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Introduction to Real-Time Embedded Systems 
 

The concept of real time digital computing systems is an emergent concept 

compared to most engineering theory and practice. When requested to complete a 

task or provide a service in real time , the common understanding is that this task 

must be done upon request and completed while the requester waits for the 

completion as an output response; If the response to the request is too slow, the 

requestor may consider lack of response a failure. More specifically it  constitutes 

a real time service request indicate a real world event sensed by the system. For 

example, a new video frame has been digitized and placed in memory for 

processing. The computing platform must now process input related to the service 

request and produce an output response prior to a deadline measured relative to an 

event sensed earlier. The real time digital computing system must produce a 

response upon request while the user and/ or system wait. After the deadline 

established for the response, relative to the request time, the user gives up or the 

system fails to meet requirements if no response has been produced. 

A common way to define real time as a noun is the time during which a process 

takes place or occurs. Used as an adjective, real time relates to computer 

applications or processes that can respond with low bounded latency to user 

requests. 

Definition of embedding is helpful for understanding what is meant by a real time 

embedded system. Embedding means to enclose or implant as essential or 

characteristic. From the viewpoint of computing systems, an embedded system is a 

special purpose computer completely contained within the device it controls and 

not directly observable by the user of the system. 

 

A BRIEF HISTORY OF REAL TIME SYSTEMS 

 The origin of real time comes from the recent history of process control 

using digital computing platforms. In fact, an early definitive text on the concept 

was published in 1965 [Martin65]. The concept of real time is also rooted in 

computer simulation, where a simulation that runs at least as fast as the real world 

physical process it models is said to run in real time. 

  

Liu and Layland also defined the concept of soft real time in 1973, however there 

is still no universally accepted formal definition of soft real time. The concept of 

hard real time systems became better understood based upon experience and 

problems noticed with fielded systems one of the most famous examples early on 



was the Apollo 11 lunar module descent guidance overload. The Apollo 11 system 

suffered CPU resource overload that threatened to cause descent guidance services 

to miss deadlines and almost resulted in aborting the first landing on the moon. 

During descent of the lunar module and use of the radar system, astronaut Buzz 

Aldrin notes a computer guidance system alarm. 

 

A BRIEF HISTORY OF EMBEDDED SYSTEMS 

 Embedding is a much older concept than real time. Embedded digital 

computing systems are often an essential part of any real time embedded system 

and process sensed input to produce responses as output to actuators. The sensors 

and actuators are components providing I/O and define the interface between an 

embedded system and the rest of the system or application. Left with this as the 

definition of an embedded digital computer, you could argue that a general purpose 

workstation is an embedded system; after all, a mouse, keyboard, and video display 

provide sensor/actuator driven between  the digital computer and a user. However, 

to satisfy the definition of an embedded system better, we distinguish the types of 

services provided.  A general purpose work station provides a platform for 

unspecified to be determined sets of services, whereas an embedded system 

provides a well defined service or set of services such as anti locking control. In 

general, providing general services is impractical for applications such as 

computation of 1c to the nth digit, payroll, or office automation on an embedded 

system. Finally, the point of an embedded system is to cost effectiveness,  a more 

limited set of services in a larger system, such as an automobile, aircraft, or 

telecommunications switching center. 

 

Real-Time Services 

 The concept of a real time service is fundamental in real time embedded 

systems. Conceptually, a real time service provides a transformation of inputs to 

outputs in A an embedded system to provide a function.For example, a service 

might provide thermal control for a subsystem by sensing temperature with 

thermisters (temperature sensitive resistors) to cool the subsystem with a fan or to 

heat it with electric coils. The service provided in this example is thermal 

management such that the subsystem temperature is maintained within a set range. 

 

A pseudo code outline of a basic service that polls an input interface 

for a specific input vector. 

 



 
 

When a software implementation is used for multiple services on a single CPU, 

software polling is often replaced with hardware offload of the event detection and 

input encoding. The offload is most often done with an ADC (Analog to Digital 

Converter) and DMA (Direct Memory Access) engine that implements the Event 

Sensing state in Figure.  This hardware state machine then asserts an interrupt 

input into the CPU, which in turn sets a flag used by a scheduling state machine to 

indicate that a software data processing service should be dispatched for execution. 

The following is a pseudo code outline of a basic event driven software service.  

 

 

 

 

 

 

 

 

 

 

 

 



A simple polling state machine for real time services. 

 

 



 
 

Realtime digital control and process control services are periodic by nature. The 

system either polls sensors on a periodic basis, or the sensor components provide 

digitized data on a known sampling interval with an interrupt generated to the 

controller. The periodic services in digital control systems implement the control 

law of a digital control system. When a microprocessor is dedicated to only one 

service, the design and implementation of services is fairly simple.  

 

 
Real time service timeline. 



 

 Figure shows a typical service implemented with hardware I/O components, 

including ADC interfaces to sensors (transducers) and DAC interfaces to actuators. 

The service processing is often implemented with a software component running as 

a thread of execution on a microprocessor. The service thread of execution may be 

preempted while executing by the arrival of interrupts from events and other 

services. 

 

Real time service timeline with hardware acceleration. 

 

 Ultimately, all real-time services may be hardware only or a mix of 

hardware and software processing in order to link events to actuations to monitor 

and control some aspect of an overall system. Response time is shown as being 

limited by the sum of the IO latency, context switch latency, execution time, and 

potential interference time. Input latency comes from the time it takes sensor inputs 

to be converted into digital form and transferred over an interface into working 

memory. Context switch latency comes from the time it takes code to acknowledge 

an interrupt indicating data is available, to save register values and stack for 

whatever program may already be executing (preemption), and to restore state if 

needed for the service that will process the newly available data. 

  

 In some cases, a realtime service might simply provide an IO transformation 

in Realtime such as a video encoder display system for a multimedia application. 

Nothing is being controlled per se as in a digital control application. However, 

such systems, referred to as continuous media real time applications,  Realtime 

continuous media services often include significant hardware acceleration. 



  For example, the pipeline depicted in Figure  might include a compression 

and decompression state machine rather than performing compression and 

decompression in the software service on each node. Also, most continuous media 

processing systems include a data plane and a control plane for hardware and 

software components. The data plane includes all elements in the realtime service 

pipeline, whereas the control—plane includes non realtime management of the 

pipeline through an API (Application Program Interface). A similar approach can 

be taken for the architecture of a digital control system that requires occasional 

management. 

In the case of the video pipeline shown in Figure below the control API might 

allow a user to increase or decrease the frame rate. The source might inherently be 

able to encode frames at 30 fps (frames per second), but the frames may be 

decimated and retimed to 24 fps. 

 
Distributed continuous media realtime services. 

 

Real-Time Standards 

 

The POSIX (Portable Operating Systems Interface) group has established a 

number of standards related to realtime systems including the following: 

 

IEEE Std 2003.1b—2000Testing specification for POSIX part 1, including 

realtime extensions 

IEEE Std 100313-1998: Rea1time profile standard to address embedded realtime 

applications and smaller footprint devices  

IEEE Std 1003.1b—1993 Realtime extension; now integrated into POSIX 1003.1 

IEEE Std 1003.1c-1995: Threads; now integrated into POSIX 1003.1 

 



IEEE Std 1003.1d—1Ad9di9tio9na:l real time extensions; now integrated into 

POSIX 1003.1—2001which was later replaced by POSIX 1003.1—2003 

 

IEEE Std 1003.1j—20A0dv0an:ced real—time extensions; now integrated into 

POSIX 10031-2001, which was later replaced by POSIX 1003.1—2003 

IEEE Std 1003.1q-2000: Tracing 

 

The most significant  standard for realtime systems from POSIX is 1003.1b, 

which specifies the API that most ARTOS(Real Time Operating Systems) and 

realtime. 

 

Linux operating systems implement. The POSIX 1003.1b extensions include 

Definitions of the following real—time operating system mechanisms: 

 

Priority Scheduling 

Real Time Signals 

Clocks and Timers 

Semaphores 

Message Passing 

Shared Memory 

Asynchronous and Synchronous I/ O 

Memory Locking 
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INTRODUCTION 

 Real time embedded systems must provide deterministic behavior and often have more 

rigorous time and safety critical system requirements compared to general purpose desktop 

computing systems. For example, a satellite real time embedded system must survive launch and 

the space environment, must be very efficient in terms of power and mass, and must meet high 

reliability standards. Applications that provide a real time service could in some cases be much 

simpler if they were not resource constrained by system requirements typical of an embedded 

environment. The engineer must instead carefully consider resource limitations, including power, 

mass, size, memory capacity, processing, and I/O bandwidth. Furthermore, complications of 

reliable operation in hazardous environments may require specialized resources such as error 

detecting and correcting memory systems. To successfully implement real time services in a 

system providing embedded functions, resource analysis must be completed to ensure that these 

services are not only functionally correct, but that they produce output on time and with high 

reliability and availability. 

 

 The three fundamental resources, CPU, memory, and I/O, are excellent places to start 

understanding the architecture of real time embedded systems and how to meet design 

requirements and objectives. Furthermore, resource analysis is critical to the hardware, firmware, 

and software design in a real time embedded system. 

 

RESOURCE ANALYSIS 

 

There are common resources that must be sized and managed in any real time embedded system 

including the following: 

 

Processing: Any number of microprocessors or microcontrollers networked together. 

Memory: All storage elements in the system including volatile and nonvolatile storage. 

I/O: Input and output that encodes sensed data and is used for decoding for actuation. 

 

Traditionally the main focus of real time resource analysis and theory has been centered around 

processing and how to schedule multiplexed execution of multiple services on a single processor. 

Scheduling resource usage requires the system software to make a decision to allocate a resource 

such as the CPU to a specific thread of execution. The mechanics of multiplexing the CPU by 



preempting a running thread, saving its state, and dispatching a new thread is called a thread 

context switch. Scheduling involves implementing a policy, whereas preemption and dispatch 

are context switching. When a CPU is multiplexed with an RTOS scheduler and context 

switching, the system architect must determine whether the CPU resources are sufficient given 

the set of service threads to be executed and whether the services will be able to reliably 

complete execution prior to system required deadlines. 
 

The main considerations include speed or instruction execution (clock rate), the efficiency of 

executing instructions (average Clocks Per Instruction [CPI]), algorithm complexity, and 

frequency of service requests. 

 

Speed: Clock Rate for Instruction Execution. 

 

Efficiency: CPI or IPC (Instructions Per Clock); processing stalls due to hazards; for example, 

read data dependency, cache misses, and write buffer overflow stalls. 

Algorithm complexity: Ci = instruction count on service longest path for service i and  ideally, 

is deterministic; if Ci  - is not known, the worst case should be used WCET (Worst Case 

Execution Time) is the longest, most inefficiently executed path for service; WCET is one 

component of response time ); other contributions to response time come from input latency; 

dispatch latency; execution; interference by higher priority services and interrupts and output 

latency. 

 

Service Frequency: Ti = Service Release Period. 

 

 Input and output channels between processor cores and devices are one of the most 

important resources in real time embedded systems and perhaps one of the most often 

overlooked as far as theory and analysis. In a real time embedded system, low latency for I/O is 

fundamental. The response time of a service can be highly influenced by I/O latency. 

Furthermore, no response is complete until writes actually drain to output device interfaces. So, 

key I/O parameters are latency, bandwidth, read/write queue depths, and coupling between I/ O 

channels and the CPU. 

 
Latency 

 Arbitration latency for shared I/O interfaces 

 Read latency 

 Time for data transit from device to CPU core 

 Registers, Tightly Coupled Memory (TCM), and L1 cache for zero wait state single cycle 

access 

 Bus interface read requests and completions: split transactions and delay 

 Write latency 

 Time for data transit from CPU core to device. 

 Posted writes prevent CPU stalls 

  Posted writes require bus interface queue 

 

 Bandwidth (BW) 

 Average bytes or words transferred per unit time 



  BW says nothing about latency, so it is not a panacea for real time systems 

 

 

 Queue depth 

 

 Write buffer stalls will decrease efficiency when queues fill up 

 Read buffers most often stalled by need for data to process  

 

 CPU coupling 

 

 DMA channels help decouple the CPU from I/O 

 Programmed I/ O strongly couples the CPU to I/O 

 Cycle stealing requires occasional interaction between the CPU and DMA engines 

 

Memory resources are designed based upon cost, capacity, and access latency. Ideally all 

memory would be zero wait state so that the processing elements in the system could access data 

in a single processing cycle. Due to cost, the memory is most often designed as a hierarchy with 

the fastest memory being the smallest due to high cost, and large capacity memory the largest 

and lowest cost per unit storage. Nonvolatile memory is most often the slowest access. 

 

Memory hierarchy from least to most latency 

 

Level-1cache 

 

 Single cycle access 

 Typically Harvard architecture separate data and instruction caches. 

 Locked for use as fast memory, unlocked for set associative or  direct mapped caches. 

