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The electrohydrodynamic (EHD) thermosolutal Marangoni convection of viscous liquid, in the presence of an axial electric field
through a micro cylindrical porous flow, is considered. It is assumed that the surface tension varies linearly with both temperature
and concentration. The instability of the interface is investigated for the free surface of the fluid. The expression of the free surface
function is derived taking into account the independence of the surface tension of the heat and mass transfer. The transcendental
dispersion relation is obtained considering the dependence of the surface tension on the heat and mass transfer. Numerical
estimations for the roots of the transcendental dispersion relation are obtained indicating the relation between the disturbance
growth rate and the variation of the wave number. It is found that increasing both the temperature and concentration at the axial
microcylinder has a destabilizing effect on the interface, according to the reduction of the surface tension. The existence of the
porous structure restricts the flow and hence has a stabilizing effect. Also, the axial electric field has a stabilizing effect. Some of
previous analytical and experimental results are recovered upon appropriate data choices.

1. Introduction

The fluid flow in microjet has various applications in med-
ical, biomedical, computer chips and chemical separations.
Advent of microelectrical mechanical systems is one of the
major advances in industrial technologies. Also, microjets are
fundamental to connecting different devices, utilized in bio-
chemical reaction chamber, in physical particle separation,
in inkjet print heads, in infrared detectors, in diode lasers,
in miniature gas chromatographs, and in heat exchanger for
cooling computer chips. Understanding the flow characteris-
tics through a microjet is very important in determining the
free surface instability of the fluid flow. The augmentation of
heat transfer from a solid cylinder wrapped with a porous
layer was considered by Bhattacharyya and Singh [1]. An
experimental analysis of unsteady heat and moisture transfer
around a heated cylinder buried into a porous medium was
performed byMoya et al. [2]. Furlani [3] studied the temporal
instability of an infinite Newtonian cylindrical microjet (as

a cylindrical fluid surface) that is subjected to a sinusoidal
variation of surface tension along its length. Furlani andHan-
chak [4] developed the same problem to study numerically
the nonlinear analysis of the deformation and breakup of
viscous microjets. The instability of non-Newtonian liquid
jets (viscoelastic and power law) was investigated by Gao
[5] and Gao and Ng [6]. The dispersion relation between
the growth rate and the wave number for a non-Newtonian
cylindrical liquid jets was derived and the instability behavior
of viscoelastic jets was investigated.

The interaction of electric fields withmoving fluidsmakes
EHDa very complicated phenomenon.Theprocess of EHD is
dependent on many parameters and properties of the liquid
and environment of the flow. On the other hand, EHD can
be considered as the branch of fluid mechanics concerned
with the electrical force effects or as the part that is involved
in the influence of moving media on electric fields. It is thus
concerned with the interaction between electrical fields and
free or polarized charges in fluids. In the EHD stability, the
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electric field plays an important role in many practical prob-
lems of chemical engineering, biophysics and many other
fields. Mohamed and Nayyar [7] have investigated the stabi-
lity of a cylindrical jet of incompressible inviscid liquid in the
presence of an axial electric field. They showed that the uni-
form axial electric field has a strong stabilizing influence on
the cylindrical interface for short and long wavelengths in all
symmetric and asymmetric modes of perturbation.

Marangoni boundary layers are dissipative layers which
may occur along liquid-liquid or liquid-gas interfaces. When
a free liquid surface is present, the surface tension variation is
resulting from the temperature gradients along the surface. It
can also induce amotionwithin the fluid which is called ther-
mocapillary flow (thermal Marangoni convection) [8]. The
surface tension gradients that are responsible for Marangoni
convection depend on both temperature and/or concentra-
tion gradients. Earliest work in this field was first investigated
byNapolitano [9, 10]. Surfactants or surface contaminants are
used to control the stability of the free surface by lowering
surface tension. Variations in surface tension that are intro-
duced by surfactant can substantially alter interfacial evolu-
tion and flow. The effect of surfactants on liquid has been
studied by many authors [11–15]. McGough and Basaran [16]
studied the breakupmechanisms of the fluid threads contain-
ing surfactant by solving the Navier-Stokes equations. The
effect of the Prandtl number on Marangoni convection over
a flat plate was studied by Christopher andWang [17]. Physi-
cally, the heat and mass transfer across the interface play an
essential role in determining the flow field in some cases. For
instance, when the fluid is boiling, whether it is a film or bub-
ble, the motion of the film and bubbles is mainly dependent
on the effect of mass and heat transfer. In chemical industry,
the interfacial stability problems are important in the pres-
ence of mass and heat transfer. The mechanism of heat and
mass transfer across an interface is of a great importance in
numerous industrial and environmental problem processes.
These include the design of many types of contacting equip-
ment, for example, boilers, condensers, evaporators, gas
absorbers, pipelines, chemical reactors, and nuclear reactors.
The effect of heat and mass transfer in the absence of gravity
on the surface tension was studied by Straub [18].

The flow through porous media is usually described by
the Darcy’s law that relates the movement of the fluid to the
pressure gradient acting on a parcel of the fluid. Meanwhile,
the Darcy’s equations are not the fundamental equations
for the flow through porous media. It is an approximation
for the balance of linear momentum for the fluid flow
through a porous solid within the context of mixtures. For
example, the interactive force between the fluid and the por-
ous medium, the frictional effects due to viscosity, and the
inertial nonlinearities are not included in the Darcy’s model
[19]. These effects can be included in more generality model
like Brinkman-Darcy’s model. The basic assumptions that
lead to the Brinkman-Darcy equation were illustrated by
Rajagopal [19]. Elcoot and Moatimid [20] studied the insta-
bility of finitely conducting cylindrical flows through por-
ous media, under the influence of an axial electrostatic field.
They found that, under certain conditions, the field may have
a stabilizing or destabilizing effect. An experimental study of

the steam injection into a porous media and the stability of
the interface between the steam and the water was carried out
by Catton and Chung [21].

The aim of this work is to discuss the effect of axial
electric field with the existence of the porous structure on
the stability of the microcylindrical flow of a viscous liquid
past a microsolid cylindrical surface. Also, the effect of
the Marangoni thermosolutal convection (according to the
dependence of the surface tension on the heat andmass trans-
fer) is discussed. The main construction of the problem is as
follows. Firstly, we studied the problem according to spatial
surface tension. So, the expression of the free surface function
is obtained. Secondly, the problem is studied in the presence
of the heat andmass transfer rates with thermosolutal surface
tension.The dispersion relation, in the latter case, is obtained
as a transcendental function of the growth rate and the wave
number. Finally, we studied the effect of the porous medium
and the axial electric field on the stability of viscous liquid
interface and tabulated results are obtained.

To clarify the problem, in Section 2, the physical descrip-
tion of the problem including the basic equations that govern
the motion is presented. Section 3 is devoted to introducing
the interfacial conditions for both the fluid and the electric
field together with the boundary conditions. The method
of solution according to the normal modes technique is
presented in Section 4. In Section 5, the instability analysis
in the absence of the heat and mass transfer is studied and
the expression of the free surface function is derived. The
transcendental dispersion relation in the presence of the
heat and mass transfer is obtained in Section 6. Throughout
Section 7, we introduced numerical estimations and gave a
discussion for the stability picture according to the relation
between the growth rate and the wave number. Finally, in
Section 8, we give concluding remarks for this study based
on the obtained results of the stability analysis.

