Robust Control in Power Systems

POWER ELECTRONICS AND POWER SYSTEMS

Series Editors M. A. Pai and Alex Stankovic

Other books in the series:

APPLIED MATHEMATICS FOR RESTRUCTURED ELECTRIC POWER SYSTEMS:
Optimization, Control, and Computational Intelligence
Joe H. Chow, Felix F. Wu, James A. Momoh, ISBN 0-387-23470-5
HVDC and FACTS Controllers: Applications of Static Converters in Power Systems
Vijay K. Sood, ISBN 1-4020-7890-0
POWER QUALITY ENHANCEMENT USING CUSTOM POWER DEVICES
Arindam Ghosh, Gerard Ledwich, ISBN 1-4020-7180-9
COMPUTATIONAL METHODS FOR LARGE SPARSE POWER SYSTEMS ANALYSIS:
An Object Oriented Approach,
S. A. Soman, S. A. Khaparde, and Shubha Pandit, ISBN 0-7923-7591-2
OPERATION OF RESTRUCTURED POWER SYSTEMS
Kankar Bhattacharya, Math H.J. Bollen and Jaap E. Daalder, ISBN 0-7923-7397-9
TRANSIENT STABILITY OF POWER SYSTEMS: A Unified Approach to
Assessment and Control
Mania Pavella, Damien Ernst and Daniel Ruiz-Vega, ISBN 0-7923-7963-2
MAINTENANCE SCHEDULING IN RESTRUCTURED POWER SYSTEMS
M. Shahidehpour and M. Marwali, ISBN: 0-7923-7872-5
POWER SYSTEM OSCILLATIONS
Graham Rogers, ISBN: 0-7923-7712-5
STATE ESTIMATION IN ELECTRIC POWER SYSTEMS: A Generalized Approach
A. Monticelli, ISBN: 0-7923-8519-5
COMPUTATIONAL AUCTION MECHANISMS FOR RESTRUCTURED POWER
INDUSTRY OPERATIONS
Gerald B. Sheblé, ISBN: 0-7923-8475-X
ANALYSIS OF SUBSYNCHRONOUS RESONANCE IN POWER SYSTEMS
K.R. Padiyar, ISBN: 0-7923-8319-2
POWER SYSTEMS RESTRUCTURING: Engineering and Economics
Marija Ilic, Francisco Galiana, and Lester Fink, ISBN: 0-7923-8163-7
CRYOGENIC OPERATION OF SILICON POWER DEVICES
Ranbir Singh and B. Jayant Baliga, ISBN: 0-7923-8157-2
VOLTAGE STABILITY OF ELECTRIC POWER SYSTEMS
Thierry Van Cutsem and Costas Vournas, ISBN: 0-7923-8139-4
AUTOMATIC LEARNING TECHNIQUES IN POWER SYSTEMS,
Louis A. Wehenkel, ISBN: 0-7923-8068-1
M A Pai ISBN: 0-7923-9035-0
ELECTROMAGNETIC MODELLING OF POWER ELECTRONIC CONVERTERS
J. A. Ferreira, ISBN: 0-7923-9034-2
E C Schwanna M C Caramanis P. D. Tahore P. E. Bohn, ISBN: 0.80838-260-2
THE FIELD ORIENTATION PRINCIPLE IN CONTROL OF INDUCTION MOTORS
Andrzej M. Trzynadlowski, ISBN: 0-7923-9420-8
FINITE FLEMENT ANALYSIS OF FLECTRICAL MACHINES
C. L. Calara LCDNL A 7022 0504 0

ROBUST CONTROL IN POWER SYSTEMS

BIKASH PAL Imperial College London

BALARKO CHAUDHURI Imperial College London

Bikash Pal Imperial College London Balarko Chaudhuri Imperial College London

Robust Control in Power Systems

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 0-387-25949-X e-ISBN 0-387-25950-3 Printed on acid-free paper. ISBN 978-0387-25949-9

