
Relational Database Design 13

RELATIONAL DATABASE DESIGN

Good Database Design PrinciplesGood Database Design Principles
1. no redundancyno redundancy

• a field is stored in only one table, unless it happens to
be a foreign key

• replication of foreign keys is permissible, because
they allow two tables to be joined together

2. no no ““badbad”” dependenciesdependencies
• in the dependency diagram of any relation in the
database, the determinant should be the whole primary
key, or a candidate key. Violations of this rule include:

• partial dependencies
• transitive dependencies

normalizationnormalization is the process of eliminating “bad”
dependencies by splitting up tables and linking them with
foreign keys

• “normal forms” are categories that classify how
completely a table has been normalized
• there are six recognized normal forms (NF):

First Normal Form (1NF)
Second Normal Form (2NF)
Third Normal Form (3NF)
Boyce-Codd Normal Form (BCNF)
Fourth Normal Form (4NF)
Fifth Normal Form (5NF)

Relational Database Design 14

RELATIONAL DATABASE DESIGN

First Normal FormFirst Normal Form
• a table is said to be in the first normal form (1NF)first normal form (1NF)
if all its attributes are atomic. Attributes that are not atomic
go by the names

• Nested relations, nested tables, or sub-tables
• Repeating groups or repeating sections
• List-valued attributes

• example of a table that is not in first normal form:

Client
ID

Client Name VetID VetName PetID PetName PetType

2173 Barbara Hennessey 27 PetVet 1
2
3

Sam
Hoober
Tom

Bird
Dog
Hamster

4519 Vernon Noordsy 31 PetCare 2 Charlie Cat
8005 Sandra Amidon 27 PetVet 1

2
Beefer
Kirby

Dog
Cat

8112 Helen Wandzell 24 PetsRUs 3 Kirby Dog

CLIENT(ClientD, ClientName, VetID,
VetName, PET(PetID, PetName, PetType))

• This kind of nested or hierarchical form is a very natural
way for people to think about or view data.
• However, the relational database philosophy claims that it
may not be a very good way for computers to store some
kinds of data.
• Over the years, a lot of information systems have stored
data in this kind of format – but they were not relational
databases

Relational Database Design 15

RELATIONAL DATABASE DESIGN

• In order to eliminate the nested relation, pull out the nested
relation and form a new table
• Be sure to include the old key in the new table so that you
can connect the tables back together.

CLIENT(ClientD, ClientName, VetID, VetName)
PET(ClientID, PetID, PetName, PetType)

ClientID foreign key to CLIENT

Client
Name

Vet
Name

Pet
Name

PetID

CLIENT

PET

VetID

Pet
Type

ClientID

ClientID

• In this particular example, note that PetIDPetID is only unique
within sets of pets with the same owner.

Relational Database Design 16

RELATIONAL DATABASE DESIGN

Second Normal Form

StudentID

Fee

Activity

• Recall: a partial dependency occurs when
• You have a composite primary key
• A non-key attribute depends on part of the primary key,
but not all of it

• A table in 1NF is said to be in the second normal form second normal form
(2NF)(2NF) if it does not contain any partial dependencies.
• Example of a partial dependency:

ACTIVITY(StudentID, Activity, Fee) on pages 6, 7, and 9

• Our new CLIENT-PET database does not have any partial
dependencies
• So, it already in second normal form
• But it still has a transitive dependency :

Client
Name

Vet
NameVetIDClientID

Relational Database Design 17

RELATIONAL DATABASE DESIGN

Third Normal FormThird Normal Form
• Recall: a transitive dependency happens when a non-key
attribute depends on another non-key attribute, and that
attribute could not have been used as an alternative primary
key (or the same thing for a composition of several attributes).
• A table of 2NF is said to be in the third normal form (3NF)third normal form (3NF) if it
does not contain any transitive dependencies,
• In order to eliminate transitive dependency, we split the
CLIENTS table again:

CLIENTS(ClientID, ClientName, VetID)
VetID foreign key to VET

PETS(ClientID, PetID, PetName, PetType)
ClientID foreign key to CLIENT

VETS(VetID, VetName)

