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What does Robust mean?
1.Definitions differ in scope and content.  In the most 

general construction:   Robust models pertains to 
stable and reliable models.

2. Strictly speaking: 
Threats to stability and reliability include 

influential outliers
Influential outliers played havoc with statistical 

estimation.  Since 1960, many robust 
techniques of estimation have developed that 
have been resistant to the effects of such 
outliers.

SAS Proc Robustreg in Version 9  
deals with these.
S-Plus robust library in
Stata  rreg, prais, and arima  
models 

3. Broadly speaking: Heteroskedasticity
Heteroskedastically consistent variance 

estimators
Stata regress y x1 x2, robust

4. Non-normal residuals
1. Nonparametric Regression models

Stata qreg, rreg
2. Bootstrapped Regression

1. bstrap
2. bsqreg
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Outline

1. Regression modeling preliminaries
1. Tests for misspecification

1. Outlier influence
2. Testing for normality
3. Testing for heterskedasticity
4. Autocorrelation of residuals

2. Robust Techniques
1. Robust Regression
2. Median or quantile regression
3. Regression with robust standard errors
4. Robust autoregression models

3. Validation and cross-validation
1. Resampling
2. Sample splitting

4. Comparison of STATA with SPLUS and SAS
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Preliminary Testing: Prior to 
linear regression modeling, use a 
matrix graph to confirm linearity 

of relationships
graph y x1 x2, matrix

y
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The independent variables 
appear to be linearly 

related with y

We try to keep the models simple.  If the 
relationships are linear then we model them with 
linear models.  If the relationships are nonlinear, 
then we model them with nonlinear or 
nonparametric models.
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Theory of Regression 
Analysis

What is linear regression 
Analysis?
Finding the relationship between a 

dependent and an independent 
variable.

Graphically, this can be done with 
a simple Cartesian graph

Y a bx e= + +
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The Multiple 
Regression Formula

Y a bx e= + +

Y is the dependent variable

a is the intercept

b is the regression coefficient

x is the predictor variable
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Graphical Decomposition 
of Effects

X

Y
ŷ a bx= +

X

Y

iY

} ˆi iy y error− =

ŷ y regression effect− =}{iy y Total Effect− =

Decomposition of Effects
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Derivation of the Intercept
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Derivation of the 
Regression Coefficient

:

( )

( )

( )

( )

i i i

i i i

n n

i i i
i i
n n

i i i
i i

n

i n n
i

i i i i
i i

n n

i i i i
i i

n

i i
i

n

i
i

Given y a b x e
e y a b x

e y a b x

e y a b x

e
x y b x x

b

x y b x x

x y
b

x

= =

= =

=

= =

= =

=

=

= + +
= − −

= − −

= − −

∂
= −

∂

= −

=

∑ ∑

∑ ∑

∑
∑ ∑

∑ ∑

∑

∑

1 1

2 2

1 1

2

1

1 1

1 1

1

2

1

2 2

0 2 2



11

• If we recall that the formula  for 
the correlation coefficient can 
be expressed as follows:
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from which it can be seen that the regression coefficient b,
is a function of r.
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Extending the bivariate to the multivariate
Case
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It is also easy to extend the bivariate intercept
to the multivariate case as follows.
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Linear Multiple 
Regression

• Suppose that we have the 
following data set.
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Stata OLS regression 
model syntax

We now see that the significance levels reveal that x1 and x2
are both statistically significant.  The R2 and adjusted R2

have not been significantly reduced, indicating that this model still
fits well.  Therefore, we leave the interaction term pruned from the 
model. 

What are the assumptions of multiple linear regression analysis?
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Regression modeling 
and the assumptions

1. What are the assumptions?
1. linearity
2. Heteroskedasticity
3. No influential outliers in small 

samples
4. No multicollinearity
5. No autocorrelation of residuals
6. Fixed independent variables-no 

measurement error
7. Normality of residuals
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Testing the model for 
mispecification and 

robustness
Linearity

matrix graphs shown above
Multicollinearity

vif
Misspecification tests

heteroskedasticity tests
rvfplot
hettest

residual autocorrelation tests
corrgram  

outlier detection
tabulation of standardized residuals
influence assessment

residual normality tests
sktest

Specification tests (not covered in this lecture)
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Misspecification tests

• We need to test the residuals 
for normality.

• We can save the residuals in 
STATA, by issuing a command 
that creates them, after we 
have run the regression 
command.