© 2005 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11054511

springeronline.com

Dedicated to our Parents

Contents

De	dicati	on		v
Lis	t of F	igures		xiii
Lis	t of T	ables		
Pre	face			XIX
Ac	know	ledgmei	nts	xxi
For	rewor	d		xxiii
1.	INTI	RODUC	TION	1
	Refe	rences		3
2.	POW	/ER SY	STEM OSCILLATIONS	5
	2.1	Introdu	iction	5
	2.2	Nature	of electromechanical oscillations	5
		2.2.1	Intraplant mode oscillations	5
		2.2.2	Local plant mode oscillations	5
		2.2.3	Interarea mode oscillations	6
		2.2.4	Control mode oscillations	7
		2.2.5	Torsional mode oscillations	7
	2.3	Role of	f Oscillations in Power Blackouts	8
		2.3.1	Oscillations in the WECC system	9
	2.4	Summa	ary	11
	Refe	rences		11
3.	LIN	EAR CO	ONTROL IN POWER SYSTEMS	13
	3.1	Introdu	iction	13
	3.2	Linear	system analysis tools in power systems	14
		3.2.1	Eigenvalue analysis	16
		3.2.2	Modal controllability, observability and residue	20

		3.2.3	Singular values and singular vectors	23
		3.2.4	\mathcal{H}_{∞} and \mathcal{H}_{2} norm	25
		3.2.5	Hankel singular values and model reduction	27
		3.2.6	Stability, performance and robustness	31
		3.2.7	Control design specifications in power systems	34
	3.3	Summ	ary	36
	Refe	rences		36
4.	TES	T SYSI	TEM MODEL	39
	4.1	Overvi	ew of the test system	40
	4.2	Model	s of different components	41
		4.2.1	Generators	41
		4.2.2	Excitation systems	43
		4.2.3	Network power flow model	44
	4.3	Model	ling of FACTS devices	45
		4.3.1	Thyristor controlled series capacitor (TCSC)	45
		4.3.2	Static VAr compensator (SVC)	48
		4.3.3	Thyristor controlled phase angle regulator (TCPAR)	50
	4.4	Linear	ized system model	53
	4.5	Choice	e of remote signals	54
	4.6	Simpli	fication of system model	56
	Refe	rences		58
5.	POV	VER SY	STEM STABILIZERS	59
	5.1	Introdu	action	59
	5.2	Basic (Concept of PSS	60
	5.3	Stabili	zing signals for PSS	62
	5.4	Structu	re of PSS	63
	5.5	Metho	ds of PSS design	66
		5.5.1	Damping torque approach	67
		5.5.2	Frequency response approach	68
		5.5.3	Eigenvalue and state-space approach	69
		5.5.4	Summary	74
	Refe	rences		75
6.	MU	LTIPLE	-MODEL ADAPTIVE CONTROL APPROACH	79
	6.1	Introdu	action	79
	6.2	Overvi	ew of MMAC strategy	80

viii

6.2.1 Calculation of probability: Bayesian approach	81		
olden State and Stat			
6.2.2 Calculation of weights	82		
6.3 Study system	83		
6.4 Model bank	84		
6.4.1 4-machine, 2-area system	84		
6.4.2 16-machine, 5-area system	85		
6.5 Control tuning and robustness testing	85		
6.5.1 4-machine, 2-area system	85		
6.5.2 16-machine, 5-area system	87		
6.6 Test cases	89		
6.6.1 Test case I	89		
6.6.2 Test case II	90		
6.7 Choice of convergence factor and artificial cut-off	90		
6.8 Simulation results with a 4-machine, 2-area study system	91		
6.8.1 Test case I	92		
6.8.2 Test case II	94		
6.9 Simulation results with a 16-machine, 5-area study system	95		
6.9.1 Test case I	95		
6.9.2 Test case IIa	98		
6.9.5 Test case no	100		
6.10 Summary	101		
References	102		
SIMULTANEOUS STABILIZATION			
7.1 Eigen-Value-Distance Minimization	105		
7.2 Robust pole-placement	110		
7.3 Case study	111		
7.4 Control design	111		
7.5 Simulation results	112		
7.6 Summary	112		
References	114		
8. MIXED-SENSITIVITY APPROACH USING LMI	115		
8.1 Introduction	115		
8.2 \mathcal{H}_{∞} mixed-sensitivity formulation	116		
8.3 Generalized \mathcal{H}_{∞} problem with pole-placement	117		
8.4 Matrix inequality formulation	119		