ClientID

Client
Name

Vet
Name

Pet
Name

PetID

CLIENT

PET

VetID

Pet
Type

VET

ClientID

VetID

Relational Database Design 18

RELATIONAL DATABASE DESIGN

Third Normal Form (Cont.)Third Normal Form (Cont.)
• CLIENTS-PETS-VETS database in third normal form:

VetID VetName
27 PetVet
31 PetCare
24 PetsRUs

Client
ID

Client Name

VetID

2173 Barbara Hennessey 27
4519 Vernon Noordsy 31
8005 Sandra Amidon 27
8112 Helen Wandzell 24

Client
ID

PetID PetName PetType

2173 1 Sam Bird
2173 2 Hoober Dog
2173 3 Tom Hamster
4519 2 Charlie Cat
8005 1 Beefer Dog
8005 2 Kirby Cat
8112 3 Kirby Dog

• the database consists of three types of entities, stored
as distinct relations in separate tables:

• clients (CLIENTS)
• pets (PETS)
• vets (VETS)

• there is no redundancy (only foreign keys are replicated)
• there are no partial and transitive dependencies

with MS Access table relationships

Relational Database Design 19

RELATIONAL DATABASE DESIGN

Normal Forms and NormalizationNormal Forms and Normalization

• The distinctions between third normal form (3NF), Boyce-
Codd normal form (BCNF), fourth normal form (4NF), and fifth
normal form (5NF) are subtle.
• They have to do with overlapping sets of attributes that
could be used as primary keys (composite candidate keys).
• For our purposes, it’s enough to know about 3NF.

• You need to be able to put a database in 3NF.
• That is more important than recognizing 1NF and 2NF

• Key factors to recognize 3NF:

• All attributes atomic – gives you 1NF.

• Every determinant in every relationship is the whole
primary key (or could have been chosen as an
alternative primary key) – guarantees no partial or
transitive dependencies.

• Redesigning a database so it’s in 3NF is called
normalization.

Relational Database Design 20

RELATIONAL DATABASE DESIGN

Example With Multiple Candidate KeysExample With Multiple Candidate Keys

• The dependencies SocialSecuritySocialSecurity## → GenderGender and
SocialSecuritySocialSecurity## → BirthDateBirthDate are not considered
transitive because we could have chosen
SocialSecuritySocialSecurity## as the primary key for the table.
• This kind of design will not give rise to anomalies.

DRIVER(License#, SocialSecurity#, Gender, BirthDate)

License# Social
Security#

Gender

BirthDate

Relational Database Design 21

RELATIONAL DATABASE DESIGN

Normalization Example: Hardware Store Normalization Example: Hardware Store
DatabaseDatabase

• the ORDERS table :

Order
Numb

Cust
Code

Order
Date

Cust
Name

ProdDescr Prod
Price

Quantity

10001 5217 11/22/94 Williams Hammer $8.99 2
10001 5217 11/22/94 Williams Screwdriver $4.45 1
10002 5021 11/22/94 Johnson Clipper $18.22 1
10002 5021 11/22/94 Johnson Screwdriver $4.45 3
10002 5021 11/22/94 Johnson Crowbar $11.07 1
10002 5021 11/22/94 Johnson Saw $14.99 1
10003 4118 11/22/94 Lorenzo Hammer $8.99 1
10004 6002 11/22/94 Kopiusko Saw $14.99 1
10004 6002 11/22/94 Kopiusko Screwdriver $4.45 2
10005 5021 11/23/94 Johnson Cordlessdrill $34.95 1

• Note: in practice, we would also want to have product
codes as well as descriptions, and use the product codes as
keys to identify products. Here, we’ll identify products by
their ProdDescr to keep the number of fields down.

Relational Database Design 22

RELATIONAL DATABASE DESIGN

Example: Hardware Store Database (Cont.)Example: Hardware Store Database (Cont.)
ORDERS(OrderNum, ProdDescr,

CustCode, OrderDate, CustName,
ProdPrice, Quantity)

• Conversion of the hardware store database to 2NF
QUANTITY(OrderNum, ProdDescr, Quantity)

OrderNum foreign key to ORDERS
ProdDescr foreign key to PRODUCTS

PRODUCTS(ProdDescr, ProdPrice)
ORDERS(OrderNum, CustCode, OrderDate, CustName)

