
Research Article
Modeling of Unsteady Flow through the Canals by
Semiexact Method

Farshad Ehsani,1 Seyed Ghorban Hosseini,2 and Hossein Soury3

1 Department of Mechanical Engineering, Yasouj Branch, Islamic Azad University, Yasouj, Iran
2Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran, Iran
3Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

Correspondence should be addressed to Farshad Ehsani; f.ehsani87@gmail.com

Received 23 July 2013; Accepted 13 November 2013; Published 20 February 2014

Academic Editor: Ligang Wu

Copyright © 2014 Farshad Ehsani et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The study of free-surface and pressurized water flows in channels hasmany interesting application, one of themost important being
themodeling of the phenomena in the area of natural water systems (rivers, estuaries) aswell as in that ofman-made systems (canals,
pipes). For the development ofmajor river engineering projects, such as floodprevention andflood control, there is an essential need
to have an instrument that be able to model and predict the consequences of any possible phenomenon on the environment and
in particular the new hydraulic characteristics of the system. The basic equations expressing hydraulic principles were formulated
in the 19th century by Barre de Saint Venant and Valentin Joseph Boussinesq. The original hydraulic model of the Saint Venant
equations is written in the form of a system of two partial differential equations and it is derived under the assumption that the
flow is one-dimensional, the cross-sectional velocity is uniform, the streamline curvature is small and the pressure distribution is
hydrostatic. The St. Venant equations must be solved with continuity equation at the same time. Until now no analytical solution
for Saint Venant equations is presented. In this paper the Saint Venant equations and continuity equation are solved with homotopy
perturbationmethod (HPM) and comparison by explicit forward finite difference method (FDM). For decreasing the present error
between HPM and FDM, the st.venant equations and continuity equation are solved by HAM. The homotopy analysis method
(HAM) contains the auxiliary parameter ℏ that allows us to adjust and control the convergence region of solution series. The study
has highlighted the efficiency and capability of HAM in solving Saint Venant equations and modeling of unsteady flow through the
rectangular canal that is the goal of this paper and other kinds of canals.

1. Introduction

Hydraulics has a long tradition of providing a scientific basis
for engineering applications [1, 2]. Firstly, conceptual models
were designed starting from empirical relations obtained
from field observations or model scale experiments. Lately,
mathematics started playing an important role not only
to describe the properties of these relations but also to
formulate analytical solutions of particular model situations
in order to capture the essential features of those phenomena.
Actually, the research and the applications in the field of
computational fluid hydraulics and fluid dynamics evolved
with the advent of electronic computers.The first applications
in computational hydraulics concerned programming analyt-
ical formulae rather than deriving generic numerical schemes
and techniques based on physical principles like conservation

laws for mass and momentum. Later developments extended
the research and the applications in this field towards sim-
ulating complicated flow phenomena in arbitrarily shaped
geometries.

The basic equations expressing hydraulic principles were
formulated in the 19th century by Barre de Saint Venant and
Valentin Joseph Boussinesq. The original hydraulic model of
the Saint Venant equations [3] is written in the form of a
system of two partial differential equations and it is derived
under the assumption that the flow is one-dimensional, the
cross-sectional velocity is uniform, the streamline curvature
is small, and the pressure distribution is hydrostatic [4]. One-
dimensional flows do not actually exist in nature, but the
equations remain valid provided that the flow is approxi-
mately one-dimensional: as pointed out by Steffler and Jin [5],
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they are inappropriate to analyze free surface flow problems
with horizontal length scales close to flow depth.

The goal of paper is to present a semiexact solution of
Saint Venant equations. These partial differential equations
are solved simultaneously with continuity equation by homo-
topy perturbation method [6–17]. Then they are solved by
homotopy analysis method [18–22]. In the end both of above
methods are compared with the finite difference method
as a numerical method that it is shown the capability and
suitability of HAM in solving Saint Venant equations.

2. Symbols

The following symbols are used in this derivation:

𝐴 =The cross-sectional area of the section
ℎ = depth of flow at the section
𝑧 = elevation of surface above a datum at the section
V = mean velocity at the section
𝑄 = discharge at the section
𝑏 = width of the top of the section
𝑥 = position of the section measured from the
upstream end
𝑡 = time
𝑔 = acceleration due to gravity
𝜌 = mass density of the fluid.

Other symbols are defined in the text at the point when
they are introduced.

3. The Derivation of the Continuity Equation

Consider a short length Δ𝑥 of channel and assuming that
there is no lateral inflow, then

𝑄
2
− 𝑄
1
=
𝜕𝑄

𝜕𝑥
Δ𝑥. (1)

This has the partial derivative since𝑄 is changing with both 𝑥
and time 𝑡. Now the volume of water between Sections 1 and
2 is increasing as a rate of

𝑏
𝜕ℎ

𝜕𝑡
Δ𝑥, (2)

where 𝑏 is the top width. As cross-sectional area 𝐴 = 𝑏ℎ then
this is equivalent to

𝜕𝐴

𝜕𝑡
Δ𝑥. (3)

The terms are equal in magnitude but of opposite sign, so

𝜕𝑄

𝜕𝑥
Δ𝑥 + 𝑏

𝜕ℎ

𝜕𝑡
Δ𝑥 = 0,

As 𝜕𝑄

𝜕𝑥
=
𝜕 (𝐴V)
𝜕𝑥

.

(4)

The continuity equation is

V
𝜕𝐴

𝜕𝑥
+ 𝐴

𝜕V
𝜕𝑥

+ 𝑏
𝜕ℎ

𝜕𝑡
= 0. (5)

So the Continuity equation for rectangular canals becomes

V
𝜕𝑦

𝜕𝑥
+ 𝑦

𝜕V
𝜕𝑥

+
𝜕𝑦

𝜕𝑡
= 0. (6)

4. The Derivation of Dynamic or
Momentum Equation

By applying Newton’s 2nd law to our elemental length of
channel

𝜕𝐻

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑦 + 𝑍 +

𝑉
2

2𝑔
) . (7)

Also

𝑆
𝑓
=
𝑛
2V2

𝑅4/3
=

𝜏
0

𝛾𝑅
. (8)

By using partial differential theory, the value of acceleration
at the direction of water motion becomes

𝑎
𝑥
=
𝑑V
𝑑𝑡

= V
𝜕V
𝜕𝑥

+
𝜕V
𝜕𝑡
. (9)

By applying Newton’s 2nd law to our elemental length of
channel and assuming the hydrostatics pressure

−𝛾 ⋅ 𝐴 ⋅ Δℎ − 𝜏
0
⋅ 𝑝 ⋅ Δ𝑥 = 𝜌 ⋅ 𝐴 ⋅ Δ𝑥(V

𝜕V
𝜕𝑥

+
𝜕V
𝜕𝑡
) . (10)

The First term of left side of (10) showed the difference
between the hydrostatics forces and second term of left side
showed the friction due of water motion.