2. Formulation of the Problem

Consider a microcylindrical layer of viscous fluid with
density 𝜌, viscosity 𝜇, and radius 𝑟

0
flowing past an axial solid

cylinder of infinitely small radius. The flow is surrounded by
a vacuum (which has zero density and zero viscosity) with
hypothetical sufficiently large radius 𝑅

2
. The axial microsolid

cylinder is elongated along the 𝑧-axis. It is earthed and has a
radius 𝑅

1
(where 𝑅

1
≪ 𝑅
2
). The axial microcylindrical solid

rod, which induces temperature and concentration gradients,
is considered to be at a constant temperature 𝑇

1
and constant

concentration𝐶
1
.The subscripts (1) and (2) refer to the liquid

and the surrounding vacuum, respectively. The fluid and
the vacuum are influenced by an external uniform electric
field of intensity 𝐸

0
which acts along the positive 𝑧-axis. The

dielectric constants for the liquid and the vacuum are 𝜀
1

and 𝜀
2
, respectively. The interface between the fluid and the

surrounding vacuum is considered to be free of charges. The
flow jet is considered as a microcylindrical porous structure
with Darcy’s coefficient ], while its porosity is assumed to be
unity (this will be explained physically later). Also, we neglect
the effects of gravity. Considering the previous hypotheses,
the model may be illustrated graphically as in Figure 1.
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Figure 1: Physical model and flow cylindrical geometry.

After making a small disturbance, the interface function
becomes

𝐹 (𝑟, 𝑧, 𝑡) = 𝑟 − ℎ (𝑧, 𝑡) , (1)

and the unit outward normal vector 𝑛 and the unit tangential
one 𝑡̂ are given by

𝑛 =
1

√1 + ℎ2
𝑧

𝑟 −
ℎ
𝑧

√1 + ℎ2
𝑧

𝑧̂,

𝑡̂ =
ℎ
𝑧

√1 + ℎ2
𝑧

𝑟 +
1

√1 + ℎ2
𝑧

𝑧̂,

(2)

where 𝑟 and 𝑧̂ are the unit vectors along the radial and axial
cylindrical coordinate directions and ℎ

𝑧
= 𝜕ℎ/𝜕𝑧.

According to the assumption of the viscosity of the fluid,
considering the existence of the porous structure and the heat
and mass transfer, the basic equations of the problem may
take the following form [3, 19].

The continuity equation (incompressibility condition)
requires

∇ ⋅ V = 0. (3)

The balance of linear momentum (Navier-Stokes) gives

𝜌 [
1

𝜁

𝜕V

𝜕𝑡
+

1

𝜁2
(V ⋅ ∇) V] = −∇𝑃 + 𝜇eff∇

2V − ]V. (4)

The balance of energy is

𝐷𝑇

𝐷𝑡
= 𝛼∇
2
𝑇. (5)

And finally the concentration equation becomes

𝐷𝐶

𝐷𝑡
= 𝛽∇
2
𝐶. (6)

In the previous equations (3)–(6), 𝜁 is the porosity of the
porous medium, 𝜇eff is the effective viscosity of the fluid
(𝜇eff = 𝜇/𝜁 and if 𝜁 = 1 then 𝜇eff = 𝜇 as we mention in the
next paragraph), and (𝐷/𝐷𝑡) = (𝜕/𝜕𝑡)+(V ⋅∇) V. Also, 𝛼 is the
thermal diffusivity, 𝛽 is the mass diffusivity, 𝑇 is the temper-
ature,𝐶 is the concentration,𝑃 is the pressure, V is the velocity
vector, ] is the Darcy’s coefficient, and 𝜌 is the density.

The basic assumptions that lead to the Brinkman-Darcy
equation and the form of the basic assumptions that lead to
the Brinkman-Darcy equation were illustrated by Rajagopal
[19], and can be summarized in the following points.

(1) The porous medium is solid and thus the balance
of linear momentum of the porous medium can be
ignored.

(2) The interactive force between the fluid and the porous
medium is due to the frictional forces only and this
force is proportional to the flow velocity which is
represented by the term ]V, where ] = 𝜇/𝜆, 𝜇 is the
fluid viscosity and 𝜆 is the permeability of the porous
medium.

(3) The frictional effects due to viscosity were taken into
account by the term 𝜇eff ∇

2V, where 𝜇eff = 𝜇/𝜁.
(4) The flow is unsteady and sufficiently fast, so that the

inertial nonlinearities cannot be ignored; thus the
term (1/𝜁

2
)(V ⋅ ∇)V needs to be retained.

According to the previous assumptions, the balance of linear
momentum can be written as in (4). Also, we want to confirm
the following points.

(1) The velocity of the flow through the porous medium
is the average of the fluid velocity. This quantity has
been given various names by different authors, such
as seepage velocity, filtration velocity, superficial velo-
city, or Darcy velocity [22]. The seepage velocity V is
related by the velocity of the fluid 𝑉 (where 𝑉 is the
flow velocity in the absence of the porousmedium) by
V = 𝜁𝑉.

(2) The porosity 𝜁 for natural media does not normally
exceed 0.6. For beds of solid spheres of uniformdiam-
eter 𝜁 can vary between the limits 0.2595 (rhombohe-
dral packing) and 0.4764 (cubic packing). Nonunifor-
mity of grain size tends to lead to smaller porosities
than those for uniform grains, because smaller grains
fill the pores formed by larger grains. For man-made
materials such as metallic foams 𝜁 can approach
the value 1 (see the tabulated values for the poro-
sity and permeability in [22, page 5]).

(3) The term (1/𝜁
2
)(V ⋅ ∇)V is inappropriate if the flow

is sufficiently slow. Then the inertial nonlinearities
can be neglected [19]. However, this term needs to
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be retained in the case of highly porous media where
the flow is sufficiently fast and at least the irrota-
tional part of this term needs to be retained [22]
and for incompressible fluids this term reduces to
𝜁
−1
∇[𝜁
−1 V ⋅ V], and for highly porous media we can

assume 𝜁 = 1 (as we assume in the present problem).
(4) Brinkman sets the viscosity 𝜇 and the effective viscos-

ity 𝜇eff equal to each other but in general that is not
true [22]. The difference between 𝜇 and 𝜇eff is due to
the momentum dispersion and 𝜇eff is dependent on
the type of the porous medium as well as the strength
of flow, and it is common practice to take 𝜇eff equal to
𝜇 for high porosity media [23].

(5) Experimental checks of Brinkman’s theory have been
indirect and few in number.The Brinkman’s equation
reduces to Darcy’s equation when the spatial length
scale is much greater than (𝜇eff𝜆/𝜇)

1/2. Therefore the
term ∇

2V is negligible in comparison with the term
proportional to V [22]. But, the Brinkman’s model
holds only for particles whose size is of order 𝜗

3,
where 𝜗 ≪ 1 is the distance between neighboring
particles, and for large particles the fluid filtration is
governed by Darcy’s law [22].

Because of the quasi-static approximation and in poorly con-
ducting fluid [24, 25], the inducedmagnetic field is negligible.
Also, we dealwith very small electric conductivity and there is
no appliedmagnetic field. So, the electric field is conservative.
Since, the electric field is curl free vector the Maxwell’s
equations are∇×𝐸 = 0 and∇⋅𝜀𝐸 = 0. So, the electric field has
an electric scalar potential𝜙 such that𝐸 = 𝐸

0
𝑧̂−∇𝜙.Therefore

the electric potential 𝜙
𝑗
satisfies the Laplace’s equation

∇
2
𝜙
𝑗
= 0 (𝑗 = 1, 2) . (7)

The boundary and interfacial conditions for the problemmay
be displayed in the following section.