	8.5	Linearization of the matrix inequalities	121
	8.6	Case study	123
		8.6.1 Weight selection	123
		8.6.2 Control design	123
		8.6.3 Performance evaluation	127
		8.6.4 Simulation results	128
	8.7	Case study on sequential design	131
		8.7.1 Test system	131
		8.7.2 Control design	132
		8.7.3 Performance evaluation	132
		8.7.4 Simulation results	134
	8.8	Summary	134
	Refe	rences	136
9.	NOF	RMALIZED \mathcal{H}_∞ LOOP-SHAPING USING LMI	139
	9.1	Introduction	139
	9.2	Design approach	140
		9.2.1 Loop-shaping	140
		9.2.2 Robust stabilization	142
	9.3	Case study	144
		9.3.1 Loop-shaping	144
		9.3.2 Control Design	145
		9.3.3 Simulation results	146
	9.4	Summary	148
	Refe	rences	149
10	. \mathcal{H}_{∞}	CONTROL FOR TIME-DELAYED SYSTEMS	151
	10.1	Introduction	151
	10.2	Smith predictor for time-delayed or dead-time systems: an	ı
		overview	153
	10.3	Problem formulation using unified Smith predictor	156
	10.4	Case study	158
		10.4.1 Control design	159
		10.4.2 Performance evaluation	161
		10.4.3 Simulation results with TCSC	161
	10.5	Simulation results with SVC	164
	10.6	Summary	166
	Refe	rences	168

х

Contents

A	16-r	nachine,	5-area System Power Flow Data	171
В	16-r	nachine,	5-area System Dynamic Data	177
С	Jacobian of the FACTS Power Injection		179	
	C.1	Thyris	tor controlled series capacitor (TCSC)	179
		C.1.1	W.r.t state variables	179
		C.1.2	W.r.t algebraic variables	179
	C.2	Static	VAr compensator (SVC)	180
		C.2.1	W.r.t state variables	180
		C.2.2	W.r.t algebraic variables	180
	C.3	Thyris	tor controlled phase angle regulator (TCPAR)	180
		C.3.1	W.r.t state variables	180
		C.3.2	W.r.t algebraic variables	181
D	Mat	lab Rou	tine for Controller Design Using LMI Control Toolbox	183
E	Mat	lab Rou	tine for Controller Design Using "hinfmix" Function	187
Ind	lex			189

List of Figures

1.1	Spontaneous Oscillations on the Pacific AC Intertie, August 2,1974;Source: CIGRE Technical Report 111 on	
	Analysis and Control of Power System Oscillations, 1996	2
2.1	A typical example of local oscillation	6
2.2	A typical example of interarea oscillation	7
2.3	A typical example of torsional mode oscillation	8
3.1	Model system in page 732 of Kundur's book	15
3.2	maximum singular value response of the example system	27
3.3	Frequency response of the original and the reduced 4^{th} order system	31
3.4	Frequency response of the original and the reduced 3^{rd} order system	31
3.5	Frequency response of the original (365 states) and re- duced (20 states) system using Krylov subspace based techniques	32
3.6	Frequency response of the original (365 states) and re- duced (20 states) system: simplified down to 100 states using Krylov subspace based techniques and then to 20 states using balanced truncation	32
4.1	Sixteen machine five area study system with a FACTS device	40
4.2	Thyristor controlled series canacitor (TCSC) topology	46
4.3	Voltage source model of TCSC	46
4.4	Power injection model of TCSC	47
4.5	Small-signal dynamic model of TCSC	48
4.6	Static VAr compensator (SVC) topology	49
4.7	Small-signal dynamic model of SVC	50

4.8	Thyristor controlled phase angle regulator (TCPAR) topology	51
4.9	Power injection model of TCPAR	52
4.10	Small-signal dynamic model of TCPAR	53
4.11	Frequency response of original and simplified system with TCSC	57
5.1	Heffron-Phillips block diagram of single machine infi- nite bus model	60
5.2	A commonly used structure of PSS	63
5.3	Response of a typical SMIB system under disturbance	66
6.1	Schematic of MMAC strategy	81
6.2	Study system	83
6.3	Frequency response of original and simplified plant	86
6.4	Frequency response of the controller	87
6.5	Performance of conventional controllers	88
6.6	Robustness test for conventional controllers	88
6.7	Variation of the computed weights	91
6.8	Test case I : Variation of the weights corresponding to each model	92
6.9	Test case I : Dynamic response of the system	93
6.10	Test case I : Power flow between buses #10 and #9	93
6.11	Test case I : Response of the controller	94
6.12	Test case II : Variation of the weights corresponding to	05
6.13	Tast case II : Dynamic response of the system	95
6.14	Test case II - Dynamic response of the system	90
6.15	Test case II : Pesponse of the controller	90
6.16	Test Case I: Variation of weights	97
6.17	Test Case I: Variation of weights	97
6.18	Test Case Her Variation of weights	90 00
6.10	Test Case Ha: Dynamic response of the system	99
6.20	Test Case IIa. Dynamic response of the system	100
6.21	Test Case IIb: Dynamic response of the system	100
7.1	Closed loop feedback configuration with negative feedback	101
7.1	Closed loop feedback configuration for a 1 input 3	100
1.2	output system with positive feedback	109
7.3	Dynamic response of the system	113
7.4	Dynamic response of the system	113