From (10), it can be deduced that

𝜏
0
= −𝛾𝑅[

𝜕ℎ

𝜕𝑥
+
V
𝑔

𝜕V
𝜕𝑥

+
1

𝑔

𝜕V
𝜕𝑡
] = −𝛾𝑅[

𝜕𝐻

𝜕𝑥
+
1

𝑔

𝜕V
𝜕𝑡
] . (11)

Substituting (8) at (11) gives

𝜕𝐻

𝜕𝑥
+
1

𝑔

𝜕V
𝜕𝑡

+
𝑛
2V2

𝑅4/3
= 0. (12)

Equation (12) can be rearranged to the below form

𝑆
𝑒
+ 𝑆
𝑎
+ 𝑆
𝑓
= 0. (13)

That

𝑅 = hydraulic radius
𝑆
𝑒
= energy slope

𝑆
𝑎
= acceleration slope

𝑆
𝑓
= friction slope.
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By using (7)

𝜕𝐻

𝜕𝑥
=
𝜕𝑧

𝜕𝑥
+
𝜕𝑦

𝜕𝑥
+
V
𝑔

𝜕V
𝜕𝑥

= −𝑆
0
+
𝜕𝑦

𝜕𝑥
+
V
𝑔

𝜕V
𝜕𝑥

. (14)

By Adding (14) and (12)

𝑆
𝑓
= 𝑆
0
−
𝜕𝑦

𝜕𝑥
−
V
𝑔

𝜕V
𝜕𝑥

−
1

𝑔

𝜕V
𝜕𝑡

=
𝑛
2V2

𝑅4/3
. (15)

This is the Saint Venant equation.
Then by using the homotopy perturbation method the

simultaneous partial differential equations (15) and (6) are
solved and obtained the semiexact solution for deep 𝑦(𝑥, 𝑡)

and velocity V(𝑥, 𝑡) of flow.

5. Basic Idea of Homotopy
Perturbation Method

The homotopy perturbation method is combination of the
classical perturbation technique and homotopy technique.
We start with the following nonlinear differential equation to
explain the basic idea of the HPM:

𝐴 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω. (16)

Subject to boundary condition

𝐵(𝑢,
𝜕𝑢

𝜕𝑛
) = 0, (17)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) is a known analytical function, Γ is the
boundary of domain Ω, and 𝜕𝑢/𝜕𝑛 denotes differentiation
along the normal drawn outwards from Ω. The operator 𝐴
can, generally speaking, be divided into two parts: a linear
part 𝐿 and a nonlinear part𝑁.

Equation (17) therefore can be rewritten as follows:

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (18)

In case the nonlinear equation (16) has no “small parameter”,
we can construct the following homotopy:

𝐻(V, 𝑝) = 𝐿 (V) − 𝐿 (𝑢
0
) + 𝑝𝐿 (𝑢

0
) + 𝑝 (𝑁 (V) − 𝑓 (𝑟)) = 0,

(19)

where 𝑝 is the parameter of homotopy. According to the
homotopy perturbation method, the approximation solution
of (19) can be expressed as a series of the power of 𝑝; that is,

V = 𝑝
0V
0
+ 𝑝
1V
1
+ 𝑝
2V
2
+ ⋅ ⋅ ⋅ ,

V = lim
𝑝→1

V = V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ .

(20)

For St. Venant equation (15) and continuity equation (6) we
obtain

𝑦V
𝑥
+ V𝑦
𝑥
+ 𝑦
𝑡
= 0,

𝑆
0
− 𝑦
𝑥
−
V
𝑔
V
𝑥
−
1

𝑔
V
𝑡
−
𝑛
2V2

𝑅4/3
= 0.

(21)

These equations are solved with each other and step by step.

For the continuity equation (6)

𝐿 (𝑢) = 𝑦
𝑡
,

𝑁 (𝑢) = 𝑦V
𝑥
+ V𝑦
𝑥
,

𝑓 (𝑟) = 0.

(22)

For the momentum equation (15)

𝐿 (𝑢) = V
𝑡
,

𝑁 (𝑢) = 𝑔𝑦
𝑥
+ VV
𝑥
+ 𝑔

𝑛
2V2

𝑅4/3
,

𝑓 (𝑟) = 𝑔𝑆
0
,

𝐻 (𝑦, V, 𝑝) =
𝜕𝑦

𝜕𝑡
−
𝜕𝑦
0

𝜕𝑡
+ 𝑝(

𝜕𝑦
0

𝜕𝑡
+ 𝑦

𝜕V
𝜕𝑥

+ V
𝜕𝑦

𝜕𝑥
) ,

𝐻 (𝑦, V, 𝑝) =
𝜕V
𝜕𝑡

−
𝜕V
0

𝜕𝑡

+ 𝑝(
𝜕V
0

𝜕𝑡
+ 𝑔𝑦
𝑥
+ VV
𝑥
+
𝑛
2V2

𝑅4/3
− 𝑔𝑆
0
) .

(23)

Changing from 𝑢
0
to 𝑢(𝑟), consider V as follows:

V = 𝑝
0V
0
+ 𝑝
1V
1
+ 𝑝
2V
2
+ ⋅ ⋅ ⋅ . (24)

The best approximation for the solution is

V = lim
𝑝→1

V = V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ . (25)

Comparison of the expressions with the same powers of the
parameter 𝑝 gives the following:

𝑝
1
: 𝑦
1
= −∫

𝑡

0

𝜕𝑦
0

𝜕𝑡
+ 𝑦
0
×
𝜕𝑢
0

𝜕𝑥
+ 𝑢
0
×
𝜕𝑦
0

𝜕𝑥
𝑑𝑡,

𝑝
1
: V
1
= − ∫

𝑡

0

(
𝜕𝑢
0

𝜕𝑡
+ 𝑔 ×

𝜕𝑦
0

𝜕𝑥
+ 𝑢
0
×
𝜕𝑢
0

𝜕𝑥

+ (
𝑛
2
𝑔

𝑅4/3
)𝑢
2

0
− 𝑠
0
𝑔)𝑑𝑡,

𝑝
2
: 𝑦
2
= − ∫

𝑡

0

(𝑦
0
×
𝜕V
1

𝜕𝑥
+ 𝑦
1
×
𝜕𝑢
0

𝜕𝑥
+ 𝑢
0

×
𝜕𝑦
1

𝜕𝑥
+ V
1
×
𝜕𝑦
0

𝜕𝑥
)𝑑𝑡,
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𝑝
2
: V
2
= − ∫

𝑡

0

(𝑔 ×
𝜕𝑦
1

𝜕𝑥
+ 𝑢
0
×
𝜕V
1

𝜕𝑥
+ V
1
×
𝜕𝑢
0

𝜕𝑥

+ (
𝑛
2
𝑔

𝑅4/3
) (2 × 𝑢

0
× 𝑢
1
) − 𝑠
0
𝑔)𝑑𝑡,

𝑝
3
: 𝑦
3
= − ∫

𝑡

0

(𝑦
0
×
𝜕V
2

𝜕𝑥
+ 𝑦
1
×
𝜕V
1

𝜕𝑥
+ 𝑦
2
×
𝜕𝑢
0

𝜕𝑥
+ 𝑢
0

×
𝜕𝑦
2

𝜕𝑥
+ V
1
×
𝜕𝑦
1

𝜕𝑥
+ V
2
×
𝜕𝑦
0

𝜕𝑥
)𝑑𝑡,

𝑝
3
: V
3
= − ∫

𝑡

0

(𝑔 ×
𝜕𝑦
2

𝜕𝑥
+ 𝑢
0
×
𝜕V
2

𝜕𝑥
+ V
1
×
𝜕V
1

𝜕𝑥

+ V
2
×
𝜕𝑢
0

𝜕𝑥
+ (

𝑛
2
𝑔

𝑅4/3
)