3. Boundary Conditions

Theboundary conditions adopted heremust be classified into
three categories.The first relates the hydrodynamic part at the
boundaries. The second is concerned with the electric part at
the boundaries. Meanwhile, the third relates the combination
condition of the electric and hydrodynamic balance of the
stress tensor components at the interface between the liquid
and the surrounding vacuum.

(1) For the hydrodynamic part, because 𝐹 (in (1)) is a
scalar function that is always equal to zero at any point on
the fluid interface, its time derivative following any material
point on the interface is obviously equal to zero, whichmeans
that there is no phase transformation occurring [26, Chapter
2, page 75]. So, the continuity of the normal velocity at the
interface requires

𝐷

𝐷𝑡
[𝑟 − ℎ (𝑧, 𝑡)] = 0, at 𝑟 = ℎ, (8)

where 𝑟 is the radial distance and ℎ is the radius for the dis-
turbed fluid surface.

According to the microscale of the cylindrical fluid
radius, the standard no-slip boundary condition in the classi-
cal fluid mechanics does not apply, so that the shear stress at
the boundary vanishes (i.e., there is no considerable surface
fraction between the fluid and the axial bar) and hence
𝜕V
𝑧
/𝜕𝑟 = 0 at the axial bar. Meanwhile, the normal velocity

must be vanishing at the axial bar. So the boundary conditions
for the velocity at the surface of themicrocylindrical axis may
be written as follows:

V
𝑟
= 0, 𝑟 = 𝑅

1
,

𝜕V
𝑧

𝜕𝑟
= 0, 𝑟 = 𝑅

1
, (9)

where 𝑅
1
is the microradius of the axial microcylindrical bar

such that 𝑅
1
is sufficiently small (𝑅

1
≪ 1) and V

𝑟
, V
𝑧
are the

radial and axial velocity components, respectively.
(2) For the electric part, because there is no surface

charges accumulated at the interface, the normal electric dis-
placement must be continuous across the interface. So that
𝑛 ⋅ ‖𝜀𝐸‖ = 0 and the interfacial condition for the normal ele-
ctric field displacement, in the linear form, yields

𝐸
0
ℎ
𝑧

󵄩󵄩󵄩󵄩󵄩
𝜀
𝑗

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜀
𝑗

𝜕𝜙
𝑗

𝜕𝑟

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0, at 𝑟 = ℎ, (10)

where the notation ‖ ‖ denotes the subtract at the fluid and
surrounding vacuum. In other words ‖𝑓‖ = 𝑓

1
−𝑓
2
. The sub-

script 𝑗, in the electric potential 𝜙
𝑗
and the dielectric constant

𝜀
𝑗
, takes the values 𝑗 = 1, 2 at the fluid and the surrounding

vacuum, respectively.
The continuity of the tangential electric filed components

at the interface requires 𝑛 × ‖𝐸‖ = 0 and in the linear form
(where the linear terms only are retained and the nonlinear
terms are omitted) becomes

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝜙
𝑗

𝜕𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0, at 𝑟 = ℎ. (11)

Since the axial microsolid bar and the vacuum at infinity
have no electric field, the electric potential at the boundaries
satisfies

∇𝜙
1
= 0, 𝑟 = 𝑅

1
, ∇𝜙

2
= 0, 𝑟 = 𝑅

2
. (12)

(3) The balance of the stress components at the interface
may be presented as follows.

At the interface between the liquid and vacuum, the fluid
and the electrical stresses must be balanced.The components
of these stresses consist of the electric hydrodynamic stresses
together with the surface tension force [27].The combination
of the electric stress 𝜏electro

𝑖𝑗
and hydrodynamic stress 𝜏hydro

𝑖𝑗

parts may be presented in the total stress as

𝜏
𝑖𝑗
= 𝜏

hydro
𝑖𝑗

+ 𝜏
electro
𝑖𝑗

. (13)

The electric force density 𝐹
𝑒
can be written in terms of the

electric field as 𝐹
𝑒
= (∇ ⋅ 𝜀𝐸)𝐸. Since ∇ × 𝐸 = 0, the electric

force can be written as 𝐹
𝑒
= (∇ ⋅ 𝜀𝐸)𝐸 + (∇ × 𝐸) × 𝜀𝐸 and

the Maxwell stress tensor 𝜏electro
𝑖𝑗

, in the index notation, may
be written as [28]

𝜏
electro
𝑖𝑗

= 𝜀𝐸
𝑖
𝐸
𝑗
−
1

2
𝜀𝐸
2
Δ
𝑖𝑗
, (14)
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meanwhile, the hydrodynamic stress tensormay be described
by the constitutive relation

𝜏
hydro
𝑖𝑗

= −𝑃Δ
𝑖𝑗
+ 𝜇(

𝜕V
𝑖

𝜕𝑥
𝑗

+
𝜕V
𝑗

𝜕𝑥
𝑖

) , (15)

where Δ
𝑖𝑗
is the usual kronecker delta and V

𝑖
, V
𝑗
, 𝑥
𝑖
, 𝑥
𝑗
are a

general notations for the velocity components and the coordi-
nates, respectively.

According to the simple interface description, which
involves only interfacial tension, the forces acting on any
segment of an interface are of two kinds. First, there are the
bulk pressure and stresses that act on the faces of the interface
element and produce a net effect that is proportional to the
surface area; second, there is a tensile force that is due to
surface or interfacial tension that acts in the plane of the
interface at the edges of the surface element and is specified by
means of themagnitude of the surface or interfacial tension as
a force per unit length [26, Chapter 2, page 76]. So, the stress
balance can be written as [3]

𝑛 ⋅ 𝜏 = −2𝐻𝜎 (𝑧) 𝑛 + ∇
𝑆
𝜎 (𝑧) , (16)

where 𝐻 is the curvature of the interface, ∇
𝑆
is the surface

gradient at the interface, and 𝜎(𝑧) is the surface tension.
The previous condition can be decomposed into the

normal and tangential stress tensor components as follows.

(i) The normal stress component requires

(𝑛 ⋅ 𝜏) ⋅ 𝑛 = −2𝐻𝜎 (𝑧) . (17)

(ii) The tangential stress components yield

(𝜏 ⋅ 𝑛) ⋅ 𝑡̂ = 𝑡̂ ⋅ ∇
𝑆
𝜎 (𝑧) , (18)

where the surface curvature and the gradient at the
interface may be given as follows:

𝐻 =
1

2
∇ ⋅ 𝑛 =

1

2
(

1

ℎ √1 + ℎ2
𝑧

−
ℎ
𝑧𝑧

(1 + ℎ2
𝑧
)
3/2

),

∇
𝑆
≡
1

2
(∇ − 𝑛 (𝑛 ⋅ ∇)) = 𝑟

ℎ
𝑧

1 + ℎ2
𝑧

𝜕

𝜕𝑧
+ 𝑧̂

1

1 + ℎ2
𝑧

𝜕

𝜕𝑧
.