xiv

8.1	Mixed-sensitivity formulation	117
8.2	Generalized regulator set-up for mixed-sensitivity formulation	on118
8.3	Conic sector region for pole-placement	120
8.4	Frequency response of the weighting filters	123
8.5	Frequency response of the full and reduced controller	125
8.6	Frequency response of sensitivity (S)	125
8.7	Frequency response of control times sensitivity (KS)	126
8.8	Dynamic response of the system	129
8.9	Dynamic response of the system	130
8.10	Dynamic response of the system	130
8.11	Sixteen machine five area study system with three FACTS	
	devices	131
8.12	Dynamic response of the system	134
8.13	Percentage compensation of the TCSC	135
8.14	Output of the SVC	135
8.15	Phase angle of TCPAR	136
9.1	Loop-shaping design procedure	141
9.2	Normalized coprime factor robust stabilization problem	142
9.3	Frequency response of the pre-compensator	145
9.4	Frequency response of the reduced order original and	146
0.5	shaped system	140
9.5	Dynamic response of the system	14/
9.6	Dynamic response of the system	14/
9./	Dynamic response of the system	148
10.1	Control setup for dead-time systems	153
10.2	An equivalent representation of dead-time systems	153
10.3	Introduction of Smith predictor and delay block	154
10.4	Uniform delay in both paths	155
10.5	Smith predictor formulation	155
10.6	Unified Smith predictor	157
10.7	Control setup with mixed-sensitivity design formulation	159
10.8	Frequency response of the weighting filters	160
10.9	Frequency response of the full and reduced controller	161
10.10	Dynamic response of the system with TCSC installed;	
	controller designed with 0.75 s delay	163
10.11	Output of the TCSC	164
10.12	Dynamic response of the system with a delay of 0.5 s	165

10.13	Dynamic response of the system; controller designed without considering delay	165
10.14	Dynamic response of the system with SVC; controller	
	designed considering delay	166
10.15	Output of the SVC	166
10.16	Dynamic response of the system with a delay of 0.5 s	167
10.17	Dynamic response of the system with a delay of 1.0 s	167
10.18	Dynamic response of the system; controller designed	
	without considering delay	168

xvi

List of Tables

3.1	Eigenvectors and normalized participation factors corresponding to local mode $-0.282 + \jmath 8.62$	19
3.2	Modal controllability, observability and residue corresponding to local mode $-0.282 + \jmath 8.62$	23
4.1	Inter-area modes of the test system with TCSC	54
4.2	Inter-area modes of the test system with SVC	54
4.3	Inter-area modes of the test system with TCPAR	55
4.4	Normalized residues for active power flow signals from different lines with TCSC installed in the system	55
4.5	Normalized residues for active power flow signals from different lines with SVC installed in the system	56
4.6	Normalized residues for active power flow signals from different lines with TCPAR installed in the system	57
6.1	Critical modes of oscillation of the study system	83
6.2	Operating conditions used in the model bank	84
6.3	Operating conditions used in the model bank	85
6.4	Closed-loop damping ratio of the inter-area mode for different models and controllers	87
7.1	Specified and achievable pole locations for the reduced closed-loop system	112
8.1	Damping ratios and frequencies of the inter-area modes	127
8.2	Damping ratios and frequencies of the critical inter-area modes at different levels of power flow between NETS	
	and NYPS	128
8.3	Damping ratios and frequencies of the critical inter-area modes for different load models	128