× ((2 × 𝑢
0
× V
2
) + V2
1
) − 𝑠
0
𝑔)𝑑𝑡,

𝑝
4
: 𝑦
4
= − ∫

𝑡

0

(𝑦
0
×
𝜕V
3

𝜕𝑥
+ 𝑦
1
×
𝜕V
2

𝜕𝑥
+ 𝑦
2
×
𝜕V
1

𝜕𝑥
+ 𝑦
3

×
𝜕𝑢
0

𝜕𝑥
+ 𝑢
0
×
𝜕𝑦
3

𝜕𝑥
+ V
1
×
𝜕𝑦
2

𝜕𝑥
+ V
2

×
𝜕𝑦
1

𝜕𝑥
+ V
3
×
𝜕𝑦
0

𝜕𝑥
)𝑑𝑡,

𝑝
4
: V
4
= − ∫

𝑡

0

(𝑔 ×
𝜕𝑦
3

𝜕𝑥
+ 𝑢
0
×
𝜕V
3

𝜕𝑥
+ V
1
×
𝜕V
2

𝜕𝑥

+ V
2
×
𝜕V
1

𝜕𝑥
+ V
3
×
𝜕𝑢
0

𝜕𝑥
+ (

𝑛
2
𝑔

𝑅4/3
)

× ((2 × V
1
× V
2
)

+ (2 × 𝑢
0
× V
3
)) −𝑠
0
𝑔)𝑑𝑡,

𝑝
5
: 𝑦
5
= − ∫

𝑡

0

(𝑦
0
×
𝜕V
4

𝜕𝑥
+ 𝑦
1
×
𝜕V
3

𝜕𝑥
+ 𝑦
2
×
𝜕V
2

𝜕𝑥
+ 𝑦
3

×
𝜕V
1

𝜕𝑥
+ 𝑦
4
×
𝜕𝑢
0

𝜕𝑥
+ 𝑢
0
×
𝜕𝑦
4

𝜕𝑥
+ V
1
×
𝜕𝑦
3

𝜕𝑥

+ V
2
×
𝜕𝑦
2

𝜕𝑥
+ V
3
×
𝜕𝑦
1

𝜕𝑥
+ V
4
×
𝜕𝑦
0

𝜕𝑥
)𝑑𝑡,

𝑝
5
: V
5
= − ∫

𝑡

0

(𝑔 ×
𝜕𝑦
4

𝜕𝑥
+ 𝑢
0
×
𝜕V
4

𝜕𝑥
+ V
1
×
𝜕V
3

𝜕𝑥
+ V
2

×
𝜕V
2

𝜕𝑥
+ V
3
×
𝜕V
1

𝜕𝑥
+ V
4
×
𝜕𝑢
0

𝜕𝑥
+ (

𝑛
2
𝑔

𝑅4/3
)

× ((2 × V
1
× V
3
) + (2 × 𝑢

0
× V
4
) + (V2)

2

)

− 𝑠
0
𝑔)𝑑𝑡,

𝑝
6
: 𝑦
6
= ∫

𝑡

0

(𝑦
0
×
𝜕V
5

𝜕𝑥
+ 𝑦
1
×
𝜕V
4

𝜕𝑥
+ 𝑦
2
×
𝜕V
3

𝜕𝑥
+ 𝑦
3
×
𝜕V
2

𝜕𝑥

+ 𝑦
4
×
𝜕V
1

𝜕𝑥
+ 𝑦
5
×
𝜕𝑢
0

𝜕𝑥
+ 𝑢
0
×
𝜕𝑦
5

𝜕𝑥
+ V
1

×
𝜕𝑦
4

𝜕𝑥
+ V
2
×
𝜕𝑦
3

𝜕𝑥
+ V
3
×
𝜕𝑦
2

𝜕𝑥
+ V
4

×
𝜕𝑦
1

𝜕𝑥
+ V
5
×
𝜕𝑦
0

𝜕𝑥
)𝑑𝑡,

𝑝
6
: V
6
= − ∫

𝑡

0

(𝑔 ×
𝜕𝑦
5

𝜕𝑥
+ 𝑢
0
×
𝜕V
5

𝜕𝑥
+ V
1
×
𝜕V
4

𝜕𝑥
+ V
2

×
𝜕V
3

𝜕𝑥
+ V
3
×
𝜕V
2

𝜕𝑥
+ V
4
×
𝜕V
1

𝜕𝑥
+ V
5
×
𝜕𝑢
0

𝜕𝑥

+ (
𝑛
2
𝑔

𝑅4/3
) ((2 × V

1
× V
4
) + (2 × 𝑢

0
× V
5
)

+ (2 × V
2
× V
3
)) −𝑠
0
𝑔)𝑑𝑡.

(26)

The above partial differential equations must be supple-
mented by conditions ensuring a uniqueness of the solution.
For above equations we assume the following conditions in
the example.

Consider the following Saint Venant and continuity
equations with initial value problem:

V
𝜕𝑦

𝜕𝑥
+ 𝑦

𝜕V
𝜕𝑥

+
𝜕𝑦

𝜕𝑡
= 0,

𝜕𝑦

𝜕𝑥
+
V
𝑔

𝜕V
𝜕𝑥

+
1

𝑔

𝜕V
𝜕𝑡

= 𝑆
0
−
𝑛
2V2

𝑅4/3
.

(27)

For an example to show the capability of HPM and HAM the
boundary and initial conditions are considered as below:

V
0
(𝑥, 0) = 𝑢

0
= 0.09 × 𝑥,

V
1
(𝑥, 0) = 0,

...

V
𝑚
(𝑥, 0) = 0, 𝑚 > 0, 𝑚 = 𝑛,

𝑦
0
(𝑥, 0) = 5.79,

𝑦
1
(𝑥, 0) = 0,

...
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𝑦
𝑚
(𝑥, 0) = 0, 𝑚 > 0, 𝑚 = 𝑛,

𝑠
0
= 0.00008,

𝑅 = 9.3468,

𝑛 = 0.013,

𝑔 = 9.8,

(28)

𝑛 is the order of 𝑝 in (24). By assuming the above initial
conditions a solution for equations system is as follows:

Important Point. We assume that 𝑛 = 8 because after
8iteration the sum of homotopy perturbation sentences
converged

