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Preface 

The use of reverse osmosis (RO) technology has grown rapidly 
through the 1990's and early 2000's. The ability of RO to replace 
or augment conventional ion exchange saves end users the need 
to store, handle, and dispose of large amounts of acid and caus- 
tic, making RO a "greener" technology. Additionally, costs for 
membranes have declined significantly since the introduction of 
interfacial composite membranes in the 1980's, adding to the at- 
tractiveness of RO. Membrane productivity and salt rejection have 
both increased, reducing the size of RO systems and minimizing 
the amount of post treatment necessary to achieve desired product 
quality. 

Unfortunately, knowledge about RO has not kept pace with the 
growth in technology and use. Operators and others familiar with 
ion exchange technology are often faced with an RO system with 
little or no training. This has resulted in poor performance of RO 
systems and perpetuation of misconceptions about RO. 

Much of the current literature about RO includes lengthy discus- 
sions or focuses on a niche application that makes it difficult to find 
an answer to a practical question or problems associated with more 
common applications. Hence, my objective in writing this book is 
to bring clear, concise, and practical information about RO to end 
users, applications engineers, and consultants. In essence, the book 
is a reference bringing together knowledge from other references as 
well as that gained through personal experience. 

The book focuses on brackish water industrial RO, but many 
principles apply to seawater RO and process water as well. 

xvii 
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1 

Introduction and History 
of Development 

1.1 Introduction 

Reverse Osmosis (RO) is a membrane-based demineralization 
technique used to separate dissolved solids, such as ions, from 
solution (most applications involve water-based solutions, which is 
the focus of this work). Membranes in general act as perm-selective 
barriers, barriers that allow some species (such as water) to selectively 
permeate through them while selectively retaining other dissolved 
species (such as ions). Figure 1.1 shows how RO perm-selectivity 
compares to many other membrane-based and conventional filtration 
techniques. As shown in the figure, RO offers the finest filtration cur- 
rently available, rejecting most dissolved solids as well as suspended 
solids. (Note that although RO membranes will remove suspended 
solids, these solids, if present in RO feed water, will collect on the 
membrane surface and foul the membrane. See Chapters 3.7 and 7 for 
more discussion on membrane fouling). 

1.1.1 Uses of Reverse Osmosis 
Reverse osmosis can be used to either purify water or to concentrate 
and recover dissolved solids in the feed water (known as "dewater- 
ing"). The most common application of RO is to replace ion exchange, 
including sodium softening, to purify water for use as boiler make- 
up to low- to medium-pressure boilers, as the product quality from 
an RO can directly meet the boiler make-up requirements for these 
pressures. For higher-pressure boilers and steam generators, RO is 
used in conjunction with ion exchange, usually as a pretreatment to 
a two-bed or mixed-bed ion exchange system. The use of RO prior to 
ion exchange can significantly reduce the frequency of resin regenera- 
tions, and hence, drastically reduce the amount of acid, caustic, and 
regeneration waste that must be handled and stored. In some cases, 
a secondary RO unit can be used in place of ion exchange to further 
purify product water from an RO unit (see Chapter 5.3). Effluent from 

3 



4 FUNDAMENTALS 

Figure 1.1 ”Filtration Spectrum” comparing the rejection capabilities of reverse 
osmosis with other membrane technologies and with the separation afforded by 
conventional filtration. 

the second RO may be used directly or is sometimes polished with 
mixed-bed ion exchange or continuous electrodeionization to achieve 
even higher product water purity (see Chapter 16.3). 

Other common applications of RO include: 

1. Desalination of seawater and brackish water for potable 
use. This is very common in coastal areas and.the Middle 
East where supply of fresh water is scarce. 

2. Generation of ultrapure water for the microelectronics 
industry. 

3. Generation of high-purity water for pharmaceuticals. 
4. Generation of process water for beverages (fruit juices, 

5. Processing of dairy products. 
6. Concentration of corn sweeteners. 
7. Waste treatment for the recovery of process materials 

such as metals for the metal finishing industries, and 
dyes used in the manufacture of textiles. 

8. Water reclamation of municipal and industrial waste- 
waters. 

bottled water, beer). 



INTRODUCTION AND HISTORY OF DEVELOPMENT 5 

1.1.2 History of Reverse Osmosis Development 

One of the earliest recorded documentation of semipermeable mem- 
branes was in 1748, when Abbe Nollet observed the phenomenon of 
osmosis.' Others, including Pfeffer and Traube studied osmotic phe- 
nomena using ceramic membranes in the 1850's. However, current 
technology dates back to the 1940's when Dr. Gerald Hassler at the 
Unitversity of California at Los Angeles (UCLA) began investigation 
of osmotic properties of cellophane in 194fL2 He proposed an "air 
film" bounded by two cellophane  membrane^.^ Hassler assumed 
that osmosis takes place via evaporation at one membrane surface 
followed by passage through the air gap as a vapor, with condensa- 
tion on the opposing membrane surface. Today, we know that osmo- 
sis. does not involve evaporation, but most likely involves solution 
and diffusion of the solute in the membrane (see Chapter 4). 

