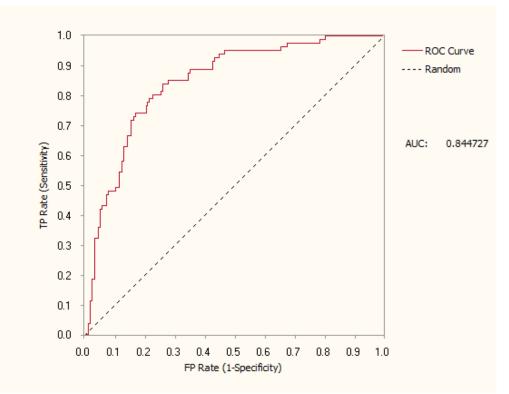
ROC (Receiver Operating Characteristic) Curve Analysis

Julie Xu

17th November 2017

Agenda

- Introduction
- Definition
- Accuracy
- Application
- Conclusion
- ➢ Reference


Introduction

- ROC (Receiver Operating Characteristic) curve is a fundamental tool for diagnostic test evaluation. It is increasingly used in many fields, such as data mining, financial credit scoring, weather forecasting etc.
- ROC curve plots the true positive rate (sensitivity) of a test versus its false positive rate (1-specificity) for different cut-off points of a parameter
- ROC curve is graphically to display the trade-off relationship between sensitivity and specificity for all possible thresholds
- SAS/STAT Procedures: FREQ, LOGISTIC, MIXED and NLMIXED can be used to perform ROC curve analysis

ROC (Receiver Operating Characteristic) Curve¹

Definition²

> Sensitivity is the probability of a test will be positive given a patient with the disease

> Specificity is the probability of a test will be negative given a patient without the disease

	Disease				
Test	Present	n	Absent	n	Total
Positive	True Positive (TP)	а	False Positive (FP)	С	a + c
Negative	False Negative (FN)	b	True Negative (TN)	d	<u>b + d</u>
Total		a+b		c + d	

Sensitivity = TP/(TP+FN) = a/(a+b) Specificity = TN/(TN+FP) = d/(c+d) Positive predictive value (PPV) = TP/(TP+FP) = a/(a+c) Negative predictive value (NPV) = TN/(TN+FN) = d/(b+d)

> The accuracy of a test is measured by the area under the ROC curve (AUC).

 \succ AUC is the area between the curve and the x axis.

An area of 1 represents a perfect test, while an area of .5 represents a worthless test.

The closer the curve follows the left-upper corner of the plot, the more accurate the test.

Application in SAS³

> PROC FREQ: 2×2 contingency table in PET (Positron Emission Tomography) scan for detecting cancer

data cancer;

input Diagnosed \$ Observed \$ patients; datalines;

Cancer	Cancer	25
Caner	No_Cancer	3
No_Cancer	Cancer	42
No_Cancer	No_Cancer	111
•		
run;		

Proc freq data=cancer; table diagnosis*observed; weight patients; run;

		Observed		
		Cancer	No Cancer	Total
Diagnosed				
Cancer	Frequency	25	3	28
	Percent	13.81	1.66	15.47
	Row Pct	89.29	10.71	
	Col Pct	37.31	2.63	
No_Cancer	Frequency	42	111	153
	Percent	23.20	61.33	84.53
	Row Pct	27.45	72.55	
	Col Pct	62.69	97.37	
Total	Frequency	67	114	181
	Percent	37.02	62.98	100.00

Sensitivity = 37.31% Specificity = 97.37% PPV = 89.29%

NPV = 72.55%

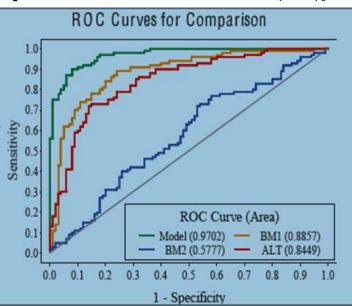
Diagnosed cancer if SUV (Standardized Uptake Value) > 7; Observed cancer determined by gold standard

Application in SAS⁴

- Developing new biomarkers (BM) that are more specific in detecting drug induced liver injury (DILI) than the commonly used test [elevated alanine transaminase (ALT)]
- ➤ ods graphics on;

```
proc logistic data = biom plots = roc;
```

```
model status (event='1') = alt bm1 bm2;
```


```
roc "BM1' bm1;
```

```
roc "BM2" bm2;
```

```
roc "ALT" alt;
```

roccontrast reference('ALT')/estimate e; run;

ods graphics off;

AUC equals to C-statistics

Conclusion

- Threshold Selection
 - To choose the most appropriate cut-off for a test. The best cut-off has the highest true positive rate together with the lowest false positive rate
- Assessment of Diagnostic Accuracy
 - To evaluate the accuracy of a diagnostic test using AUC value to discriminate the

diseased cases from normal cases

- Multiple Tests Comparison
 - To compare the performance of two or more tests via a visual method

Reference

- ➤ 1. <u>https://www.gepsoft.com/images/GeneXproTools5/LogisticRegressionMeasuresOfFit.png</u>
- > 2. <u>https://www.medcalc.org/manual/roc-curves.php</u>
- > 3. <u>http://www2.sas.com/proceedings/sugi31/210-31.pdf</u>
- 4. Gonen, Mithat. 2007. Analyzing Receiver Operating Characteristic Curves with SAS. Cary, NC: SAS Institute Inc.

Email: liqin.xu@inventivhealth.com

Clinical Division

INC Research/inVentiv Health

12