𝑦
1
= −0.5211 × 𝑡,

V
1
= −𝑡 × (−0.00078 + 0.0081 × 𝑥 + 6.81191 × 10

−7
× 𝑥
2
) ,

𝑦
2
= 0.0468989 × 𝑡

2
+ 0.0000039 × 𝑡

2
× 𝑥,

V
2
= 0.00078 × 𝑡 − 0.00003 × 𝑡

2
+ 0.00072 × 𝑡

2
× 𝑥

+ 1.53268 × 10
−7
× 𝑡
2
× 𝑥
2
+ 5.15579 × 10

−12

× 𝑡
2
× 𝑥
3
,

𝑦
3
= − 0.00422 × 𝑡

3
− 0.000001 × 𝑡

3

× 𝑥 − 2.98520 × 10
−11

× 𝑡
3
× 𝑥
2
,

V
3
= 0.00078 × 𝑡 − 0.00003 × 𝑡

2
− 0.000009

× 𝑡
3
− 5.93393 × 10

−9
× 𝑡
2
× 𝑥 − 0.00006

× 𝑡
3
× 𝑥 − 2.48293 × 10

−8
× 𝑡
3
× 𝑥
2

− 2.01075 × 10
−12

× 𝑡
3
× 𝑥
3
− 3.90231

× 10
−17

× 𝑡
3
× 𝑥
4
,

𝑦
4
= 0 + 1.14524 × 10

−8
𝑡
3
+ 0.00037

× 𝑡
4
+ 1.91682 × 10

−7
× 𝑡
4
× 𝑥

+ 1.47767 × 10
−11

× 𝑡
4
× 𝑥
2

+ 2.25943 × 10
−16

× 𝑡
4
× 𝑥
3
,

V
4
= 0.000784 × 𝑡 − 0.000035 × 𝑡

2
+ 0.0000031

× 𝑡
3
+ 0.0000026 × 𝑡

4
− 5.93393 × 10

−9

× 𝑡
2
× 𝑥 + 1.24612 × 10

−9
× 𝑡
3
× 𝑥

+ 0.000005 × 𝑡
4
× 𝑥 + 5.98835 × 10

−14

× 𝑡
3
× 𝑥
2
+ 3.4760 × 10

−9
× 𝑡
4
× 𝑥
2
+ 4.94182

× 10
−13

× 𝑡
4
× 𝑥
3
+ 2.25358 × 10

−17
× 𝑡
4

× 𝑥
4
+ 2.95357 × 10

−22
× 𝑡
4
× 𝑥
5
,

𝑦
5
= 1.14524 × 10

−8
× 𝑡
3
− 3.60753 × 10

−9
× 𝑡
4
− 0.00003

× 𝑡
5
− 1.73362 × 10

−13
× 𝑡
4
× 𝑥 − 2.87523 × 10

−8

× 𝑡
5
× 𝑥 − 4.23152 × 10

−12
× 𝑡
5
× 𝑥
2
− 1.69457

× 10
−16

× 𝑡
5
× 𝑥
3
− 1.71012 × 10

−21
× 𝑡
5
× 𝑥
4
,

V
5
= 0.000784 × 𝑡 − 0.000035 × 𝑡

2
− 2.85762 × 10

−7
× 𝑡
4

− 4.230320 × 10
−7
× 𝑡
5
− 5.93393 × 10

−9
× 𝑡
2
× 𝑥

+ 1.24612 × 10
−9
× 𝑡
3
× 𝑥 − 2.00269 × 10

−10
× 𝑡
4

× 𝑥 − 5.31493 × 10
−7
× 𝑡
5
× 𝑥 + 5.98835 × 10

−14

× 𝑡
3
× 𝑥
2
− 2.29054 × 10

−14
× 𝑡
4
× 𝑥
2
− 4.46926

× 10
−10

× 𝑡
5
× 𝑥
2
− 5.66557 × 10

−19
× 𝑡
4
× 𝑥
3

− 9.70961 × 10
−14

× 𝑡
5
× 𝑥
3
− 7.63877 × 10

−18

× 𝑡
5
× 𝑥
4
− 2.31265 × 10

−22
× 𝑡
5
× 𝑥
5
− 2.2355

× 10
−27

× 𝑡
5
× 𝑥
6
,

𝑦
6
= 1.1452 × 10

−8
× 𝑡
3
− 3.3498 × 10

−9

× 𝑡
4
+ 6.30802 × 10

−10
𝑡
5

+ 2.56420 × 10
−6
× 𝑡
6
− 1.73362 × 10

−13
× 𝑡
4

× 𝑥 + 9.0495 × 10
−14

× 𝑡
5
× 𝑥

+ 3.45027 × 10
−9
× 𝑡
6
× 𝑥 + 1.96822 × 10

−18

× 𝑡
5
× 𝑥
2
+ 8.61416 × 10

−13
× 𝑡
6
× 𝑥
2

+ 6.60885 × 10
−17

𝑡
6
× 𝑥
3
+ 1.73149 × 10

−21
× 𝑡
6

× 𝑥
4
+ 1.29435 × 10

−26
× 𝑡
6
× 𝑥
5
,

V
6
= 0.000784 × 𝑡 − 0.0000352 × 𝑡

2
+ 0.000003 × 𝑡

3

− 2.85759 × 10
−7
× 𝑡
4
+ 2.5718 × 10

−8
× 𝑡
5

+ 5.68576 × 10
−8
× 𝑡
6
− 5.9339 × 10

−9
× 𝑡
2
× 𝑥

+ 1.24612 × 10
−9
× 𝑡
3
× 𝑥 − 2.00269 × 10

−10
× 𝑡
4

× 𝑥 + 2.8117 × 10
−11

× 𝑡
5
× 𝑥 + 4.7846 × 10

−8

× 𝑡
6
× 𝑥 + 5.98835 × 10

−14
× 𝑡
3
× 𝑥
2
− 2.29054

× 10
−14

× 𝑡
4
× 𝑥
2
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5.63878 × 10
−15