(19)

Finally, the normal and tangential stress tensor conditions as
given in (17) and (18) (at 𝑟 = ℎ) may be written as follows:

− 𝑃 +
2𝜇

1 + ℎ2
𝑧

[
𝜕V
𝑟

𝜕𝑟
+ ℎ
2

𝑧

𝜕V
𝑧

𝜕𝑧
− ℎ
𝑧
(
𝜕V
𝑟

𝜕𝑧
+
𝜕V
𝑧

𝜕𝑟
)]

+
1

2 (1 + ℎ2
𝑧
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜀
𝑗
[(1 − ℎ

2

𝑧
) (

𝜕𝜙
𝑗

𝜕𝑟
)

2

− (1 − ℎ
2

𝑧
)(𝐸
0
−
𝜕𝜙
𝑗

𝜕 𝑧
)

2

+4ℎ
𝑧

𝜕𝜙
𝑗

𝜕𝑟
(𝐸
0
−
𝜕𝜙
𝑗

𝜕𝑧
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= −2𝜎 (𝑧)𝐻,

(20)

𝜇

1 + ℎ2
𝑧

[2ℎ
𝑧
(
𝜕V
𝑟

𝜕𝑟
−
𝜕V
𝑧

𝜕𝑧
)

+ (1 − ℎ
2

𝑧
) (

𝜕V
𝑟

𝜕𝑧
+
𝜕V
𝑧

𝜕𝑟
)]

+
1

(1 + ℎ2
𝑧
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜀
𝑗
[ℎ
𝑧
(
𝜕𝜙
𝑗

𝜕𝑟
)

2

− ℎ
𝑧
(𝐸
0
−
𝜕𝜙
𝑗

𝜕𝑧
)

2

− (1 − ℎ
2

𝑧
)

𝜕𝜙
𝑗

𝜕𝑟
(𝐸
0
−
𝜕𝜙
𝑗

𝜕𝑧
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 𝑡̂ ⋅ ∇
𝑆
𝜎 (𝑧) .

(21)

We study the solution of the equations of motion (4)
according to the boundary and interfacial conditions in two
cases. The first case is obtained in the absence of the heat and
mass transferwhere the spatial surface tension is independent
of the rate of heat andmass transfer. In this case, we follow the
same analysis of Furlani [3] to gain the function of the free
surface of the microcylindrical fluid flow. In the second one,
taking into account the dependence of the surface tension
on the heat and mass transfer, the surface tension becomes
a function of the time and the axial distance. So, in this case,
the dispersion relation may be obtained as a transcendental
function and its roots can be computed numerically hence the
stability picture may be obtained graphically. Before studying
the previous cases, we obtain the solution of the electric field
according to the boundary and interfacial conditions.

4. Solution of the Eclectic Field

Our analysis will be based on the normal modes technique.
Therefore, the electric potential may take the following form:

𝜙
𝑗
(𝑟, 𝑧, 𝑡) = 𝜑

𝑗
(𝑟) 𝑒
𝜔𝑡+𝑖𝑘𝑧

, (22)

where 𝜔 is the frequency of the surface wave and 𝑘 is its wave
number which is assumed to be real and positive. Using (7)
with the boundary conditions (10)–(12), we may obtain the
solution for the electric potential functions as follows:

𝜙
1
(𝑟, 𝑧, 𝑡)

=
𝑖𝑟
0
𝐸
0
(𝜀
2
− 𝜀
1
) 𝑔
2
(𝑘)

𝜀
2
𝑔
1(𝑘) 𝐺2 (𝑘) − 𝜀

1
𝑔
2 (𝑘) 𝐺1 (𝑘)

× [𝐾
0
(𝑘𝑟) 𝐼
󸀠

0
(𝑘𝑅
1
) − 𝐾
󸀠

0
(𝑘𝑅
1
) 𝐼
0
(𝑘𝑟)] 𝑒

𝜔𝑡+𝑖𝑘𝑧
,
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𝜙
2
(𝑟, 𝑧, 𝑡)

=
𝑖𝑟
0
𝐸
0
(𝜀
2
− 𝜀
1
) 𝑔
1
(𝑘)

𝜀
2
𝑔
1
(𝑘) 𝐺
2
(𝑘) − 𝜀

1
𝑔
2
(𝑘) 𝐺
1
(𝑘)

× [𝐾
0
(𝑘𝑟) 𝐼
󸀠

0
(𝑘𝑅
2
) − 𝐾
󸀠

0
(𝑘𝑅
2
) 𝐼
0
(𝑘𝑟)] 𝑒

𝜔𝑡+𝑖𝑘𝑧
,

(23)

where 𝐼
0
and 𝐾

0
are the modified Bessel’s functions of first

and second kinds of order zero, respectively. The dashes
denote the differentiationwith respect to 𝑟 and 𝑖 = √−1. Also,
the functions 𝑔

1
(𝑘), 𝑔
2
(𝑘), 𝐺

1
(𝑘), and 𝐺

2
(𝑘) are given in the

appendix.

5. Instability in the Absence of
Heat and Mass Transfer

This section is devoted to solving the equations of motion
and the continuity equation (see (3) and (4)) according to
the interfacial and boundary conditions (see (8) and (9)) with
employing the normal and tangential stress tensor interfacial
conditions. We follow the same procedure given by Furlani
[3] to get the function that describes the free surface. So, we
expand the velocity components and the pressure as a power
of 𝑟 (depending on themicroradius of the flow jet), as follows:

V
𝑧 (𝑟, 𝑧, 𝑡) = V

0 (𝑧, 𝑡) + V
2 (𝑧, 𝑡) 𝑟

2
+ ⋅ ⋅ ⋅ ,

𝑃 (𝑟, 𝑧, 𝑡) = 𝑃
0
(𝑧, 𝑡) + 𝑃

2
(𝑧, 𝑡) 𝑟

2
+ ⋅ ⋅ ⋅ .

(24)

From the continuity equation (3), one gets

V
𝑟
(𝑟, 𝑧, 𝑡) = −

𝜕V
0
(𝑧, 𝑡)

𝜕𝑧

𝑟

2
−
𝜕V
2
(𝑧, 𝑡)

𝜕𝑧

𝑟
3

4
+ ⋅ ⋅ ⋅ , (25)

where V
0
(𝑧, 𝑡), V

2
(𝑧, 𝑡) are perturbed velocity functions and

𝑃
0
(𝑧, 𝑡), 𝑃

2
(𝑧, 𝑡) are the perturbed pressure functions. It is

important to notice here that the expansions in (24)-(25) are
compatible with the boundary conditions in (9) and with the
continuity equation (3). Where 𝑅

1
and 𝑟 are a microradii of

the axial microcylinder and the microporous cylinder that
contains the fluid, respectively. So, all terms containing 𝑂(𝑟)
and 𝑂(𝑅

1
) or higher orders can be neglected according to

their tendency to zero.
According to the previous expansions, the equation of

motion (4) for V
𝑟
can be neglected because it is identical to

the lowest order of 𝑟. Therefore the equation of motion for V
𝑧

can be written as

𝜌(
𝜕V
0

𝜕𝑡
+ V
0

𝜕V
0

𝜕𝑧
)

= −
𝜕𝑃
0

𝜕𝑧
+ 𝜇(4V

2
+
𝜕
2V
0

𝜕𝑧2
) − ]V

0
.

