

1 Running and Licensing Oracle Programs in Containers and Kubernetes / Version 1.0

 Copyright © 2020, Oracle and/or its affiliates / Public

Running and Licensing Oracle
Programs in Containers and
Kubernetes

Version 1.0
Copyright © 2020, Oracle and/or its affiliates
Public

2 Running and Licensing Oracle Programs in Containers and Kubernetes / Version 1.0

 Copyright © 2020, Oracle and/or its affiliates / Public

Purpose statement

This document explains how to configure environments that run Oracle
Programs in containers and Kubernetes, in order to determine and manage
licensing requirements for these Oracle Programs.

Disclaimer

This document in any form, software or printed matter, contains proprietary
information that is the exclusive property of Oracle. Your access to and use of
this confidential material is subject to the terms and conditions of your Oracle
software license and service agreement, which has been executed and with
which you agree to comply. This document and information contained herein
may not be disclosed, copied, reproduced or distributed to anyone outside
Oracle without prior written consent of Oracle. This document is not part of your
license agreement nor can it be incorporated into any contractual agreement
with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist
you in planning for the implementation and upgrade of the product features
described. It is not a commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing decisions. The
development, release, and timing of any features or functionality described in
this document remains at the sole discretion of Oracle. Due to the nature of the
product architecture, it may not be possible to safely include all features
described in this document without risking significant destabilization of the code.

3 Running and Licensing Oracle Programs in Containers and Kubernetes / Version 1.0

 Copyright © 2020, Oracle and/or its affiliates / Public

Containers and Kubernetes

For the purposes of this document “container technology” refers to software
that leverages technologies based on Linux container technologies to deliver,
encapsulate and run software as a package of bundled libraries. At runtime,
these packages may share an operating system, but they do not have access to
the entire operating system - they can only see the contents of the package, and
devices assigned to the package. We will refer to these runtime packages of
encapsulated and bundled software as “containers”. The most well known
implementations of container technology at the time of this writing are Docker
and CRI-O containers.

Container technologies require that the software libraries used by containers are
prepackaged and bundled into a binary package called a “container image” or
“image”. Images are portable between computers. Computers that are
equipped with an operating system and a container runtime are referred to as
“hosts”. A host may be a physical computer or virtual machine that runs the
container runtime.

Images are used as an encapsulation entity to package everything needed to
instantiate the process that will be executed within the container runtime on a
host. Images are typically downloaded from image registries to hosts where
containers will be run. Once an image is downloaded to a host, then the software
encapsulated in the image is ready to be started and run on that specific host.
The process of downloading images to hosts is often called “pulling” images,
based on the use of the term “pull” in the command line interface of Docker.

Pulling an image copies the image from a remote image registry, and stores the
image into the local file system of the host that has pulled the image. For
example, in the case of Docker, the image is stored in a directory named
“/var/lib/docker”). Every image pulled by a host is executable or runnable as a
container only on the host that has pulled that image. Images pulled by one
host are not executable or runnable on another host. This is true even if the
downloaded image, and the directory in which it is stored, are available on a
shared file system that is accessible to multiple hosts. For another host to run a
container from a given image, that host must first pull its own copy of the image,
and write a copy of the image to its own local file system.

Containers that may run across multiple hosts may be managed and
synchronized by container orchestration software. Kubernetes is recognized as
the leading container orchestration software at the time of this writing.
Kubernetes automates deployment, scaling and lifecycle operations of
containers across a Kubernetes cluster consisting of multiple hosts, also known

 .

4 Running and Licensing Oracle Programs in Containers and Kubernetes / Version 1.0

 Copyright © 2020, Oracle and/or its affiliates / Public

as “Kubernetes nodes”. Containers are executed on Kubernetes nodes within
the boundaries of a Kubernetes lifecycle management entity called a
“Kubernetes pod”. Kubernetes defines additional Kubernetes terms such as
Kubernetes service, Kubernetes deployment, and Kubernetes scheduling. See
the Kubernetes documentation (https://kubernetes.io/docs/home) for detailed
definitions.

Kubernetes performs scheduling decisions, based on various criteria, in order to
start and run pods and associated containers on Kubernetes nodes within
Kubernetes clusters. Once a pod and its associated containers are scheduled to
run on given Kubernetes node, then Kubernetes will instruct that Kubernetes
node to pull the relevant images to that Kubernetes node, and to instantiate
containers based on those images. Kubernetes administrators are able to
influence the scheduling process, and can control which Kubernetes nodes may
run specific pods and pull specific images.

Overview of Licensing of Oracle Programs in Containers and
Kubernetes

Container images that have been pulled to a host or a Kubernetes node may
contain Oracle Programs. This may lead to licensing requirements on that host
or that Kubernetes node for the Oracle Programs encapsulated within the image.
As stated in the Oracle Partitioning Policy document:

“Once a container image (e.g. a Docker image) containing Oracle Programs has
been pulled to a host, or to a Kubernetes node in a Kubernetes cluster, (either a
virtual machine or a physical machine), that host or Kubernetes node must be
licensed for the Oracle Programs for the number of processors on that host or
Kubernetes node. If the host or Kubernetes node is a physical machine, the
number of processors on that host or Kubernetes node equals the number of
processors on that physical machine. If the host or Kubernetes node is a virtual
machine, then the number of processors on that host or Kubernetes node is
subject to the guidelines documented in this Partitioning Policy.”