 

Level-2 cache or TCM 

 

 Few or no wait states (e.g., 2 cycle access) 

 Typically unified (contains both data and code) 

 Locked for use as TCM, unlocked to back Ll caches 

 

MMRs (Memory Mapped Registers) 

 

 Main memory SRAM,SDRAM, DDR  

 Processor bus interface and controller 

 Multicycle access latency on chip 

 Many cycle latency off chip 

MMIO (Memory Mapped I/O) Devices 

 

 Non volatile memory like flash, EEPROM, and battery backed SRAM 

 Slowest read/write access, most often off chip. 

 Requires algorithm for block erase and  interrupt upon completion and poll 



 for completion for flash and EEPROM 

 

Total capacity for code, data, stack, and heap requires careful planning. 

Allocation of data, code, stack, heap to physical hierarchy will significantly affect performance. 

 

Real time theory and systems design have focused almost entirely on sharing CPU resources and 

to a lesser extent, issues related to shared memory, I/O latency, I/O scheduling, and 

synchronization of services. 

 

A given system may experience problems  meeting service deadlines because it is: 

 

CPU bound: Insufficient execution cycles during release period and due to inefficiency in 

Execution. 

I/O bound: Too much total I/O latency during the release period and/ or poor scheduling of I/O 

during execution. 

Memory bound: Insufficient memory capacity or too much memory access latency during the 

release period. 

 

At a high level, a real time embedded system can be characterized in terms of CPU, I/O, and 

memory resource margin maintained as depicted in Figure . The box at the origin in the figure 

depicts the region where a system would have high CPU, I/O, and memory margins it is ideal , but 

perhaps not realistic due to cost, mass, power, and size constraints. The box in the top right 

corner depicts the region here a system has very little resource margin. 

 

 
Real time embedded system resource characterization. 

Often the resource margin that a real time embedded system is designed to maintain depends 

upon a number of higher level design factors, including: 

 System cost 

 Reliability required (how often is the system allowed to fail if it is a soft real time 

system?) 

 Availability required (how often the system is expected to be out of service or in 

service?) 



 Risk of over subscribing resources (how deterministic are resource demands?) 

 Impact of over subscription (if resource margin is insufficient, what are the 

consequences?) 

 

 

Prescribing general margins for any system with specific values is difficult. However, here are 

some basic guidelines for resource sizing and margin maintenance: 

 

CPU: The set of proposed services must be allocated to processors so that each processor in the 

system meets the Lehoczky,Shah, Ding theorem for feasibility. Normally, the CPU margin 

required is less than the RM LUB (Rate Monotonic Least Upper Bound) of approximately 30%.  

The amount of margin required depends upon the service parameters mostly their relative release 

periods and how harmonic the periods are.  

 

I/O: Total I/O latency for a given service should never exceed the response deadline or the 

service release period (often the deadline and period are the same). Overlapping I/O time with 

execution time is therefore a key concept for better performance. Scheduling I/O so that it is 

overlaps is often called I/O latency hiding. 

 

Memory: The total memory capacity should be sufficient for the worst case static and dynamic 

memory requirements for all services. Furthermore, the memory access latency summed with the 

I/O latency should not exceed the service release period. Memory latency can be hidden by 

overlapping memory latency with careful instruction scheduling and use of cache to improve 

performance. 

 

The largest challenge in real time embedded systems is dealing with the tradeoff between 

determinism and efficiency gained from less deterministic architectural features such as set 

associative caches and overlapped I/O and execution. For hard real time systems where the 

consequences of failure are too severe to ever allow, the worst case must always be assumed. For 

soft real time systems, a better trade off can be made to get higher performance for lower cost, 

but with higher probability if occasional service failures. 

 

 

 

 

 

 

 

 

 

 

In the worst case, the response time equation is 

 



 

All services Si in a hard real time system must have response times less than their  required 

deadline, and the response time must be assumed to be the sum of the total worst case latency.  
 

 

REAL-TIME SERVICE UTILITY 

 
To more formally describe various types of real time services, the real time research community 

devised the concept of a service utility function. The service utility function for a simple real 

time service is depicted in Figure below. The service is said to be released when the service is 

ready to start execution following a service request, most often initiated by an interrupt. The 

utility of the service producing a response any time prior to the deadline relative to the request is 

full, and at the instant following the deadline, the utility not only becomes zero, but actually 

negative. 

 
Hard real time service utility 

 

 

If early response is also undesirable, as it would be in an isochronal service, then the utility is 

negative up to the deadline, full at the deadline, and negative again after the deadline. For an 

isochronal service, early completion of response processing requires the response to be held or 

buffered up to the deadline if it is computed early. 



 
Isochronal service utility 

 

Figure shows a service that is considered to produce a response with best effort for non real time 

applications. Basically, the non real time service has no real deadline because full utility is 

realized whenever a best effort application finally produces a result. Most desktop systems and 

even many embedded computing systems are designed to maximize overall throughput for a 

workload with no guarantee on response time, but with maximum efficiency in processing the 

workload. 

 

 
Best effort service utility 

 

 

 

The concept of soft real time is similar to the idea of receiving partial credit for late homework 

because a service that produces a late response still provides some utility to the system. The 

concept of soft real time is also similar to a well known homework policy in which some service 

dropouts are acceptable. In this case, by analogy, no credit is given for late homework, but the 



student is allowed to drop their lowest score or scores. Either definition of soft real time clearly 

falls between the extremes of the hard real time and the best effort utility curves. 

 
Soft real time utility curve 

 

A policy known as the anytime algorithm is analogous to receiving partial credit for partially 

completed homework and partial utility for a partially complete service. The concept of an 

anytime algorithm can only be implemented for services where iterative refinement is possible, 

that is, the algorithm produces an initial solution long before the deadline, but can produce a 

better solution (response) if allowed to continue processing up to the deadline for response. If the 

deadline is reached before the algorithm finds the optimal solution, then it simply responds with 

the best solution found so far. Anytime algorithms have been used most for robotic and AI 

(Artificial Intelligence) real time applications where iterative refinement can be beneficial. 

 

Isochronal systems are normally implemented with hold buffers and traditional hard real time 

services, early service completions must be buffered, and CPU scheduling must ensure that late 

responses will never happen. So, a soft isochronal service would be far easier to implement 

because there is no need for early completion buffering and no need to detect and terminate 

services that overrun deadlines.  

 

 

 

 

 

 

 



 
Anytime service utility 

 
Soft isochronal service utility 

 

SCHEDULING CLASSES 

 

A system might have more than one processor (CPU), and any given processor might host one or 

more services. Allocating a CPU to each service provided by the system might be simplest from 

a scheduling viewpoint, but clearly, this would also be a costly solution. Furthermore, running 

services to completion ignoring all other requests on a first-come first serve basis is also simple, 

but problems such as service starvation and missing deadlines can arise with this approach. To 

better understand real time processor scheduling, you first need to review a taxonomy of all 

major scheduling policies. 



 

 The process scheduling is the activity of the process manager that handles the removal of the 

running process from the CPU and the selection of another process on the basis of a particular 

strategy. Process scheduling is an essential part of a Multiprogramming operating system. 

 

 
Resource scheduling taxonomy 

 

Multiprocessor Systems 

 
For multiprocessor systems, the first resource usage policy decision is whether each CPU will be 

used for a specific predetermined function (asymmetric, distributed) or whether workload will be 

assigned dynamically (symmetric). 

  Most general purpose MP (Multi Processing) platforms provide SMP (Symmetric Multi 

Processing) where the OS determines how to assign work to the set of available processors and 

most often attempts to balance the workload on all processors. An SMP OS is not simple to 

implement, and overhead for workload balancing can be high, so many embedded multiprocessor 

systems are asymmetric or distributed.  

Asymmetric multiprocessing is used frequently to take a service that was initially provided by 

software running on a general purpose CPU and offload it to a hardware state -machine or  

tailored CPU to implement the service, therefore offloading the more general purpose 

multiservice CPU. 

 Distributed systems are typically asymmetric and communicate Via message passing on a 

network rather than through shared memory, bus, or crossbar. Other than the issue of load 

balancing, multiprocessor systems are most distinguished by their hardware architecture shared 

memory, distributed message passing, or some hybrid of the two.  

 

The classic taxonomy for such systems includes 

 SISD (Single Instruction, Single Data),  

 SIMD (Single Instruction, Multi Data), 

 MISD (Multi Instruction single Data), and 



 MIMD (Multi—Instruction Multi-Data). 

 

Most embedded multiprocessor systems are multiple instruction and multiple data path hardware 

architectures that employ multiple CPUs for speed up. 

 

THE CYCLIC EXECUTIVE 

 
Many real time systems, including complex, hard real time safety critical systems, provide real 

time services using a cyclic executive architecture. Cyclic executives do not require an RTOS or 

generalized scheduling mechanism. A cyclic executive provides a loop control structure to 

explicitly interleave execution of more than one periodic process on a single CPU. The Cyclic 

Executive is often implemented as a main loop with an invariant loop body known as the cyclic 

schedule. A cyclic schedule includes function calls for each periodic service provided within the 

major period of the overall loop. The loop may include event polling to determine when to 

dispatch functions, and functions that need to be called at a higher frequency than the main loop 

will often be called multiple times within the loop. Likewise, functions implementing periodic 

services that need to be run at much lower frequency than the main loop may be called only on 

specific loop counts or only when polled events indicate a service request. 

 

The cyclic executive is often extended to handle asynchronous events with interrupts rather than 

relying only upon loop based polling of inputs. This extension of the executive is called the 

Main+ISR design. As the name implies, this approach involves a main loop cyclic executive with 

the addition of ISRs (Interrupt Service Routines). The ISRs handle asynchronous events that 

interrupt the normal execution sequence of an embedded microprocessor. In the Main+ISR 

approach, the ISRs are best kept short and simple so they relay event data to the Main loop for 

handling. The Main+ISR approach has some advantage over the pure cyclic executive and 

polling for event input because it may reduce latency between event occurrence and handling.  
 

However, the Main+ISR approach has pitfalls as well. For example ,if an input device 

malfunctions and raises interrupts at a much higher frequency than expected, significant 

interference to loop processing may be introduced. Although Main+ISR is more responsive to 

events as they occur, it may be less stable unless a concerted effort is made to protect the system 

for potential interrupt malfunctions related to interrupt source devices. 

 
SCHEDULER CONCEPTS 

 

Realtime services may be implemented as threads of execution that have an execution context 

and are set into execution by a scheduler that determines which thread to dispatch. 

 

 Dispatch is a basic mechanism to preempt the currently running thread, save its context, and 

restore the context of the thread to be run along with modification of the instruction pointer or 

program counter to start or resume execution of the new thread. scheduler must implement the 

CPU sharing policy and the dispatcher must provide the context switch for each thread of 

execution. The dispatcher is required to save and restore all the state that each thread of 

execution uses including the following: 

 



 Registers 

 Stack 

 Program counter 

 Thread state 

This would be a minimum execution context and is typical of real time schedulers. 

 

 

 

State Transition table for Thread Execution 

 

 
 
Dispatch policy, how the scheduler decides which thread from the set of all those that are ready 

for dispatch As threads become ready to run, pointers to their context are normally placed on a 

ready queue by the scheduler for dispatch in the order determined by the scheduling policy. The 

scheduler must update the ready queue based upon new service request arrivals.  

 

The dispatcher will simply loop if the ready queue is empty. A fixed priority preemptive 

scheduler simply dispatches threads from the ready queue based upon a priority they have 

been assigned at creation unless the application adjusts the priority at runtime. Most often, if two 

threads have the same priority, they are dispatched on a first come, first served basis. Almost all 

RTOSs include priority preemptive schedulers with support for the basic thread states outlined in 

Table. One of the major drawbacks of a priority preemptive scheduling policy is the cost or 



overhead of the context switch that occurs on every interrupt. a time-slice preemption scheme 

where an OS timer tick is generated every so many milliseconds by a programmable interval 

timer, have high overhead.  

 

Context Switch 

A context switch is the mechanism to store and restore the state or context of a CPU in Process 

Control block so that a process execution can be resumed from the same point at a later time. 

Using this technique a context switcher enables multiple processes to share a single CPU. 

Context switching is an essential part of a multitasking operating system features. 

 

When the scheduler switches the CPU from executing one process to execute another, the 

context switcher saves the content of all processor registers for the process being removed from 

the CPU, in its process descriptor. The context of a process is represented in the process control 

block of a process. 

 

 

Non-Preemptive: Non-preemptive algorithms are designed so that once a process enters the 

running state(is allowed a process), it is not removed from the processor until it has completed its 

service time (or it explicitly yields the processor).  

 

context_switch() is called only when the process terminates or blocks.  

 

 

 
 

 First Come First Serve (FCFS) Scheduling 

 Shortest-Job-First (SJF) Scheduling 

 

First-Come, First-Served Scheduling 

 

The most straightforward approach to scheduling processes is to maintain a FIFO (first-in, first-

out) run queue. New processes go to the end of the queue. When the scheduler needs to run a 

process, it picks the process that is at the head of the queue. This scheduler is non-preemptive. If 

the process has to block on I/O, it enters the waiting state and the scheduler picks the process 



from the head of the queue. When I/O is complete and that waiting (blocked) process is ready to 

run again, it gets put at the end of the queue. 

