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The evaluation of tangential stress fields in linearly elastic orthotropic Saint-Venant beams under torsion is based on the solution
of Neumann and Dirichlet boundary value problems for the cross-sectional warping and for Prandtl stress function, respectively.
A skillful solution method has been recently proposed by Ecsedi for a class of inhomogeneous beams with shear moduli defined in
terms of Prandtl stress function of corresponding homogeneous beams. An alternative reasoning is followed in the present paper
for orthotropic functionally graded beams with shear moduli tensors defined in terms of the stress function and of the elasticity of
reference inhomogeneous beams. An innovative result of invariance on twist centre is also contributed. Examples of functionally
graded elliptic cross sections of orthotropic beams are developed, detecting thus new benchmarks for computational mechanics.

1. Introduction

Analyses of composite media are a well-investigated research
field in structural mechanics. Theoretical noteworthy results
also in the nonlinear range have recently contributed to
several engineering applications, such as beam and plate
theories [1–3], fracture mechanics [4–8], hyperelastic media
[9–11], concrete systems [12–16], nonlocal models [17–19],
homogenization [20–22], thermoelasticity [23–25], nanos-
tructures [26–30], and limit analysis [31–33]. In the context of
the classical theory of elasticity, an innovative methodology
for the analysis of beams was proposed by Saint-Venant
[34, 35], with the assumption that the normal interactions
between longitudinal fibres vanish [36]. Basic results about
this model are collected in classical treatments [37–44] with
a coordinate approach. Coordinate-free investigations can
be found in [45–48]. Nevertheless, analytical solutions of
beams subjected to torsion can be obtained only for special
cross-sectional geometries and shear moduli distributions.
Exact solutions of functionally graded structures can be
found in [49]. However, finite element strategies are often
adopted in order to get effective numerical results when
exact solutions are not available; see, for example, [50–53].
Alternatively, experimental methods are employed; see, for
example, [54]. Recently Ecsedi showed that, for functionally
graded cross sections under torsion, with shear modulus

defined by a positive function of the Prandtl stress function of
a corresponding homogeneous cross-section, the warping is
invariant and the stress function is expressed in terms of the
one associated with the reference homogeneous cross section
[55, 56]. Ecsedi’s treatment is based on an integral transfor-
mation proposed by Kirchhoff in nonlinear heat conduction
[57]. An intrinsic reasoning is illustrated in the present paper,
by performing a direct discussion of Neumann and Dirichlet
boundary value problems for the cross-sectional warping and
for the stress function of orthotropic composite beams under
torsion. An invariance condition for the Cicala-Hodges
centre is also assessed (see Section 3). Finally, new analytical
solutions of functionally graded elliptic cross sections are
constructed in Section 4. Basic results of Saint-Venant theory
of linearly elastic orthotropic beams are collected in the next
section.

2. Composite Saint-Venant Beams
under Torsion

Let Ω be the simply or multiply connected cross section of
an orthotropic and linearly elastic Saint-Venant composite
beam under torsion. Position of a point in Ω, with respect
to the centre G of the Young moduli 𝐸 : Ω 󳨃→ R of
beam’s longitudinal fibers, is denoted by r. The tensorR is the
rotation by 𝜋/2 counterclockwise in the cross-sectional plane
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𝜋Ω. Hence R𝑇 = R−1 = −R and RR = −I. Tangential str-
esses can be expressed in terms of the warping function [34]𝜙 : Ω 󳨃→ R or of the stress function [58] Ψ : Ω 󳨃→ R by the
coordinate-free formulae [59]

