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What does Robust mean?

1.Definitions differ in scope and content. In the most
general construction: Robust models pertains to
stable and reliable models.

2. Strictly speaking:
Threats to stability and reliability include
influential outliers

Influential outliers played havoc with statistical
estimation. Since 1960, many robust
techniques of estimation have developed that
have been resistant to the effects of such
outliers.

SAS Proc Robustreg in Version 9
deals with these.

S-Plus robust library in

Stata rreg, prais, and arima
models

3. Broadly speaking: Heteroskedasticity

Heteroskedastically consistent variance
estimators

Stata regress y x1 x2, robust
4. Non-normal residuals
1.  Nonparametric Regression models
Stata qreg, rreg
2.  Bootstrapped Regression
1. bstrap
2. bsqreg



Outline

1.  Regression modeling preliminaries
1.  Tests for misspecification
1. Outlier influence
2. Testing for normality
3. Testing for heterskedasticity
4. Autocorrelation of residuals
2. Robust Techniques
1. Robust Regression
2. Median or quantile regression
3. Regression with robust standard errors
4. Robust autoregression models
3. Validation and cross-validation
1. Resampling
2. Sample splitting
4.  Comparison of STATA with SPLUS and SAS



Preliminary Testing: Prior to
linear regression modeling, use a
matrix graph to confirm linearity
of relationships

graph y x1 x2, matrix
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The independent variables
appear to be linearly
related with y

We try to keep the models simple. If the
relationships are linear then we model them with
linear models. If the relationships are nonlinear,
then we model them with nonlinear or
nonparametric models.



Theory of Regression
Analysis

What is linear regression
Analysis?
Finding the relationship between a

dependent and an independent
variable.

Y=a+bx +¢

Graphically, this can be done with
a simple Cartesian graph



The Multiple
Regression Formula

Y=a+bx +e

Y is the dependent variable
a 1s the intercept
b 1s the regression coefficient

x 1s the predictor variable



Graphical Decomposition
of Effects

Decomposition of Effects

Y

A
y =a+bx




Derivation of the Intercept

y=a+bx+e
e=Yy—a-bx

n n n

;ei = ;M _;ai - biznllxi

Because by definition» e, =0
i=1

0=y, -3 - b3 x

gnl:ai =§:Yi —béxi
na :Zn: Y. — bzn: X
i=1 i=1

a =Y —bX



Derivation of the
Regression Coefficient

Given:y. = a + bx + ¢
e =Yy, —a —bx

iei = Zn:(yi —d _bxi)

i=1 10



e |f we recall that the formula for
the correlation coefficient can
be expressed as follows:
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. XY,
r — i=1
2 (X ()
where
X = X, — X
y = yi_y_

I =1

from which it can be seen that the regression coefficient b,
is a function of T.

r*

sd

y

sd,
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Extending the bivariate to the multivariate
Case

2 Multivariate Case
Suppose we have two independent
vartahles: z 1and %2

Wewish to examine the change1n v
Fora unit change in x1 while holding

®aconstart

Instead ofthe hivariate r we may use
apartial 1.

Underthese circumstances, the formula
For hy.1z

13



I=r% sd,,
ﬁ . ryxz - ryxl r.X1X2 sk de (7)
e T sd
X X, X

It is also easy to extend the bivariate intercept
to the multivariate case as follows.

a=Y -bX —-DbX, (8
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Linear Multiple
Regression

e Suppose that we have the
following data set.

e e == - [ —

list w ul w2 wluz2 wlsqg wilicubed 22=q 22cubed

u ql ne nluz nlsqg nlcubed
1 137.2 3.4 16 614.4 1474.56 Shes3.11
2 146.4 41.32 16.5 e81.45% 1705.69 F44 .99
3 145.3 42.9 15.8 aerv.52 1840.41 T8953.59
4 166.5 2.3 16 836.8 27r3s. 29 1430557
L 163.2 L 17.2 8044 140608
5 164.4 45.2 16.8 ol 36 204304 9234541
T 144 21.7 16.3 B42.71 2672.89 138188.4
L 161.1 2.5 17.8 o34, 4990 275625 144702, 1
e 181.6 45.9 17.3 811.37 2199.61 102161.7
10 207.5 651 18.2 120302 4369. 21 Z55aD4. 8
11 152.8 495 15.9 787 .05 2450. 25 121287.4
12 154. 6 47.8 16.32 Fro.l4 228484 1092152
13 145.4 48.9 16.6 811.7401 Z2391.21 116930 2
14 174.4 8.5 16.7 1143.95 459225 321419.1
15 191.1 F2.B 17.1 124488 c200. 84 IBCESE. 4
18 =24, B2.7 19.1 157957 &539.29 Se5E0.
17 2097 85.7 18.4 1576. 88 344,489 s sl
12 241.9 87.9 18.3 160857 ree.41 &79151.5
19 =232 88.4 17.4 1538. 16 7314.56 &oEDY. 1
20 Z32.6 89.6 18.1 1621.76 8028 16 719323.1
21 244.2 o1.2 18.2 1661.66 8335 69 TelMB. &
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Stata OLS regression
model syntax

. regress W Hl HE

Soyrce 55 df MS Mumber of obs = =1
Fi. 2, 181 = o910

Maodel 24015, 826 2 1207.6413 Frob > F = D D000
Residual 2180. 92749 18 1721.162638 R—=quared = D.91&7
Adi EB-sguared = 0.90%

Total 2619:. 2101 20 13098105 Root MSE = 11.007

u Coef. 5td. Err. % Priti [95% Conf. Interwall

| 1.45456 -2117818 6. 87 0. 000 1. 00923 1. 890497

HZ 9. 365501 4. 063958 2.30 0.033 -B27F4414 17. 90356
_cons —&8. 85708 a0.01695 -1.15 0. 266 —194. 4f of. 23386

We now see that the significance levels reveal that x1 and x2
are both statistically significant. The R? and adjusted R?
have not been significantly reduced, indicating that this model still
fits well. Therefore, we leave the interaction term pruned from the
model.