 

First Come - First Served 

With first-come, first-served scheduling, a process with a long CPU burst will hold up other 

processes, increasing their turnaround time. Moreover, it can hurt overall throughput since I/O on 

processes in the waiting state may complete while the CPU bound process is still running. Now 

devices are not being used effectively. To increase throughput, it would have been great if the 

scheduler instead could have briefly run some I/O bound process so that could run briefly, 

request some I/O and then wait for that I/O to complete. Because CPU bound processes don’t get 

preempted, they hurt interactive performance because the interactive process won’t get scheduled 

until the CPU bound one has completed. 

 
 

Advantage: FIFO scheduling is simple to implement. It is also intuitively fair (the first one in 

line gets to run first). 

 

Disadvantage: The greatest drawback of first-come, first-served scheduling is that it is not 

preemptive. Because of this, it is not suitable for interactive jobs. Another drawback is that a 

long-running process will delay all jobs behind it. 

 

Shortest-Job-First (SJF) Scheduling 
Other name of this algorithm is Shortest-Process-Next (SPN).Shortest-Job-First (SJF) is a non-

preemptive discipline in which waiting job (or process) with the smallest estimated run-time-to-

completion is run next. In other words, when CPU is available, it is assigned to the process that 

has smallest next CPU burst. The SJF scheduling is especially appropriate for batch jobs for 

which the run times are known in advance. Since the SJF scheduling algorithm gives the 

minimum average time for  a given set of processes, it is probably optimal. 

 

The SJF algorithm favors short jobs (or processors) at the expense of longer ones.The obvious 

problem with SJF scheme is that it requires precise knowledge of how long a job or process will 

run, and this information is not usually available. The best SJF algorithm can do is to rely on user 



estimates of run times. In the production environment where the same jobs run regularly, it may 

be possible to provide reasonable estimate of run time, based on the past performance of the 

process. But in the development environment users rarely know how their program will execute. 

 

 

Preemptive : The term preemptive multitasking is used to distinguish a multitasking operating 

system, which permits preemption of tasks, from a cooperative multitasking system wherein 

processes or tasks must be programmed to yield when they do not need system resources. In 

simple terms: Preemptive multitasking involves the use of an interrupt mechanism which 

suspends the currently executing process and invokes a scheduler to determine which process 

should execute next. Therefore all processes will get some amount of CPU time at any given 

time.  

 

In preemptive multitasking, the operating system kernel can also initiate a context switch to 

satisfy the scheduling policy's priority constraint, thus preempting the active task. In general, 

preemption means "prior seizure of". When the high priority task at that instance seizes the 

currently running task, it is known as preemptive scheduling.  

 

The term "preemptive multitasking" is sometimes mistakenly used when the intended meaning is 

more specific, referring instead to the class of scheduling policies known as time-shared 

scheduling, or time-sharing.  

 

Preemptive multitasking allows the computer system to more reliably guarantee each process a 

regular "slice" of operating time. It also allows the system to rapidly deal with important external 

events like incoming data, which might require the immediate attention of one or another 

process. 

 

 Rate-monotonic scheduling (RMS) is a scheduling algorithm used in real-time operating 

systems (RTOS) with a static-priority scheduling class. The static priorities are assigned on the 

basis of the cycle duration of the job: the shorter the cycle duration is, the higher is the job's 

priority. 

 

Deadline-monotonic priority assignment is a priority assignment policy used with fixed priority 

pre-emptive scheduling. With deadline-monotonic priority assignment, tasks are assigned 

priorities according to their deadlines; the task with the shortest deadline being assigned the 

highest priority.  

This priority assignment policy is optimal for a set of periodic or sporadic tasks which comply 

with the following restrictive system model: 

 All tasks have deadlines less than or equal to their minimum inter-arrival times (or 

periods). 

 All tasks have worst-case execution times (WCET) that are less than or equal to their 

deadlines. 

 All tasks are independent and so do not block each other's execution (for example by 

accessing mutually exclusive shared resources). 

 No task voluntarily suspends itself. 
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 There is some point in time, referred to as a critical instant, where all of the tasks become 

ready to execute simultaneously. 

 Scheduling overheads (switching from one task to another) are zero. 

 All tasks have zero release jitter (the time from the task arriving to it becoming ready to 

execute). 

 

Earliest deadline first (EDF) or least time to go is a dynamic scheduling algorithm used in real-

time operating systems to place processes in a priority queue. Whenever a scheduling event 

occurs (task finishes, new task released, etc.) the queue will be searched for the process closest to 

its deadline. This process is the next to be scheduled for execution. 

EDF is an optimal scheduling algorithm on preemptive uniprocessors, in the following sense: if a 

collection of independent jobs, each characterized by an arrival time, an execution requirement 

and a deadline, can be scheduled (by any algorithm) in a way that ensures all the jobs complete 

by their deadline, the EDF will schedule this collection of jobs so they all complete by their 

deadline. 

 

Least slack time (LST) scheduling is a scheduling algorithm. It assigns priority based on 

the slack time of a process. Slack time is the amount of time left after a job if the job was started 

now. This algorithm is also known as least laxity first. Its most common use is in embedded 

systems, especially those with multiple processors. It imposes the simple constraint that each 

process on each available processor possesses the same run time, and that individual processes 

do not have an affinity to a certain processor. This is what lends it a suitability to embedded 

systems. 

This scheduling algorithm first selects those processes that have the smallest "slack time". Slack 

time is defined as the temporal difference between the deadline, the ready time and the run time. 

This scheduling algorithm first selects those processes that have the smallest "slack time". Slack 

time is defined as the temporal difference between the deadline, the ready time and the run time. 

 

More formally, the slack time for a process is defined as: 

 
where  is the process deadline,  is the real time since the cycle start, and  is the remaining 

computation time. 

 

Fixed-priority preemptive scheduling  
Fixed-priority preemptive scheduling is a scheduling system commonly used in real-time 

systems. With fixed priority preemptive scheduling, the scheduler ensures that at any given time, 

the processor executes the highest priority task of all those tasks that are currently ready to 

execute. 

The preemptive scheduler has a clock interrupt task that can provide the scheduler with options 

to switch after the task has had a given period to execute the time slice. This scheduling system 

has the advantage of making sure no task hogs the processor for any time longer than the time 

slice. However, this scheduling scheme is vulnerable to process or thread lockout: since priority 

is given to higher-priority tasks, the lower-priority tasks could wait an indefinite amount of time. 

One common method of arbitrating this situation is aging, which gradually increments the 

priority of waiting processes and threads, ensuring that they will all eventually execute. 
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The scheduling problem must be further constrained to derive a formal mathematical model that 

proves deterministic behavior. Clearly it is impossible to prove deterministic behavior for a 

system that has nondeterministic inputs. Liu and Layland recognized this and proposed what they 

believed to be a reasonable set of assumptions and constraints on real systems to formulate a 

deterministic model. The assumptions and constraints are 

 

A1: All services requested on periodic basis, the period is constant 

A2: Completion  time < period 

 

A3: Service requests are independent (no known phasing) 

A4: Runtime is known and deterministic (WCET may be used) 

C1: Deadline = period by definition 

C2: Fixed priority preemptive, run- to- completion scheduling . 

A5: Critical instant—longest response time for a service occurs when all system services are 

requested simultaneously (maximum interference case for lowest priority service). 

 

Layland in their paper. 

Given the fixed priority preemptive scheduling framework and assumptions described in the 

preceding list, we can now examine alternatives for assigning priorities and identify a policy that 

is optimal. Showing that the RM policy is optimal is most easily accomplished by inspecting a 

system with a small number of services. An example with two services follows. Given services 

S1and S2 with periods T1 and T2, execution times C1 and C2) and release periods T2 > T1, take, 

for example, T1=2, T2= 5, C1=1, C2 = 2, and then if  prio(S1) > prio(S2),  note Figure S1 Makes 

Deadline if prio(S1) > prio(S2). 

 

In this two service example, the only other policy (swapping priorities from the preceding 

example) does not work. Given services S1 and S2 with periods T1 and T2 and C1 and C2with 

T2 > T1, for example, T1 =2, T2 = 5, C, = 1, C2 = 2, and then if prio(S2) > prio(S1). 

 

 



 
The conclusion that can be drawn is that for a two service system, the RM policy is optimal, 

whereas the only alternative is not optimal because the alternative policy fails when a workable 

schedule does exist! The same argument can be posed for a three-service system, a four service 

system, and finally an N service system. In all cases, it can be shown that the RM policy is 

optimal. 

 

Real-time operating systems  

  

Many real time embedded systems include an RTOS , which provides CPU scheduling, memory 

management, and driver interfaces for 1/0 in addition to boot or BSP (Board Support Package) 

firmware. 

Key features that an RTOS or an embedded realtime Linux distribution should have include the 

following: 

 

 A fully preemptable kernel so that an interrupt or realtime task can preempt the kernel 

scheduler and kernel services with priority. 

 Low well bounded interrupt latency. 

 Low well bounded process, task, or thread context switch latency 

 Capability to fully control all hardware resources and to override any built in operating 

system resource management 

 E Execution tracing tools 

 Cross compiling, cross debugging, and host-to-target interface tools to support 

 code development on an embedded microprocessor. 

 Full support for POSIX 1003.1b synchronous and asynchronous inter task 

communication, control, and scheduling. 

 Priority inversion safe options for mutual exclusion semaphores (the mutual exclusion 

semaphore referred to in this text includes features that extend the early concepts for 

semaphores introduced by Dijkstra) 

 Capability to lock memory address ranges into cache 

 Capability to lock memory address ranges into working memory if virtual memory with 

paging is implemented. 

 High precision time stamping, interval timers, and real time clocks and virtual timers 



The VxWorks, ThreadX, Nucleus, Micro-C-OS, RTEMS and many other available realtime 

operating systems provide the features in the preceding list. 

 

 

In general, an RTOS provides a threading mechanism, in some cases referred to as a task 

context, which is the implementation of a service. A service is the theoretical concept of an 

execution context. The RTOS most often implements this as a thread of execution, with a well 

known entry point into a code (text) segment, through a function, and a memory context for this 

thread of execution, which is called the thread context.  Typical RTOS CPU scheduling is fixed 

priority preemptive, with the capability to modify priorities at runtime by applications, therefore 

also supporting dynamic priority preemptive. Real time response with bounded latency for any 

number of services requires preemption based upon interrupts. Systems where latency bounds 

are more relaxed might instead use polling for events and run threads to completion, increasing 

efficiency by avoiding disruptive asynchronous interrupt context switches. 

 

An RTOS provides priority preemptive scheduling as a mechanism that allows an application to 

implement a variety of scheduling policies: 

 RM (Rate Monotonic) or DM (Deadline Monotonic), fixed priority 

 EDF (Earliest Deadline First) or LLF (Least Laxity First), dynamic priority 

 Simple run to completion cooperative tasking 

Given that bounded latency is most often a hard requirement in any real time system, the 

focus is further limited to RM, EDF, and LLF. Ultimately, a real time scheduler needs to support 

dispatch, execution context management, and preemption. In the simplest scenario, where 

services run to completion, but may be preempted by a higher priority service, the thread states 

are depicted in Figure below. In the simplest scenario, where services run to completion, but may 

be preempted by a higher priority service, the thread states are depicted. 

 

 
Most often, threads that implement services operate on memory or on an I/O interface. In this 

case, the memory or I/O is a secondary resource, which if shared or if significant latency is 

associated with use, may require the thread to wait and enter a pending state until this secondary 

resource becomes available. We add a pending state, which a thread enters when a secondary 

resource is not immediately available during execution. When this secondary resource becomes 

available. If a thread may be arbitrarily delayed by a programmable amount of time, then it will 

need to enter a delayed state. A delay is simply implemented by a hardware interval timer that 



provides an interrupt after a programmable number of CPU clock cycles or external oscillator 

cycles. When the timer is set, an interrupt handler for the expiration is installed so that the delay 

timeout results in restoration of the thread from delayed state back to ready state.  

 

 
 

Finally, if a thread of execution encounters a non recoverable error, for example, division by zero 

in the code, then continuation could lead to significant system endangerment. In the case of 

division by zero, this will cause an overflow result, which in turn might generate faulty 

command output to an actuator, such as a satellite thruster, which could cause loss of the asset. If 

the division by zero is handled by an exception handler that recalculates the result and therefore 

recovers within the service, continuation might be possible, but often recovery is not possible. 

Because the very next instruction might cause total system failure, a non recoverable exception 

should result in suspension of that thread. 

 



  
 

The RTOS provides I/O resource management through a driver interface, which includes 

common entry points for reading/writing data, opening/closing a session with a device by a 

thread, and configuring I/O device. The coordination of access to devices by multiple threads and 

the synchronization of thread execution with device data availability are implemented through 

the pending state. In the simplest case, an Interrupt Service Routine (ISR) can indicate device 

data availability by setting a semaphore (flag)which allows the RTOS to transition the thread 

waiting for data to process from pending back to the ready state. Likewise, when a thread wants 

to write data to an I/O output buffer, if the buffer is currently full, the device can synchronize 

buffer availability with the thread again through an ISR and a binary semaphore. 