• The command to generate the 
residuals is

• predict resid, residuals
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Generation of the regression residuals
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Generation of 
standardized residuals

• Predict rstd, rstandard
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Generation of 
studentized residuals

• Predict rstud, rstudent
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Testing the Residuals 
for Normality

1. We use a Smirnov-Kolmogorov 
test.

2. The command for the test is:
sktest resid

This tests the cumulative distribution of the residuals against that of 
the theoretical normal distribution with a chi-square test
To determine whether there is a statistically significant difference.
The null hypothesis is that there is no difference. When the probability
is less than .05, we must reject the null hypothesis and infer that
the residuals are non-normally distributed.
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Testing the Residuals 
for heteroskedasticity

1. We may graph the standardized or 
studentized residuals against the 
predicted scores to obtain a graphical 
indication of heteroskedasticity.

2. The Cook-Weisberg test is used to test 
the residuals for heteroskedasticity.
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A Graphical test of 
heteroskedasticity:

rvfplot, border yline(0)

This displays any problematic patterns that might suggest
heteroskedasticity.  But it doesn’t tell us which residuals are
outliers.
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Cook-Weisberg Test
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Cook-Weisberg test 
syntax

1. The command for this test is:
hettest resid

An insignificant result indicates lack of heteroskedasticity.
That is, an such a result indicates the presence of equal variance
of the residuals along the predicted line. This condition is
otherwise known as homoskedasticity.
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Testing the residuals for 
Autocorrelation

1. One can use the command, 
dwstat, after the regression to 
obtain the Durbin-Watson d 
statistic to test for first-order 
autocorrelation.

2. There is a better way.  
Generate a casenum 
variable:  Gen casenum = _n
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Create a time 
dependent series
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Run the Ljung-Box Q statistic
which tests previous lags for 
autocorrelation and partial 

autocorrelation

The significance of the AC (Autocorrelation) and PAC
(Partial autocorrelation) is shown in the Prob column.
None of these residuals has any significant autocorrelation.

The STATA command is :    corrgram resid
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One can run 
Autoregression in the 

event of autocorrelation
This can be done with
newey y x1 x2 x3 lag(1) time
prais y x1 x2 x3
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Outlier detection

• Outlier detection involves the 
determination whether the residual 
(error = predicted – actual) is an 
extreme negative or positive value.

• We may plot the residual versus 
the fitted plot to determine which 
errors are large, after running the 
regression.

• The command syntax was already 
demonstrated with the graph on 
page 16: rvfplot, border yline(0)
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Create Standardized 
Residuals

• A standardized residual is one 
divided by its standard deviation.

ˆi i
standardized

y yresid
s

where s std devof residuals

−
=

=
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Standardized residuals

predict residstd, rstandard
list residstd
tabulate residstd
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Limits of Standardized 
Residuals

If the standardized residuals 
have values in excess of 3.5
and -3.5, they are outliers.

If the absolute values are less 
than 3.5, as these are, then 
there are no outliers

While outliers by themselves 
only distort mean prediction 
when the sample size is small 
enough, it is important to 
gauge the influence of outliers.
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Outlier Influence

• Suppose we had a different 
data set with two outliers.

• We tabulate the standardized 
residuals and obtain the 
following output:
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Outlier a does not distort 
the regression line but 

outlier b does.

b

a

Y=a+bx

Outlier a has bad leverage and outlier a 
does not.
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In this data set, we have two outliers. One is negative and the 
other is positive.
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Studentized Residuals

• Alternatively, we could form 
studentized residuals.  These are 
distributed as a t distribution with 
df=n-p-1, though they are not 
quite independent.  Therefore, we 
can approximately determine if 
they are statistically significant or 
not.

• Belsley et al. (1980) 
recommended the use of 
studentized residuals.
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Studentized Residual
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These are useful in estimating the statistical significance
of a particular observation, of which a dummy variable
indicator is formed.   The t value of the studentized residual
will indicate whether or not that observation is a significant
outlier.
The command to generate studentized residuals, called rstudt is:
predict rstudt, rstudent
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Influence of Outliers

1. Leverage is measured by the 
diagonal components of the hat 
matrix.

2. The hat matrix comes from the 
formula for the regression of Y.

ˆ '( ' ) '
'( ' ) ' ,
,

ˆ

Y X X X X X Y
where X X X X the hat matrix H
Therefore

Y HY

β −

−

= =

=

=

1

1
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Leverage and the Hat 
matrix

1. The hat matrix transforms Y into the 
predicted scores.

2. The diagonals of the hat matrix indicate 
which values will be outliers or not.  

3. The diagonals are therefore measures of 
leverage.

4. Leverage is bounded by two limits: 1/n and 
1.  The closer the leverage is to unity, the 
more leverage the value has.

