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Preface 

The aim of this monograph is to make a comprehensive presentation of re- 
cent research into the application of linear robust control theory to the damping 
of inter-area oscillations in power systems with FACTS devices. The subject 
is introduced with an overview of the application of power system stabilizers 
(PSS) and their coordination as described in the existing literature. 

The monograph is directed at engineers engaged in the research, design 
and development of power systems with particular concern for power system 
stability and a background knowledge in this area is assumed. Reference books 
that are particularly relevant are: 

Power System Stability and Control: Kundur 1994 
Power System Dynamics and Stability: Sauer and Pai 1998 
Multivariable Feedback Control: Skogestad and Postlethwaite 2001 

Power System Oscillations by Rogers (2000) is also relevant as an introduc- 
tion since it is focused on the application of PSS to damp local and inter-area 
oscillations. 

A brief historical account of oscillatory behavior in power systems is given 
in chapter 2. The analytic tools that are commonly used in small-signal stability 
analysis are presented in chapter 3 and chapter 4 contains a description of the 
components participating in interarea oscillations including FACTS devices: 

Static VAr capacitors (SVC) 
Thyristor-controlled series capacitors (TCSC) 
Thyristor-controlled phase shifters (TCPS) 

The system model which is used to test damping controller designs is de- 
scribed in chapter 4. 

Chapter 5 provides an overview of power system stabilizers (PSS) in a power 
system. The intention is to develop understanding and requirement of control 
design through damping torque concepts initially on a single machine infinite 
bus (SMIB) system. The extension of damping torque to the multi-machine 
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system and different ways to achieve gain and phase compensation circuits 
used for PSS are discussed in the later part of this chapter. 

A multiple-model based controller design is given in chapter 6 and chapter 
7. A probability weighted approach is used to integrate the action of several 
controllers to give multiple-model adaptive control (MMAC). In chapter 7, a ro- 
bust pole-placement approach giving eigenvalue distance minimization is used. 
Both methods address the robustness of the control schemes. 

The 7-1, norm optimization is central to the controller design approaches 
in chapter 8 through 11. In chapter 8, a standard weighted mixed sensitiv- 
ity optimization is made and a suitable set of linear matrix inequalities (LMI) 
being obtained numerically. Minimum closed-loop damping is ensured by pole- 
placement being taken as an additional LMI constraint. 

In chapter 9, a left-coprime factorization approach gives a centralized control 
structure for a properly-shaped open loop plant using a loop-shaping technique. 
Again the numerical solution is obtained through LMI. 

The effect of signal transmission delay on damping control is considered in 
chapter 10. A weighted-mixed sensitivity approach to the design of the central 
control structure is extended to include a delay in the output signal. Predictor 
techniques have been used in the controller design to obtain an 7-1, controller. 

In all the above designs, robust damping for varying power level and changing 
network topology is confirmed by eigenvalue analysis and time-domain non- 
linear simulations have been made to demonstrate the validity of the designs. 

BIKASH PAL AND BALARKO CHAUDHURI 
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Foreword 

Low frequency electromechanical oscillations, with frequencies ranging from 
0.1 to 2 Hz, are inherent to electric power systems. Problems due to inadequate 
damping of such oscillations have been encountered throughout the history of 
power systems. The earliest problems, which were experienced in the 1920s, 
were in the form of spontaneous oscillations or hunting. These were solved by 
the use of damper windings in the generators and turbine-type prime movers 
with favorable torque speed characteristics. 

As power systems evolved, they were operated ever closer to transient and 
small-signal rotor angle stability limits. System stability characteristics were 
largely influenced by the strength of the transmission network, and the lack 
of sufficient synchronizing torque was the principal cause of system instabil- 
ity. The application of continuously acting voltage regulators contributed to 
the improvement in small-signal (or steady-state) stability. In the 1950s and 
1960s, utilities were primarily concerned with transient stability. However, this 
situation has gradually changed since the late 1960s. Significant improvements 
in transient stability performance have been achieved through the use of high 
response exciters and special stability aids. 

The above trends have been accompanied by an increased tendency of power 
systems to exhibit oscillatory instability. High response exciters, while improv- 
ing transient stability, adversely affect the damping of local plant modes of os- 
cillation, which have frequencies ranging from 0.8 to 2 Hz. The effects of fast 
exciters are compounded by the decreasing strength of transmission network 
relative to the size of generating stations. Adequate damping of local plant 
mode oscillations can be readily achieved by using power system stabilizers to 
modulate generator excitation controls. 

Another source of oscillatory instability has been the formation of large 
groups of loosely coupled machines connected by weak links. This situation 
has developed as a consequence of growth in interconnections among power 
systems. With heavy power transfers, such systems exhibit inter-area modes of 
oscillation of low frequency. The stability of these modes has become a source 
of concern in today's power systems. There have been many reported occur- 
rences of poorly damped or unstable inter-area oscillations. In some cases, this 
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form of oscillatory instability has been the cause of major system blackouts. 
Large interconnected power systems usually exhibit several dominant modes 
of inter-area oscillations with frequencies ranging from 0.1 Hz to 0.8 Hz. 

The use of supplementary controls is generally the only practical method 
of mitigating inter-area oscillation problems, without resorting to costly oper- 
ating restrictions or transmission reinforcements. A number of power system 
devices have the potential for contributing to the damping of the oscillations by 
supplemental control. The use of power system stabilizers to control excitation 
of generators is often the most cost-effective method. The controllability of 
the inter-area modes of oscillation through excitation control is a function of 
many factors: location of the generator in relation to the oscillation mode shape, 
size and characteristics of nearby loads, and types of exciters on other nearby 
generators. 

Supplemental stabilizing signals may also be used to control HVDC transmis- 
sion links and SVCs to enhance damping of inter-area oscillations, depending 
on their location. While these devices are installed based primarily on other 
system considerations, their potential for controlling poorly damped system 
oscillations are often taken advantage of; many HVDC transmission and SVC 
installations are equipped with special modulation controls to stabilize inter- 
area oscillations. 

In recent years, there has been considerable interest in the application of 
power electronic devices for enhancing the controllability, and hence the power 
transfer capability, of ac transmission; this concept is referred to as "FACTS" 
(Flexible AC Transmission System). The FACTS devices can provide fast 
continuous control of power flow in the transmission system by controlling 
voltages at critical buses, by changing the impedance of transmission lines, or 
by controlling the phase angles between the ends of transmission lines. This is 
an extension of the concept used by SVCs for enhancing transmission system 
capacity by rapid control of bus voltages. Apart from the SVC, two FACTS 
devices that can be effectively used for damping of system oscillations are the 
thyristor controlled series capacitor (TCSC) and the thyristor controlled phase 
angle regulator (TCPAR). FACTS devices, depending on the power system con- 
figuration and nature of the inter-area oscillations, may offer the most economic 
means of mitigating the problems. 

A number of approaches and techniques are available for the design of con- 
trols for damping of inter-area oscillations. One important issue in the design 
and performance of the controllers is robustness. The controller should per- 
form the desired function over the wide range of conditions encountered in the 