𝜏 (𝛼, r) = Λ (r) 𝛾 (r) = 𝛼Λ (r) (Rr + ∇𝜙 (r))
= −𝛼R∇Ψ (r) , (1)

where the scalar 𝛼 is the twist, 𝛾 : Ω 󳨃→ 𝑉 is the elastic
tangential strain, andΛ : Ω 󳨃→ 𝐿(𝑉; 𝑉) is the positive definite
symmetric Lamé tensor field, 𝑉 being the two-dimensional
linear space of translations in 𝜋Ω. The warping field is the
solution of the following Neumann-like problem [60]:

div (Λ (r) ∇𝜙 (r)) = −div (Λ (r)Rr) , r ∈ Ω,
(Λ (r) ∇𝜙 (r)) ⋅ n (r) = − (Λ (r)Rr) ⋅ n (r) , r ∈ 𝜕Ω, (2)

where n is the unit outward normal to the domainΩ. Prandtl
stress function is the solution of the Dirichlet problem

div (RΛ−1R∇Ψ) (r) = 2 on Ω,
Ψ (r) = 0 on 𝜕Ω𝑜,
Ψ (r) = 𝑐𝑖

on 𝜕Ω𝑖, 𝑐𝑖 ∈R, 𝑖 = 1, 2, . . . , 𝑛,
(3)

where Ω is a multiply connected cross-section, with 𝜕Ω𝑜
exterior boundary and 𝜕Ω𝑖 boundary of the 𝑖th hole, being𝑖 = 1, . . . , 𝑛 and 𝑛 ≥ 0. The procedure for the evaluation
of integration constants 𝑐𝑖 is illustrated in [59]. Note that
the warping function 𝜙 : Ω 󳨃→ R has been introduced
above by assuming tacitly that the cross section undergoes
a rotation about the pole G. Denoting by 𝜙C : Ω 󳨃→ R the
warping function corresponding to a cross-sectional rotation
with respect to a point C ∈ 𝜋Ω, we get the formula

𝜙C = 𝜙 (r) + (RrC) ⋅ r − 𝑐, (4)

with rC position vector of C and 𝑐 ∈ R. Tangential stress
fields are independent of the rotation centre [40]. The twist
centre Ctw and a particular value of the constant 𝑐 were
introduced in [61] by requiring that zeroth and first elastic
moments of the scalar field 𝜙C : Ω 󳨃→R are zero

∫
Ω
𝐸 (r) (𝜙 (r) − 𝑐) 𝑑𝐴 = 0,

∫
Ω
𝐸 (r) (𝜙 (r) + (RrC) ⋅ r) r 𝑑𝐴 = o.

(5)

The position of the twist centre is given by the formula

rCtw = RJG (𝐸)−1 ∫
Ω
𝐸 (r) 𝜙 (r) r 𝑑𝐴, (6)

with JG(𝐸) fl ∫
Ω
𝐸(r)r ⊗ r 𝑑𝐴 bending stiffness and ⊗

tensor product. An equivalent definition of twist centre
was proposed by Trefftz [62] in energetic terms. In [59]
it was shown that the twist centre Ctw coincides with the
shear centre Csh

timo of Timoshenko beams [63], evaluated by
the composite and orthotropic Saint-Venant beam theory.
Hereafter, the point C fl Ctw ≡ Csh

timowill be named the
Cicala-Hodges centre. The next section provides a family of
composite beams, generated by a Lamé tensor field Λ : Ω 󳨃→𝐿(𝑉; 𝑉), for which the warping field and the Cicala-Hodges
centre are invariant.

3. Invariances

Let us consider a sequence of tensor fields {Λ1,Λ2, . . . ,Λ𝑛}
generated by a Lamé tensor field Λ1 : Ω 󳨃→ 𝐿(𝑉;𝑉) and by a
sequence of positive scalar functions {ℎ1, ℎ2, . . . , ℎ𝑛}; that is,ℎ𝑖 : X𝑖 ⊆R 󳨃→]0, +∞[, according to the rule:

Λ𝑛 = (ℎ𝑛−1 ∘ Ψ𝑛−1)Λ𝑛−1, 𝑛 ≥ 2, (7)

with Ψ𝑛−1 : Ω 󳨃→ R Prandtl stress function associated
with the torsion tangential stress field involving Lamé tensor
field Λ𝑛−1 : Ω 󳨃→ 𝐿(𝑉;𝑉). The sequence of Lamé fields{Λ1,Λ2, . . . ,Λ𝑛} induces a sequence of Neumann-like PDE
problems {P1,P2, . . . ,P𝑛} for the warping field, defined by