(26)

The second order term of the velocity V
2
can be determined

from the tangential stress condition as given in (21); on

neglecting the terms of 𝑂(𝑟) and all higher orders, it can be
written as follows:

V
2
=

1

2𝜇ℎ

𝜕𝜎

𝜕𝑧
+
3ℎ
𝑧

2ℎ

𝜕V
0

𝜕𝑧
+
1

4

𝜕
2V
0

𝜕𝑧2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜀
𝑗
𝐸
0

2𝜇ℎ

𝜕𝜙
𝑗

𝜕𝑟
−
𝜀
𝑗
𝐸
0
ℎ
𝑧

𝜇ℎ

𝜕𝜙
𝑗

𝜕𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(27)

The zero order term of the pressure 𝑃
0
can be determined

from the normal stress condition, as given in (20), in the form

𝑃
0
= −𝜇

𝜕V
0

𝜕𝑧
+ 2𝜎𝐻 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜀
𝑗
𝐸
0

𝜕𝜙
𝑗

𝜕𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

. (28)

Now, substituting from (27) and (28) into (26), we obtain

𝜌(
𝜕V
0

𝜕𝑡
+ V
0

𝜕V
0

𝜕𝑧
)

= −
𝜕

𝜕𝑧
(2𝜎𝐻)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝜀
𝑗
𝐸
0

ℎ

𝜕𝜙
𝑗

𝜕𝑟
−
4𝜀
𝑗
𝐸
0
ℎ
𝑧

ℎ

𝜕𝜙
𝑗

𝜕𝑧
− 𝜀
𝑗
𝐸
0

𝜕
2
𝜙
𝑗

𝜕𝑧2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
3𝜇

ℎ2

𝜕

𝜕𝑧
(ℎ
2 𝜕V0
𝜕𝑧

) +
2

ℎ

𝜕𝜎

𝜕𝑧
− ]V
0
.

(29)

The kinematic condition equation (8) gives

𝜕ℎ

𝜕𝑡
= −V
0

𝜕ℎ

𝜕𝑧
−
ℎ

2

𝜕V
0

𝜕𝑧
. (30)

Also, the axial velocity V
0
(𝑧, 𝑡), the radial position ℎ(𝑧, 𝑡), and

the surface tension 𝜎(𝑧) can be represented in a perturbed
and unperturbed parts as follows:

V
0
(𝑧, 𝑡) = 𝑢

0
+ 𝑢 (𝑧, 𝑡) , (31)

ℎ (𝑧, 𝑡) = 𝑟
0
(1 + 𝛿 (𝑧, 𝑡)) , (32)

𝜎 (𝑧) = 𝜎
0
+ 𝜎
1
(𝑧) , (33)

where 𝑢
0
, 𝑟
0
, and 𝜎

0
are the constant unperturbed axial

streaming velocity, radius, and surface tension, respectively.
The analysis may be simplified by using the transformation

𝜂 = 𝑧 − 𝑢
0
𝑡. (34)

By using (31)–(34) into (29) and (30), after linearizing the
resulting equations, we can obtain

𝜌(
𝜕𝑢

𝜕𝑡
) =

1

𝑟
0

𝜕𝜎
1

𝜕𝜂
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝜀
𝑗
𝐸
0

𝑟
0

𝜕𝜙
𝑗

𝜕𝑟
− 𝜀
𝑗
𝐸
0

𝜕
2
𝜙
𝑗

𝜕𝜂2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 3𝜇
𝜕
2
𝑢

𝜕𝜂2
+
𝜎
0

𝑟
0

𝜕𝛿

𝜕𝜂
+ 𝜎
0
𝑟
0

𝜕
3
𝛿

𝜕𝜂3
− ]𝑢,

𝜕
2
𝑢

𝜕𝜂2
= −2

𝜕
2
𝛿

𝜕𝜂𝜕𝑡
.

(35)
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Equations (35) can be combined into one equation that deter-
mines the free surface function 𝛿(𝜂, 𝑧) as follows:

𝜕
2
𝛿

𝜕𝑡2
+

𝜕

𝜕𝑡
(
]

𝜌
𝛿 −

3𝜇

𝜌

𝜕
2
𝛿

𝜕𝜂2
)

+
𝜎
0

2𝜌𝑟
0

(
𝜕
2
𝛿

𝜕𝜂2
+ 𝑟
2

0

𝜕
4
𝛿

𝜕𝜂4
)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜀
𝑗
𝐸
0

2𝜌𝑟
0

(2
𝜕
2
𝜙
𝑗

𝜕𝑟𝜕𝜂
− 𝑟
0

𝜕
3
𝜙
𝑗

𝜕𝜂3
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= −
1

2𝜌𝑟
0

𝜕
2
𝜎
1

𝜕𝜂2
.

(36)

Initially, the disturbed fluid radius 𝛿(𝜂, 𝑡) is independent of
the time (also its partial derivative with respect to the time).
So, the disturbed fluid radius 𝛿(𝜂, 𝑡) has the following initial
conditions:

𝛿 (𝜂, 0) = 0,
𝜕

𝜕𝑡
𝛿 (𝜂, 0) = 0. (37)

Assuming that the surface tension 𝜎
1
(𝜂) has a spatially per-

iodic form, which is independent of the heat and mass trans-
fer. Then, the surface tension function may be written in the
following form:

𝜎
1
(𝜂) = −

Δ𝜎

2
(1 + 𝑒

𝑖𝑘𝜂
) , (38)

where Δ𝜎 is a constant variation of the surface tension.
The initial value problem given by (36) and the initial

conditions equation (37) can be solved by decomposing the
solution into a homogenous and particular parts, 𝛿

ℎ
(𝜂, 𝑡) and

𝛿
𝑝
(𝜂, 𝑡), respectively. Based on the form of the surface tension

𝜎
1
(𝜂), which is given in (38), the homogenous solution of the

wave function 𝛿
ℎ
(𝜂, 𝑡)may be written in the form

𝛿
ℎ
(𝜂, 𝑡) = 𝑒

𝜔𝑡+𝑖𝑘𝜂
. (39)

The final form of the general solution of the free surface func-
tion, 𝛿(𝜂, 𝑡) = 𝛿

ℎ
(𝜂, 𝑡) + 𝛿

𝑝
(𝜂, 𝑡), can be written as follows:

𝛿 (𝜂, 𝑡) = −
Δ𝜎𝑘
2

4𝜌𝑟
0
𝑏
0

[
𝜔
−

𝜔
+
− 𝜔
−

𝑒
𝜔
+
𝑡
−

𝜔
+

𝜔
+
− 𝜔
−

𝑒
𝜔
−
𝑡
+ 1] 𝑒

𝑖𝑘𝜂
,

(40)

where, the roots 𝜔
±
and 𝑏
0
are defined in the appendix.

It is worthwhile to mention here that the final solution in
(40) reduces to the same solution obtained earlier by Furlani
[3] for the flow of cylindrical microjet surface in the absence
of the electric field (𝐸

0
= 0). It is worthwhile to mention here

that the final solution in (40) reduces to the same solution that
was obtained earlier by Furlani [3] for the flow of cylindrical
microjet surface in the absence of the electric field (𝐸

0
= 0)

with neglecting the porous structure (] = 0) and with taking
the real part only of the free surface function.

