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INTRODUCTION 

Let k be an algebraically closed field of characteristic zero, G a finite 
group and V a finite-dimensional kG-module. Then G acts as a group of k- 
automorphisms on k(V), the field of fractions of the symmetric k-algebra of 
V. Is the subfield k(V)G of k(V) fixed by G rational (=purely transcendental) 
over k? 

The case when G is abelian was completely settled by Fischer (3,4] in 
1916, and it is natural to consider next the “two-step abelian” (i.e., meta- 
abelian) case. We thus assume that G has a normal abelian subgroup N for 
which H = G/N is abelian. For a cyclic H (of order n, say), Haeuslein [S] 
showed that k(V)’ is indeed rational if n is prime and if the nth cyclotomic 
field has class number 1. This is the case precisely when n is a prime (23. 

In Section 1 of this paper, we prove Haeuslein’s result with the assumption 
that n is a prime relaxed. Thus k(V)’ is rational if n is any of the 44 
numbers listed in [8]. The difficulties arising from dropping the assumption 
that n is prime are discussed at the end of Section 1. For other values of n, 
the problem remains open. We note, however, the role played by dim,(V) 
and we prove that k(V)’ is rational whenever dim,. V) < 23, regardless of n. 

The proof goes as follows. By [ 1, pp. 75-791, a meta-abelian group is an 
M-group. Actually, k(V) has a base over k (i.e., a transcendence basis B for 
which k(B) = k(V)) on which G acts monomially and on which N acts 
diagonally (i.e., G acts on the subgroup of k(V)* generated by k* and B, 
and g(b)/6 belongs to k* for all b in B and all g in N). Using Fischer’s 
method, one constructs a base of L = k(QN on which H acts monomially. 
Thus our problem reduces to whether the abelian group H of monomial 
automorphisms has a rational fixed field. If the action of H could be 
linearized (i.e., if L has a base B over k for which H acts on the k-module 
generated by B), then Fischer’s result would settle our problem. This can 
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actually be done if H is cyclic (say H = (h)) of a prime order (23 [6]. If 
order(h) is not prime, the problem gets much harder, and it is in fact still 
unknown whether that can be done. Nor is it known whether all monomial 
automorphisms of order (23 have rational fixed fields. We were able, 
however, to linearize h using the fairly special form its characteristic 
polynomial turns to have (namely, n (‘P”’ - l)), and imposing some 
restrictions on the sizes of the s(i)‘s. These restrictions follow from either the 
hypothesis that order(h) < 23 or that dim,(v) < 23. 

In Section 2, we drop the assumption that (the abelian) H is cyclic and we 
establish the rationality of k(V)” for dim,(Y) < 5. In this case too, we do not 
know whether the action of H can be linearized. 

The arithmetic version of this problem is often referred to as “Noether’s 
Conjecture.” It was first formulated by Noether in 1916 as a question of the 
rationality of Q( Y)c’r) for the regular representation V of a cyclic group C(r) 
of order r over the rational number field Q. The rationality was established 
by her [ 1 1 ] for r = 3, by Seidelmann [ 12) for r = 4, by Masuda [9] for r < 8 
and later [lo] for r = 11. In 1969, Swan [13] proved the surprising result 
that even in this simple case of a cyclic C(r), Q(V)“*’ need not be rational, 
giving as an example the value r = 47. Further investigation of the problem 
was made by Endo and Miyata [2] and by Lenstra [ 71. 

1. THE CYCLIC CASE 

Throughout this paper, k is an algebraically closed field of characteristic 
zero, G a finite group having a normal abelian subgroup N for which 
H = G/N is abelian, V a finite-dimensional kG-module and k(V) the field of 
fractions of the symmetric algebra of V over k. Let G act naturally as a 
group of k-automorphisms on k(V). Our objective is to establish, under 
certain conditions, that k(QG is rational (over k). 

We adhere to the definitions made in the Introduction (noting especially 
the rather unstandard usage of the term “base”). If U is a group containing 
k* as a subgroup such that U/k* is L-free of finite rank and if f is an 
automorphism on U fixing k”, then 0 denotes U/k*, f the action on u 
induced by f, and x(J U) the characteristic polynomial of r The value of 
x(J. U) at (an indeterminate) T is denoted by x(f, U, r). The rth cyclotomic 
polynomial is denoted by 9,. 

Theorem 1 reduces our problem to one of the more classical type already 
encountered in the treatment of the Arithmetic Noether’s Conjecture stated 
in the Introduction. 