Quantity

OrderNum

ProdDescr

ProdDescr ProdPrice

Order
Date

Cust
NameCustCode

Transitive

OrderNum

Relational Database Design 23

RELATIONAL DATABASE DESIGN

Example: Hardware Store Database (Cont.)Example: Hardware Store Database (Cont.)
• conversion of the ORDERS relation to 3NF

QUANTITY(OrderNum, ProdDescr, Quantity)
OrderNum foreign key to ORDERS
ProdDescr foreign key to PRODUCTS

PRODUCTS(ProdDescr, ProdPrice)
ORDERS(OrderNum, CustCode, OrderDate)

CustCode foreign key to CUSTOMERS
CUSTOMERS(CustCode, CustName)

Quantity

OrderNum

ProdDescr

ProdDescr ProdPrice

Order
Date

Cust
Name

CustCode

OrderNum CustCode

Relational Database Design 24

RELATIONAL DATABASE DESIGN

Customer
ID

Phone Last
Name

First
Name

Address City State Zip
Code

1 502-666-7777 Johnson Martha 125 Main St. Alvaton KY 42122
2 502-888-6464 Smith Jack 873 Elm St. Bowling

Green
KY 42101

3 502-777-7575 Washington Elroy 95 Easy St. Smith’s
Grove

KY 42171

4 502-333-9494 Adams Samuel 746 Brown Dr. Alvation KY 42122
5 502-474-4746 Steinmetz Susan 15 Speedway Dr. Portland TN 37148
….. ……. …… …… …… ….. ….. …..

Trans
ID

Rent
Date

Customer
ID

Video
ID

Copy# Title Rent

1 4/18/95 3 1 2 2001:SpaceOdyssey $1.50
1 4/18/95 3 6 3 Clockwork Orange $1.50
2 4/18/95 7 8 1 Hopscotch $1.50
2 4/18/95 7 2 1 Apocalypse Now $2.00
2 4/18/95 7 6 1 Clockwork Orange $1.50
3 4/18/95 8 9 1 Luggage of the Gods $2.50
….. ……. …… …… …… ….. …..

• a customer can rent multiple videos as part of the
same transaction

• multiple copies of the same video exist
• the copy#copy# field stores the number of the copy – unique
only with copies of that same video
• one customer cannot rent two copies of the same video
at the same time

• although it has two tables, the database still contains
some anomalies

Example: Video Store DatabaseExample: Video Store Database
• the CUSTOMER relation:

• the RENTALFORM relation:

Relational Database Design 25

RELATIONAL DATABASE DESIGN

Example: Video Store Database (Cont.)Example: Video Store Database (Cont.)
• relations for the video store database

• CUSTOMER(CustomerID, Phone, Name, Address,
City, State, ZipCode)

• RENTALFORM(TransID, RentDate, CustomerID,
VideoID, Copy#, Title, Rent)

• dependency diagram for the video store database

Copy#

RentTitle

Phone Name Address

City State Zip

Customer
ID

RentDate Customer
ID

VideoID

TransID

Relational Database Design 26

RELATIONAL DATABASE DESIGN

Example: Video Store Database (Cont.)Example: Video Store Database (Cont.)
• video store database after eliminating partial and transitive
dependencies

CUSTOMER(CustomerID, Phone, Name, Address,
City, State, ZipCode)

RENTAL(TransID, RentDate, CustomerID)
CustomerID foreign key to CUSTOMER

VIDEO(VideoID, Title, Rent)
VIDEOSRENTED(TransID, VideoID, Copy#)

TransID foreign key to RENTAL
VideoID foreign key to VIDEO

Copy#

Phone Name Address

City State Zip

Customer
ID

VideoID

RentDate

Customer
ID

RentTitleVideoID

TransID

TransID

Relational Database Design 27

RELATIONAL DATABASE DESIGN

Example: Video Store Database (Cont.)Example: Video Store Database (Cont.)

• table relationships for the video store database

Relational Database Design 28

RELATIONAL DATABASE DESIGN

Summary of Guidelines for Database DesignSummary of Guidelines for Database Design
• identify the entities involved in the database
• identify the fields relevant for each entity and define the

corresponding relations
• determine the primary key of each relation
• avoid data redundancy, but have some common fields so

that tables can be joined together
• ensure that all the required database processing can be

done using the defined relations
• normalize the relations by splitting them into smaller ones

	Second Normal Form