6. Instability of Thermosolutal
Marangoni Convection

If the two-fluid system is amulticomponent system, it is often
the case that there may be a preferential concentration of
one or more of the components at the interface (e.g., if we
consider a systemof pure𝐴 and pure𝐵, which are immiscible,
with a third solute component 𝑆 that is soluble in 𝐴 and/or 𝐵
but that is preferentially attracted to the interface), and then
the interfacial tension will also be a function of the (surface-
excess) concentration of these solute components. Both the
temperature and the concentrations of adsorbed species can
be functions of position on the interface, thus leading to spa-
tial gradients of the surface tension [26]. So, to study the effect
of the heat and mass transfer on the interfacial instability of
the microcylindrical surface, the surface tension is assumed
to be a function of the temperature and the solute concentra-
tion and the surface tension will depend on temperature and
concentration linearly [29], as follows:

𝜎 (𝜂, 𝑡) = 𝜎
0
+ 𝜎
1
(𝜂, 𝑡)

= 𝜎
0
[1 − 𝛾

𝑇
(𝑇 − 𝑇

0
) − 𝛾
𝐶
(𝐶 − 𝐶

0
)] ,

(41)

where 𝛾
𝑇
and 𝛾
𝐶
denote the temperature and concentration

coefficients of the surface tension. Also, 𝑇
0
and 𝐶

0
are the

reference temperature and concentration, respectively. Note
that (41) is the same as (33) with 𝜎

1
(𝑧) being 𝜎

1
(𝜂, 𝑡) that

depends on the heat and mass transfer as in (41). 𝜎
0
is the

unperturbed constant value of the surface tension.
To determine the form of the surface tension, we need

firstly to obtain the solution of the heat and concentration
equations. Again, the analysis will be based on the normal
modes technique as given by

𝑇 (𝑟, 𝜂, 𝑡) = 𝑇
𝑠 (𝑟) 𝑒
𝜔𝑡+𝑖𝑘𝜂

,

𝐶 (𝑟, 𝜂, 𝑡) = 𝐶
𝑠 (𝑟) 𝑒
𝜔𝑡+𝑖𝑘𝜂

.

(42)

With the help of the coordinate transformation in (34), the
energy and concentration equations (see (5) and (6)) may be
written in the following forms:

𝑑
2
𝑇
𝑠

𝑑𝑟2
+
1

𝑟

𝑑𝑇
𝑠

𝑑𝑟
− 𝑚
2
𝑇
𝑠
= 0, (43)

𝑑
2
𝐶
𝑠

𝑑𝑟2
+
1

𝑟

𝑑𝐶
𝑠

𝑑𝑟
− 𝑛
2
𝐶
𝑠
= 0, (44)

where𝑚2 = 𝑘
2
+ (𝜔/𝛼) and 𝑛2 = 𝑘

2
+ (𝜔/𝛽).

If we consider the diffusion of the thermal energy and the
concentration in an infinite isolated columnof stationary flow
of radius 𝑟

0
then there are no temperature and concentration

gradients at 𝑟 = 𝑟
0
. So, the temperature and concentration

boundary conditions are as follows [3]:

𝑇
𝑠
= 𝑇
1
, 𝐶
𝑠
= 𝐶
1
, at 𝑟 = 𝑅

1
,

𝜕𝑇
𝑠

𝜕𝑟
= 0,

𝜕𝐶
𝑠

𝜕𝑟
= 0, at 𝑟 = 𝑟

0
.

(45)
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Equations (43) and (44) represent the standard Bessel’s
differential equation. Therefore, the general solution of the
temperature and concentration function may be written as
follows:

𝑇 (𝑟, 𝜂, 𝑡)

=
𝑇
1
[𝐾
󸀠

0
(𝑚𝑟
0
) 𝐼
0 (𝑚𝑟) − 𝐼

󸀠

0
(𝑚𝑟
0
)𝐾
0 (𝑚𝑟)]

𝐾󸀠
0
(𝑚𝑟
0
) 𝐼
0
(𝑚𝑅
1
) − 𝐾
0
(𝑚𝑅
1
) 𝐼󸀠
0
(𝑚𝑟
0
)
𝑒
𝜔𝑡+𝑖𝑘𝜂

,

𝐶 (𝑟, 𝜂, 𝑡)

=
𝐶
1
[𝐾
󸀠

0
(𝑛𝑟
0
) 𝐼
0
(𝑛𝑟) − 𝐼

󸀠

0
(𝑛𝑟
0
)𝐾
0
(𝑛𝑟)]

𝐾󸀠
0
(𝑛𝑟
0
) 𝐼
0
(𝑛𝑅
1
) − 𝐾
0
(𝑛𝑅
1
) 𝐼󸀠
0
(𝑛𝑟
0
)
𝑒
𝜔𝑡+𝑖𝑘𝜂

.

(46)

On combining the following equations:

(1) the general solution of the heat andmass transfer (see
(46)),

(2) the surface tension expression (see (41)),
(3) the expression of the free surface function, which

may be given based on the normal modes technique
as 𝛿(𝜂, 𝑡) = 𝑒

𝜔𝑡+𝑖𝑘𝜂, into the free surface deferential
equation given by (36).

We finally get the transcendental dispersion relation of
the instability of the interfacial free surface as

𝑓 (𝜔, 𝑘) = 𝜔
2
+ 𝑎
1 (𝑘) 𝜔 + 𝑏

1 (𝜔, 𝑘) = 0, (47)

where the functions 𝑎
1
(𝑘) and 𝑏

1
(𝜔, 𝑘) are defined in the

appendix.
It is convenient to write the stability criterion in an appro-

priate dimensionless form. This can be done in a number of
ways depending primarily on the choice of the characteristic
length, time, temperature, and mass. Consider the following
dimensionless forms depending on the characteristic length
= 𝑟
0
, the characteristic time = 1/𝜔̂, the characteristic temper-

ature = 𝑇
1
, and the characteristic mass = 𝜎

0
/𝜔̂
2, where 𝜔̂ is a

characteristic value of 𝜔. The other dimensionless quantities
are given by

𝑘 =
𝑘
∗

𝑟
0

, 𝜌 = 𝜌
∗ 𝜎0

𝑟
3

0
𝜔̂2

, 𝐸
2

0
= 𝐸
2

0

∗𝜎
0

𝑟
0

,

𝜇 = 𝜇
∗ 𝜎0

𝜔̂𝑟
0

, 𝑇 = 𝑇
1
𝑇
∗
, 𝛾

𝑇
=
𝛾
∗

𝑇

𝑇
1

,

] = ]∗
𝜎
0

𝑟
3

0
𝜔̂
, 𝑟 = 𝑟

∗
𝑟
0
, 𝜔 = 𝜔̂𝜔

∗
,

𝛼 = 𝛼
∗
𝑟
2

0
𝜔̂, 𝛽 = 𝛽

∗
𝑟
2

0
𝜔̂.

(48)

The superscript asterisks refer to the dimensionless quan-
tities. From now on, these will be omitted for simplicity.
The dispersion relation in (47) and its coefficients 𝑎

1
(𝑘) and

𝑏
1
(𝜔, 𝑘)may be written as follows:

𝑓 (𝜔, 𝑘) = 𝜔
2
+ 𝑎 (𝑘) 𝜔 + 𝑏 (𝜔, 𝑘) = 0, (49)

where the functions 𝑎(𝑘) and 𝑏(𝜔, 𝑘) are defined in the
appendix.

The dimensionless transcendental dispersion relation in
(49) describes the instability of the interfacial free surface
of the microfluid jet. We will discuss the instability criteria
numerically and graphically in the next section.