Oracle recommends use of the procedures below for configuring environments
that run Oracle Programs in containers and Kubernetes, in order to determine
and manage licensing requirements for the Oracle Programs that may run in
these environments.

5 Running and Licensing Oracle Programs in Containers and Kubernetes / Version 1.0

 Copyright © 2020, Oracle and/or its affiliates / Public

Configuring Hosts to Run Oracle Programs in Containers

Customers are responsible for identifying and managing which images contain
binaries with Oracle Programs.

Every host that has pulled an image containing Oracle Programs must have
appropriate licenses to run the Oracle Programs. The following guidelines
should be used for configuring these hosts in order to determine and manage
licensing requirements.

1. Users running Oracle Programs in containers should control the number of
hosts that are pulling images containing Oracle Programs. Every pull
operation executed on a host, for an image containing Oracle Programs, is
equivalent to installing the Oracle Programs on that host and will create
licensing requirements for that host.

2. The host may be physical or virtual. If the host is physical, then licenses for
the Oracle Programs are required for all processors on that physical host. If
the host is virtual, then the Oracle Partitioning Policy
(https://www.oracle.com/assets/partitioning-070609.pdf) determines the
number of processors that require a license for the Oracle Programs on that
virtual host.

3. Because container file systems are specific to the container runtime (e.g. the
Docker daemon) that owns them and cannot be shared, an image pulled to
one host’s container file system cannot be used to run a container on
another host. Placement of Oracle Programs in container file systems on a
storage server (e.g. a SAN) creates Oracle licensing requirements for the
host that pulled the container images into that container file system.
However, this does not, by itself, create Oracle licensing requirements for
other hosts that have access to the same storage server. By controlling
which hosts pull images containing Oracle Programs, users may limit Oracle
licensing requirements for these Oracle Programs to only the hosts that have
pulled the images, even when additional hosts have access to the same
storage server where images are stored.

Container technologies allow users to assign a subset of host resources (such as
RAM or CPU resources) to the container. For example the command
docker run –cpus=”1.0” <image> assigns only 1 CPU to the container
regardless of how many CPUs are available on the host. Oracle does not
recognize these technologies as hard partitioning technologies as defined in the
Oracle Partitioning Policy document. Users should not use these container
technology features with the expectation that they will limit Oracle licensing
requirements.

6 Running and Licensing Oracle Programs in Containers and Kubernetes / Version 1.0

 Copyright © 2020, Oracle and/or its affiliates / Public

Configuring Kubernetes to run Oracle Programs

Customers are responsible for identifying and managing which images contain
binaries with Oracle Programs.

Every Kubernetes node that has pulled an image containing Oracle Programs
must have appropriate licenses to run the Oracle Programs. All guidelines above
for configuring hosts to run Oracle Programs in containers also apply to
configuring Kubernetes nodes and clusters to run Oracle Programs. Kubernetes
provides two features that enable users to control which Kubernetes nodes can
potentially run Kubernetes pods, and therefore which Kubernetes nodes will
potentially pull images. These features are “node labels” and “node selectors”,
and users may leverage these features to limit Oracle licensing requirements for
Oracle Programs to certain Kubernetes nodes within a Kubernetes cluster.

A node label is a piece of metadata (key value pair) associated with a Kubernetes
node. The node label is added to the Kubernetes node’s configuration using
standard Kubernetes tools (e.g. kubectl). For example, a user may label a
Kubernetes node with a label such as “labelkey=labelvalue”.

Node selectors are fields included in a Kubernetes pod configuration, and control
where the Kubernetes pod is scheduled. A node selector tells Kubernetes to
schedule the pod only on nodes that have a label that matches the pod’s node
selector. If the node selector for a pod was “labelkey=labelvalue”, then
Kubernetes would only schedule the Kubernetes pod on Kubernetes nodes that
have the corresponding node label.

Configuring Kubernetes to run Oracle Programs on Certain
Kubernetes Nodes Using Generic Kubernetes Features

To leverage these Kubernetes features to limit Oracle licensing requirements for
Oracle Programs to certain Kubernetes nodes within a Kubernetes clusters, you
should perform the following steps using kubectl and YAML editing tools:

1. Run “kubectl get nodes” to obtain the names of the Kubernetes nodes in
the Kubernetes cluster.

2. Choose the subset of Kubernetes nodes where you want to run Oracle
Programs.

7 Running and Licensing Oracle Programs in Containers and Kubernetes / Version 1.0

 Copyright © 2020, Oracle and/or its affiliates / Public

3. For every Kubernetes node where you want to run Oracle Programs, execute
the following command to label the nodes:
kubectl label nodes <node-name> <labelkey>=<labelvalue>

For example:
kubectl label nodes mynode1 oracle=true

4. For Kubernetes pods containing Oracle Programs, add a nodeSelector field
in the “spec.” section of your pod’s YAML configuration file that matches the
node label above, using the following syntax:

 (…)
 nodeSelector:
 <labelkey>: <labelvalue>
 (…)

For example:
 (…)
 nodeSelector:
 oracle: true
 (…)

5. You can then cause the Kubernetes pod with the node selector to be
scheduled on a Kubernetes node with the node label by executing, for
example:
kubectl apply -f <yaml_file>

To verify the assignment of Kubernetes pods to Kubernetes nodes you should
execute the following command:
kubectl get pods [-n namespace | --all-namespaces] -o wide

After executing this command you should see a table containing information
about the Kubernetes pods that should be running on Kubernetes nodes within
the Kubernetes cluster. The table should look like the following:

NAMESPACE NAME (…) NODE (…)

 (… potentially few other rows …)

<name-of-ns> <name-of-your-pod> (…) <name-of-the-node> (…)

 (… potentially few other rows …)

If the value of <name-of-the-node> in the row with your Kubernetes pod is the
name of one of the Kubernetes nodes you have labeled in step 3 above, this

8 Running and Licensing Oracle Programs in Containers and Kubernetes / Version 1.0

 Copyright © 2020, Oracle and/or its affiliates / Public

verifies the assignment of the Kubernetes pod to the proper Kubernetes node.
If the above verification fails, then you have made a mistake during the process
of labeling the Kubernetes nodes and using the node selector. Before you repeat
the procedure you should remove the deployment by logging into the
Kubernetes node that may have pulled the image with Oracle Programs and
manually removing the local copy of the pulled image (for example through the
“docker rmi” command).

Configuring Kubernetes to run Oracle Programs on Certain
Kubernetes Nodes Using Utilities such as the WebLogic Server
Kubernetes Operator

Some Oracle Programs may have built utilities (such as the WebLogic Server
Kubernetes Operator) that assist with management of Oracle Programs running
in Kubernetes, and that leverage the nodeSelector feature of Kubernetes. You
may use the features of these utilities to control which Kubernetes nodes can
potentially run Kubernetes pods containing Oracle Programs, and which
Kubernetes nodes will potentially pull images containing Oracle Programs, in
order to limit Oracle licensing requirements for Oracle Programs to certain
Kubernetes nodes within a Kubernetes cluster.

For example, you may use the WebLogic Server Kubernetes Operator to limit
licensing requirements for Oracle WebLogic Server to certain Kubernetes nodes
within a Kubernetes cluster. To accomplish this you would need to execute the
first 3 steps above using generic Kubernetes features as described above.
Instead of steps 4-5 above, however, you would indicate through the WebLogic
Domain Kubernetes Custom Resource object how the WebLogic Server
Kubernetes Operator should provision Kubernetes pods with WebLogic Server
binaries, and if the WebLogic Server Kubernetes Operator should use the
nodeSelector feature of Kubernetes.

When using the WebLogic Server Kubernetes Operator, the WebLogic Domain
Kubernetes Custom Resource is described and defined by a YAML file, often
referred to as domain.yaml. For more information, see the following
documentation: https://oracle.github.io/weblogic-kubernetes-
operator/userguide/managing-domains/domain-resource/.

This YAML file contains three sections: metadata, spec and status. (The detailed
reference is at https://github.com/oracle/weblogic-kubernetes-
operator/blob/master/docs/domains/Domain.md. Inside the “spec” section of
this YAML file you may define a “serverPod" element that may contain the
“nodeSelector" element.

9 Running and Licensing Oracle Programs in Containers and Kubernetes / Version 1.0

 Copyright © 2020, Oracle and/or its affiliates / Public

This “serverPod” element may be applied to following scopes:

� spec.serverPod – for domain wide settings

� spec.adminServer.serverPod – for settings that are applied to the
WebLogic Admin Server

� spec.clusters[*].serverPod – for settings that are applied to named
clusters

� spec.managedServer[*].serverPod – for settings that are applied to
named WebLogic Managed Servers

When you want to schedule Kubernetes pods including WebLogic Server binaries
to run only on given Kubernetes nodes you should add the following entries to
properly scoped “serverPod” element:

 (…)
 nodeSelector:
 <labelkey>: <labelvalue>
 (…)

For example:
 (…)
 nodeSelector:
 oracle: true
 (…)

You may verify the assignment of Kubernetes pods to Kubernetes nodes by
executing the following command as described above:

 kubectl get pods [-n namespace | --all-namespaces] -o wide

10 Running and Licensing Oracle Programs in Containers and Kubernetes / Version 1.0

 Copyright © 2020, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is
provided for information purposes only, and the contents hereof are subject to change
without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied
warranties and conditions of merchantability or fitness for a particular purpose. We
specifically disclaim any liability with respect to this document, and no contractual
obligations are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without our prior written permission.

This device has not been authorized as required by the rules of the Federal
Communications Commission. This device is not, and may not be, offered for sale or
lease, or sold or leased, until authorization is obtained.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group. 0120

Disclaimer: This document is for informational purposes. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions.
The development, release, timing, and pricing of any features or functionality described in this
document may change and remains at the sole discretion of Oracle Corporation.