What are the assumptions of multiple linear regression analysis?

16



Regression modeling
and the assumptions

1. What are the assumptions?
1. linearity
2. Heteroskedasticity
3. No Iinfluential outliers in small

o

samples
No multicollinearity
No autocorrelation of residuals

Fixed independent variables-no
measurement error

Normality of residuals

17



Testing the model for
mispecification and
robustness

Linearity
matrix graphs shown above
Multicollinearity
vif
Misspecification tests
heteroskedasticity tests
rvfplot
hettest
residual autocorrelation tests
corrgram
outlier detection
tabulation of standardized residuals
Influence assessment
residual normality tests
sktest
Specification tests (not covered in this lecture)

18



Misspecification tests

We need to test the residuals
for normality.

We can save the residuals In
STATA, by issuing a command
that creates them, after we
have run the regression
command.

The command to generate the
residuals is

predict resid, residuals

19



Generation of the regression residuals

predict resid, residuals
lList resid

resid

- 3539737

= B 0S.

3. 72156

O 43500."

—4 . GGG
10. 17057

—15. 00131
-13.113~2

0. 21508

o 8573

= T O
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—12. 33871
—12.78413
—6.. B492
—6. 216054
—18._ 42389
11.51263

o_314301
1.612983
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Generation of
standardized residuals

 Predict rstd, rstandard

. predict rstd, rstandard
. Llist r=td

r<td
1.193339
—a r 15803
1. 54607
1.881816

— 4758729

. —=0174715
- 0G5

- 23545

— 6112104
— 1531504

. —= 20219
- 4539774
—2. 63822

[l = e e b e b ek ke ke
e 0 00 = Oy O e D0 0 = e 000 ] O O R 0

[
[y
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Generation of
studentized residuals

 Predict rstud, rstudent

. predict rstud, rstudent
. list rstud

rstud
1209475

. —= 751386
1.617904
2051797

Pt e ke ke o ke o ke ke ke
000 = Ty O] R 0 P = 0 00 == Oy O e O [

20, 443117

;
:
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Testing the Residuals
for Normality

1. We use a Smirnov-Kolmogorov
test.

2. The command for the test Is:
sktest resid

. sktest resid

Skewness~<Kurtosis tests for Hormality

Joint
Uariable | PrlSkewnessl PrikEurtosisl adj chizl(Zl FrobXchi2
resid | 0.83r 0.370 0.91 0. 6348

This tests the cumulative distribution of the residuals against that of
the theoretical normal distribution with a chi-square test

To determine whether there is a statistically significant difference.
The null hypothesis is that there is no difference. When the probability
is less than .05, we must reject the null hypothesis and infer that23

the residuals are non-normally distributed.



Testing the Residuals
for heteroskedasticity

1. We may graph the standardized or
studentized residuals against the
predicted scores to obtain a graphical
Indication of heteroskedasticity.

2. The Cook-Weisberg test is used to test
the residuals for heteroskedasticity.

24



A Graphical test of
heteroskedasticity:
rvfplot, border yline(0)

.| Il Stata Graph x|
1 1 1 1 1
| 20,2151 o _
o
W
=
o
[ix]
[ i]
r
-18.4239
T T T T !
136.845 234.346
Fitted walues

This displays any problematic patterns that might suggest
heteroskedasticity. But it doesn’t tell us which residuals are

outliers.
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Cook-Weisberg Test

Var(e )= o exp(zt)
where
e. = error in regression model

z=x/3 or variable list supplied by user

Thetestiswhether t =0

hettest estimates the model e°=a+zt +v,
SS of model

it forms a scoretest S =

hO: Sy_, ~ ¥2 where p=numberof parameters

26



Cook-Welsberg test
syntax

1. The command for this test Is:
hettest resid

. hettest resid

Cook-lleisberg test for heteroskedasticity wsing variables specified
Hot Constant variance
0.09

chizl1)
Prob » chiZ 0. 7706

An insignificant result indicates lack of heteroskedasticity.

That is, an such a result indicates the presence of equal variance
of the residuals along the predicted line. This condition is
otherwise known as homoskedasticity.

27



Testing the residuals for
Autocorrelation

1. One can use the command,
dwstat, after the regression to
obtain the Durbin-Watson d
statistic to test for first-order
autocorrelation.

2. There Is a better way.
Generate a casenum
variable: Gen casenum = _n

28



Create a time
dependent series

. List casenum

cacEendm

Pt ek ke ok ke ke e
WO G0 =y Y G o L) P e

[ =

e 0 00 = o0y O R 00 T = 0 00 ] O e 00 P
(=1
M

Ma
e
M
[

. tsset casenum
time variable:

casenum, 1 to 21
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Run the Ljung-Box Q statistic
which tests previous lags for
autocorrelation and partial
autocorrelation

The STATA command 1s : corrgram resid

. COPTgram resid

-1 I { -1 I I
LA A PAC 0 Probell [RAutocorrelation] [Partial Autocor]

Js 66703 O
129 8148 0.
A9 41972 0,
54143 0.
0
0
0

=
l
l

1370

T
877 5.95%1
J9% 64177 0.

dboddods
o
L2l db=adbh =

The significance of the AC (Autocorrelation) and PAC
(Partial autocorrelation) is shown in the Prob column.