× 𝑡
5
× 𝑥
2

+ 5.43022 × 10
−11

× 𝑡
6
× 𝑥
2
− 5.66557 × 10

−19

× 𝑡
4
× 𝑥
3
+ 3.2633 × 10

−19
× 𝑡
5
× 𝑥
3
+ 1.66316

× 10
−14

× 𝑡
6
× 𝑥
3
+ 5.14579 × 10

−24
× 𝑡
5

× 𝑥
4
+ 1.97357 × 10

−18
× 𝑡
6
× 𝑥
4
+ 1.01757

× 10
−22

× 𝑡
6
× 𝑥
5
+ 2.24333 × 10

−27
× 𝑡
6

× 𝑥
6
+ 1.69200 × 10

−32
× 𝑡
6
× 𝑥
7
,

𝑦
7
= 1.14525 × 10

−8
× 𝑡
3
− 3.6075 × 10

−9
× 𝑡
4
+ 6.91099

× 10
−10

× 𝑡
5
− 1.07561 × 10

−10
× 𝑡
6

− 2.70354 × 10
−7
× 𝑡
7
− 1.73363 × 10

−13

× 𝑡
4
× 𝑥 + 9.36160 × 10

−14
× 𝑡
5
× 𝑥

− 2.83422 × 10
−14

× 𝑡
6
× 𝑥 − 4.779851

× 10
−10

× 𝑡
7
× 𝑥 + 1.96822 × 10

−18
× 𝑡
5
× 𝑥
2

− 1.56473 × 10
−18

× 𝑡
6
× 𝑥
2
− 1.6892 × 10

−13
× 𝑡
7

× 𝑥
2
− 1.98627 × 10

−23
× 𝑡
6
× 𝑥
3
− 2.00466 × 10

−17

× 𝑡
7
× 𝑥
3
− 9.35669 × 10

−22
× 𝑡
7
× 𝑥
4
− 1.7124

× 10
−26

× 𝑡
7
× 𝑥
5
− 9.79671 × 10

−32
× 𝑡
7
× 𝑥
6
,

V
7
= 0.00078 × 𝑡 − 0.00003528 × 𝑡

2
+ 0.000003 × 𝑡

3

− 2.85757 × 10
−7
× 𝑡
4
+ 2.5718 × 10

−8
× 𝑡
5

− 2.31487 × 10
−9
× 𝑡
6
− 6.32475 × 10

−9
× 𝑡
7

− 5.93393 × 10
−9
× 𝑡
2
× 𝑥 + 1.24612

× 10
−9
× 𝑡
3
× 𝑥 − 2.00269 × 10

−10
× 𝑡
4
× 𝑥

+ 2.81176 × 10
−11

× 𝑡
5
× 𝑥 − 3.63367 × 10

−12

× 𝑡
6
× 𝑥 − 4.30797 × 10

−9
× 𝑡
7
× 𝑥 + 5.98835

× 10
−14

× 𝑡
3
× 𝑥
2
− 2.29054 × 10

−14
× 𝑡
4
× 𝑥
2

+ 5.63877 × 10
−15

× 𝑡
5
× 𝑥
2
− 1.11593 × 10

−15

× 𝑡
6
× 𝑥
2
− 6.33551 × 10

−12
× 𝑡
7
× 𝑥
2
− 5.66557

× 10
−19

× 𝑡
4
× 𝑥
3
+ 3.26337 × 10

−19
× 𝑡
5
× 𝑥
3

− 1.11362 × 10
−19

× 𝑡
6
× 𝑥
3
− 2.59284

× 10
−15

× 𝑡
7
× 𝑥
3
+ 5.14579 × 10

−24
× 𝑡
5
× 𝑥
4

− 4.04588 × 10
−24

× 𝑡
6
× 𝑥
4
− 4.293833 × 10

−19
× 𝑡
7

× 𝑥
4
− 4.54386 × 10

−29
× 𝑡
6
× 𝑥
5
− 3.30581 × 10

−23

× 𝑡
7
× 𝑥
5
− 1.22879 × 10

−27
× 𝑡
7
× 𝑥
6
− 2.09277

× 10
−32

× 𝑡
7
× 𝑥
7
− 1.2806 × 10

−37
× 𝑡
7
× 𝑥
8
,

𝑦
8
= 1.14525 × 10

−8
× 𝑡
3
− 3.60753 × 10

−9
× 𝑡
4
+ 6.95737

× 10
−10

× 𝑡
5
− 1.08117 × 10

−10
× 𝑡
6
+ 1.49402

× 10
−11

× 𝑡
7
+ 2.4334 × 10

−8
× 𝑡
8
− 1.73362 × 10

−13

× 𝑡
4
× 𝑥 + 9.36160 × 10

−14
× 𝑡
5
× 𝑥 − 2.8378 × 10

−14

× 𝑡
6
× 𝑥 + 6.45478 × 10

−15
× 𝑡
7
× 𝑥 + 5.74793

× 10
−11

× 𝑡
8
× 𝑥 + 1.96822 × 10

−18
× 𝑡
5
× 𝑥
2

− 1.56474 × 10
−18

× 𝑡
6
× 𝑥
2
+ 6.63364 × 10

−19

× 𝑡
7
× 𝑥
2
+ 2.79942 × 10

−14
× 𝑡
8
× 𝑥
2

− 1.98627 × 10
−23

× 𝑡
6
× 𝑥
3
+ 2.13028 × 10

−23

× 𝑡
7
× 𝑥
3
+ 4.8047 × 10

−18
× 𝑡
8

× 𝑥
3
+ 1.87921 × 10

−28
× 𝑡
7
× 𝑥
4
+ 3.50310 × 10

−22

× 𝑡
8
× 𝑥
4
+ 1.146019 × 10

−26
× 𝑡
8
× 𝑥
5
+ 1.60029

× 10
−31

× 𝑡
8
× 𝑥
6
+ 7.4149 × 10

−37
× 𝑡
8
× 𝑥
7
,

V
8
= 0.00078 × 𝑡 − 0.00003 × 𝑡

2
+ 0.000003 × 𝑡

3
− 2.85756

× 10
−7
× 𝑡
4
+ 2.57179 × 10

−8
× 𝑡
5
− 2.31476 × 10

−9

× 𝑡
6
+ 2.08377 × 10

−10
× 𝑡
7
+ 7.74365 × 10

−10

× 𝑡
8
− 5.93393 × 10

−9
× 𝑡
2
× 𝑥 + 1.246125 × 10

−9
× 𝑡
3

× 𝑥 − 2.00269 × 10
−10

× 𝑡
4
× 𝑥 + 2.63873 × 10

−11

× 𝑡
5
× 𝑥 − 3.43898 × 10

−12
× 𝑡
6
× 𝑥 + 4.33819 × 10

−13

× 𝑡
7
× 𝑥 + 3.88011 × 10

−10
× 𝑡
8
× 𝑥 + 5.98835 × 10

−14

× 𝑡
3
× 𝑥
2
− 2.29055 × 10

−14
× 𝑡
4
× 𝑥
2
+ 4.98395

× 10
−15

× 𝑡
5
× 𝑥
2
− 1.00406 × 10

−15
× 𝑡
6
× 𝑥
2

+ 1.85116 × 10
−16

× 𝑡
7
× 𝑥
2
+ 7.08736 × 10

−13
× 𝑡
8

× 𝑥
2
− 5.66558 × 10

−19
× 𝑡
4
× 𝑥
3
+ 2.733075 × 10

−19

× 𝑡
5
× 𝑥
3
− 9.438281 × 10

−20
× 𝑡
6
× 𝑥
3
+ 2.71433

× 10
−20

× 𝑡
7
× 𝑥
3
+ 3.69331 × 10

−16
× 𝑡
8
× 𝑥
3

+ 4.116633 × 10
−24

× 𝑡
5
× 𝑥
4
− 3.17752 × 10

−24

× 𝑡
6
× 𝑥
4
+ 1.607857 × 10

−24
× 𝑡
7
× 𝑥
4
+ 8.00541
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× 10
−20

× 𝑡
8
× 𝑥
4
− 3.24562 × 10

−29
× 𝑡
6
× 𝑥
5

+ 3.83938 × 10
−29

× 𝑡
7
× 𝑥
5
+ 8.38422 × 10

−24
× 𝑡
8

× 𝑥
5
+ 2.94785 × 10

−34
× 𝑡
7
× 𝑥
6
+ 4.49991

× 10
−28

× 𝑡
8
× 𝑥
6
+ 1.23289 × 10

−32
× 𝑡
8
× 𝑥
7

+ 1.58747 × 10
−37

× 𝑡
8
× 𝑥
8
+ 7.26969 × 10

−43

× 𝑡
8
× 𝑥
9
.