Memory in the simplest scenarios can be mapped and allocated once during boot of the system 

and never modified at runtime. This is the ideal scenario because the usage of memory is 

deterministic in space and time. Memory usage may vary, but the maximum used is 

predetermined, as is the time to claim, use, and release memory. In general, the use of the C 

library malloc  is frowned upon in realtime embedded systems because this dynamic memory-

management function provides allocation and deallocation of arbitrary segments of memory . 

Over time, if the segments truly are of arbitrary size, the allocation segments must be coalesced 

to avoid external fragmentation of memory. Likewise, if arbitrarily sized segments are mapped 

onto minimum size blocks of memory (e.g., 4 KB blocks), then allocation of a 1 byte buffer will 

require 4,096 bytes to be allocated with 4,095 bytes within this block wasted. This internal 

fragmentation is shown in Figure below. 



 
Memory fragmentation for data segments of arbitrary size. 

 
Internal block fragmentation for fixed-size dynamic allocation. 

 

 

THREAD SAFE REENTRANT FUNCTIONS 

 
Many real time services may use common utility functions, and a single implementation of these 

common functions will save significant code space memory. However, if one function may be 

called by more than one thread and those threads are concurrently active, the shared function 

must be written to provide reentrancy so  that it is thread safe. Threads are considered 

concurrently active if more than one thread context is either executing or awaiting execution in 

the ready state in the dispatch queue. In this scenario, thread A might have called function F and 

could have been preempted before completing execution of F by thread B, which also calls 

function F. If F is a pure function that uses no global data and only operates on input parameters 

through stack, then this concurrent use is safe. However, if F uses any global data, this data may 

be corrupted and/or the function may produce incorrect results.  



 

 
 

The use of Lock and Unlock prevents the return of an inconsistent state to either function 

because it prevents preemption during the update of the local and global satellite position. The 

function is now thread safe, but potentially will cause a higher priority thread to wait upon a 

lower priority thread to complete this critical section of code. The VxWorks  RTOS provides 

alternatives, including task variables (copies of globals maintained with task context), interrupt 

level Lock and Unlock, and an inversion safe mutex. 
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INTRODUCTION 

 
Processing input data and producing output data for a system response in real time does not 

necessarily require large CPU resources, but rather careful use of CPU resources. Before 

considering how to make optimal use of CPU resources in a real-time embedded system, you 

must first better understand what is meant by processing in real time. The mantra of realtime 

system correctness is that the system must not only produce the required output response  for a 

given input (functional correctness), but that it must do so in a timely manner (before a deadline). 

 

A deadline in a real-time system is a relative time after a service request by which time the 

system must produce a response. The relative deadline seems to be a simple concept, but a more 

formal specification of real-time services is helpful due to the many types of applications. For 

example, the processing in a Voice or video. 

 

Real- time system is considered high quality if the service continuously provides output neither 

too early nor too late, without too much latency and without too much jitter between frames. 

Similarly, in digital control applications, the ideal system has a constant time delay between 

sensor sampling and actuator outputs 

 

PREEMPTIVE FIXED-PRIORITY POLICY 

 

Given that the RM priority assignment policy is optimal,  we now want to determine whether a 

proposed set of services is feasible. Feasible means that the proposed set of services can be 

scheduled given a fixed and known amount of CPU resource. One such test is the RM LUB:  Liu 

and Layland proposed this simple feasibility test they call the RM Least Upper Bound (RM 

LUB). The RM LUB is defined as 

 
 

U: Utility of the CPU resource achievable 

C: Execution time of Service i 

m: Total number of services in the system sharing common CPU resources 



T : Release period of Service i 

 

For a system, can all Cs fit in the largest T over LCM (Least Common Multiple) time? 

Given Services S1, S2 with periods T1 and T2 and C1 and C2, assume T2 > T1, for example, T, 

= 2, T2= 5, C1: 1, C2 = 1; and then if prio(S1) > prio(S2), you can see that they can by 

inspecting a timing diagram as shown in Figure. 

 

 
 

The actual utilization of 70% is lower than the RM LUB of 83.3%, and the system is feasible by 

inspection. So, the RM LUB appears to correctly predict feasibility for this case.  

 

 

In this example, RM LUB is safely exceeded, given Services S1,S2 with periods /«Ta1nd T2 and 

C, and C2; and assuming T2 = T1, for example, T, = 2, T2 = 5, C1: 1, C2 = 2; and then if 

prio(S1) > prio(S2), note Figure 3.2.  

 

 

 
 

 

Necessary condition: To say that A is necessary for B is to say that B cannot occur without A 

occurring or that whenever (wherever, etc.)VB occurs, so does A. Drinking water regularly is 

necessary for a human to stay alive. If A is a necessary condition for B, then the logical relation 

between them is expressed as ’’If B then A” or ”B only if A” or "B →A.”  

' 



Sufficient condition: To say that A is sufficient for B is to say precisely the converse: that A 

cannot occur without B, or whenever A occurs, B occurs. That there is a fire is sufficient for 

there being smoke. if A is a sufficient condition for B, then the logical relation between them is 

expressed as "if A then B” or "A only if B” or "A →B.” 

 

Necessary and sufficient condition: To say that A is necessary and sufficient for B is to say two 

things:  i) A is necessary for B and 2) A is sufficient for B. The logical relationship is therefore 

"A if and only if B” In general, to prove”P if Q” it is equivalent to proving both the statements 

"if P, then Q" and”if Q, then P." 

 

For real time scheduling feasibility tests, sufficient therefore means that passing the test 

guarantees that the proposed service set will not miss deadlines; however, failing a sufficient 

feasibility test does not imply that the proposed service set will miss deadlines. An N&S 

(Necessary and Sufficient) feasibility test is exact- if a service set passes the N&S feasibility test 

it will not miss deadlines, and if it fails to pass the N&S feasibility test, it is guaranteed to miss 

deadlines. Therefore, an N&S feasibility test is more exact compared to a sufficient feasibility 

test. 

 

Now that you understand how the RM LUB is useful, let’s see how the RM LUB is derived. 

After understanding the RM LUB derivation, N8 fNe8asibility algorithms are easier to 

understand as well. Finally, much like the demonstration that the RM policy is optimal with two 

services, it’s easier to derive the RM LUB for two services (if you want to understand the full 

derivation of the RM LUB for an unlimited number of services. 

 

FEASIBILITY 

 

Feasibility tests provide a binary result that indicates whether a set of services (threads or tasks) 

can be scheduled given their Q, T,, and D, specification so the input is an array of service 

identifiers(S,) and specification  for search, and the output is TRUE if the set can be safely 

scheduled so that none of the deadlines will be missed and FALSE if any one of the deadlines 

might be missed. There are two types of feasibility tests: 

 

 Sufficient 

 Necessary and Sufficient(N&S) 

 

Sufficient feasibility tests will always fail a service set that is not real time safe (i,e. that can miss 

deadlines). However, a sufficient test will also fail a service set that is real time occasionally as 

well. Sufficient feasibility tests are not precise. The sufficient tests are conservative because they 

will never pass an unsafe set of services. N&S tests are precise. An N&S feasibility test will not 

pass a service set that is unsafe and likewise will not fail any test that is safe. The RM LUB is a 

sufficient test and therefore safe, but it will fail service sets that actually can be safely scheduled. 

By comparison, the Scheduling Point and Completion tests for the RM policy are N&S and 

therefore precise. The N&S test will precisely identify the safe service set. The sufficient tests 

are yet another subset of the N&S safe subset as depicted in Figure 3.3. 

 



 
 

RATE MONOTONIC LEAST UPPER BOUND (RM LUB) 

 

Taking the same two service example shown earlier in Figure 3.2, we have the following set of 

proposed services. Given Services S1,S2with periods T1 and T2 and execution times C2 and C2, 

assume that the services are released with T1 = 2, T2= 5, execute deterministically with C2 = 1, 

C2 = 2, and are scheduled by the RM policy so that prio(S2) > prio(S2). If this proposed system 

can be shown to be feasible so that it can be scheduled with the RM policy over the LCM (least 

common multiple) period derived from all proposed service periods, then the Lehoczky, Shah, 

and Ding theorem guarantees it real time safe. The theorem is based upon the fact that given the 

periodic releases of each service, the LCM schedule will simply repeat over and over as shown 

in Figure 3.4. 

 

Note that there can be up to   releases of S1 during T2 as indicated by the 

 

#1, #2, and #3 execution traces for S1in Figure 3.4. Furthermore, note that in this particular 

scenario, the utilization U is 90%.”   The CI (Critical Instant) is a worst case assumption that the 



demands upon the system might include simultaneous requests for service by all services in the 

system! This eliminates the complexity of assuming some sort of known relationship or phasing 

between service requests and makes the RM LUB a more general result.  

 

Given this motivating two service example, we can now devise a strategy to derive the RM LUB 

for any given set of services S for which each service 81has an arbitrary Ci,Ti. Taking this 

example, we examine two cases: 

 

Case 1: C1 short enough to fit all three releases in T2 (fitsS2critical time zone) 

Case 2: C1 too large to fit last release in T2 (doesn’t fit S2critical time zone) 

 

Examine U in both cases to find common U upper bound. The critical time zone is depicted in 

Figure 3.5. 

 

The S2 critical time zone is best understood by considering the condition where S1 releases 

occur the maximum number of times and for a duration that uses all possible time during 

T2without actually causing S2to miss its deadline. So, Case 1 where S1total resource required 

just fits the S2critical time zone (T2-C2) is shown in Figure 3.5. 

 

In Case 1, all three S1releases requiring C1 execution time fit in T2 as shown in Figure 3.5. This 

is expressed by 

 
 

 
 

                                  C2>T2—C1[T2/T1]       (3.2) 

 

 

 



Now, simplify by the following algebraic steps: 

 

 
 

 

 

 

 
 

 
 



 

 
 

 

 

 
Substituting Equation 3.7 into the utility Equation 3.3again as before, we get Equation 3.8: 

 

  
 

Now simplifying by the following algebraic steps: 

 

 
 



 

 
 

Let’s plot the two utility functions on the same graph setting T1 = 1, T2 = 1 + to ∞, and C1= 0 to 

T1. 



 
 

When C1 = 0, this is not particularly interesting because this means that S2 is the only service 

that requires CPU resource likewise the when C1 = T2, then this is also not so interesting 

because it means that S1uses all the CPU resource and never allows S2 to run 

 



 
 

Finally, if we then plot the diagonal of either utility curve (from Equation 3.5 or Equation 3.9) as 

shown in Figure 3.12, we see that identical curves that clearly have a minimum near 83% utility. 

 
 

 



Recall that Liu and Layland claim the least upper bound for safe utility given any arbitrary set of 

services (any relation between periods and any relation between critical time zones) is defined 

as: For two services, . 

 

We have now empirically determined that there is a minimum safe bound on utility for any given 

set of services, but in doing so, we can also clearly see that this bound can be exceeded safely for 

specifiTc1, T2, and C1 relations.  

 

For completeness, let’s now finish the two service RM LUB proof mathematically. We’ll argue 

that the two cases are valid only when they intersect, and given the two sets of equations this can 

only occur when C1 is equal for both cases: 

 
Now, plug C1 and C2 simultaneously into the utility equation to get Equation 3.10: 

 
Now, let whole integer number of interferences of S, to S2 over T2 be I= [T2 / T1] and the 

fractional interference be f = (T2/ T1) – [T2/ T1]. From this, we can derive a simple expression 

for utility: 

 



 

Equation 3.11 is based upon substitution of I and f into Equation 3.10‘as follows: 

 
By adding and subtracting the same denominator term to Equation 3.11, we can get: 

 

 
 

The smallest I possible is 1, and the LUB for U occurs when I is minimized, so we substitute 1 

for I to get: 

 



 
 

Having derived the RM LUB by inspection and by mathematical manipulation, we learned that 

the pessimism of the RM LUB that leads to low utility for real time safety is based upon a bound 

that works for all possible combinations of T1 and T2. Specifically, the RM LUB is pessimistic 

for cases where T1 and T2 are harmonic in these cases, you can safely achieve 100°/o utility.  In 

many cases, as shown by demonstration in Figure 3.5 and the Lehoczky, Shah, Ding theorem, 

you can also safely use a CPU at levels below 100% but above the RM LUB. The RM LUB still 

has value because it’s a simple and quick feasibility check that is suffcient. Going through the 

derivation, it should now be evident that in many cases, safely using 100% of the CPU resource 

is not possible with fixed priority preemptive scheduling and the RM policy. In the next section, 

the Lehoczky, Shah, Ding theorem is presented and provides a necessary and sufficient 

feasibility test for RM policy. 