7. Numerical Estimations

In the case of the thermosolutal Marangoni convection, the
surface tension depends on the heat and mass transfer and
the dispersion relation is the transcendental equation (49).
The stability criteria of the systemmay be discussed by getting
the values of the growth rate 𝜔 from the roots of the tran-
scendental equation (49). The positive values of 𝜔 indicate a
disturbance that grows with time (instability) and the neg-
ative values indicate decays with time (stability). So, to study
the instability of the microcylindrical surface, we indicate the
relation between the growth rate 𝜔 and the wave number 𝑘
graphically. In all coming curves, the positive values region
of 𝜔 indicates the instability region, denoted by letter 𝑈.
Meanwhile, the negative values region of 𝜔 indicates the
stability region, denoted by letter 𝑆.

It is well known that increasing the wave number
enhances the stability of the system. As seen in Figure 2, the
stability occurs at 𝑘 ≅ 0.7, when the intensity of the electric
field 𝐸

0
= 1000. Meanwhile, at 𝐸

0
= 1 the stability occurs at

𝑘 ≅ 1. This means that the stability occurs at less value of 𝑘
and at the higher value of 𝐸

0
, which means that the system

is more stable at highly electric field intensity and the electric
field has a stabilizing effect.This is an early result obtained by
many researchers [7, 20, 24, 25]. Also, we can notice that the
maximum instability in all figures, except Figure 2, according
to the peak of the curve occurs at 𝑘 ≅ 0.6. But at high
values of the electric field, the peak of the curve approaches
the stability region and the maximum instability occurs at
𝑘 ≅ 0.4. This implies that existence of the electric field causes
a high stability of the interface.

Figure 3 illustrates the electric field and the growth rate
relation. It is clear from this figure that the maximum value
of the electric field 𝐸

0
is congruent to the zero value of the

growth rate 𝜔. The zero value the growth rate 𝜔 corresponds
to the steady state of the interface. This result confirms
the same result of Figure 2; that is, the electric field has a
stabilizing effect. Figure 4 illustrates the effect of the dielectric
constants difference 𝜀 = 𝜀

1
− 𝜀
2
on the stability picture. The

dielectric difference 𝜀 has a stabilizing effect, where the higher
value of 𝜀 is identical to theminimumpeak value of the curve.

Figures 5–7 illustrate the effect of Darcy’s coefficient, the
viscosity, and the density of fluid on the stability behavior.The
of Darcy’s coefficient, the viscosity, and the density of fluid
have stabilizing effect for 𝑘 ≤ 1 according to reducing the
peak of the curve and decreasing the number of the points
in the instability region. Figure 5 illustrates the effect of the
existence of the porous structure, according to the different
values of the Darcy’s coefficient, on the stability picture. It
is clear that the microcylindrical surface is more stable, in
case of the flow through a porousmedium formajority values
of the wave number, due to an increase in the values of the
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Darcy’s coefficients in comparison with the case of the pure
flow (] = 0). This is due to the fact that the greatest peak
value of the curve in the instability region is at ] = 0.
Hence the Darcy’s coefficient ] is equal to 𝜇/𝜆, where 𝜆 is
the permeability of the porous medium, so an increase in the
values of the Darcy’s coefficients corresponds to a decrease in
the permeability of the porous medium.This in turn restricts
the streaming velocity of the fluid flow. It is known that
when the streaming velocity decreases, the stability of the
system increases. In other words, when the permeability of
the medium increases (𝜆 increases and ] decreases) the holes
of the porous medium are very large and the resistance of
the medium may be neglected so that the streaming velocity
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increases and causes instability of the system.The same result
was illustrated experimentally by Catton and Chung [21],
where the authors studied the interfacial stability between
the water and the steam. Two porous media were studied
experimentally: a bead of glass with diameter 0.6, 2, and 6 and
with permeability 0.14, 1.57, and 18.0 (×10−9m2), respectively,
and a bead of steel with diameter 4 andwith permeability 9.02
(×10−9m2). It was found that in the more permeable cylinder
the steam bubble is chaotic just after it has been formed.This
means that the interface becomes unstable and the chaotic
turbulence becomes more and more profound as the water
flow rate increases (according to increasing the permeability
of the porous medium).
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The viscosity 𝜇 and the density 𝜌 have a stabilizing effect,
for larger values of the wave number, as shown in Figures 6
and 7. This influence occurs due to an increase in the visco-
sity damping and in the inertia. So, the interface of themicro-
cylindrical surface becomes stable with an increase in the
viscosity and the density.

The effect of heat transfer on the free surface is illustrated
in Figure 8. To study the instability influence, according to
the heat transfer, we notice that the temperature coefficient is
𝛾
𝑇
= ±(1/𝜎

0
)(𝑑𝜎/𝑑𝑇) [30], where 𝛾

𝑇
has a positive or nega-

tive sign according to the increasing or decreasing of the
surface tension. When 𝑇 < 𝑇

1
, the axial microsolid cylinder,

which induces the heat andmass gradients, is heated and then
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the temperate transfers from it to the free surface by convec-
tion currents. This in turn tends to evaporate the fluid easily
and provokes higher instabilities at the interface. So, in this
case, 𝛾

𝑇
has a negative value according to the decreasing of the

surface tension. Conversely, 𝛾
𝑇
has a positive value when 𝑇 >

𝑇
1
. In this case the free surface loses its temperature that is

transferred to the core region of the flow jet and hence the free
surface becomes stable. This phenomenon was illustrated in
Figure 8where the temperature coefficient 𝛾

𝑇
has a stabilizing

effect when it is positive and the inverse occurs at 𝛾
𝑇
< 0.

In other words, heating the axial microsolid surface 𝑇
1
has

destabilizing effect at the interface and conversely for cooling.
Figure 9 confirms this result. We notice from this figure that
the unstable state, for the positive values of the growth rate
𝜔, occurs at the temperature values corresponding to 𝑇 <

𝑇
1
. Meanwhile, the temperature 𝑇 > 𝑇

1
is for the negative
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growth rate in the stability region. This result was obtained
experimentally by D’Aubeterre et al. [31]. The authors stated
that the temperature has a destabilizing effect due to the fact
that a substance is more volatile for increasing the temperate;
this means that when a temperature gradient occurs, the sub-
stance tends to evaporate easily and provokes higher insta-
bilities at the interface. Also, depending on the alcohol stud-
ied [31], turbulence begins at the interface at different temper-
ature gradients. Instabilities begin near the interface, showing
a sinuous movement. At higher temperatures and tempera-
ture gradients, instabilities increase and movements become
continuous.Themost evident effect occurswhen temperature
gradients are 15–17 ∘C; at these values a sinuous wave was
observed [31].

Similar behavior can be noticed for the concentration as
seen in Figure 10. In this figure we use 𝛾

𝐶
= ±(1/𝜎

0
)(𝑑𝜎/𝑑𝐶)

[30]. The concentration coefficients of the surface tension 𝛾
𝐶

become negative if 𝐶 < 𝐶
1
. This implies that the concen-

tration at the interface is less than the concentration at the
core region. Because the surface tension is proportional with
the concentration, the surface tension at the free surface
accordingly reduces. So, the free surface loses its interfacial
rigidity and its ability to movement increases. Therefore the
instability of the free surface occurs. On the other hand,
when the concentration of the interface is higher than that
of the core region, the stability in the interface occurs. This
means an increase of the interfacial rigidity, which in turn
restricts any surface movements or Marangoni convection.
Therefore, the surface becomes stable when 𝛾

𝐶
> 0 and the

instability occurs for 𝛾
𝐶
< 0, as shown in Figure 10. Figure 11

confirms this result, where the concentration is plotted ver-
sus the growth rate. The region of the positive values of the
growth rate 𝜔, that is, the unstable region, occurs at 𝐶 < 𝐶

1
.