THEOREM 1. Let H = GIN be cyclic and let h be a generator of H. Then 
there exists a ZH-module E containing k” as an H-fixed submodule such 
that (i) ,!? is Z-free of a rank equal to dim,(V). 
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(ii) k(V)M = k(E) (and h ence k(V)’ = k(E)“), where k(E) is the 
canonically constructed field extension of k having as a base a set in E 
representing a U-basis of .I?. 

(iii) X(/I, E. T) is of the form nreI (TS”’ - 1). 

Proof: Let g be a pre-image of h in G -+ G/N = H. Following Fischer’s 
method of finding invariants of N, we form the N-eigen space decomposition 
@ Vi of V having the minimal number of summands and we use the 
normality of N in G to prove that the action of each element of G on the set 
( Vi} is a permutation. We then construct an N-eigen basis of V on which g 
acts as a permutation (up to multiplying by elements of k*). This is done as 
follows. Let (U, ,,.., U,), where each CJi is some Vj, be a cycle in the decom- 
position into disjoint cycles of the permutational action of g on the set (Vi}. 
Since g’ acts on U,, one can construct a g’-eigen basis of U, . Such a basis, 
combined with its images under powers of g, yields a basis of ni=, Ui on 
which the action of g is as desired. Doing the same on each cycle and 
combining the resulting bases, one gets the desired basis of V. Thus we have 
constructed a base B of k(V) and a permutation p on the set B such that 
g(b)/p(b) and g’(b)/b belong to k* for all b in B and all g’ in N. Letting A 
be the subgroup of k(V)* generated by k* and B, and letting E be the 
subgroup of A fixed by N, one easily sees (and it is the classical argument of 
Fischer) that k(V)” is rational and equals k(E). Clearly, h acts on E making 
it a ZH-module. Finally, the statement on X(h, E) follows from observing the 
permutational action of S (and hence of i) on A and noting that x(g, A) = 
x(g, E). A/E being all torsion. 1 

THEOREM 2. Let H be cyclic and let n = order(H). If the class number of 
the nth cyclotomic fteld is 1, then k( V)G is rational over k. 

The idea of the proof is to subject the ZH-module E obtained in 
Theorem 1 to a sequence of modifications within k(E)* that result in another 
ZH-module F having all the properties of E and for which F is a 
permutation module. This will be accomplished after few preparatory 
lemmas have been proved. 

Let E be as in Theorem 1, let H = (h) and let L = k(E). For a ZH- 
submodule F of L* containing k*, let F denote F/k* and let 6 (resp. i?) 
denote the action induced by h (resp. H) on L*. We refer to both ZH- and 
HI?-modules simply as modules, the context making it clear which of the two 
rings is meant. A submodule F of L* containing k* and for which F is h- 
free of finite rank is called a monomial module. In all that follows, F and 
Fi’s stand for such modules. An element u of L * (resp. of L */k*) is said to 
be annihilated by a polynomail P if P(h)u belong to k* (resp. if P(i) = 1). 
We say that F, - F, if k(F,) = k(Fz) and rank(F,) = rank(F:). One should 



298 MOWAFFAQ HAJJA 

note, however, that for each pair F, and F, of equivalent modules encoun- 
tered below, ~(h, F,) =X(/Z, F,). The pushout of the diagram 

k”-F, 

I 
which contains both F, and F, is denoted by F, * F,. Thus k(F, * F,) is the 
composite field k(F,) k(F,). Finally we define the subset S(T) of L [T] x 
Z[ T] to be the set of all pairs (P(T), Q(7’)) such that for some positive 
integers p and q, P(T) divides ( Tp - 1). Q(T) divides (p - 1) and the 
gcd(TP - 1, Q(7’)) = 1. 

PROPOSITION 3. Let (P(T), Q(T)) be in S(T). If un element u of F is 
annihilated by Q, then there exists an f in k(F)* such that (P(h)f )/u belongs 
to k”. 

Proof (Due to the referee). Let p and q be as in the definition of S(T), let 
n = order(H) and let Q,(T) = (Tp4” - l)/(TP - 1). Let H, be the subgroup 
of H generated by h, = hP and let s be the sum of its elements. Then 
Q,(h)u = (s(~))~, where m = nq/order(H,). Since Q divides Q,, then (s(u))~ 
is in k*. Since k is algebraically closed, then s(u) is in k*. Let a be the 
element of k* for which s(au) = 1. Then by Hilbert’s Theorem 90, there 
exists an f, in k(F)* such that au = (h, - l)f, = (hP - l)f,. It is now clear 
that ((hP - l)/P(h))f, has the properties required off. fl 

LEMMA 4. Let (P(T), Q(T)) be in S(T), and let F, be a submodule of F,. 
lf F,/F, is the direct sum of cyclic modules annihilated by P, and if Q 
annihilates F,, then F, - Fz * F. where F is isomorphic to F,/F,. 