(29)

6. Basic Idea of Homotopy Analysis
Method (HAM)

In this section we employ the homotopy analysis method to
the discussed problem. To show the basic idea, let us consider
the following differential equation:

𝑁[𝑢 (𝜏)] = 0, (30)

where 𝑁 is a nonlinear operator, 𝜏 denotes independent
variable, and 𝑢(𝜏) is an unknown function, respectively. For
Simplicity, we ignore all boundary or initial conditions, which
can be treated in the similar way. By means of generalizing
the traditional homotopymethod, Liao [18] constructs the so-
called zero-order deformation equation

(1 − 𝑝) 𝐿 [𝜙 (𝜏; 𝑝) − 𝑢
0
(𝜏)] = 𝑝ℏ𝐻 (𝜏)𝑁 [𝜙 (𝜏; 𝑝)] , (31)

where 𝑝 ∈ [0, 1] is the embedding parameter, ℏ ̸= 0 is a
nonzero auxiliary parameter, 𝐻(𝜏) ̸= 0 is an auxiliary func-
tion, 𝐿 is an auxiliary linear operator, 𝑢

0
(𝜏) is an initial guess

of 𝑢(𝜏), and 𝜙 (𝜏; 𝑝) is an unknown function, respectively; it
is important that one has great freedom to choose auxiliary
things in HAM. Obviously, when 𝑝 = 0 and 𝑝 = 1, it holds

𝜙 (𝜏; 0) = 𝑢
0
(𝜏) ,

𝜙 (𝜏; 1) = 𝑢 (𝜏) ,

(32)

respectively. Thus as 𝜌 increases from 0 to 1, the solution
𝜙(𝜏; 𝑝) varies from the initial guess𝑢

0
(𝜏) to the solution𝑢(𝜏).

Expanding 𝜙 (𝜏; 𝑝) in the Taylor series with respect to𝑝, one
has

𝜙 (𝜏; 𝑝) = 𝑢
0
(𝜏) +

+∞

∑

𝑚=1

𝑢
𝑚
(𝜏) 𝑝
𝑚
, (33)

𝑢
𝑚
(𝜏) =

1

𝑚!

𝜕
𝑚
𝜙 (𝜏; 𝑝)

𝜕𝑝𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=0

. (34)

If the auxiliary linear operator, the initial guess, the auxiliary
parameter ℏ, and the auxiliary function must be chosen so
properly, the series (33) converges at 𝑝 = 1, and one has

𝑢 (𝜏) = 𝑢
0
(𝜏) +

∞

∑

𝑚=1

𝑢
𝑚
(𝜏) , (35)

which must be one of solutions of original nonlinear equa-
tion, as proved by Liao; as ℏ = −1 and𝐻(𝜏) = 1, (31) becomes

(1 − 𝑝) 𝐿 [𝜙 (𝜏; 𝑝) − 𝑢
0
(𝜏)] + 𝑝𝑁 [𝜙 (𝜏; 𝑝)] = 0. (36)

This is mostly used in HPM, whereas the solution can be
obtained directly without using the Taylor series. According
to (36), the governing equation can be deduced from the zero-
order deformation equation (31). The vector is defined as

𝑢⃗
𝑛
= {𝑢
0
(𝜏) , 𝑢

1
(𝜏) , . . . , 𝑢

𝑛
(𝜏)} . (37)

Differentiating (31) 𝑚 times with respect to the embed-
ding parameter 𝑝, and then setting 𝑝 = 0 and finally dividing
them by𝑚!wewill have the so-called𝑚th-order deformation
equation as

𝐿 [𝑢
𝑚
(𝜏) − 𝑥

𝑚
𝑢
𝑚−1

(𝜏)] = ℏ𝐻 (𝜏) 𝑅
𝑚
(𝑢
𝑚−1

) , (38)

where

𝑅
𝑚
(𝑢
𝑚−1

) =
1

(𝑚 − 1)!

𝜕
𝑚−1

𝑁[𝜙 (𝜏; 𝑝)]

𝜕𝑝𝑚−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=0

,

𝑥
𝑚
= {

0, 𝑚 ≤ 1,

1, 𝑚 > 1.

(39)

It should be emphasized that 𝑢
𝑚
(𝜏) for𝑚 ≥ 1 is governed by

the linear equation (37) with the linear boundary conditions
coming from the original problem, which can be easily solved
using the symbolic computation software.

7. Application of Homotopy Analysis Method

For Saint Venant equation (15) and continuity equation (6)
these obtained

𝑦V
𝑥
+ V𝑦
𝑥
+ 𝑦
𝑡
= 0,

𝑆
0
− 𝑦
𝑥
−
V
𝑔
V
𝑥
−
1

𝑔
V
𝑡
−
𝑛
2V2

𝑅4/3
= 0.

(40)

These equations are solved with each other and step by step.
For the continuity equation (6)

𝐿 (𝑢) = 𝑦
𝑡
,

𝑁 (𝑢) = 𝑦V
𝑥
+ V𝑦
𝑥
,

𝑓
1
(𝑟) = 0,

(41)

and
for the momentum equation (15)

𝐿 (𝑢) = V
𝑡
,

𝑁 (𝑢) = 𝑔𝑦
𝑥
+ VV
𝑥
+ 𝑔

𝑛
2V2

𝑅4/3
,

𝑓
2
(𝑟) = 𝑔𝑆

0
.

(42)

In the following, we apply HAM to solve St. Venant and
continuity equations in the canals. To obey both the rule of
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Figure 1:The comparison ofHPM,HAM, and FDM for the solution
V(𝑥, 𝑡) for different values of 0 ≤ 𝑥 ≥ 4 and 0 ≤ 𝑡 ≥ 0.04; ℏ = 0.001.
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Figure 2:The comparison ofHPM,HAM, and FDM for the solution
𝑦(𝑥, 𝑡) for different values of 0 ≤ 𝑥 ≥ 4 and 0 ≤ 𝑡 ≥ 0.04; ℏ = 0.001.

solution expression and the rule of the coefficient periodicity,
the corresponding auxiliary function 𝐻(𝜏) = 1 can be
determined uniquely. Then

(1 − 𝑝) 𝐿 [𝑦 (𝜏; 𝑝) − 𝑦
0
(𝜏)] = 𝑝ℏ𝑁 [𝜙

1
(𝜏; 𝑝) − 𝑓

1
(𝑟)] ,

(1 − 𝑝) 𝐿 [V (𝜏; 𝑝) − 𝑢
0
(𝜏)] = 𝑝ℏ𝑁 [𝜙

2
(𝜏; 𝑝) − 𝑓

2
(𝑟)] .

(43)
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Figure 3:The comparison ofHPM,HAM, and FDM for the solution
V(𝑥, 𝑡) for different values of 0 ≤ 𝑥 ≥ 8 and 0 ≤ 𝑡 ≥ 0.6; ℏ = 0.001.
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Figure 4:The comparison ofHPM,HAM, and FDM for the solution
𝑦(𝑥, 𝑡) for different values of 0 ≤ 𝑥 ≥ 8 and 0 ≤ 𝑡 ≥ 0.6; ℏ = 0.001.

8. Following the Homotopy Analysis Method

Consider

𝑦
1
= −0.5211ℎ × 𝑡,

V
1
= − 𝑡 ( − 0.00078 × ℎ + 0.0081 × ℎ

× 𝑥 + 6.81191 × 10
−7
× ℎ × 𝑥

2
) ,

𝑦
2
= 0.046898 × ℎ

2
× 𝑡
2
+ 0.000003 × ℎ

2
× 𝑡
2
× 𝑥,

V
2
= 0.000784 × ℎ × 𝑡 − 0.00003528 × ℎ

2
× 𝑡
2

+ 0.00073 × ℎ
2
× 𝑡
2
× 𝑥 + 1.53268 × 10

−7

× ℎ
2
× 𝑡
2
× 𝑥
2
+ 5.155792 × 10

−12
× ℎ
2
× 𝑡
2
× 𝑥
3
,
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Figure 5:The comparison ofHPM,HAM, and FDM for the solution
V(𝑥, 𝑡) for different values of 0 ≤ 𝑥 ≥ 4 and 0 ≤ 𝑡 ≥ 0.4; ℏ = 0.001.
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Figure 6:The comparison ofHPM,HAM, and FDM for the solution
𝑦(𝑥, 𝑡) for different values of 0 ≤ 𝑥 ≥ 4 and 0 ≤ 𝑡 ≥ 0.4; ℏ = 0.001.