None of these residuals has any significant autocorrelation.
30



One can run
Autoregression in the
event of autocorrelation
This can be done with

newey y x1 x2 x3 lag(1) time
prais y x1 x2 x3

31



Outlier detection

e Qutlier detection involves the
determination whether the residual
(error = predicted — actual) Is an

extreme negative or positive value.

 We may plot the residual versus
the fitted plot to determine which
errors are large, after running the
regression.

« The command syntax was already
demonstrated with the graph on
page 16: rvfplot, border yline(0)

32



Create Standardized
Residuals

e A standardized residual Is one
divided by its standard deviation.

Yi o Yi
S
where s=std dev of residuals

resid =

standardized

33



Standardized residuals

predict residstd, rstandard
list residstd
tabulate residstd

el - LT

. tabulate residstd

Standardize

d residuals Freq. Fercent Cum.
-1.80507& 1 4.76 4.76
-1.426554 1 4.76 9.52
-1.339868 1 4.76 14.29
-1.22931 1 4.76 19.05
-1.1628EC 1 4.76 23.81
—. BE49E9E 1 4.76 28.57
—-.5814227 1 4.76 33.33
—-.4443118 1 4.76 38.10
0245273 1 4.76 42.86
LO530511 1 4.76 47.62
0721241 1 4.76 238
12028419 1 4.76 57.14
. 15995851 1 4.76 61.90
3712687 1 4.76 6667
9229192 1 4.76 71.43
LIEE2861 1 4.76 76.19
. 959979 1 4.76 a80.95
LITE3196 1 4.76 85.71
LIr9822d 1 4.76 90.48
1.1315& 1 4.76 9524
2.005145 1 4.76 100. 00

Total 21 10000

34



Limits of Standardized

Residuals

If the standardized residuals
have values In excess of 3.5

and -3.5, they are outliers.

If t
t
t

ne absolute values are less
nan 3.5, as these are, then

nere are no outliers

While outliers by themselves
only distort mean prediction
when the sample size Iis small
enough, It Is Important to
gauge the influence of outliers.

35



Outlier Influence

e Suppose we had a different
data set with two outliers.

 \We tabulate the standardized
residuals and obtain the
following output:

36



Outlier a does not distort
the regression line but
outlier b does.

Y=a+bx

Outlier a has bad leverage and outlier a

does not. 37



In this data set, we have two outliers. One is negative and the
other is positive.

tabulate residstd

Standardize

d residuals Freq. Fercent Cum.
-5. 658207 1 4_76 4_76
-1.815594 1 4_ 76 o_52
-1.0&8852 1 4_ 76 1429
-, 3231382 1 4. 76 19.05
—.4?4289? 1 4_ 76 Z3.81
-. 37 rdeay 1 4_ 76 28.57
—-. 22335429 1 4_76 3233
—-. 1952244 1 4_76 .10
—. 1440506 1 4_ 76 42 B6
-. 1213372 1 4. 76 47 .62
- 1061324 1 4. 76 . 38
- 0215209 1 4_ 76 or-14
—-. 0190165 1 4_76 &1.90
—-. 0133255 1 4_76 b6 67
-. 0121741 1 4_ 76 71.43
0205597 1 4. 76 6. 19
« 3354255 1 4. 76 80.95
. 3532699 1 4_ 76 B5.71
2921204 1 4_76 o048
. 539599 1 4_76 o524
4.0238815 1 4_ 76 100 (D

Total =1 100 (D




Studentized Residuals

* Alternatively, we could form
studentized residuals. These are
distributed as a t distribution with

df=n-p-1, though they are not
quite independent. Therefore, we
can approximately determine 1f
they are statistically significant or
not.

» Belsley et al. (1980)
recommended the use of
studentized residuals.

39



Studentized Residual

e’ = G

Js',a=h)

where

e’ = studentized residual
S, =standard deviation whereithobs s deleted

h. = leverage statistic

These are useful in estimating the statistical significance

of a particular observation, of which a dummy variable
indicator is formed. The t value of the studentized residual
will indicate whether or not that observation 1s a significant
outlier.

The command to generate studentized residuals, called rstudt is:
predict rstudt, rstudent

40



Influence of Outliers

1. Leverage 1s measured by the
diagonal components of the hat
matrix.

2. The hat matrix comes from the
formula for the regression of Y.

Y =XB=X(X'X)tX"'Y
where X '(X'X)™*X'= the hatmatrix, H
Therefore,

N

Y = HY

41



Leverage and the Hat
matrix

The hat matrix transforms Y into the
predicted scores.

The diagonals of the hat matrix indicate
which values will be outliers or not.

The diagonals are therefore measures of
leverage.

Leverage 1s bounded by two limits: 1/n and
1. The closer the leverage is to unity, the
more leverage the value has.

The trace of the hat matrix = the number of
variables in the model.

When the leverage > 2p/n then there 1s high
leverage according to Belsley et al. (1980)
cited in Long, J.F. Modern Methods of
Data Analysis (p.262). For smaller samples,
Vellman and Welsch (1981) suggested that
3p/n 1s the criterion.