 
NECESSARY AND SUFFICIENT (N&S) FEASIBIALITY 

 

Two algorithms for determination of N818 feasibility testing with RM policy are easily 

employed: 

 

 Scheduling Point Test 

 Completion Time Test 

 

To always achieve 100% utility for any given service set, you must use a more complicated 

policy with dynamic priorities. You can achieve 100% utility for fixed priority preemptive 

services, but only if their relative periods are harmonic.  



 

Scheduling Point Test 

 

Recall that by the Lehoczky, Shah, Ding theorem, if a set of services can be shown to meet all 

deadlines form the critical instant up to the longest deadline of all tasks in the set, then the set is 

feasible. Recall the critical instant assumption from Liu and Layland papers, which states that in 

the worst case, all services might be requested at the same point in time. Based upon this 

common set of assumptions, Lehoczky, Shah, and Ding introduced an iterative test for this 

theorem called the Scheduling Point Test: 

 

 
 

 Where n is the number of tasks in the set Si to Sn “where S1 has higher priority than S2, 

and Sn, has higher priority than Sn >1. 

 j identifies SJ-, a service in the set between S1 and Sn 

 k identifies Sk, a service whose l periods must be analyzed. 

 l represents the number of periods of Sk to be analyzed. 

 [(l)Tk / Tj] represents the number of times Sj executes within 1 periods of Sk 

 [T2/ T1] is the time required by SJ to execute within 1periods of Sk if the sum of these 

times for the set of tasks is smaller than 1 periods of Sk, then the service set is feasible. 

 
 



The C code algorithm is included with test code on the CD-ROM for the Scheduling Point Test. 

Note that the algorithm assumes arrays are sorted according to the RM policy where period [0] is 

the highest priority and shortest period. 

 

The Completion Time Test is presented as an alternative to the Scheduling Point Test 

[Briand99l: 

 
Passing this test requires proving that an(t) is less than or equal to the deadline for Sn which 

proves that Sn is feasible. Proving this same property for all S from S1to Sn proves that the 

service set is feasible.  

 

 

DEADLINE-MONOTONIC POLICY 

 

Deadline-monotonic (DM) policy is very similar to RM except that highest priority is assigned to 

the service with the shortest deadline. The DM policy is a fixed priority policy. The DM policy 

eliminates the original RM assumption that service period must equal service deadline and 

allows RM theory to be applied for scenarios even when deadline is less than period. This is 

useful for dealing with significant output latency. The DM policy can be shown to be an optimal 

fixed priority assignment policy like RM policy because D,-and T,- differ only by a constant 

value, and Di ≤ Ti-.The DM policy feasibility tests are most easily implemented as iterative tests 

like Scheduling Point and the Completion Time Test for RM policy.  The sufficient feasibility 

test they first introduced is simple and intuitive: 

 

 
Ci is the execution time for service i and Ii is the interference time service i experiences over its 

deadline Di time period since the time of request for service. Equation 3.12 states that for all 

services from 1 to n, if the deadline interval is long enough to contain the service execution time 

interval plus all interfering execution time intervals, then the service is feasible. If all services are 

feasible, then the system is feasible (real time safe).  

Interference to Service S, is due to preemption by all higher priority services S1 to Si-1, and the 

total interference time is the number of releases of Sj over the deadline interval Dj The number 



of Si interferences is then multiplied by execution time Cj and summed for all Sj. Note that Sj 

always has higher priority than Si. 

 

 
 

is the worst case number of releases of Sj over the deadline interval for Si. Because the 

interference is the worst case number of releases, interference is over accounted for the last 

interference may be only partial. So, there will be [Di/Tj] full interferences and some partial 

interference from the last additional interference. So, we can better account for the partial 

interference with  

 
 

 

 

 

 

DYNAMIC PRIORITY POLICIES 

 

Priority preemptive dynamic priority systems can be thought of as a more complex class of 

priority preemptive where priorities are adjusted by the scheduler every time a new service is 

released and ready to run; Furthermore, it shows that a related dynamic priority policy, LLF 

(Least Laxity First), also succeeds where RM fails. Like EDF, LLF is a dynamic priority policy 

where services on the ready queue are assigned higher priority if their laxity is the least. Laxity is 

the time difference between their deadline and remaining computation time. This requires the 

scheduler time, and remaining computation time for all services, and to reassign priorities to all 

services on every-preemption. Estimating remaining computation time for each service can be 

difficult and typically requires a worst case approximation. Like EDF, LLF can also schedule 

100% of the CPU for schedules that can’t be scheduled by the static RM policy.   

 



 
 

By comparison, for fixed priority policy such as RM, in an overload, all services of lower 

priority than the service that is overrunning may miss their deadline, yet all services of higher 

priority are guaranteed not to be affected as shown in Figure 3.15. For EDF an overrun by any 

service may cause all other services on the ready queue to miss their deadlines; a new service 

added to the queue, therefore adjusting priorities for all, will not preempt the overrunning 

service. The overrunning service has a time to deadline that is negative because it has passed, so 

it continues to be the highest priority service and continues to cause others to wait and potentially 

miss deadlines. In an overrun scenario, common policy is to terminate the release of a service 

that has overrun. This causes a service dropout. However, simply detecting overrun and 

terminating the overrunning service takes some 

CPU resource, which without any margin means that some other service will miss its deadline 

with overrun control EDF becomes much more well behaved in an overload scenario the services 

with the soonest deadlines will then clearly be the ones to lose out. However, determining which 

services this will be in advance based upon the dynamics of releases relative to each other is still 

difficult .Figure 3.16 graphically depicts the potentially cascading EDF overload failure scenario 

all services queued while the overrunning service executes potentially miss their deadlines, and 

the next service is likely to overrun as well causing a cascading failure. Probably the best option 

for an EDF overload is to dump all services in the queue that is least would be more 

deterministic. 

 

 



 
 

 
Variations of EDF exist where a different policy is encoded into the deadline driven, dynamic 

priority framework (define originally by Liu and Layland). One of the more interesting variations 

is LLF. In LLF, highest priority is assigned to the service that has the least difference between its 

remaining execution time and its upcoming deadline. Laxity is the time difference between their 



deadline and remaining computation time for a service. Determining the least laxity service 

requires the scheduler to know all outstanding service request times, their deadlines, the current 

time, and remaining computation time for all services. After all this is known, the scheduler must 

then reassign priorities to all services on every event that adds another service to the ready 

queue. Estimating remaining computation time for each service can be difficult and typically 

requires a worst case approximation. The LLF policy encodes the concept of imminence, which 

intuitively makes sense every student knows that they should work on the homework where they 

have the most to do and which is due soonest first unless of course that particular homework is 

not worth much credit. In some sense, all priority encoding policies, dynamic or static, miss the 

point what we really want to do is encode which service is most important and make sure that it 

gets the resources it needs first. We want an intelligent scheduler, like a student who takes into 

consideration laxity, impact of missing a deadline for a given assignment, cost of dropping one 

or more, and then intelligently determines how to spend resources for maximum benefit.  

 

 In fact, since the landmark Liu and Layland formalization of RM and deadline driven 

scheduling, most of the processor resource research has been oriented to one of four things:  

 

 Generalization and reducing constraints for RM application  

 Solving problems related to RM application for real systems  

 Devising alternative policies for deadline—driven scheduling  

 Devising new soft real time policies to reduce margin required in RM policy  
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 Most services, unless they are trivial, involve some intermediate I/O after the initial sensor input 

and before the final posting of output data to a write buffer. This intermediate I/O is most often 

MMR (Memory Mapped Register) or memory device I/ O. If this intermediate I/O has single 

core cycle latency, zero wait state then, it has no additional impact on the service response time. 

However, if the intermediate I/O stalls the CPU core, then this increases the response time while 

the CPU processing pipeline is stalled. Rather than considering this intermediate I/O as device 

I/O, it is more easily modelled as execution efficiency. Device I/O latency is hundreds, 

thousands, and even millions of core cycles. By comparison, intermediate I/O latency is typically 

tens or hundreds of core cycles more latency than this is possible, and then the core hardware 

design should be reworked. 

 

WORST-CASE EXECUTION TIME 

 

Ideally the execution time for a service release would be deterministic. For simple 

microprocessor architectures, this may be true. The Intel®8088 and the Motorola® 68000, for 

example, have no CPU pipeline, no cache, and given memory that has no wait states, you can 

take a block of code and count the instructions from start to finish. Furthermore, for these 

architectures, the number of CPU cycles required to execute each instruction is known some 

instructions may take more cycles than others, but all are known numbers. So, the total number 

of CPU clock cycles required to execute a block of code can be calculated. To compute 

deterministic execution time for a service, the following system characteristics are necessary:  

 

 Exact number of instructions executed from service release input up to response output.  

 The exact number of CPU clock cycles for each instruction is known.  

 The number of CPU clock cycles for a given instruction is constant.  

 

 The thrust function is often known for a particular type of thrusters. One method to find the root 

of any function is to iterate, bisecting an interval to define x and feeding the bisection value into 

F(x) = 0 to test how close the current guess for x is to zero. If the guess is higher, then a lesser or 

greater sub interval will be selected for the next iteration. If F(x) is a continuous function, then 

with successive iterations, the interval will become diminishingly small and the bisection of that 

interval, or x, will come closer and closer to the true value of x where F(x) is zero. How much 

iteration will this take? The answer depends upon the following requirements: 

 

 Accuracy of x needed 



 Complexity of the function F(x) 

 The initial interval 

 

Finally, some functions may actually have more than one solution as well. Many numerical 

methods are similar to finding roots by bisection in that they require a total path length that 

varies with the input. For such algorithms, you need to place an upper bound on the path length 

to define WCET (Worst Case Execution Time). 

 

This is typified by  the RISC (Reduced Instruction Set Computer) with instruction pipelining and 

use of memory caches. As CPU core clock rates increased, memory access latency for 

comparably scaled capacity has generally not kept pace. So, most RISC pipelined architectures 

make use of cache, a small zero wait state (single CPU cycle access latency) memory. 

Unfortunately, cache is too small to hold many applications. So, set associative memories are 

used to temporarily hold main memory data when the cache holds data for an address referenced 

by a program, this is a hit, and the single cycle access to data and/or code allows the CPU 

pipeline to fetch an instruction or load data into a register in a single cycle. A cache miss, 

however, stalls the pipeline. Furthermore, 1/0 from MMRs (Memory Mapped Registers) may 

require more than a single CPU core cycle and will likewise stall the CPU pipeline if the data is 

needed for the next instruction. Detecting potential stalls and avoiding them is an art that can 

increase execution efficiency overall for a CPU for example, instructions that cause an MMR 

read can be executed out of order so that the instruction requiring the read data is executed as late 

as possible, delaying the potential pipeline stall. 

 

The efficiency is therefore data and code driven and not deterministic. So, execution efficiency 

will vary, even for  the same block of code, because cache contents may not only be a function of 

the current thread of execution, but also of the previous threads that executed in the past. In 

summary, WCET is a function of the longest path length and the efficiency in executing that 

path. Equation 4.1 describes WCET: 

 

 

 
 

The CPI is a figure that describes efficiency in pipelined execution as the number of Clocks Per 

Instruction on average that are required to execute each instruction in a block of code. In the next 

two sections, “Increasing Efficiency” and “Overlapping Execution with I/O,” .The longest path 

instruction count must be determined by inspection, formal software engineering proof, or by 

actual instruction count traces in a simulator or with the target CPU architecture. Warning most 

CPU core documentation states a CPI that is best case rather than worst case. 

For full determinism in WCET for hard real time systems, you must guarantee the following:  

 

 All memory access is to known latency memory, including locked cache or main memory 

with zero or bounded wait states. 

 Unlocked cache hits are not expected in unlocked cache because the hit rate is not 

deterministic. , 

 Overlap of CPU and device I/O is not expected nor required to meet deadlines. 



 All other pipeline hazards in addition to cache misses and device I/O read/write stalls are 

lumped into CPI and taken as worst case (e.g. branch-density * branch penalty). 

 Longest path is known, and instruction count for it is known. 

 

For soft real time systems, you can allow occasional service drop outs limited overruns and 

therefore use ACET (Average Case Execution Time). The ACET can be estimated from the 

following information: 

 

 Expected L1 and L2 cache hit/miss ratio and cache miss penalty. 

 Expected overlap of CPU and device I/ O required meeting deadlines. 

 All other pipeline hazards are typically secondary and can be ignored like branch mis-

prediction. 

 Average length path is known, and the instruction count for it is known. 

 

 
 

In these equations, the effective CPI accounts for secondary pipeline hazards such as branch 

mispredictions. The term NOA (Non Overlap  Allowed) is 1.0 if 10 time is not overlapped with 

processing at all. 

 

INTERMEDIATE I/O 

 

In a non preemptive run to completion system with a pipelined CPU, six key related equations 

describe CPU I/O overlaps. Note that the I/O described here is device I/O that occurs during the 

service execution, rather than the initial I/O, which releases the service in the first place. In some 

sense, the device I/ O occurring during service execution can be considered micro I/O and 

usually consists of MMR access rather than block oriented DMA (Direct Memory Access) I/O. 