8.4	Damping ratios and frequencies of inter-area modes with the controller for TCSC (Control loops for SVC and TCPAR open)	133
8.5	Damping ratios and frequencies of inter-area modes with the controllers for TCSC and SVC (Control loop for TCPAR open)	133
8.6	Damping ratios and frequencies of inter-area modes with the controllers for TCSC, SVC and TCPAR (All the control loops closed)	133
9.1	Damping ratios and frequencies of inter-area modes with	146
10.1	Damping ratios and frequencies of the inter-area modes	162
10.2	Damping ratios and frequencies of the critical inter-area modes at different levels of power flow between NETS	
	and NYPS	162
10.3	Damping ratios and frequencies of the critical inter-area modes for different load models	162
A.1	Machine bus data	171
A.2	Load bus data	172
A.2(cor	ntinued)	173
A.3	Line data	173
A.3(cor	ntinued)	174
A.3(cor	ntinued)	175
B.1	Machine data	177
B.1(cor	ntinued)	178
B.2	DC excitation system data	178
B.3	Static excitation system and PSS data	178

Preface

The aim of this monograph is to make a comprehensive presentation of recent research into the application of linear robust control theory to the damping of inter-area oscillations in power systems with FACTS devices. The subject is introduced with an overview of the application of power system stabilizers (PSS) and their coordination as described in the existing literature.

The monograph is directed at engineers engaged in the research, design and development of power systems with particular concern for power system stability and a background knowledge in this area is assumed. Reference books that are particularly relevant are:

Power System Stability and Control: Kundur 1994 Power System Dynamics and Stability: Sauer and Pai 1998 Multivariable Feedback Control: Skogestad and Postlethwaite 2001

Power System Oscillations by Rogers (2000) is also relevant as an introduction since it is focused on the application of PSS to damp local and inter-area oscillations.

A brief historical account of oscillatory behavior in power systems is given in chapter 2. The analytic tools that are commonly used in small-signal stability analysis are presented in chapter 3 and chapter 4 contains a description of the components participating in interarea oscillations including FACTS devices:

Static VAr capacitors (SVC) Thyristor-controlled series capacitors (TCSC) Thyristor-controlled phase shifters (TCPS)

The system model which is used to test damping controller designs is described in chapter 4.

Chapter 5 provides an overview of power system stabilizers (PSS) in a power system. The intention is to develop understanding and requirement of control design through damping torque concepts initially on a single machine infinite bus (SMIB) system. The extension of damping torque to the multi-machine

system and different ways to achieve gain and phase compensation circuits used for PSS are discussed in the later part of this chapter.

A multiple-model based controller design is given in chapter 6 and chapter 7. A probability weighted approach is used to integrate the action of several controllers to give multiple-model adaptive control (MMAC). In chapter 7, a robust pole-placement approach giving eigenvalue distance minimization is used. Both methods address the robustness of the control schemes.

The \mathcal{H}_{∞} norm optimization is central to the controller design approaches in chapter 8 through 11. In chapter 8, a standard weighted mixed sensitivity optimization is made and a suitable set of linear matrix inequalities (LMI) being obtained numerically. Minimum closed-loop damping is ensured by poleplacement being taken as an additional LMI constraint.

In chapter 9, a left-coprime factorization approach gives a centralized control structure for a properly-shaped open loop plant using a loop-shaping technique. Again the numerical solution is obtained through LMI.

The effect of signal transmission delay on damping control is considered in chapter 10. A weighted-mixed sensitivity approach to the design of the central control structure is extended to include a delay in the output signal. Predictor techniques have been used in the controller design to obtain an \mathcal{H}_{∞} controller.

In all the above designs, robust damping for varying power level and changing network topology is confirmed by eigenvalue analysis and time-domain nonlinear simulations have been made to demonstrate the validity of the designs.

BIKASH PAL AND BALARKO CHAUDHURI

Acknowledgments

Much of the information and insight presented in this book were obtained from the research done by the authors over the last seven years. It is our pleasure to acknowledge the support we received from various sources.

The Commonwealth Scholarship Commission of the Association of Commonwealth Universities, the Engineering and Physical Research Council (EP-SRC) in the UK, and ABB Corporate Research, Switzerland have funded the research at various stages.

Dr Tim C. Green has been inspiring us throughout this research and also during the writing of this book. Professor (emeritus) M. A. Pai of the University of Illinois at Urbana Champaign has provided constant encouragement throughout. Professor (emeritus) Brian J. Cory and Dr Donald Macdonald have suggested many changes to our first draft and thoroughly edited the entire manuscript before submission.