42



Cook’s D

1. Another measure of influence.

2. This 1s a popular one. The
formula for 1t 1s:

2
Cook's D, = L - i
P 1‘“ S(l—h)

Cook and Weisberg(1982) suggested that values of

D that exceeded 50% of the F distribution (df = p, n-p)
are large.

43



Using Cook’s D In
STATA

Predict cook, cooksd
Finding the influential outliers
List cook, If cook > 4/n

Belsley suggests 4/(n-k-1) as a cutoff

. predict cook, cooksd

« List cook if cook > 4-21

wlulu] 4
10, 1.02N88
156. LG.713506

. list v cook LfF cook > 4-21

L) nlulu]
10, G -i-1 1 . A8
15. 20 G- 713506

44



Graphical Exploration of
Outhier Influence

e Graph cook residstd, xlab ylab

I I el e I e |

J.| x|
| g -

0 - TR0t @ wod

Standardized residuals

g o
1}

The two influential outliers can be found easily here
in the upper right. 45



DFbeta

* One can use the DFbetas to
ascertain the magnitude of
influence that an observation has
on a particular parameter estimate
1f that observation 1s deleted.

b; b );u,

J>uf@-h)

where U; = residuals of

DFbetaj =

regressionof x on remaining Xxs.

46



Obtaining DFbetas In
STATA

. regress w Hl ®E

Source == df Ms Humber of obs = =1
FI =2, 181 = B9.64
Model 1880. 44276 2 940.221381 Frob *» F = .00
Residual 188. 795334 18 10.4886297 E-=zquared = D908
Hdji E-squared = 0.8986
Total 2069, 2381 20 103.461905 Eoot HMSE = 3I.Z2386
u Coef. Std. Err. t Psiti [95% Conf. Interwall
w1 6711544 - 126691 S.30 0. 00 - 409854 - 937325
e 1.295351 - 3674854 3.52 0.2 - D232931 2. 06541
_cons —50. 35884 5. 138378 —9. 80 0. (00 —61. 15407 —39.56361
. predict dfbsl, dfbetal=1]
« predict dfbxz, dfbetal=z]
li=t id dfbml dfbmz
id dfbsl dfb=2
1. 1 - 3OS0 = 1159482
2. 2 — 132735 —.0392102
2. 3 4057813 —.DM7129
4. 4 —. 4259597 61115
5. L 010505 0305179
G. & 1054537 —. 1711058
T 7 233FFF4 —. 3354144
2. B - 1608564 —.2307903
= 9 3192272 —.3511808
10. 10 - 1325348 —.2043691
11. 11 - 1325348 —.243691
12. 12 - 2485714 — 261683
13. 13 —.D0547803 - B44714
14. 14 —. 0350302 - G301
15. 15 —. D645 — 016317
15, 16 —.0218951 —.0052961
17. 17 —.0143292 - 052403
135. 18 —.0143292 -
19, 19 0116234 —.0072811
20. 20 —MH5M6S - G213
21. 21 —-1.923631 1.701042
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2.

3.

4,

5.

Robust statistical options

when assumptions are

violated
Nonlinearity
1. Transformation to linearity
2. Nonlinear regression
Influential Outliers
1.  Robust regression with robust weight functions
2. rregyxlx2
Heteroskedasticity of residuals
1.  Regression with Huber/White/Sandwich
variance-covariance estimators
2.  Regress y x1 x2, robust
Residual autocorrelation correction
1.  Autoregression with
prais y x1 x2, robust
2. newey-west regression
Nonnormality of residuals
1. Quantile regression: qreg y x1 x2
2.  Bootstrapping the regression coefficients

48



Nonlinearity:
Transformations to linearity

1. When the equation 1s not
intrinsically nonlinear, the
dependent variable or
independent variable may be
transformed to effect a
linearization of the relationship.

2. Semi-log, translog, Box-Cox, or
power transformations may be
used for these purposes.

1. Boxcox regression permits
determines the optimal parameters
for many of these transformations.

49



Fix for Nonlinear functional
form: Nonlinear Regression
Analysis

Examples of 2 exponential growth curve models, the first
of which we estimate with our data.

nl exp2y x
estimates Y =b.b,’
nl exp3 y X
estimates y=»h, +b,b,”

50



Nonlinear Regression In
Stata

.nlexp2y x

(obs = 15)

Iteration O: residual SS = 56.08297

Iteration 1: residual SS = 49.46372

Iteration 2: residual SS = 49.4593

Iteration 3: residual SS = 49.4593

Source SS df MS Number of obs = 15
F( 2, 13)= 1585.01

Model 12060.5407 2 6030.27035 Prob>F = 0.0000

Residual 49.4592999 13 3.80456153 R-squared = 0.9959
Adj R-squared = 0.9953

Total 12110 15 807.333333 Root MSE = 1.950529
Res. dev. = 60.46465

2-param. exp. growth curve, y=b1*b2"x

y Coef. Std. Err. t P>t [95% Conf. Interval]

bl 58.60656 1.472156 39.81 0.000 55.42616 61.78696

b2 .9611869 .0016449 584.36 0.000 .9576334 .9647404

(SE's, P values, Cl's, and correlations are asymptotic approximations)

51



1.