Meanwhile, the stable region, that is, the negative growth
rate values, occurs at 𝐶 > 𝐶

1
. Similar results were obtained

by Agble and Mendes [32] and compared with experimental
results.
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Table 1: The root of the growth rate 𝜔 for different values of the
micro radius 𝑟

0
at 𝜌 = 1, 𝜇 = 0.5, 𝜀

1
= 10
−5, 𝜀
2
= 10
−3, 𝑅
1
= 10
−5,

𝐸
0
= 10, 𝑅

2
= 10, 𝛾

𝑇
= 0.5, 𝛾

𝐶
= 0.03, 𝛼 = 0.01, 𝛽 = 0.2, 𝑇

1
= 1,

𝐶
1
= 0.04, and ] = 0.3.

𝑟
0

𝑘 𝜔

5 × 10
−3

10
−3 1.63164 × 10−6

10
−1 0.0148314

10
1

−48.76930
10
2

−4998.710

5 × 10
−1

10
−3 1.02608 × 10−8

10
−1 0.0146367

10
1

−48.82320
10
2

−4998.800

Finally, the instability criterion of the system can be
discussed by studying the roots of the dispersion relation (49)
to get the values of the growth rate 𝜔, as shown in Table 1.
The negative values of the roots of 𝜔 indicate stability of the
microcylindrical surface and the inverse occurs of the posi-
tive root values. It can be noticed from the roots of the growth
rate𝜔 that the interface becomes stable when themicroradius
𝑟
0
increases which means an increase in the inertia with 𝑟

0
.

8. Conclusion

In this paper, we have examined the influence of the existence
of the porous structure on the EHD instability of the free
microcylindrical fluid surface with thermosolutalMarangoni
convection. The surface tension depends linearly on the heat
and mass transfer. The main results of our study can be
epitomized in the following points.

(1) The existence of the porous structure has a stabilizing
effect for the free surface. Existence of the porous
medium restricts the streaming velocity of the fluid.
Similar behavior was obtained experimentally by [21]
for the steam-liquid interface thorough a porous
structure.
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(2) As it is known, the electric field has a stabilizing effect,
and this result coincides with the previously pub-
lished results in the literature [7, 20, 24, 25].

(3) The heating of the axial microsolid cylinder reduces
the surface tension andmakes the free surface volatile
easily and hence the surface becomes unstable and the
inverse occurs for cooling the axial microsolid cylin-
der.The same results were obtained experimentally by
[31].

(4) The surface tension is proportional to the concentra-
tion variation. So, high concentration at the free sur-
face inhibits the movement of the surface.This means
stability of the free surface. The inverse behavior was
obtained for a high concentration at the core region.
Similar trend was obtained experimentally by [32].

Finally, our calculation of the free surface function was
comparedwith the previous results of [3] in the absence of the
porousmedium and the electric field. Also, the present results
were compared with the experimental results of [21, 31, 32].
There was compatibility between the results.

Appendix
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2
(𝑘),𝐺

1
(𝑘), and𝐺

2
(𝑘) are given

as

𝑔
1
(𝑘) = 𝐾

0
(𝑘𝑟
0
) 𝐼
󸀠

0
(𝑘𝑅
1
) − 𝐼
0
(𝑘𝑟
0
)𝐾
󸀠

0
(𝑘𝑅
1
) ,

𝑔
2
(𝑘) = 𝐾

0
(𝑘𝑟
0
) 𝐼
󸀠

0
(𝑘𝑅
2
) − 𝐼
0
(𝑘𝑟
0
)𝐾
󸀠

0
(𝑘𝑅
2
) ,

𝐺
1
(𝑘) = 𝐼

󸀠

0
(𝑘𝑟
0
)𝐾
󸀠

0
(𝑘𝑅
1
) − 𝐾
󸀠

0
(𝑘𝑟
0
) 𝐼
󸀠

0
(𝑘𝑅
1
) ,

𝐺
2
(𝑘) = 𝐼

󸀠

0
(𝑘𝑟
0
)𝐾
󸀠

0
(𝑘𝑅
2
) − 𝐾
󸀠

0
(𝑘𝑟
0
) 𝐼
󸀠

0
(𝑘𝑅
2
) .

(A.1)
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are defined as
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(3) The functions 𝑎
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Also, the functions 𝑎(𝑘) and 𝑏(𝜔, 𝑘) are defined as
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Nomenclature

𝐶: Concentration
𝐶
0
: Concentration at the interface

𝐶
1
: Concentration at the microcylindrical

solid axis
𝐸
0
: Intensity of the electric field

𝐹: Interface function
ℎ: Radius for the disturbed fluid surface
𝐻: Curvature of the interface
𝐼
0
, 𝐾
0
: Modified Bessel’s function of the first

and second kinds
𝑘: Wave number
𝑛: Unit normal vector to the interface
𝑃: Pressure
𝑃
0
(𝑧, 𝑡), 𝑃

2
(𝑧, 𝑡): Perturbed pressure functions

(𝑟, 𝜃, 𝑧): Cylindrical coordinates
𝑟
0
: Microradius of the fluid cylindrical

surface
𝑅
1
: Microradius of the cylindrical solid axis

𝑅
2
: Radius of the surrounded vacuum

𝑡: Time
𝑡̂: Unit tangential vector to the interface
𝑇: Temperature
𝑇
0
: Temperature at the interface

𝑇
1
: Temperature at the surface of

microcylindrical axis
𝑢(𝑧, 𝑡): Axial streaming velocity function
𝑢
0
: Constant streaming velocity

V: Velocity vector
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V
𝑟
, V
𝑧
: Radial and axial velocity components

V
0
(𝑧, 𝑡), V

2
(𝑧, 𝑡): Perturbed velocity functions.

Greek Symbols

𝛼: Thermal diffusivity
𝛽: Mass diffusivity
𝜎(𝑧, 𝑡): Surface tension
𝜎
0
: Unperturbed surface tension

𝜎
1
(𝑧, 𝑡): Perturbed surface tension

Δ𝜎: A constant variation of the surface
tension

𝛾
𝑇
= ±(1/𝜎

0
)(𝑑𝜎/𝑑𝑇): Temperature coefficient of the

surface tension
𝛾
𝐶
= ±(1/𝜎

0
)(𝑑𝜎/𝑑𝐶): Concentration coefficient of the

surface tension
𝜙: Electric potential function
𝜏
𝑖𝑗
: Stress tensor

𝜔: Growth rate of the surface wave
𝜇: Viscosity
𝜇eff: Effective viscosity
]: Darcy’s coefficient
𝜀
1
, 𝜀
2
: Dielectric constants of the liquid

and vacuum, respectively
𝛿(𝑧, 𝑡): Dimensionless radius of the

disturbed fluid surface
𝜂 = 𝑧 − V

0
𝑡: Transformation of the axial

distance
𝜌: Density.
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