5. The trace of the hat matrix = the number of 
variables in the model.

6. When the leverage > 2p/n then there is high 
leverage according to Belsley et al. (1980) 
cited in Long, J.F. Modern Methods of 
Data Analysis (p.262). For smaller samples, 
Vellman and Welsch (1981) suggested that 
3p/n is the criterion.
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Cook’s D

1. Another measure of influence.
2. This is a popular one.  The 

formula for it is:

'
( )

i i
i

i i

h eCook s D
p h s h

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠⎝ ⎠

2

2

1
1 1

Cook and Weisberg(1982) suggested that values of 
D that exceeded 50% of the F distribution (df = p, n-p)
are large.
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Using Cook’s D in 
STATA

• Predict cook, cooksd
• Finding the influential outliers
• List cook, if cook > 4/n
• Belsley suggests  4/(n-k-1) as a cutoff
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Graphical Exploration of 
Outlier Influence

• Graph cook residstd, xlab ylab

The two influential outliers can be found easily here
in the upper right.



46

DFbeta

• One can use the DFbetas to 
ascertain the magnitude of 
influence that an observation has 
on a particular parameter estimate 
if that observation is deleted.

( )

( )

.

ij j j
j

jj

j

b b u
DFbeta

u h

where u residuals of

regressionof x on remaining xs

−
=

−

=

∑ 2 1
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Obtaining DFbetas in 
STATA
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Robust statistical options 
when assumptions are 

violated
1. Nonlinearity

1. Transformation to linearity
2. Nonlinear regression

2. Influential Outliers
1. Robust regression with robust weight functions
2. rreg y x1 x2

3. Heteroskedasticity of residuals
1. Regression with Huber/White/Sandwich 

variance-covariance estimators
2. Regress y x1 x2, robust

4. Residual autocorrelation correction
1. Autoregression with

prais y x1 x2, robust
2.     newey-west regression

5. Nonnormality of residuals
1. Quantile regression: qreg y x1 x2    
2. Bootstrapping the regression coefficients
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Nonlinearity:  
Transformations to linearity

1. When the equation is not 
intrinsically nonlinear, the 
dependent variable or 
independent variable may be 
transformed to effect a 
linearization of the relationship.

2. Semi-log, translog,  Box-Cox, or 
power transformations may be 
used for these purposes.  

1. Boxcox regression permits 
determines the optimal parameters 
for many of these transformations.



50

Fix for Nonlinear functional 
form: Nonlinear Regression 
Analysis

x

x

nl exp2 y x
estimates Y b b

nl exp3 y x
estimates y b b b

=

= +

1 2

0 1 2

Examples of 2 exponential growth curve models, the first
of which we estimate with our data.
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Nonlinear Regression in 
Stata

• . nl exp2 y x
• (obs = 15)

• Iteration 0:  residual SS = 56.08297
• Iteration 1:  residual SS = 49.46372
• Iteration 2:  residual SS = 49.4593
• Iteration 3:  residual SS = 49.4593

• Source        SS df       MS            Number of obs =        15
• F(  2,    13) =   1585.01
• Model   12060.5407 2  6030.27035         Prob > F      =    0.0000
• Residual   49.4592999 13  3.80456153         R-squared     =    0.9959
• Adj R-squared =    0.9953
• Total        12110 15  807.333333         Root MSE      =  1.950529
• Res. dev.     =  60.46465
• 2-param. exp. growth curve, y=b1*b2^x
•
• y       Coef. Std. Err.      t    P>t     [95% Conf. Interval]
•
• b1    58.60656 1.472156    39.81   0.000     55.42616    61.78696
• b2    .9611869 .0016449   584.36   0.000     .9576334    .9647404
•
• (SE's, P values, CI's, and correlations are asymptotic approximations)

• . 
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Heteroskedasticity 
correction

1. Prof. Halbert White showed that 
heteroskedasticity could be 
handled in a regression with a 
heteroskedasticity-consistent 
covariance matrix estimator 
(Davidson & McKinnon (1993), 
Estimation and Inference in 
Econometrics, Oxford U Press, 
p. 552). 