Heteroskedasticity
correction

Prof. Halbert White showed that
Jeteroskedastlc:lty could be
handled in a regression with a
heteroskedasticity-consistent
covariance matrix estimator
(Davidson & McKinnon (1993),
Estimation and Inference in

Econometrics, Oxford U Press,
p. 552).

This variance-covariance matrix
under ordinary least squares 1s
shown on the next page.
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OLS Covariance Matrix
Estimator

(X" X)H(X'ZX)(X "' X)™
where T =s°/(X'X)

53



White’s HAC estimator

White’s estimator 1s for large
samples.

White’s heteroskedasticity-
corrected variance and standard
errors can be larger or smaller
than the OLS variances and
standard errors.

o4



Heteroskedastically consistent

covariance
matrix “Sandwich” estimator (H.
White)
Bread Meat(totu) Bread

NHX X)X QX ) (nTEX X))
e 2
where Q = —

1-h*
However, there are different versions::
HC,: Q =¢°
n -

HC,: Q=——-=¢
1 n—k t

2
et

1-h

€

(1-h)’

HC2:Q=

HC3:Q)=

55



Regression with robust standard
errors for heteroskedasticity

Regress y x1 x2, robust

. hettest resid

Cook-Weisbera test for heteroskedasticity using variables specified
Ho: Constant wariance

chizl 1) = 3580.55
Prob > chiz2 = 0. 0000
. Megress y oHl 42, robust
Regression with robust standard errors Humber of obs = 21
FI 2, 181 = 4.79
Frob * F = 0.0215
R-squared = D.4841
Root MSE = 144.80
Robust
Y Coef. Std. Err. f Feiti [95% Conf. Interwall
ul L.OM3E7 2.871935 2.06 0.055 - 129324 11.9381
He 28.97005 36, 26385 0.80 0.435 7. 20757 105. 1675
_cons 6093122 558.5422 -1.09 0.290 -1782.766 Ced. 1413

Options other than robust, are hc2 and hc3 referring
to the versions mentioned by Davidson and McKinnon above.
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Robust options for the
VCV matrix in Stata

 Regressy x1 x2, hc2
 Regressy x1 x2, hc3

 These correspond to the
Davidson and McKinnon’s
versions of the
heteroskedastically consistent
vcv options 2 and 3.
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1.

2.

8]

Ty

2
£
2

Problems with
Autoregressive Errors

Problems in estimation with OLS

1. When there is first-order autocorrelation of the
residuals,

2. e =pe

Effect on the Variance

2 — 2 2 2

E(e?ez} = E(pez_l + vz}(per_l + vr_lj
o = pzﬁf + c:ﬁf

&

f (1 - pAct

0
1

(10.15)

= apparext (uncorrected autocorrelated) error variance

= actual identically, independently distributed error variance.

58

58



Sources of Autocorrelation

1. Lagged endogenous variables
2. Misspecification of the model

3. Simultaneity, feedback, or reciprocal
relationships

4. Seasonality or trend in the model

59



Prais-Winston
Transformation-cont’d

2

Vt Vt
62 = T therefore e, = \/(1_ e
It follows that
V
Y, =a+ bx A tz
Jﬂ—p)

Ja-p*Y, = JA-p*a +(1-p’ bx + v,
Y, *=a*+bx *+v,

60



Autocorrelation of the
residuals: prais & newey
regression

To test whether the variable 1s
autocorrelated

* Tsset time

e corrgramy

 praisy x1 x2, robust

* newey y x1 x2, lag(1) t(time)
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Testing for autocorrelation

of residuals

regress mnalO 15Ssumprc
predict resid10, residual
corrgram resid10

J LD ML ="=L11Yd “‘HLUE= dElElrd L)
« corrgram residlo
-1 0 1 -1 0 1
LAG AC FRLC A Frobxi [Autocorrelation] [Partial AJdtocor]
1 0.6572 0. 6700 38457 0. D000 — —
2 03805 -0.077% S1.49c 0. D000 —
2 0.3162 0.1778 a0.614 0. D00 — —
4 0. 2927 0. 0ye2 &8.52 0.0 —
L 0.2416¢ —0.009: 73.973 0.0000D —
& 0.1653 —0.0707 76.557 0.0000 —
v 0.0712 —0.113& 042 0. 0000
=2 0. 0768 0. 1558 ¥r-614 0O.DD00D —
9 0.0e54 —0.0771 FE.035 00000
10 0.0250 —0.0402 7E8.008 0. D000
11 —.02ez -0.0562 78.167 0O.0DD00
12 —0.0408 -D.0091 78.337 0.0D00
1z —.0221 0. 492 78.387 0.0000
l 14 —.0152 —0.0290 T8.412 0. 0000
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Prais-Winston Regression
for AR(1) errors

Using the robust option here guarantees that the
White heteroskedasticity consistent sandwich
variance-covariance estimator will be used

in the autoregression procedure.

prais mnald LS5.sumprc, robust

. =

Iteration Oz rho = 0.

