students will get a score of at least 80%.

VII. Computation of Scores

Passing Score = 60 % Prelim Score (PS) = Exam x 60% + Quiz x 20% + Plate x 10% + Group Presentation x 10%

Midterm Score (MS) = $\frac{1}{2}(PS) + \frac{1}{2}(RMS)$ RMS = Exam x 60% + Quiz x 20% + Plate x 10% + Group Presentation x 10% Final Score (FS) = $\frac{1}{3}(PS) + \frac{1}{3}(RMS) + \frac{1}{3}(RFS)$

RFS = Exam x 60% + Quiz x 20% + Plate x 10% + Group Presentation x 10%

Note: Scores are transmuted to an equivalent grade where a score of at least 60% would be the minimum passing grade of 75.