Dr Imad M. Jaimoukha, Dr Argyrios C. Zolotas and Dr Haitham El-Zobaidi have helped us in many occasions through their expertise in multi-variable control and model reduction. Mr. Rajat Majumder and Dr Q. -C. Zhong have helped us significantly in formulating predictor approach to time-delayed \mathcal{H}_{∞} control. Mr. Majumder has also carried out a significant part of the simulation work in Matlab Simulink to produce the results presented in this monograph. We thank Mr. Alex Green and his colleagues at Springer for their editorial help.

We are grateful to our families for their supports during our work on this monograph.

Foreword

Low frequency electromechanical oscillations, with frequencies ranging from 0.1 to 2 Hz, are inherent to electric power systems. Problems due to inadequate damping of such oscillations have been encountered throughout the history of power systems. The earliest problems, which were experienced in the 1920s, were in the form of spontaneous oscillations or hunting. These were solved by the use of damper windings in the generators and turbine-type prime movers with favorable torque speed characteristics.

As power systems evolved, they were operated ever closer to transient and small-signal rotor angle stability limits. System stability characteristics were largely influenced by the strength of the transmission network, and the lack of sufficient synchronizing torque was the principal cause of system instability. The application of continuously acting voltage regulators contributed to the improvement in small-signal (or steady-state) stability. In the 1950s and 1960s, utilities were primarily concerned with transient stability. However, this situation has gradually changed since the late 1960s. Significant improvements in transient stability performance have been achieved through the use of high response exciters and special stability aids.

The above trends have been accompanied by an increased tendency of power systems to exhibit oscillatory instability. High response exciters, while improving transient stability, adversely affect the damping of local plant modes of oscillation, which have frequencies ranging from 0.8 to 2 Hz. The effects of fast exciters are compounded by the decreasing strength of transmission network relative to the size of generating stations. Adequate damping of local plant mode oscillations can be readily achieved by using power system stabilizers to modulate generator excitation controls.

Another source of oscillatory instability has been the formation of large groups of loosely coupled machines connected by weak links. This situation has developed as a consequence of growth in interconnections among power systems. With heavy power transfers, such systems exhibit inter-area modes of oscillation of low frequency. The stability of these modes has become a source of concern in today's power systems. There have been many reported occurrences of poorly damped or unstable inter-area oscillations. In some cases, this form of oscillatory instability has been the cause of major system blackouts. Large interconnected power systems usually exhibit several dominant modes of inter-area oscillations with frequencies ranging from 0.1 Hz to 0.8 Hz.

The use of supplementary controls is generally the only practical method of mitigating inter-area oscillation problems, without resorting to costly operating restrictions or transmission reinforcements. A number of power system devices have the potential for contributing to the damping of the oscillations by supplemental control. The use of power system stabilizers to control excitation of generators is often the most cost-effective method. The controllability of the inter-area modes of oscillation through excitation control is a function of many factors: location of the generator in relation to the oscillation mode shape, size and characteristics of nearby loads, and types of exciters on other nearby generators.

Supplemental stabilizing signals may also be used to control HVDC transmission links and SVCs to enhance damping of inter-area oscillations, depending on their location. While these devices are installed based primarily on other system considerations, their potential for controlling poorly damped system oscillations are often taken advantage of; many HVDC transmission and SVC installations are equipped with special modulation controls to stabilize interarea oscillations.

In recent years, there has been considerable interest in the application of power electronic devices for enhancing the controllability, and hence the power transfer capability, of ac transmission; this concept is referred to as "FACTS" (Flexible AC Transmission System). The FACTS devices can provide fast continuous control of power flow in the transmission system by controlling voltages at critical buses, by changing the impedance of transmission lines, or by controlling the phase angles between the ends of transmission lines. This is an extension of the concept used by SVCs for enhancing transmission system capacity by rapid control of bus voltages. Apart from the SVC, two FACTS devices that can be effectively used for damping of system oscillations are the thyristor controlled series capacitor (TCSC) and the thyristor controlled phase angle regulator (TCPAR). FACTS devices, depending on the power system configuration and nature of the inter-area oscillations, may offer the most economic means of mitigating the problems.

A number of approaches and techniques are available for the design of controls for damping of inter-area oscillations. One important issue in the design and performance of the controllers is robustness. The controller should perform the desired function over the wide range of conditions encountered in the