Iteration l: rho = 0.4768

Iteration 2: rho = 0.4953

Iteration 2: rho = 0.4959

Iteration 4: rho = 0D.4960

Iteration 5: rho = 0.4960

Frais-Winsten AR(1] regression —— iterated estimates

Regression with robust standard errors Humber of obs = 86
F = gd41 = Z3.50
Frob > F = O D00
E—squared =  0.07A03
Root MSE = 228

Semi —robust
mnalz Coef. Std. Err. t Fxiti [95% Cont. Interwall
SUmMprC
LS 1. 400647 - Do 2.51 0.014 - SE25E 2. 512269
_cons G FEE363 1.17893% 4.89 0. DD F. 423921 8. 112804
rho - 49509520
Ourbin-latson statistic (originall 1.041513
Ourbin-Watson statistic (transformedl 1.897833
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Newey-West Robust
Standard errors

 An autocorrelation correction is
added to the meat or tofu in the
White Sandwich estimator by
Newey-West.
X X)X QX ) (nTEX X))

2

where Q = & >
1-h,
However, there are different versions :
HC,: Q =¢°
HC,: O =— g2
n—k

2
et

HC2:Q)=

2
et

HC3:Q= >
(1-h)
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Central Part of Newey-
West Sandwich estimator

X 'QX

newey—west

— X 'OX

white

n & I
+ — 1- ee . (X'X ,+X ,'X
n—k |1( m+1j I |—1( I -1 -1 |)

where k = number of predictors
| =timelag
m = maximum timelag
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Newey-West Robust
Standard errors

Newey West standard errors are robust to autocorrelation
and heteroskedasticity with time series regression models.

newey mnalld L1mnalld LSsumpre, Llaglll titimel

Eegression with Hewsy-llest standard errors Humber of obs = 85
masimum Llag = 1 Fi. 2, 221 = 21.72
Frob > F = 0. CeDRDRy

Mewey-lle<t
mnal0 Coef. Std. Err. t Fritl [95% Conf. Interwall
limnaln - 6482148 - 287128 6.57 0. DD 4518791 - B445505
lSsumprc 1.071262 - 0551474 1.64 0. 106 —. 2317995 2. 374324
_Cons 3.327793 1.3647233 244 0.017 - 6143872 6.041198
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Assume OLS
regression

« We regress y on x1 x2 x3
* We obtain the following output

. regress y Hl W2 W3

Source es df MS Mumber of obs = 21
FI 3, 171 = 59.90

Model 1890. 40813 3 630.136045 Prob » F = 10,0000
Residual 178.829962 17 10.5194095 R-squared = 0.9135
Adj R-squared = 0.8983

Total 2069.2381 20 103.461905 Root MSE = .24
1 Coef,  Std. Err. t Pt (95« Conf. Intervall

ul 7156402 . 1348582 .31 0.000 4311143 1.000166

e 1.295286  .3680243 3.5 0.003 L1882 2.071749

w3 | -15212% L1562 .97 0.344  -.4818741 1776291
_cons | -39.919%/7 11.8% -3.36 0.04 -65.01303 -14.82132

Next we examine the residuals



Residual Assessment

LwrZplot

predict rstud, rstudent
predict lew, hat
predict cook, cooksd
tabulate rstud

Studentized
residuals Fireq. Fercent

—3. 330493
-1.04358&
—. 9532038
—. 32557
. TO51386
. 59953ES
. 5205036
APEEE2]
557306
. 1971394
. 1488303
=. 01635
231185
426158
443117
BO0E1 64
. S7E292
« FEEFOET
1.209475
1.617304
2.051797

0
=
=

JEEEEEEREEFEREEREEEERE
BRANATAALEBRRSHY2ABR

EREREA RO R R B RS R wa

[

E Ahbbbbbhbbbbbbhibnbbbbl

]
ke
[

Total

gen id=1

replace Ld=_n
(20 real changes madel

list id cook retud if cook > 1221

id cook retud
21. 21 69199909 —3. 330493

The data set is to small to drop case 21, so I use robust 68
regression



Robust regression
algorithm: rreg

1. Aregression is performed
and absolute residuals are

computed.
=1y, — xb|

2. These residuals are
computed and scaled:
f
U =—
S
Yi — Xib

S
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Scaling the residuals

M

0.6745
where

M =med(|r — med(r)|

S =

The residuals are scaled by the median absolute
value of the median residual.
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Essential Algorithm

* The estimator of the parameter b
minimizes the sum of a less
rapidly increasing function of the

residuals (SAS Institute, The
Robustreg Procedure, draft copy,

p.3505, forthcoming):

s I
b) = L
Q(b) ;p(aj
where r. = y — xb
o Is estimated by s
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Essential algorithm-cont’d

1. If this were OLS, the p would be
a quadratic function.

2. If we can ascertain s, we

can by taking the derivatives
with respect to b, find a first
order solution to

(i o

i—1 S

where J=1,...,p
v=p .



Case weights are developed
from weight functions

Case weights are formed based
on those residuals.

2.  Weight functions for those case
weights are first the Huber
weights and then the Tukey
bisquare weights:

3. A weighted regression 1s rerun
with the case weights.
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Iteratively reweighted
least squares

*The case weight w(x) is defined as:

W (X)

W(X) =

It 1s updated at each iteration until it
converges on a value and the change
from iteration to iteration declines below
a criterion.
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Weights functions for
reducing outlier influence

t
o i e /_\
! iz ol m i
ub1 Wiz, Il olhermse

< I %

c is the tuning constant used in determining the case weights.
For the Huber weights ¢ = 1.345 by default.
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Weight Functions

Tukey biweight (bisquare)

- 0 e
1
| | 1-(EPHF iffz <
qae Wrd=( . ‘el CHS
bisquare W {z,¢] [] olbervise
0 .
- 0 &

C is also the biweight tuning constant. C is set at 4.685
for the biweight.
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Tuning Constants

* When the residuals are normally
distributed and the tuning
constants are set at the default,

they give the procedure about
95% of the efficiency of OLS.