𝑦
3
= − 0.00422 × ℎ

3
× 𝑡
3
− 0.000001 × ℎ

3
× 𝑡
3

× 𝑥 − 2.9852 × 10
−11

× ℎ
3
× 𝑡
3
× 𝑥
2
,

V
3
= 0.000784 × ℎ × 𝑡 − 0.00003 × ℎ

2
× 𝑡
2
− 0.000009 × ℎ

3

× 𝑡
3
− 5.93393 × 10

−9
× ℎ
3
× 𝑡
2
× 𝑥 − 0.00006 × ℎ

3

× 𝑡
3
× 𝑥 + 1.78018 × 10

−10
× ℎ
4
× 𝑡
3
× 𝑥 − 2.11509

× 10
−8
× ℎ
3
× 𝑡
3
× 𝑥
2
− 3.67840 × 10

−9
× ℎ
4
× 𝑡
3

× 𝑥
2
− 1.23739 × 10

−12
× ℎ
3
× 𝑡
3
× 𝑥
3
− 7.73369

× 10
−13

× ℎ
4
× 𝑡
3
× 𝑥
3
− 1.30077 × 10

−17
× ℎ
3
× 𝑡
3

× 𝑥
4
− 2.60154 × 10

−17
× ℎ
4
× 𝑡
3
× 𝑥
4
,

𝑦
4
= 1.14525 × 10

−8
× ℎ
4
× 𝑡
3
+ 0.0003 × ℎ

4
× 𝑡
4
− 2.57681

× 10
−10

× ℎ
5
× 𝑡
4
+ 1.81034 × 10

−7
× ℎ
4
× 𝑡
4
× 𝑥

+ 1.06489 × 10
−8
ℎ
5
× 𝑡
4
× 𝑥 + 1.141840 × 10

−11

× ℎ
4
× 𝑡
4
× 𝑥
2
+ 3.35835 × 10

−12
× ℎ
5
× 𝑡
4
𝑥2

+ 7.53146 × 10
−17

× ℎ
4
× 𝑡
4
× 𝑥
3
+ 1.50629 × 10

−16

× ℎ
5
× 𝑡
4
× 𝑥
3
,

V
4
= 0.00078 × ℎ × 𝑡 − 0.00003 × ℎ

2
× 𝑡
2
+ 0.000003 × ℎ

3

× 𝑡
3
+ 0.000003 × ℎ

4
× 𝑡
4
− 5.93393 × 10

−9
× ℎ
3
× 𝑡
2

× 𝑥 + 7.12071 × 10
−10

× ℎ
3
× 𝑡
3
× 𝑥 + 5.34053 × 10

−10

× ℎ
4
× 𝑡
3
× 𝑥 + 0.000005ℎ

4
× 𝑡
4
× 𝑥 + 2.87314 × 10

−11

× ℎ
5
× 𝑡
4
× 𝑥 + 2.99417 × 10

−14
× ℎ
3
× 𝑡
3
× 𝑥
2

+ 2.99417 × 10
−14

× ℎ
5
× 𝑡
3
× 𝑥
2
+ 2.97951

× 10
−9
× ℎ
4
× 𝑡
4
× 𝑥
2
+ 4.96582 × 10

−10
ℎ
5
× 𝑡
4

× 𝑥
2
− 6.73690 × 10

−16
× ℎ
6
× 𝑡
4
× 𝑥
2
+ 3.30614

× 10
−13

× ℎ
4
× 𝑡
4
× 𝑥
3
+ 1.49647 × 10

−13
× ℎ
5
× 𝑡
4

× 𝑥
3
+ 1.39205 × 10

−14
× ℎ
6
× 𝑡
4
× 𝑥
3

+ 1.19996 × 10
−17

× ℎ
4
× 𝑡
4
× 𝑥
4
+ 7.60951 × 10

−18

× ℎ
5
× 𝑡
4
× 𝑥
4
+ 2.92673 × 10

−18
× ℎ
6
× 𝑡
4
× 𝑥
4

+ 1.47678 × 10
−22

× ℎ
4
× 𝑡
4
× 𝑥
5
+ 4.92263 × 10

−23

× ℎ
5
× 𝑡
4
× 𝑥
5
+ 9.84526 × 10

−23
× ℎ
6
× 𝑡
4
× 𝑥
5
,

𝑦
5
= 1.14524 × 10

−8
× ℎ
4
× 𝑡
3
− 1.80376 × 10

−9
× ℎ
4
× 𝑡
4

− 1.80376 × 10
−9
× ℎ
5
× 𝑡
4
− 0.00003 × ℎ

5
× 𝑡
5

− 1.00796 × 10
−11

× ℎ
6
× 𝑡
5
− 8.66815 × 10

−14
× ℎ
4

× 𝑡
4
× 𝑥 − 8.6681 × 10

−14
× ℎ
6
× 𝑡
4
× 𝑥 − 2.64522

× 10
−8
× ℎ
5
× 𝑡
5
× 𝑥 − 2.30017 × 10

−9
× ℎ
6
× 𝑡
5
× 𝑥

+ 1.56026 × 10
−15

× ℎ
7
× 𝑡
5
× 𝑥 − 3.24013 × 10

−12

× ℎ
5
× 𝑡
5
× 𝑥
2
− 9.43025 × 10

−13
× ℎ
6
× 𝑡
5
× 𝑥
2

− 4.83599 × 10
−14

× ℎ
7
× 𝑡
5
× 𝑥
2
− 9.89634 × 10

−17
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Figure 7: Three-dimensional plot for the solution of Saint Venant equations via homotopy analysis method obtained (a) V(𝑥, 𝑡) = V
0
+ V
1
+

V
2
+ V
3
+ V
4
(b) V(𝑥, 𝑡) = V

0
+ V
1
+ V
2
+ V
3
+ V
4
+ V
5
.
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Figure 8: Three-dimensional plot for the solution of Saint Venant equations via homotopy analysis method obtained (a) 𝑦(𝑥, 𝑡) = 𝑦
0
+ 𝑦
1
+

𝑦
2
+ 𝑦
3
+ 𝑦
4
(b) 𝑦(𝑥, 𝑡) = 𝑦

0
+ 𝑦
1
+ 𝑦
2
+ 𝑦
3
+ 𝑦
4
+ 𝑦
5
.