First, you must understand what it means to overlap 1/O with CPU. Consider the following 

overlap definitions:  

 

 ICT = Instruction Count Time (Time to execute a block of instructions with no stalls = 

CPU Cycles * CPU Clock Period) 

 IOT = Bus Interface I/O Time (Bus I/O Cycles X Bus Clock Period)  

 OR = Overlap Required percentage  cycles that must be concurrent with I/O cycles 

 NOA = Non Overall Allowable for Si -to meet Di percentage of CPU cycles that can be 

in addition to I/O cycle time without missing service deadline 

 D,-= Deadline for Service Si relative to release (interrupt initiating execution) 



 CPI = Clocks Per Instruction for a block of instructions 

 

The characteristics of overlapping I/O cycles with CPU cycles for a service Si  are summarized 

as follows by the five possible overlap  conditions for CPU time and I/O time relative to Si 

deadline Di. 

 

 
 

For all five overlap conditions listed here, ICT > O and IOT > 0 must be true. If ICT and IOT are 

zero, no service is required. If ICT or IOT alone is zero, then no overlap is possible. When IOT = 

0, this is an ideal service with no intermediate IO. From these observations about overlap in a 

nonpreemptive system, we can deduce the following axioms: 

 

 
 

Equations 4.7 and 4.8 provide a cross check Equation 4.7 should always match equation 4.5 as 

long as condition 4 or 3 is true. Equation 4.9 should always be 1.0 by definition whatever isn’t 

overlapped must be allowable, or it would be required. When no overlapping of core device I/O 

cycles is possible with core CPU cycles, then the following condition must hold for a service to 

guarantee a deadline: 

 
The WCET must be less than the service’s deadline because we have not considered interference 

in this CPU- I/O overlap analysis. Recall that interference time must be added to release 1/O 

latency and WCET: 

 



 
 

The WCET deduced from Equation 4.10 must therefore be an input into the normal RM 

feasibility analysis that models interference. The Core to Bus Factor term is ideally 1. This is a 

zero wait—state case where the processor clock rate and bus transaction rate are perfectly 

matched. Most often, a read or write will require multiple core cycles. 

 

The overlap required (OR) is indicative of how critical execution efficiency is to a service’s 

capability to meet deadlines. If OR is high, then the capability to meet deadlines requires high 

efficiency, and deadline overruns are likely when the pipeline stalls. In a soft real time system, it 

may be reasonable to count on an OR of 10 to 30%, which can be achieved through compiler 

optimizations (code scheduling), hand optimizations (use of perfecting), and hardware pipeline 

hazard handling. Note that the ICT and IOT in Figure 4.1 are shown in nanoseconds as an 

example for a typical 100 MHz to 1 GHZ CPU core executing a typical block of code of 100 to 

6,000 instructions with a CPI eff  = 1.0. It is not possible to have OR > 1.0, so the cases where 

OR is greater than 1.0 are not feasible. 

 

 
 

EXECUTION EFFICIENCY 

 

When WCET is too worst case, a well tuned and pipelined CPU architecture increases 

instruction throughput per unit time and significantly reduced the probability of WCET 



occurrences. In other words, a pipelined CPU reduces the overall CPI required to execute a block 

of code. In some cases, IPC (Instructions Per Clock), which is the inverse of CPI, is used as a 

figure of merit to describe the overall possible throughput of a pipelined CPU. A CPU with 

better throughput has a lower CPI and a higher IPC. In this text, we will use only CPI noting 

that: 

 

 
 

The point of pipelined hardware architecture is to ensure that an instruction is completed every 

clock for all instructions in the ISA (Instruction Set Architecture). Normally CPI is 1.0 or less 

overall in modern pipelined systems. Figure 4.2 shows a simple CPU pipeline and its stage 

overlap such that one instruction is completed (retired) every CPU clock. 

 
In Figure 4.2, the stages are Instruction Fetch (IF), Instruction Decode (ID), Execute, and register 

Write Black example pipeline is four stages, so for the pipeline to reach steady state operation 

and a CPI of 1.0, it requires four CPU cycles until a Write Blacks occurs on every IF. At this 

point, as long as the stage overlapping can continue, one instruction is completed every CPU 

clock. Pipeline design requires minimization of hazards, so the pipeline must stall the one cycle 

write Black to produce correct results. The strategies for pipeline design are well described by 

computer architecture texts [Hennessy03], but are summarized here for convenience. Hazards 

that may stall the pipeline and increase CPI include the following: 

 

 Instruction and data cache misses, requiring a high latency cache load from main memory 

 High latency device reads or writes, requiring the pipeline to wait for completion 



 Code branches—change in the locality of execution and data reference 

 

 

The instruction and data cache misses can be reduced by increasing cache size, keeping a 

separate data and instruction cache (Harvard architecture), and allowing the pipeline to execute 

instructions out of order so that something continues to execute while a cache miss is being 

handled. The hazard can’t be eliminated unless all code and data can be locked into a Level-

1cache (Level 1-cache is single cycle access to the core by definition). 

 

Eliminating no determinism of device I/O latency and pipeline hazards is very difficult. 

When instructions are allowed to execute while a write is draining to a device, this is called 

weakly consistent. This is okay in many circumstances, but not when the write must occur before 

other instructions not yet executed for correctness. Posting writes is also ultimately limited by 

the posted write bus interface queue depth when the queue is full, subsequent writes must stall 

the CPU until the queue is drained by at least one pending write. Likewise, for split transaction 

reads, when an instruction actually uses data from the earlier executed read instruction, then the 

pipeline must stall until the read completes. Otherwise the dependent instruction would execute 

with stale data, and the execution would be errant. A stall where the pipeline must wait for a read 

completion is called a data dependency stall. When split transaction reads are scheduled with a 

register as a destination, this can create another hazard called register pressure the register 

awaiting read completion is tied up and can’t be used at all by other instructions until the read 

completes even though they are not dependent upon the read. You can reduce register pressure 

by adding a lot of general purpose register (most pipelined RISC architectures have dozens and 

dozens of them) as well as by providing an option to read data from devices into cache. Reading 

from a memory~ mapped device into cache is normally done with a cache prefect instruction. In 

the worst case, we must assume that all device I/O during execution of a service stalls the 

pipeline so that 

 

 
 

If you can keep the stall cycles to a deterministic minimum by locking code into’L2 cache (or L1 

if possible) and by reducing device I/O stall cycles, then WCET can be reduced. Cache locking 

helps immensely and is fully deterministic. 

 

I/O ARCHITECTURE 

 

In this chapter, I/O has been examined as a resource in terms of latency (time) and bandwidth 

(bytes/second). The view has been from the perspective of a single processor core and I/O 

between that processor core and peripherals. The emergence of advanced ASIC architectures, 

such as SoC (System on a Chip), has brought about embedded single chip system designs that 

integrate multiple processors with many peripherals in more complex interconnections than BIU 

(Bus Interface Unit) designs. Figure 4.3 provides an overview of the many inter connection 

networks that can be used on chip and between multichip or even multi subsystem designs, 

including traditional bus architectures. 

 



 
 

The cross bar interconnect fully connects all processing and I/O components without any 

blocking. The cross basis said to be dynamic because a matrix of switches must be set to create a 

pathway between two end points as shown in Figure 4.4. The number of switches required is a 

quadratic function of the number of end points such that N points can be connected by M 

switches this is a costly interconnection. Blocking occurs when the connection between two end 

points prevents the simultaneous connection between two others due to common pathways that 

can’t be used simultaneously. The bus interconnection, like a cross-bar, is dynamic, but is fully 

blocking because it must be time multiplexed and allows no more than two end points within the 

entire system to be connected at once. 

 

 
 



A nonblocking interconnection such as the cross-bar provides low-latency communication 

between two end points by providing a dedicated nonblocking circuit. By comparison, an end 

point communicating over a bus must request access for the bus, be granted the bus by a 

controller, address another end point the bus, transfer data, and relinquish the bus. If the bus is 

busy, the bus controller makes the requestor wait in a request queue. This bus arbitration time 

greatly increases I/O latency.  
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Introduction 
 

 For a realtime embedded system, this is a useful way to View memory although it’s very 

atypical compared to general purpose computing. In general, memory is typically viewed as a 

logical address space for software to use as a temporary store for intermediate results while 

processing input data to produce output data. The physical address space is a hardware view 

where memory devices of various type and latency are either mapped into address space through 

chip selects and buses or are hidden as caches for mapped devices. Most often an MMU 

(Memory Management Unit) provides the logical to physical address mapping (often one to one 

for embedded systems) and provides address range and memory access attribute checking. 

 

From a resource perspective, total memory capacity, memory access latency, and memory 

interface bandwidth must be sufficient to meet requirements. 

 

 
 

PHYSICAL HIERARCHY 

 

The physical memory hierarchy for an embedded processor can vary significantly based upon 

hardware architecture. However, most often, a Harvard architecture is used, which has evolved 



from GPCs (general purpose computers) and is often employed by embedded systems as well. 

The typical Harvard architecture with separate L1 (Level 1) instruction and data caches, but with 

unified L2 (Level 2)cache and either on chip SRAM or external DDR (Dynamic Data RAM). 

 
From the software viewpoint, memory is a global resource in a single address space with all 

other MMIO as shown below. 

 

Memory system design has been most influenced by GPC architecture and goals to maximize 

throughput, but not necessarily to minimize the latency for any single memory access or 

operation. The multilevel cached memory hierarchy for GPC platforms now often includes 

Harvard L1 and unified L2 caches on chip width off chip L3 unified cache. The caches for GPCS 

are most often set associative with aging bits for each cache set (line) so that the LRU (Least 

Recently Used) sets are replaced when a cache line must be loaded. An N way set associative 

cache can load an address reference into any N ways in the cache allowing for the LRU line to 

be replaced. The LRU replacement policy, or approximation thereof, leads to a high cache hit to 

miss ratio so that a processor most often finds data in cache and does not have to suffer the 

penalty of a cache miss. The set associative cache is a compromise between a direct mapped a 



fully associative cache. In a direct mapped cache, each address can be loaded into one and only 

one cache line making the replacement policy simple, yet often causing cache thrashing. 

Thrashing occurs when two addresses are referenced and keep knocking each other out of cache, 

greatly decreasing cache efficiency. Ideally, a cache memory would be so flexible that the LRU 

set (line) for the entire cache would be replaced each time, minimizing the likelihood of 

thrashing. 

 

 

Direct-mapped cache 
In this cache organization, each location in main memory can go in only one entry in the cache. 

Therefore, a direct-mapped cache can also be called a "one-way set associative" cache. It does 

not have a replacement policy as such, since there is no choice of which cache entry's contents to 

evict. This means that if two locations map to the same entry, they may continually knock each 

other out. Although simpler, a direct-mapped cache needs to be much larger than an associative 

one to give comparable performance, and it is more unpredictable. Let x be block number in 

cache, y be block number of memory, and n be number of blocks in cache, then mapping is done 

with the help of the equation x = y mod n. 

 

Only drawback is that more than one memory address may be mapped to same cache line. For 

example in above example if address with block 0 and 128 are accessed together, there will be 

cache miss every time and hence decreasing the performance. 

 

 
 

Two-way set associative cache 
If each location in main memory can be cached in either of two locations in the cache, one 

logical question is: which one of the two? The simplest and most commonly used scheme, shown 



in the right-hand diagram above, is to use the least significant bits of the memory location's index 

as the index for the cache memory, and to have two entries for each index. One benefit of this 

scheme is that the tags stored in the cache do not have to include that part of the main memory 

address which is implied by the cache memory's index. Since the cache tags have fewer bits, they 

require fewer transistors, take less space on the processor circuit board or on the microprocessor 

chip, and can be read and compared faster. Also LRU is especially simple since only one bit 

needs to be stored for each pair. 

 

 

 
 

 
CAPACITY AND ALLOCATION 

 

The most basic resource concern associated with memory should always be total capacity 

needed. Many algorithms include space and time trade-offs and services often need significant 

data context for processing. Keep in mind that cache does not contribute to total capacity because 

it stores only copies of data rather than unique data. This is another downside to cache for 

embedded systems where capacity is often limited. Furthermore, latency for access to memory  

devices should be considered carefully because high latency access can significantly increase 

WCET and cause problems meeting real time deadlines. 80, data sets accessed with high 

frequency should of course be stored in the lowest latency memory. 

 

 

 

 

 

https://en.wikipedia.org/wiki/Cache_algorithms


SHARED MEMORY 

 

Shared memory is a way of inter-process communication where processes share a single lump of 

physical memory space. The memory space is the resource pool for the processes from where the 

processes are allocated resources according to some predefined algorithms. 

Shared memory is a method by which program processes can exchange data more quickly than 

by reading and writing using the regular operating system services. For example, a client process 

may have data to pass to a server process that the server process is to modify and return to the 

client. Ordinarily, this would require the client writing to an output file (using the buffers of the 

operating system) and the server then reading that file as input from the buffers to its own work 

space. Using a designated area of shared memory, the data can be made directly accessible to 

both processes without having to use the system services. To put the data in shared memory, the 

client gets access to shared memory after checking a semaphore value, writes the data, and then 

resets the semaphore to signal to the server (which periodically checks shared memory for 

possible input) that data is waiting. In turn, the server process writes data back to the shared 

memory area, using the semaphore to indicate that data is ready to be read. 