* The tuning constants may be
adjusted to provide
downweighting of the outliers at
the expense of Gaussian
efficiency.

* Higher tuning constants cause the
estimator to more closely
approximate OLS.
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Robust Regression
algorithm —cont’'d

. WLS regression is performed
using those case weights

. lterations case when case

weights drop below a
tolerance level

. Weights are based initially on
Huber weights. Then Beaton
and Tukey biweights are
used.

. Caveat: M estimation iIs not

that robust with regard to
leverage points.
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Robust Regression for
down-weighting outliers

e rreg y x1 x2 x3

Uses Huber and Tukey biweights to downweight the influence
of outliers in the estimation of the mean of y in the upper panel
whereas ols regression is given in the lower panel.

. Treg w Rl B2 =43
Huber iteration 1l: madimum difference in weights = 48402478
Huber iteration Z2: madimum difference in weights = .
Huber iteration Z: madimum difference in weights = .
Biweight iteration 4: maximum difference in weights = 2114744
Biweight iteration 51 madimum difference in weights = 04709550
Biweight iteration &1 madimum difference in weights = 01648123
Biweight iteration Vi1 madimum difference in weights = 0105003
Biweight iteration 2: maximum difference in weights = J0E7FE33
Robust regression estimates Humber of obs = 21
Fi =, 171 = 4.15
Frob > F = D00
u Coef. Std. Err. t Fxiti [95 Conf. Interwall
=1 8526511 - 1223835 .97 0. D0 - 5044445 1.11085%8
e - 8733594 - 3339811 2.61 0.018 - 168721 1.5779%8
13 —a 1224349 - 1418364 .86 0. 400 — 4216836 - 1768139
_Cons —41.6/03 10. 79559 —3.86 0.001 —54. 447 —18.89361
. reg w Hl B2 B3
Source 55 df M= Humber of obs = 21
Fi =, 171 = 2o, 90
Model 1890. 40813 3 e30. 135045 Frob > F = 0.0
Residual 178. 820962 17 10.519409%5 R—=qguared = D.9136
HAdi F—-=sgquared = 0.8983
Total 2069, 2381 20 103.4651905% Root MSE = Z.2434
u Coef. Std. Err. t Fxiti [95 Conf. Interwall
=1 - 7 156402 - 1348582 S.31 0. D0 -41311143 1.000166
e 1. 295286 - 3580243 3.52 0. 003 -S188220 2.071749
13 — 1521225 - 1565204 .97 0.344 —4818741 - 1776291
_Cons —39.919%67 11.89% —3.36 0. 004 —65.01803 -14. 82132




A Corrective Option for
Nonnormality of the
Residuals

Quantile regression (median
regression 1s the default) 1s one
option.

Algorithm

1. Minimizes the sum of the absolute
residuals

2. The residual 1n this case 1s the
value minus the unconditional
median.

3. This produces a formula that
predicts the median of the
dependent variable

Yeq = @ + bX
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Quantile Regression

qreg in STATA estimates least
absolute value ( LAV or MAD or
L1 norm regression).

The algorithm minimizes the sum of
the absolute deviations about the
median.

The formula generated estimates the
median rather than the mean, as
rreg does.

Y = constant + bx

median
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Median regression

. Qreg y o#l w2

Iteration 1: UWLS sum of weighted deviations = 646.79574
Iteration 1: sum of abs. weighted deviations = 632.51404
Iteration 2: sum of abs. weighted deviations = 630.18984
Iteration 3: sum of abs. weighted deviations = 630.04748

Median regressiaon Humber of obs = 21

Raw sum of deviations 969.2 (about 164.39999)

Min sum of deviations adl.MMS Fseydo R2 = 0.3499

y Coef.  5td. Err. t Foaiti [95% Conf. Interwall

11 1.82036 .4807429 2.79 0.001 . 2103565 2. 830363

He 1.06053 9.564848 0.11 0.913 -19. 03447 21.15553

_Cans CO.30016 141.5936 0.36 0.727 -247.18/% 3477878
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Bootstrapping

* Bootstrapping may be used to
obtain empirical regression
coefficients, standard errors,
confidence intervals, etc. when
the distribution Is non-normal.

* Bootstrapping may be applied
to greg with bsqreg
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Bootstrapping quantile or
median regression

standard errors

greg y x1 x2 x3
bsgreg y x1 x2 x3, reps(1000)