P𝑛−1)
{{{
div (Λ𝑛−1𝛾𝑛−1) (r) = 0, in Ω,
(Λ𝑛−1 (r) 𝛾𝑛−1 (r)) ⋅ n (r) = 0, on 𝜕Ω, (8)

with 𝛾𝑛−1(r) = Λ−1𝑛−1(r)𝜏𝑛−1(r) = 𝛼(Rr + ∇𝜙𝑛−1(r)). The
following results hold true.

Proposition 1. Neumann-like PDE problems {P1,P2, . . .,
P𝑛} provide, to within an additive constant, the same solution𝜙 : Ω 󳨃→R.

Proof. Let 𝜙𝑛−1 be the solution, to within a constant, of the
problem P𝑛−1. Since Λ𝑛 = (ℎ𝑛−1 ∘ Ψ𝑛−1)Λ𝑛−1, problem P𝑛
takes the form:

P𝑛)
{{{
div ((ℎ𝑛−1 ∘ Ψ𝑛−1)Λ𝑛−1𝛾𝑛) (r) = 0, in Ω,
(Λ𝑛−1 (r) 𝛾𝑛 (r)) ⋅ n (r) = 0, on 𝜕Ω. (9)

Resorting to the formula

div ((ℎ𝑛−1 ∘ Ψ𝑛−1)Λ𝑛−1𝛾𝑛) (r)
= (ℎ𝑛−1 ∘ Ψ𝑛−1) (r) div (Λ𝑛−1𝛾𝑛) (r)
+ 𝑑ℎ (Ψ𝑛−1 (r)) ∇Ψ𝑛−1 (r) ⋅ (Λ𝑛−1𝛾𝑛 (r))

(10)

and setting 𝜙𝑛(r) = 𝜙𝑛−1(r) + 𝑐 with 𝑐 ∈ R, we get 𝛾𝑛 = 𝛾𝑛−1,
so that the problemP𝑛 may be rewritten as
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P𝑛)
{{{
(ℎ𝑛−1 ∘ Ψ𝑛−1) (r) div (Λ𝑛−1𝛾𝑛−1) (r) + 𝑑ℎ (Ψ𝑛−1 (r)) ∇Ψ𝑛−1 (r) ⋅ (Λ𝑛−1𝛾𝑛−1 (r)) = 0, in Ω,
(Λ𝑛−1 (r) 𝛾𝑛−1 (r)) ⋅ n (r) = 0, on 𝜕Ω. (11)

Recalling the relation 𝜏𝑛−1(𝛼, r) = Λ𝑛−1(r)𝛾𝑛−1(r) =−𝛼R∇Ψ𝑛−1(r), we infer that ∇Ψ𝑛−1(r) ⋅ (Λ𝑛−1𝛾𝑛−1(r)) = 0
and the problem P𝑛 collapses into the one P𝑛−1. The result
follows.

Proposition 2. The relationship between Prandtl stress func-
tions corresponding to Lamé tensor fieldsΛ𝑛−1 andΛ𝑛 = (ℎ𝑛−1∘Ψ𝑛−1)Λ𝑛−1 is expressed by the formula Ψ𝑛 = 𝐻𝑛−1 ∘ Ψ𝑛−1, with𝐻𝑛−1 antiderivative of ℎ𝑛−1 such that Ψ𝑛 is identically zero on
the cross-sectional exterior boundary 𝜕Ω𝑜.
Proof. Resorting to Proposition 1 we get 𝛾𝑛−1 = 𝛾𝑛. Then the
equivalences hold