 

 
 Clearly if the Update Code was interrupted and preempted by the Read Code at line 4 for 

example, then the contro1(X, Y, 2) function would be using the new X and possibly an incorrect 

and definitely old Y and 2. However, the semTake(Semid) and semGive(Semid) guarantee that 

the Read Code cant preempt the Update Code no matter what the RM policies are. How does it 

do this? The semTake(Semid) is a TSL instruction (Test and Set Lock< n ) a  single cycle, 

supported by hardware, the Semid memory location is first tested to see if it is 0 or 1. If 1, set to 

0, and execution continues; if Semid is 0 on the test, the Value of Semid is unchanged, and the 

next instruction is a branch to a wait queue  and CPU yield. Whenever a service does a semGive 

(Semid ) , the wait queue is checked and the first waiting service is unblocked. The unblocking is 

achieved by dequeuing the waiting service from the wait queue and  then placing it on the ready 

queue for  execution inside the critical section at its normal priority. 

 

 

ECC memory 
 

Error-correcting code memory (ECC memory) is a type of computer data storage that can detect 

and correct the most common kinds of internal data corruption. ECC memory is used in most 

computers where data corruption cannot be tolerated under any circumstances, such as for 

scientific or financial computing. 

The memory only has to store the parity or ECC bits, just as it stores the data bits. Parity is 

implemented on most PCs with one parity bit per byte. For a 32-bit word size there are four 

http://whatis.techtarget.com/definition/process
http://searchenterprisedesktop.techtarget.com/definition/client
http://whatis.techtarget.com/definition/server
http://searchcio-midmarket.techtarget.com/definition/buffer
http://searchenterpriselinux.techtarget.com/definition/semaphore


parity bits, for a total of 36 bits that have to be stored in the memory. On most Pentium and 

Pentium Pro systems, and a few 486 systems, there is a 64-bit wide memory data path, so there 

are eight parity bits, for a total of 72 bits. 

When a word is written into memory, each parity bit is generated from the data bits of the byte it 

is associated with. This is done by a tree of exclusive-or gates. When the word is read back from 

the memory, the same parity computation is done on the data bits read from the memory, and the 

result is compared to the parity bits that were read. Any computed parity bit that doesn't match 

the stored parity bit indicates that there was at least one error in that byte (or in the parity bit 

itself). However, parity can only detect an odd number of errors. If an even number of errors 

occur, the computed parity will match the read parity, so the error will go undetected. Since 

memory errors are rare if the system is operating correctly, the vast majority of errors will be 

single-bit errors, and will be detected. 

 

Unfortunately, while parity allows for the detection of single bit errors, it does not provide a 

means of determining which bit is in error, which would be necessary to correct the error. This is 

why parity is only an Error Detection Code (EDC). 

 

ECC is an extension of the parity concept. ECC is usually performed only on complete words, 

rather than individual bytes. In a typical ECC system with a 64-bit data word, there would be 7 

ECC bits. Each ECC bit is calculated as the parity of a different subset of the data bits. The key 

to the power of ECC is that each data bit contributes to more than one ECC bit. By making 

careful choices as to which data bits contribute to which ECC bits, it becomes possible to not just 

detect a single-bit error, but actually identify which bit is in error (even if it is one of the ECC 

bits). In fact, the code is usually designed so that single-bit errors can be corrected, and double-

bit errors can be detected (but not corrected), hence the term Single Error Correction with 

Double Error Detection (SECDED). 

 

When a word is written into ECC-protected memory, the ECC bits are computed by a set of 

exclusive-or trees. When the word is read back, the exclusive-OR trees use the data read from the 

memory to re-compute the ECC. The recomputed ECC is compared to the ECC bits read from 

the memory. Any discrepancy indicates an error. By looking at which ECC bits don't match, it is 

possible to identify which data or ECC bit is in error, or whether a double-bit error occurred. In 

practice this comparison is done by an exclusive-or of the read and recomputed ECC bits. The 

result of this exclusive-or is called the syndrome. If the syndrome is zero, no error occurred. If 

the syndrome is non-zero, it can be used to index a table to determine which bits are in error, or 

that the error is uncorrectable. This table lookup stage is implemented in hardware in some 

systems, and via an interrupt, trap, or exception in others. In the latter case, the system software 

is responsible for correcting the error if possible. 

 

FLASH FILE SYSTEM 
en.wikipedia.org 

Flash memory is a memory storage device for computers and electronics. It is most often used in 

devices like digital cameras, USB flash drives, and video games. It is quite similar to 

EEPROM. Flash memory is different from RAM because RAM is volatile (not permanent). 

When power is turned off, RAM loses all its data. 

 

https://www.google.co.in/imgres?imgurl=https://upload.wikimedia.org/wikipedia/commons/2/2c/USB_flash_drive.JPG&imgrefurl=https://en.wikipedia.org/wiki/Flash_memory&h=1944&w=2592&tbnid=nnK7XvLaCz_dyM:&tbnh=160&tbnw=213&docid=YrQUlikujNfS2M&itg=1&usg=__-KO-lzjV0WMs5d5xWJYI9NZF9vg=&sa=X&ved=0ahUKEwimtsrg9MzKAhUBxY4KHU4XDsoQ9QEIITAA
https://www.google.co.in/imgres?imgurl=https://upload.wikimedia.org/wikipedia/commons/2/2c/USB_flash_drive.JPG&imgrefurl=https://en.wikipedia.org/wiki/Flash_memory&h=1944&w=2592&tbnid=nnK7XvLaCz_dyM:&tbnh=160&tbnw=213&docid=YrQUlikujNfS2M&itg=1&usg=__-KO-lzjV0WMs5d5xWJYI9NZF9vg=&sa=X&ved=0ahUKEwimtsrg9MzKAhUBxY4KHU4XDsoQ9QEIITAA


A flash file system is a file system designed for storing files on flash memory–based storage 

devices. While the flash file systems are closely related to file systems in general, they are 

optimized for the nature and characteristics of flash memory (such as to avoid write 

amplification), and for use in particular operating systems. 

 

Wear leveling is a process that is designed to extend the life of solid state storage devices. Solid 

state storage is made up of microchips that store data in blocks. Each block can tolerate a finite 

number of program/erase cycles before becoming unreliable. For example, SLC NAND flash is 

typically rated at about 100,000 program/erase cycles. Wear leveling arranges data so that 

write/erase cycles are distributed evenly among all of the blocks in the device. 

 

Flash file system example in MDK ARM 

 

 
 

MDK-ARM  includes a Flash File System that allows your embedded applications to create, 

save, read, and modify files in standard storage devices such as ROM, RAM, Flash ROM, and 

SD/MMC/SDHC Memory Cards. 
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http://searchstorage.techtarget.com/definition/solid-state-storage
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http://searchsolidstatestorage.techtarget.com/definition/solid-state-storage-program-erase-cycle
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Introduction 

 

Many services may need mutually exclusive access to shared memory resources or a shared 

intermediate I/O resource. If this resource is not in use by another service, this presents no 

problem. However, if a service is released and preempts another running service based upon RM 

policy, only to find that it lacks a resource held by another service, then it is blocked. When a 

service is blocked, it must yield" the CPU despite the RM policy.  

 

BLOCKING 

 

Blocking occurs anytime a service can be dispatched by the CPU, but isn’t because it is lacking 

some other resource such as access to a shared memory critical section or access to a bus. When 

blocking has a known latency, it could simply be added into response time, accounted for, and 

therefore would not adversely affect RM analysis, although it would complicate it. The bigger 

concern is unbounded blocking, where the amount of time a service will be blocked awaiting a 

resource is indefinite or at least hard to calculate. Three phenomena related to resource sharing 

can cause this: deadlock, live lock, and unbounded priority inversion. Deadlock and live lock are 

always unbounded by definition. Priority inversion can be temporary, but under certain 

conditions, priority inversion can be indefinite. 

 

Blocking can be extremely dangerous because it can cause a much underutilized system to miss 

deadlines. This is counter intuitive how can systems with only 5% CPU loading miss deadlines? 

If a service is blocked for an indefinite time, then the CPU is yielded for an indefinite time, 

leaving plenty of CPU margin, but the service fails to produce a response by its deadline. 

 

 

DEADLOCK AND LIVELOCK 

 

In Figure below, service S1needs resources A and C, 82 needs A and B, and S3needs B and C. If 

S, acquires A, then S2acquires B, then S3acquires C followed by requests by each for their other 

required resource, a circular wait evolves as shown in Figure 6.1. Circular wait, also known as 

the deadly embrace, causes indefinite deadlock. No progress can be made by Services 1, 2, or 3 

in Figure 6.1 unless resources held by each are released. Deadlock can be prevented by making 

sure the circular wait scenario is impossible, “High Availability and Reliability Design When the 

keep alive is not posted due to the deadlock, then a supervisory service can restart the 

deadlocked service. However, it’s possible that when deadlock is detected and services are 



restarted, that they could simply reenter the deadlock over and over. This variant is called live 

lock and also prevents progress completely despite detection and breaking of the deadlock. 

 

 
One solution to prevent live lock following deadlock detection and restarting is to include a 

random backup of time on restart for each service that was involved this ensures that one beats 

the other two to the resource subset needed and completes acquisition allowing each service the 

same opportunity in turn.  

 

Even with random back of the amount of time that a service will fail to make progress is hard to 

predict and will likely cause a deadline to be missed, even when the CPU is not highly loaded.’ 

The best solution is to eliminate the conditions necessary for circular wait. One method of 

avoidance is to require a total order on the locking of all resources that can be simultaneously 

acquired. In general, deadlock conditions should be avoided, but detection and recovery schemes 

are advisable as well. Further discussion on this topic of avoidance versus detection and recovery 

can be found in current research [Minoura82], [ReveliotisO0]. 

 

CRITICAL SECTIONS TO PROTECT SHARED RESOURCES 

 

Shared memory is often used in embedded systems to share data between two services. The 

alternative is to pass messages between services, but often even messages are passed by 

synchronizing access to a shared buffer. Different choices for service to service communication 

will be examined more closely in Chapter 8, “Embedded System Components When” shared 



memory is used, because real-time systems allow for event driven preemption of services by 

higher priority service releases at any time, shared resources such as shared memory must be 

protected to ensure mutually exclusive access. So, if one service is updating a shared memory 

location (writing), it must fully complete the update before another service is allowed to preempt 

the writer and read the same location as described already in Chapter 4. If this mutex (mutually 

exclusive access) to the update/read data is not enforced, then the reader might read a partially 

updated message. If the code for each service that either updates or reads the shared data is 

surrounded with a semTake () and semGive () (in Vx Work for example), then the update and 

read will be uninterrupted despite the preemptive nature of the RTOS scheduling. The first caller 

to semTake() will enter the critical update section, but the second caller will be blocked and not 

allowed to enter the partially updated data, causing the original service in the critical section to 

always fully update or read the data. When the current user of the critical section calls semGive 

() upon leaving the critical section, the service blocked on the semTake () is then allowed to 

continue safely into the critical section. The need and use of semaphores to protect such shared 

resources is a well understood concept in multithreaded operating systems. 

 

PRIORITY INVERSION 

 

Priority inversion is simply defined as any time that a high priority service has to wait while a 

lower priority service runs this can occur in any blocking scenario. We’re most concerned about 

unbounded priority inversion. If the inversion is bounded, then this can be lumped into the 

response latency and accounted for so that the RM analysis is still possible. The use of any 

mutex (mutual exclusion) semaphore can cause a temporary inversion while a higher priority 

service is blocked to allow a lower priority service to complete a shared memory read or update 

in its entirety. As long as the lower priority service executes for a critical section WCET, the 

inversion is known to last no longer than the lower priority service’s WCET for the critical 

section. What causes unbounded priority inversion? Three conditions are necessary for 

unbounded inversion: 

 

 Three or more services with unique priority in the system High(H), Medium (M), Low 

(L) priority sets of services. 

 At least two services of different priority share a resource with mutex protection one or 

more high and one or more low involved. 

 One or more services not involved in the mutex has priority between the two involved in 

the mutex. 

 

Essentially, a member of the H priority service set catches an L priority service in the critical 

section and is blocked on the semTake (semid). While the L priority service executes in the 

critical section, one or more M priority services interfere with the L priority service’s progress 

for an indefinite amount of time; the H priority service must continue to wait not only for the L 

priority service to finish the critical section, but for the duration of all interference to the L 

priority service. How long will this interference go on? This would be hard to put an upper 

bound on clear it could be longer than the deadline for the H priority service. Figure 6.2 depicts a 

shared memory usage scenario for a spacecraft system that has two services using or calculating 

navigational data providing the vehicles position and attitude in inertial space; one service is a 

low priority thread of execution that periodically points an instrument based upon position and 



attitude at a target planet to look for a landing site. A second service, running a high priority, is 

using basic navigational sensor readings and computed trajectory information to update the best 

estimate of the current navigational state. In Figure 6.2, a set of M priority services {M}that are 

unrelated to the shared memory data critical section can cause H to block for as long as M 

services continue to preempt the L service stuck in the critical section. 