2. This variance-covariance matrix 
under ordinary least squares is 
shown on the next page.
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OLS Covariance Matrix 
Estimator

( ' ) ( ' )( ' )
/( ' )t

X X X X X X
where s X X

− −Σ

Σ =

1 1

2
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White’s HAC estimator

1. White’s estimator is for large 
samples.  

2. White’s heteroskedasticity-
corrected variance and standard 
errors can be larger or smaller 
than the OLS variances and 
standard errors.
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Heteroskedastically consistent 
covariance 

matrix “Sandwich” estimator (H. 
White)
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:

:
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Regression with robust standard 
errors for heteroskedasticity 

Regress y x1 x2, robust

Options other than robust, are hc2 and hc3 referring
to  the versions mentioned by Davidson and McKinnon above.
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Robust options for the 
VCV matrix in Stata

• Regress y x1 x2, hc2
• Regress y x1 x2, hc3

• These correspond to the 
Davidson and McKinnon’s 
versions of the 
heteroskedastically consistent 
vcv options 2 and 3.
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Problems with 
Autoregressive Errors

1. Problems in estimation with OLS
1. When there is first-order autocorrelation of the 

residuals, 
2. et = D1et-1 + vt

2. Effect on the Variance
1. et

2 = D1
2et-1

2 + vt 
2

58
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Sources of Autocorrelation

1. Lagged endogenous variables
2. Misspecification of the model
3. Simultaneity, feedback, or reciprocal 

relationships
4. Seasonality or trend in the model
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Prais-Winston 
Transformation-cont’d

,
( ) ( )

2
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Autocorrelation of the 
residuals:  prais & newey 

regression
To test whether the variable is 

autocorrelated
• Tsset time
• corrgram y
• prais y x1 x2, robust
• newey y x1 x2, lag(1) t(time) 
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Testing for autocorrelation 
of residuals

regress mna10 l5sumprc
predict resid10, residual
corrgram resid10
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Prais-Winston Regression 
for AR(1) errors

Using the robust option here guarantees that the 
White heteroskedasticity consistent sandwich
variance-covariance estimator will be used 
in the autoregression procedure.
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Newey-West Robust 
Standard errors

• An autocorrelation correction is 
added to the meat or tofu in the 
White Sandwich estimator by 
Newey-West.
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Central Part of Newey-
West Sandwich estimator

( )

ˆ'
ˆ'

' '

newey west
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Newey-West Robust 
Standard errors

Newey West standard errors are robust to autocorrelation
and heteroskedasticity with time series regression models.
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Assume OLS 
regression

• We regress y on x1 x2 x3
• We obtain the following output

Next we examine the residuals
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Residual Assessment

The data set is to small to drop case 21, so I use robust
regression
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Robust regression 
algorithm:  rreg

1. A regression is performed 
and absolute residuals are 
computed.   

2. These residuals are 
computed and scaled: 

| |i i ir y x b= −

i
i

i i

ru
s

y x b
s

=

−
=
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Scaling the residuals

.

(| ( ) |)i i

Ms

where
M med r med r

=

= −

0 6745

The residuals are scaled by the median absolute
value of the median residual.
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Essential Algorithm

• The estimator of the parameter b
minimizes the sum of a less 
rapidly increasing function of the 
residuals (SAS Institute, The 
Robustreg Procedure, draft copy, 
p.3505, forthcoming):

( )
n

i

i

i i

rQ b

where r y x b
is estimated by s

ρ
σ

σ

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= −

∑
1
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Essential algorithm-cont’d

1. If this were OLS, the ρ would be 
a quadratic function.

2. If we can ascertain s, we
can by taking the derivatives 
with respect to b, find a first 
order solution to

,

,...,
'

n
i

ij
i

r x
s

where j p

ψ

ψ ρ

=

⎛ ⎞ =⎜ ⎟
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Case weights are developed 
from weight functions

1. Case weights are formed based 
on those residuals. 

2. Weight functions for those case 
weights are first the Huber 
weights and then the Tukey 
bisquare weights:

3. A weighted regression is rerun 
with the case weights.
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Iteratively reweighted
least squares

( )( ) xw x
x

ψ
=

•The case weight w(x) is defined as:

It is updated at each iteration until it
converges on a value and the change
from iteration to iteration declines below
a criterion.
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Weights functions for 
reducing outlier influence

c is the tuning constant used in determining the case weights. 
For the Huber weights c = 1.345 by default.
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Weight Functions

Tukey biweight (bisquare)

C is also the biweight tuning constant.  C is set at 4.685
for the biweight.  
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Tuning Constants

• When the residuals are normally 
distributed and the tuning 
constants are set at the default, 
they give the procedure about 
95% of the efficiency of OLS.  