Λ
−1
𝑛−1𝜏𝑛−1 = Λ−1𝑛 𝜏𝑛 ⇐⇒
Λ
−1
𝑛−1 (−𝛼R∇Ψ𝑛−1)
= ((ℎ𝑛−1 ∘ Ψ𝑛−1)Λ𝑛−1)−1 (−𝛼R∇Ψ𝑛) ,

(12)

whence (ℎ𝑛−1 ∘ Ψ𝑛−1)∇Ψ𝑛−1 = ∇(𝐻𝑛−1 ∘ Ψ𝑛−1) = ∇Ψ𝑛 which
gives Ψ𝑛 = 𝐻𝑛−1 ∘ Ψ𝑛−1, with 𝐻𝑛−1 antiderivative of ℎ𝑛−1
such thatΨ𝑛 is identically zero on the cross-sectional exterior
boundary 𝜕Ω𝑜.
Proposition 3. Let 𝐸 : Ω 󳨃→ ]0, +∞[ be the Euler mod-
uli scalar field of orthotropic and composite beams whose
Lamé fields are described by the sequence {Λ1,Λ2, . . . ,Λ𝑛} ={Λ1, (ℎ1 ∘ Ψ1)Λ1, . . . , (ℎ𝑛−1 ∘ Ψ𝑛−1)Λ𝑛−1}. For these beams, the
location of the Cicala-Hodges centre is invariant.

Proof. The result follows by the formula providing the twist
centre position rCtw = RJG(𝐸)−1 ∫Ω 𝐸(r)𝜙(r)r 𝑑𝐴 and by Pro-
position 1.

4. Examples

Let us provide some analytical solutions of functionally
graded orthotropic beams under torsion with elliptic cross
sections. Inertia principal axes {𝑥, 𝑦}with origin in the centre
G of the Euler moduli field 𝐸 : Ω 󳨃→Rwill be adopted in the
sequel. Position vector r and rotation R are written as

r = [𝑥𝑦] ,

R = [0 −11 0 ] ,
(13)

whence Rr = [−𝑦, 𝑥]𝑇. Torsional warping of elliptic compos-
ite beams with Lamé tensor field,

Λ1 (𝑥, 𝑦) = [ 𝜇𝑥 𝜇𝑥𝑦𝜇𝑥𝑦 𝜇𝑦 ]

= (−𝑘1𝑘2 𝑎2𝑦2 + 𝑏2𝑥2 − 𝑎2𝑏2𝑎2𝑘2 + 𝑏2𝑘1 + 𝑘3)[𝑘1 00 𝑘2] ,
(14)

is provided by the formula [40] 𝜙(𝑥, 𝑦) = −((𝑎2𝑘2 − 𝑏2𝑘1)/(𝑎2𝑘2 + 𝑏2𝑘1))𝑥𝑦 + 𝑐, with 𝑐 ∈ R, 𝑘1, 𝑘2, 𝑘3 ∈ ]0, +∞[ and𝑎, 𝑏 lengths of the ellipse semidiameters. Plots of the shear
modulus 𝜇𝑥 and of the warping 𝜙 are provided in Figures 1
and 2.

Cartesian components of the tangential strain field 𝛾 and
stress function Ψ1 are given by the formulae

𝛾 (𝛼, 𝑥, 𝑦) = [𝛾𝑥𝑧𝛾𝑦𝑧] = 𝛼 (Rr + ∇𝜙 (r)) =
2𝛼𝑎2𝑘2 + 𝑏2𝑘1

⋅ [−𝑎2𝑘2𝑦𝑏2𝑘1𝑥 ] ,
Ψ1 (𝑥, 𝑦) = 𝑘1𝑘2
⋅ 𝑎2𝑦2 + 𝑏2𝑥2 − 𝑎2𝑏2𝑎2𝑘2 + 𝑏2𝑘1 (12𝑘1𝑘2 𝑎

2𝑦2 + 𝑏2𝑥2 − 𝑎2𝑏2𝑎2𝑘2 + 𝑏2𝑘1
− 𝑘3) ,

(15)