× ℎ
5
× 𝑡
5
× 𝑥
3
− 5.69379 × 10

−17
× ℎ
6
× 𝑡
5
× 𝑥
3

− 1.35566 × 10
−17

× ℎ
7
× 𝑡
5
× 𝑥
3
− 8.55061 × 10

−22

× ℎ
5
× 𝑡
5
× 𝑥
4
− 2.85020 × 10

−22
× ℎ
6
× 𝑡
5
× 𝑥
4

− 5.7004 × 10
−22

× ℎ
7
× 𝑡
5
× 𝑥
4
,

V
5
= 0.000784 × ℎ × 𝑡 − 0.00003 × ℎ

2
× 𝑡
2
+ 0.000003 × ℎ

3

× 𝑡
3
− 3.44607 × 10

−11
× ℎ
4
× 𝑡
3
− 2.85764 × 10

−7

× ℎ
4
× 𝑡
4
+ 2.3261 × 10

−12
× ℎ
5
× 𝑡
4
− 4.0216

× 10
−7
× ℎ
5
× 𝑡
5
− 2.08717 × 10

−8
× ℎ
6
× 𝑡
5

− 5.9339 × 10
−9
ℎ
3
× 𝑡
2
× 𝑥 + 3.56035 × 10

−10

× ℎ
3
× 𝑡
3
× 𝑥 + 8.90089 × 10

−10
× ℎ
4
× 𝑡
3
× 𝑥

− 1.281727 × 10
−10

× ℎ
4
× 𝑡
4
× 𝑥 − 7.20971

× 10
−11

× ℎ
5
× 𝑡
4
× 𝑥 + 1.95619 × 10

−16
× ℎ
6
× 𝑡
4

× 𝑥 − 5.31472 × 10
−7
× ℎ
5
× 𝑡
5
× 𝑥 − 2.129523

× 10
−11

× ℎ
6
× 𝑡
5
× 𝑥 − 4.69487 × 10

−18
× ℎ
7
× 𝑡
5

× 𝑥 + 2.9941 × 10
−14

× ℎ
4
× 𝑡
3
× 𝑥
2
+ 2.99418
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Figure 9: Three-dimensional plot for the solution of Saint Venant equations via homotopy perturbation method obtained (a) V(𝑥, 𝑡) = V
0
+

V
1
+ V
2
+ V
3
+ V
4
+ V
5
+ V
6
+ V
7
(b) V(𝑥, 𝑡) = V

0
+ V
1
+ V
2
+ V
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+ V
4
+ V
5
+ V
6
+ V
7
+ V
8
.
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Figure 10: Three-dimensional plot for the solution of Saint Venant equations via homotopy analysis method obtained (a) 𝑦(𝑥, 𝑡) = 𝑦
0
+ 𝑦
1
+

𝑦
2
+ 𝑦
3
+ 𝑦
4
+ 𝑦
5
+ 𝑦
6
+ 𝑦
7
(b) 𝑦(𝑥, 𝑡) = 𝑦

0
+ 𝑦
1
+ 𝑦
2
+ 𝑦
3
+ 𝑦
4
+ 𝑦
5
+ 𝑦
6
+ 𝑦
7
+ 𝑦
8
.

× 10
−14

× ℎ
5
× 𝑡
3
× 𝑥
2
− 1.01053 × 10

−14
× ℎ
4
× 𝑡
4

× 𝑥
2
− 6.73699 × 10

−15
ℎ
5
𝑡
4
𝑥
2
− 6.06321 × 10

−15
ℎ
6

× 𝑡
4
× 𝑥
2
− 3.66479 × 10

−10
ℎ
5
× 𝑡
5
× 𝑥
2
− 8.04465

× 10
−11

ℎ
6
× 𝑡
5
× 𝑥
2
+ 9.49108 × 10

−17
ℎ
7
× 𝑡
5
× 𝑥
2

− 1.69967 × 10
−19

ℎ
4
× 𝑡
4
× 𝑥
3
− 1.13311 × 10

−19

× ℎ
5
× 𝑡
4
× 𝑥
3
− 1.69967 × 10

−19
× ℎ
6
× 𝑡
4
× 𝑥
3

− 1.133116 × 10
−19

× ℎ
7
× 𝑡
4
× 𝑥
3
− 5.95106

× 10
−14

ℎ
5
𝑡
5
𝑥
3
− 3.407758 × 10

−14
ℎ
6
𝑡
5
𝑥
3

− 3.50794 × 10
−15

ℎ
7
× 𝑡
5
× 𝑥
3
+ 2.03960 × 10

−21

× ℎ
8
× 𝑡
5
× 𝑥
3
− 3.3399 × 10

−18
× ℎ
5
× 𝑡
5
× 𝑥
4

− 3.24516 × 10
−18

ℎ
6
× 𝑡
5
× 𝑥
4
− 1.01147 × 10

−18
ℎ
7

× 𝑡
5
× 𝑥
4
− 4.214463 × 10

−20
ℎ
8
× 𝑡
5
× 𝑥
4
− 6.91137

× 10
−23

ℎ
5
× 𝑡
5
× 𝑥
5
− 9.48098 × 10

−23
ℎ
6
× 𝑡
5
× 𝑥
5

− 5.84808 × 10
−23

ℎ
7
× 𝑡
5
× 𝑥
5
− 8.86073 × 10

−24
ℎ
8

× 𝑡
5
𝑥
5
− 4.471004 × 10

−28
ℎ
5
𝑡
5
𝑥
6
− 7.45167
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× 10
−28

ℎ
6
𝑡
5
𝑥
6
− 7.451674 × 10

−28
ℎ
7
𝑡
5
𝑥
6

− 2.9806 × 10
−28

ℎ
8
𝑡
5
𝑥
6
.

(44)

By using first order explicit finite difference method (FDM),
(15) and (6) are solved simultaneously and the capability of
HPM and HAM is compared with FDM (finite difference
method) as a numerical method for solving Saint Venant
equations.

9. Result and Conclusion

In Figures 1, 2, 3, 4, 5, and 6, two-dimensional plot for the
comparison ofHPM,HAM, and FDM for the solutions V(𝑥, 𝑡)
and 𝑦(𝑥, 𝑡) for different values of 𝑥, 𝑡, and ℏ = 0.001 is shown.
It could be observe a good accuracy between these methods.
In the end we have shown V(𝑥, 𝑡) = V

0
+ V
1
+ V
2
+ V
3
+ V
4
+ V
5
+

V
6
+ V
7
+ V
8
, 𝑦(𝑥, 𝑡) = 𝑦

0
+𝑦
1
+𝑦
2
+𝑦
3
+𝑦
4
+𝑦
5
+𝑦
6
+𝑦
7
+𝑦
8

and V(𝑥, 𝑡) = V
0
+ V
1
+ V
2
+ V
3
+ V
4
+ V
5
+ V
6
+ V
7
, 𝑦(𝑥, 𝑡) =

𝑦
0
+𝑦
1
+𝑦
2
+𝑦
3
+𝑦
4
+𝑦
5
+𝑦
6
+𝑦
7
by three-dimensional plots

in Figures 7, 8, 9, and 10 for 0 ≤ 𝑡 ≤ 1, 0 ≤ 𝑥 ≤ 4 and observed
that the results converged after 8 sentences of HPM and there
is no need to write the term V

9
, 𝑦
9
of homotopy perturbation

method. Then it’s shown that HAM is converged after just 5
sentences of 𝑦(𝑥, 𝑡) and V(𝑥, 𝑡).

In this paper, HPM has been successfully applied to
finding the solutions of Saint Venant equations in rectan-
gular canals. The obtained solution is compared with finite
difference method. The homotopy perturbation method had
a little difference with finite difference method, so we solve
Saint Venant equations by homotopy analysis method and
by changing ℏ, we could control error and observed that the
accuracy of HAM is more than HPM for solution of Saint
Venant equations. All the figures show that the results of
the homotopy analysis method are in approximate agreement
with FDM.
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