• The tuning constants may be 
adjusted to provide 
downweighting of the outliers at 
the expense of Gaussian 
efficiency.   

• Higher tuning constants cause the 
estimator to more closely 
approximate OLS.



78

Robust Regression 
algorithm –cont’d

3. WLS regression is performed  
using those case weights

4. Iterations case when case 
weights drop below a 
tolerance level

5. Weights are based initially on 
Huber weights.  Then Beaton 
and Tukey biweights are 
used.

6. Caveat:  M estimation is not 
that robust with regard to 
leverage points.
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Robust Regression for 
down-weighting outliers
• rreg y x1 x2 x3

Uses Huber and Tukey biweights to downweight the influence
of outliers in the estimation of the mean of y in the upper panel
whereas ols regression is given in the lower panel.
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A Corrective Option for 
Nonnormality of the 

Residuals
1. Quantile regression (median 

regression is the default) is one 
option.

2. Algorithm
1. Minimizes the sum of the absolute 

residuals
2. The residual in this case is the 

value minus the unconditional 
median.

3. This produces a formula that 
predicts the median of the 
dependent variable

Ymed = a + bx
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Quantile Regression

qreg in STATA estimates least 
absolute value ( LAV or MAD or 
L1 norm regression).

The algorithm minimizes the sum of 
the absolute deviations about the 
median.

The formula generated estimates the 
median rather than the mean, as 
rreg does. 

Ymedian =   constant +  bx
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Median regression



83

Bootstrapping

• Bootstrapping may be used to 
obtain empirical regression 
coefficients, standard errors, 
confidence intervals, etc. when 
the distribution is non-normal.

• Bootstrapping may be applied 
to qreg with bsqreg
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Bootstrapping quantile or 
median regression 

standard errors
• qreg y x1 x2 x3
• bsqreg y x1 x2 x3, reps(1000)
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Methods of Model 
Validation

• These methods may be 
necessary where the sampling 
distributions of the parameters 
of interest are nonnormal or 
unknown.

• Bootstrapping
• Cross-validation
• Data-splitting
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Bootstrapping

• When the distribution of the 
residuals is nonnormal or the 
distribution is unknown, 
bootstrapping can provide 
proper regression coefficients, 
standard errors, and 
confidence intervals.
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Stata Bootstrapping 
Syntax  

• Bs “regress y x1 x2 x3”, “_b[x1] _b[x2] _b[x3]”, reps(1000) 
saveing(mybstrap1)
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Internal Validation
R2 and adjusted R2

1. Plot       against Y.  Compute an  R2

and an adjusted R2.
Ŷ
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Cross-validation

• Jacknifing
• This is repeated sampling, 

where one group or 
observation is left out.

• The analysis is reiterated and 
the results are averaged to 
obtain a validation.  
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Resampling

1. Bootstrapping was performed developed by 
Efron. Resampling generally needs to be 
done at least B=100 times.

2. Resampling with replacement is performed 
on a sample.  From each bootstrapped 
sample, a mean is computed. The average of 
all of these b bootstrapped means is the 
mean.

3. The bootstrapped means are used to 
compute a bootstrapped variance estimate.   
If b is the number of bootstraps, then b is 
the n used in the computation.  A 
bootrapped variance estimate is now known.

4. After enough resampling, an empirical 
distribution function is formed.
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Bootstrapped Formulae
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Data-splitting

1. Sample Splitting
1. Subset the sample into a training 

and a validation subsample. One 
has to be careful about the tail 
wagging the dog, as David Reilly 
is wont to say.

2. This results in poorer accuracy and 
loss of power unless there is plenty 
of data.

3. Tests for parameter constancy
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Comparison of STATA, 
SAS, and S-PLUS

Stata has rreg, qreg, bsqreg
Rreg is M estimation with Huber and Tukey bisquare 

weight functions
qreg is quantile regression
Bsqreg is bootstrapped quantile regression
Bootstrapping

SAS has M, Least Trimmed squares, S, and MM 
estimation in Proc Robustreg in version 9.  It 
can perform Robust  ANOVA as well.  SAS 
has 10 different weight functions that may 
be applied.   It does not have bootstrapping

SPLUS has a robust library of procedures.  Among the 
procedures it can apply are robust regression, 
robust ANOVA, robust principal components 
analysis, robust covariance matrix estimation, 
robust discriminant function analysis, robust 
distribution estimation for asymmetric distributions.  
SPLUS has procedures to run OLS regression side 
by side with robust MM regression to show the 
differences.  It has a wide variety of graphical 
diagnostics as well.