as depicted in Figures 3 and 4. As shown in Section 3, Lamé
tensor field Λ1 generates a sequence of composite beams
under torsion for whichwarping function andCicala-Hodges
centre are invariant, and the relevant stress functions are
given by Proposition 2. Analytical solutions of the following
composite elliptic beams under torsion are discussed. The
former is characterized by Lamé shear moduli described by
the tensor field Λ2 = (Ψ1 + 𝑘)Λ1, with 𝑘 ∈ ]0, +∞[. The cor-
responding stress function is given by the formula Ψ2 =(1/2)Ψ21 + 𝑘Ψ1, as assessed in Proposition 2. The latter is
characterized by Lamé shear moduli described by the tensor
field Λ3 = (exp ∘ Ψ2)Λ2, where exp denotes the exponential
function. The corresponding stress function is given by the
formulaΨ3 = (exp∘Ψ2)−1, as assessed in Proposition 2. Stress
functions and tangential stresses are depicted in Figures 5, 6,
7, and 8.

It is worth noting that if the Euler moduli scalar field 𝐸 is
assumed to be the same in the examples discussed above, then
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Figure 1: Shear modulus 𝜇𝑥; 𝑎 = 2, 𝑏 = 1; 𝑘1 = 𝑘3 = 1, 𝑘2 = 2. Color
spectrum: 𝜇𝑥.
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Figure 2: Cross-sectional torsional warping 𝜙; 𝑎 = 2, 𝑏 = 1; 𝑘1 = 1,𝑘2 = 𝑐 = 2. Color spectrum: 𝜙.
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Figure 3: Tangential strain field per unit twist 𝛾/𝛼; 𝑎 = 2, 𝑏 = 1; 𝑘1 =𝑘3 = 1, 𝑘2 = 2. Color spectrum: ‖𝛾(𝑥, 𝑦)‖ fl [𝛾2𝑥𝑧(𝑥, 𝑦)+𝛾2𝑦𝑧(𝑥, 𝑦)]1/2
for 𝛼 = 1.
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Figure 4: Stress function Ψ1; 𝑎 = 2, 𝑏 = 1; 𝑘1 = 𝑘3 = 1, 𝑘2 = 𝑐 = 2.
Color spectrum: Ψ1.
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Figure 5: Stress function Ψ2; 𝑎 = 2, 𝑏 = 1; 𝑘1 = 𝑘3 = 1, 𝑘2 = 𝑐 = 2.
Color spectrum: Ψ2.
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Figure 6: Stress function Ψ3; 𝑎 = 2, 𝑏 = 1; 𝑘1 = 𝑘3 = 1, 𝑘2 = 𝑐 = 2.
Color spectrum: Ψ3.
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Figure 7: Tangential stress field per unit twist 𝜏2/𝛼; 𝑎 = 2, 𝑏 = 1;𝑘1 = 𝑘3 = 1, 𝑘2 = 2. Color spectrum: ‖𝜏2(𝑥, 𝑦)‖ for 𝛼 = 1.
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Figure 8: Tangential stress field per unit twist 𝜏3/𝛼; 𝑎 = 2, 𝑏 = 1;𝑘1 = 𝑘3 = 1, 𝑘2 = 2. Color spectrum: ‖𝜏3(𝑥, 𝑦)‖ for 𝛼 = 1.

warping functions and Cicala-Hodges centres are invariant,
as prescribed by Propositions 1 and 3.

5. Conclusions

The outcomes of the present paper may be summarized as
follows.

(i) Neumann and Dirichlet boundary value problems
for the cross-sectional warping and for Prandtl stress
function of linearly elastic, orthotropic composite
beams under torsion have been examined.

(ii) Invariance conditions for the warping and for the
Cicala-Hodges shear centre of simply and multiply
connected cross sections have been established.

(iii) The relationship between Prandtl stress functions of
orthotropic composite beams with invariant warping
has been assessed.

(iv) Examples have been developed for orthotropic com-
posite beams with elliptic cross section, providing
thus also new benchmarks for numerical analyses.
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