Figure 1.2 shows a time line with important events in the devel- 
opment of RO technology. Highlights are discussed below. 

In 1959, C.E. Reid and E.J. Breton at University of Florida, demon- 
strated the desalination capabilities of cellulose acetate film.4 They 
evaluated candidate semipermeable membranes in a trial-and- 
error approach, focusing on polymer films containing hydrophilic 
groups. Materials tested included cellophane, rubber hydrochlo- 
ride, polystyrene, and cellulose acetate. Many of these materials 
exhibited no permeate flow, under pressures as high at 800 psi, 
and had chloride rejections of less than 35%. Cellulose acetate 
(specifically the DuPont 88 CA-43), however, exhibited chloride re- 
jections of greater than 96%, even at pressures as low as 400 psi. 
Fluxes ranged from about 2 gallons per square foot-day (gfd) for 
a 22-micron thick cellulose acetate film to greater than 14 gfd for a 
3.7-micron thick film when tested at 600 psi on a 0.1M sodium chlo- 
ride solution. Reid and Breton's conclusions were that cellulose 
acetate showed requisite semipermeability properties for practi- 
cal application, but that improvements in flux and durability were 
required for commercial viability. 

A decade after Dr. Hasslefs efforts, Sidney Loeb and Srinivasa 
Sourirajan at UCLA attempted an approach to osmosis and re- 
verse osmosis that differed from that of Dr. Hassler. Their approach 
consisted of pressurizing a solution directly against a flat, plastic 
film.3 Their work led to the development of the first asymmetric 
cellulose acetate membrane in 1960 (see Chapter 4.2.1).2 This mem- 
brane made RO a commercial viability due to the significantly 
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INTRODUCTION AND HISTORY OF DEVELOPMENT 7 

improved flux, which was 10 times that of other known membrane 
materials at the time (such as Reid and Breton's membranes).j These 
membranes were first cast by hand as flat sheets. Continued devel- 
opment in this area led to casting of tubular membranes. Figure 1.3 
is a schematic of the tubular casting equipment used by Loeb and 
Sourirajan. Figure 1.4 shows the capped, in-floor immersion well 
that was used by Loeb and students and is still located in Boelter 
Hall at UCLA. 

Following the lead of Loeb and Sourirajan, researchers in the 
1960's and early 1970's made rapid progress in the development of 
commercially-viable RO membranes. Harry Lonsdale, U. Merten, 
and Robert Riley formulated the "solution-diffusion" model of mass 
transport through RO membranes (see Chapter 4.1).6 Although 
most membranes at the time were cellulose acetate, this model 

Casting Tube 

for Casting Tube - 

Figure 1.3 Schematic on tubular casting equipment used by Loeb. Courtesy of 
Julius Glater, UCLA. 



8 FUNDAMENTALS 

Figure 1.4 Capped, in-floor immersion tank located at Boelter Hall that was used 
by Loeb and Sourirajan to cast tubular cellulose acetate membranes at UCLA, 
as viewed in 2008. 

represented empirical data very well, even with respect to present- 
day polyamide  membrane^.^ Understanding transport mechanisms 
was important to the development of membranes that exhibit im- 
proved performance (flux and rejection). 

In 1971, E. I. Du Pont De Nemours & Company, Inc. (DuPont) 
patented a linear aromatic polyamide with pendant sulfonic acid 
groups, which they commercialized as the PermasepTM B-9 and 
B-10 membranes (Permasep is a registered trademark of DuPont 
Company, Inc. Wilmington, DE). These membranes exhibited high- 
er water flux at slightly lower operating pressures than cellulose 
acetate membranes. The membranes were cast as unique hollow 
fine fibers rather than in flat sheets or a tubes (see Chapter 4.3.4). 

Cellulose acetate and linear aromatic polyamide membranes were 
the industry standard until 1972, when John Cadotte, then at North 
Star Research, prepared the first interfacial composite polyamide 
membrane.* This new membrane exhibited both higher through- 
put and rejection of solutes at lower operating pressure than the 
here-to-date cellulose acetate and linear aromatic polyamide mem- 
branes. Later, Cadotte developed a fully aromatic interfacial com- 
posite membrane based on the reaction of phenylene diamine and 
trimesoyl chloride. This membrane became the new industry stan- 
dard and is known today as FT30, and it is the basis for the majority 