. Qreg W Hl w2 #43

Iteration 1 WLS =um of weighted deviations = 49.699024
Iteration 1: sum of abs. weighted dewviations = 56.5
Iteration 2: sum of abs. weighted deviations = 45.713592
Iteration 21 sum of abs. weighted deviations = 44.571208
Iteration 4: sum of abs. weighted deviations = 43.744836
Iteration 52 sum of abs. weighted dewviations = 42 11057
Iteration &: sum of abs. weighted deviations = 42.081159
Median regression Mumber of obs = 21
Faw sum of dewviations 145 (about 15]
Min sum of dewviation:s 42.0811&6 Fzeudo RZ = 0. Areg
T Coef. 5td. Err. t Pxiti [95X Conf. Interwall
ql 531884 - 130539 &.37 0. DD - 5554695 1.107299
He 53913 - IS0 1.50 0.153 —a 2352700 - FEHFOY
#3 — o EBGE - 1540719 —0. 40 0.698 — 593D - 2041938
_cons —39. e898S 11. 76248 —3.37 0. 4 —&4. 506561 —-14. 8732
« bsgreg v sl ®Z2 23, reps(1000]
[estimating base model
:gl:u:u:ut SignElr e EN 80 0000000000000 o0o0O00od00o000oo0do0o0000ooo0 000 o000 0 00000000000 aooog
T T T B B 1 B e B e B e B
 SooooooooooO0OOOOOOOOOOO0OOOO00OOO00OOOO000O0O0OO0O0O0OOOO0O0OOO000ODOO000DO0O000000000O0a000g
» SOOoooooooooO0OOOoOOOOOOO0OOO0O00OOO00OOOO000O0O0OO0O00OOOO0O0OOO000ODOO000DO0O0000000000O0a000g
 SooooooooooO0OOOOOOOOOOO0OOOO00OOO00OOOO000O0O0OO0O0O0OOOO0O0OOO000ODOO000DO0O000000000O0a000g
 SooooooooooO0OOOOOOOOOOO0OOOO00OOO00OOOO000O0O0OO0O0O0OOOO0O0OOO000ODOO000DO0O000000000O0a000g
® HoooooOoOoOOoOOOOOOOOOOOOOOOO00OOO00OOOOD0OOO0OO0O0OOOOOO0OOO000OOOO00DO0O000D000000O0a000g
Median regression, bootstrapl 10001 SE= Humber of obs = 21
Faw sum of dewviations 145 (about 15]
Min sum of deviations 42.0811& Fseudo R2 = 0. 7Oos
u Coef. Std. Err. t Fsiti [95% Conf. Interwall
a1 531884 2211178 3.76 0. 0= - 3053663 1. 20840
He 3913 DO rEIG 0.9 0.350 — o GBI 1.83%512%
#3 — o EBGE - 1724506 .35 0.728 — 4247085 o OG0
_Ccons —J9. e898S 12. 18281 —J. 26 0. 005 —£5. 39333 —13. 98637




Methods of Model
Validation

These methods may be
necessary where the sampling
distributions of the parameters
of interest are nonnormal or
unknown.

Bootstrapping
Cross-validation
Data-splitting
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Bootstrapping

 \WWhen the distribution of the
residuals is nonnormal or the
distribution I1s unknown,
bootstrapping can provide
proper regression coefficients,
standard errors, and
confidence intervals.
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Stata Bootstrapping
Syntax

Bs “regress y x1 x2 x3”, “ b[x1] b[x2] b[x3]", reps(1000)
saveing(mybstrapl)

« bz "regress w orl w2 w2 "_blull _bLx2] _bLx21", reps(1000]
command: regress Y Al w2 43

statistics: _bLx1] _blx2] _blxz]

[obs=211

Bootstrap statistics

Uariable Reps Obzeruwed Bia=s Std. Err. [95% Conf. Interwall

bzl 10000 - 7156402 - 0168524 - 17622098 3698172 1.061463 (M)
3832314 1.064108 (F)

3592274 1.045956 (BC)

bs2 10000 1.295286 —.0626064 47T 4eRe S3SE30E 2.232243 (M)
3119411 2.190439 (F)

4578008 2.343391 (BC)

bs2 1000 —-.152122% —. 0026936 - 1279401 —. 393373 089128 (M)
—4155004 0709161 (F)

— 53675 0612494 (BC)

H = normal, P = percentile, BC = bias-corrected



1.

Internal Validation
R? and adjusted R?

Plot Y against Y. Compute an R?
and an adjusted R?.
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Cross-validation

« Jacknifing

* This Is repeated sampling,
where one group or
observation is left out.

 The analysis Is reiterated and
the results are averaged to
obtain a validation.

89



Resampling

Bootstrapping was performed developed by
Efron. Resampling generally needs to be
done at least B=100 times.

Resampling with replacement 1s performed
on a sample. From each bootstrapped
sample, a mean 1s computed. The average of
all of these b bootstrapped means 1s the
mean.

The bootstrapped means are used to
compute a bootstrapped variance estimate.
If b 1s the number of bootstraps, then b 1s
the n used in the computation. A
bootrapped variance estimate 1s now known.

After enough resampling, an empirical
distribution function 1s formed.
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Bootstrapped Formulae

X° => %"/n
n

Var(x)’ = i(xb —avg(X°)* /(B-1)
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Data-splitting

1. Sample Splitting

1. Subset the sample into a training
and a validation subsample. One
has to be careful about the tail
wagging the dog, as David Reilly
1s wont to say.

2. This results 1in poorer accuracy and
loss of power unless there 1s plenty
of data.

3. Tests for parameter constancy

92



Comparison of STATA,
SAS, and S-PLUS

Stata has rreg, greg, bsqgreg

Rreg is M estimation with Huber and Tukey bisquare
weight functions

greg is quantile regression
Bsqgreg is bootstrapped quantile regression
Bootstrapping

SAS has M, Least Trimmed squares, S, and MM
estimation in Proc Robustreg in version 9. It
can perform Robust ANOVA as well. SAS
has 10 different weight functions that may
be applied. It does not have bootstrapping

SPLUS has a robust library of procedures. Among the
procedures it can apply are robust regression,
robust ANOVA, robust principal components
analysis, robust covariance matrix estimation,
robust discriminant function analysis, robust
distribution estimation for asymmetric distributions.
SPLUS has procedures to run OLS regression side
by side with robust MM regression to show the
differences. It has a wide variety of graphical
diagnostics as well.
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