 

 
 

Unbounded Priority Inversion Solutions  
 

One of the first solutions to unbounded priority inversion is to use task or interrupt locking (Vx 

Works intLock ( ) and intUnlock ( ) or task Lock () and task Unlock () to prevent preemptions in 

critical sections completely, which operates in the same way as a priority ceiling protocol. 

Priority inheritance was introduced as a more optimal method that limits the amplification of 

priority in a critical section only to the level required to bound inversions. By comparison, 

interrupt locking and priority ceiling essentially disable all preemption for the duration of the 

critical section, but very effectively bound the inversion. To describe better what is meant by 

priority inheritance, you must understand the basic strategy to avoid indefinite interference while 

a low priority task is in a critical section. Basically, the H priority service gives its priority 

temporarily to the L priority service so that it will not be preempted by the M priority services 

while finishing up the critical section normally priority service restores the priority loaned to it as 

soon as it leaves the critical section.  

 

The priority of the L service is temporarily amplifier to the H priority to prevent the unbounded 



inversion. One downside to priority inheritance is that it can chain. When H blocks, it is possible 

that shortly after H loans its priority to L, another H+n priority service will block on the same 

semaphore, therefore requiring a new inheritance of H+n by L so that H+n is not blocked by 

services of priority H+1 to H+n—1 interfering with L, which has priority H. The chaining is 

complex, so it would be easier to simply give L a priority that is so high that chaining is not 

necessary. This idea became the priority ceiling emulation protocol (also known as highest 

locker).  

 

A further refinement of priority ceiling is the least locker protocol. In least locker, the priority of 

L is amplified to the highest priority of all those services that can potentially request access to 

the critical section. The only downside to least, locker is that it requires the programmer to 

indicate to the operating system what the least locker priority should be. Any mistake in 

specification to the of least lock priority may cause unbounded inversion. In theory, the 

programmer should know very well what services can enter a given critical section and therefore 

also know the correct least locker priority. 

 

The problem of priority inversion became famous with the Mars Pathfinder spacecraft. The 

Pathfinder spacecraft was on final approach to Mars and would need to complete a critical 

engine burn to capture into a Martian orbit within a few days after a cruise trajectory lasting 

many months. The mission engineers readied the craft by enabling new services. Services such 

as meteorological processing from instruments were designed to help determine the insertion 

orbit around Mars because one of the objectives of the mission was to land the Sojourner rover 

on the surface in a location free of dangerous dust storms. When the new services were activated 

during this critical final approach, the Pathfinder began to reboot when one of the highest priority 

services failed to service the hardware watch dog timer. 

 

Reasons for a watch dog timer could include the following: 

 

 Deadlock or live lock preventing the watch dog timer service from executing 

 Loss of software sanity due to programming errors such as a bad pointer, an improperly 

handled processor exception, such as divide by zero, or a bus error 

 Overload due to miscalculation of WCETs for the final approach service set 

 A hardware malfunction of the watch dog timer or associated circuitry 

 A multibit error in memory due to space radiation causing a bit upset 

 

Most often, the reason for reset is stored in a nonvolatile memory that is persistent through a 

watch dog timer so that exceptions due to programming errors, memory bit upsets, and hardware 

malfunctions would be apparent as the reason for reset and/or through anomalies in system 

health and status telemetry. 

 

After analysis on the ground using a test—bed with identical hardware and data play back along 

with analysis of code, it was determined that Pathfinder might be suffering from priority 

inversion. Ideally, a theory like this would be validated first on the ground in the testbed by 

recreating conditions to verify that the suspected bug could cause the observed behavior. Priority 

inversion was suspected because a message passing method in the Vx Works RTOS used by 

firmware developers was found to ultimately use shared memory with an option bit for priority, 



FCFS (First Come ‘First Served), or inversion safe policy for the critical section protecting the 

shared memory section. In the end, the theory proved correct, and the mission was saved and 

became a huge success. This story has helped underscore the importance of understanding multi 

resource interactions in embedded systems as well as design for field debugging. Prior to the 

Path finder incident, the problem of priority inversion was mostly viewed as an esoteric 

possibility rather than a likely failure scenario. The unbounded inversion on Path finder resulted 

from shared data used by H, M, and L priority services that were made active by mission 

controllers during final approach. 

 

POWER MANAGEMENT AND PROCESSOR CLOCK MODULATION 

 

Power and layout considerations for embedded hardware often drives real time embedded 

systems to designs with less memory and lower speed processor clocks. The power consumed by 

an embedded processor is determined by switching power, short circuit current, and current 

leakage within the logic circuit design. The power equations summarizing and used to model the 

power used by an ASIC (Application Specific Integrated Circuit) design are 

 

 
 

The easiest parameters to control are the V Supply and the processor clock frequency to reduce 

power consumption. Furthermore, the more power put in, the more heat generated. Often real 

time embedded systems must operate with high reliability and at low cost so that active cooling 

is not practical. Consider an embedded satellite control system a fan is not even feasible for 

cooling because the electronics will operate in a vacuum. Often passive thermal conduction and 

radiation are used to control temperatures for embedded systems. More recently, some embedded 

systems have been designed with processor clock modulation so that V supply can be reduced 

along with CPU clock rate under the control of firmware when it’s entering less busy modes of 

operation or when the system is overheating. 
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INTRODUCTION 

 

Soft real time is a simple concept, defined by the utility curve presented in Chapter 2, “System 

Resources.”The complexity of soft real-time systems arises from how to handle resource 

overload scenarios. By definitions, of t real-time systems are not designed to guarantee service in 

worst case usage ‘scenarios So, for example, back to back cache misses causing a service 

execution efficiency to be much lower than expected, might cause that service’s deadline or 

another lower priority service’s deadline to be overrun. How long should any service be allowed 

to run past its "deadline if at all? How will the quality of the services be impacted by an overrun 

or by a recovery method that might terminate the release of an overrunning service? This chapter 

provides some guidance on how to handle these soft real-time scenarios and, in addition, 

explains why soft real-time methods can work well for some services sets. 

 

MISSED DEADLINES 

 
Missed deadlines can be handled in a number of ways:  

 

 Termination of the overrunning service as soon as the deadline is passed as  

 Allowing an overrunning service to continue running past a deadline for a limited 

duration 

 Allowing an overrunning service to run past a deadline indefinitely 

 

Terminating the overrunning scenario as soon as the deadline is passed is known as a service 

drop out. The outputs from the service are not produced, and the computations completed up to 

that point are abandoned. For example, an MPEG decoder service would discontinue the 

decoding and not produce an output frame for display. The observable result of this handling is a 

decrease in quality of service. A frame drop out results in a potentially displeasing video quality 

for a user. If drop out rarely occur back to back and rarely in general, this might be acceptable 



quality. If soft real time service overruns are handled with termination and drop others, expected 

frequency of drop—outs and reduction in quality of service should be computed. 

 

The advantage of service drop outs is that the impact of the overrunning service is isolated to that 

service alone other higher priority and lower priority services will not be adversely impacted as 

long as the overrun can be quickly detected and handled. For an RM policy, the failure mode is 

limited to the single overrunning service (refer to Figure 3.15 of Chapter 3). Quick overrun 

detection and handling always results in some residual interference to other services and could 

cause additional services to also miss their deadlines cascading failure. If some resource margin 

is maintained for drop out handling, this impact can still be isolated to the single overrunning 

service. 

 

Allowing a service to continue an overrun beyond the specified- deadline is risky because the 

overrun causes unaccounted for interference to’ other services. Allowing such a service to 

overrun indefinitely could cause all other services to fail of lesser priority in an RM policy 

system. For this reason, it’s most often advisable to handle overruns with termination and limited 

service drop outs. Deterministic behavior in a failure scenario is the next best thing compared to 

deterministic behavior that guarantees success. Dynamic priority services are more susceptible to 

cascading failures (refer to Figure 3.16 in Chapter 3) and therefore also more risky as far as 

impact of an overrun and time for the system to recover. Cascading failures make the 

computation of drop out impact on quality of service harder to estimate. 

  

QUALITYOF SERVICE 
 

Quality of service (QoS) for a real—time system can be quantified based upon the frequency that 

services produce an incorrect result or a late result compared to how often they function 

correctly. A real—time system is said to be correct only if it produces correct results on time. In 

Chapter 11, “High Availability and Reliability Design the classic design methods and definitions 

of availability and reliability will be examined. The QoS concept is certainly related. The 

traditional definition of availability of a service is defined as 

 

 

 
 

If a service has higher availability, does it also have higher quality? From the viewpoint of 

service drop outs measured in terms of frames delivered for‘ example, for a video decoder, then 

higher availability does mean fewer service drop outs over a given period of time. This 

formulation for QoS can be expressed as: 

 

 
 



So, in this example, availability and Q08 are directly related to the degree that number of drop 

outs will be directly proportional to availability. However, delivering decoded frames for display 

is an isochronal process (defined in Chapter 2). Presenting frames for display too early causes 

frame jitter and lower QoS with no service drop outs and 100% availability. Systems providing 

isochronal services and output most often use a DM (Deadline Monotonic) policy and buffer and 

hold outputs that are completed prior to the isochronal deadline to avoid jitter. The measure of 

QoS is application specific. For example, isochronal networks often define QoS as the degree to 

which packets transported approximate a constant bit rate dedicated circuit. To understand QoS 

well, the specific application domain for a service must be well understood. In the remaining 

sections of this chapter, soft real time methods that can be used to establish Q08 for an 

application are reviewed. 

 

ALTERNATIVES TO RATE MONOTONIC POLICY 

The RM policy can lead to pessimistic maintenance of high resource margins for sets of services 

that are not harmonic (described in Chapter 3, “Processing Furthermore, RM policy makes 

restrictive assumptions such as T=D. Because Qos is a bit harder to nail down categorically, 

designers of soft real time systems should consider alternatives to RM policy that might better fit 

their application specific measures of QoS. For example, in Figure 7.1, the RM policy would 

cause a deadline overrun and a service drop out decreasing Q08, but it’s evident that EDF or LLF 

dynamic priority policies will result in higher QoS because both avoid the overrun and 

subsequent service drop out. 

 

 
 

The EDF and LLF policies are not always better from a QoS viewpoint. Figure 7.2 shows how 

EDF, LLF, and RM all perform equally well for a given service scenario. From a practical 

viewpoint, the decision to be made von scheduling policy should be a balance between the 

impact on Q08 by the more adaptive EDF and LLF policies compared to the more predictable 



failure modes and deterministic behavior of RM in an overload situation. This may be difficult to 

compute and might be best evaluated by trying all three policies with extensive testing. In cases 

where EDF, LLF, and RM perform equally well in a non over load scenario, RM might be a 

better choice because the impact of failure is simpler to contain; that is, there is less likelihood of 

cascading service drop outs given upper bounds on overrun detection and handling. As shown in 

Figure 7 .3, it’s well worth noting that systems designed to have harmonic service request 

periods do equally well with EDF, LLF, and RM. Designing systems to be harmonic can greatly 

simplify real time scheduling. 

 

 

 

 



Figure 7.4 shows yet another example of a harmonic schedule where policy is inconsequential. 

For isochronal services, DM policy can have advantage by relaxing T=D. This allows for 

analysis of systems where services can complete early to buffer and hold outputs to reduce 

presentation jitter and thereby increase QoS. Figure  shows a scenario where the DM policy 

succeeds when the RM would fail due to requirements where D can be greater or less than the 

release period T. 

 

 
 

 

 



 

MIXED HARD AND SOFT REAL-TIME SERVICES 

 

Many systems include services that are hard real time, soft real time, and best effort. For 

example, a computer vision system on an assembly line may have hard real time services where 

missing a deadline would cause shutdown of the process being controlled. Likewise, operators 

may want to occasionally monitor what the computer vision systems “sees.”The video for 

monitoring should have good Q08so that a human monitor can assess how well the system is 

working, whether lighting is sufficient and’ whether frame rates appear reasonable. Finally, in 

the same system, operators may occasionally want to dump maintenance data and have no real 

requirements for how fast this is done it can be done in the background whenever spare cycles 

are available. 

 

The mixing of hard, soft, and best effort can be done by admitting the services into multiple 

periodic servers for each. The hard real—time services can be scheduled within a time period 

(epoch) during which the CPU is dedicated only to hard real time services (all others are 

preempted). Another approach is to period transforming all the hard real—time services so that 

they have priorities that encode their importance. Either way, we ensure that the hard real—time 

services will preempt all soft services and best effort services on a deterministic and periodic 

basis. 

 

Best effort services can always be handled by simply scheduling all these services at the lowest 

priority and at an equal priority among them. At lowest priority, best—effort services become 

slack time stealers that execute only when no real—time (hard or soft) services are requesting 

processor resources. 
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