Proof: Let x, ,..., x, be elements of F, representing generators of the 
cyclic summands of F,/F2 (one xi for each summand), and set ui = Pi(h)xi 
where Pi is the annihilator of xi. Then Q(h)ui is in k* and Proposition 3 
guarantees the existence of an& in k(F,)* such that (Pi(h)f;.)/ui is in k*. It 
is now easy to see that the module generated by (xif;: i = l,..., s) has the 
properties required of F. 1 

COROLLARY 5. Let E be as in Theorem 1, and let n = order(H). If the 
11th cyclotomic field has class number 1, then E-F, * F, * ... * F,, where 
each Fi is annihilated by a cyclotomic polynomial and where the sum of the 
F;s is a direct sum. 

Proof: Let (Pi),“_, be the subsequence of (#i)z, consisting of the 
(cyclotomic) factors of X(h, E), and set Qi = n,yEi Pj. Let Ei be the 
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submodule of E annihilated by Q. Clearly, Ei/Ei+ , is annihilated by 
Qi/Qi+ 1 =Pi* S ince Pi is a factor of T” - 1 and since the class number of 
the nth cyclotomic field (and hence that of the dth cyclotomic field for every 
factor d of n [8]) is assumed to be 1, then Z[T]/P,(T) is a P.I.D. and hence 
E,/E, + , (being a (H [ T]/Pi( 7))module) is the direct sum of cyclic modules. 
Thus, Lemma 4 applies to each pair (Ei, Ei+ ,). We apply Lemma 4 m times, 
letting the role of (F,, F,) in that lemma be played by (E, , E,), (E,, E3),..., 
(E,, E,, ,) in this order and denoting by F,, Fz,..., F, the modifications 
thus obtained. I 

LEMMA 6. Let (P(T), Q(T)) be in S(T). IfF=F, @ Fz and ifF, andF, 
are cyclic modules annihilated by P and Q (resp.), then F-F’ for some 
cyclic F’. 

Proof. Let x and u be elements of F representing generators of F, and Fz 
(resp.), and let P, be the annihilator of F,. Then by Proposition 3 there 
exists an f in k(F,)* such that (P,(h)f)/u is in k*. Now take F’ to be the 
cyclic module generated by xf: 1 

COROLLARY I. If F is the direct sum of cyclic modules annihilated by 
distinct cyclotomic polynomials, then F - F’ for some cyclic F’. 

Proof: Ler Fi (i = l,..., r) be the cyclic summands of F, and let P, be the 
cyclotomic polynomial annihilating Fi. Set Qi = nJ’=,+, Pi. Let W, = F, 
and define Wrpi (i = 1, 2 ,..., r - 1) to be the module equivalent to 
Wrhi+, * Frei obtained by applying Lemma 6 to @,-i+, @ Fr-i. Then W, 
has the properties required of F’. 1 

Proof of Theorem 2. In virtue of Corollary 5, one can assume that the 
module ,!? obtained in Theorem 1 is the direct sum of modules annihilated by 
cyclotomic factors of X(h, E). Each of these summands is in turn the direct 
sum of cyclic modules. (This is because the nth cyclotomic field has class 
number I, and therefore Z (T]/f(T) is a P.I.D. for every cyclotomic factor f 
of T” - 1.) We index these cyclic summands of ,!? by the set D = ((i, j): i 
divides s(j); j z l,..., r) and we set D(j) = {(a, b)E D: b = j). Then 
E= @ tcD E* = OS= I @rED(j) Et, where for t = (a, b), gt is cyclic annihilated 
by 4,. We now apply Corollary 7 to @rGo,j, Et (for each j) to obtain Fj with 
Fj cyclic annihilated by T’(j) - 1. Thus E - F, * F, * ..a * Fr and it is 
obvious that F, * F, * ... * F, is a permutation module. Therefore, k(E)H, 
=k( V)‘, is rational. 1 

THEOREM 8. Let H be cyclic. If dim,(V) < 23, then k(V)” is rational 
ocer k. 

ProoJ Follows from the fact that dim,(V) is the sum of the s(i)‘s 
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(appearing in Theorem 1) and therefore the class number of the s(i)th 
cyclotomic field is I for all i. 1 

Note. With the added hypothesis that n is prime, Theorem 2 was proved 
by Haeuslein 151. The main ingredients in that proof are two statements (A) 
and (B) that are known to be true only if n is prime: 

(A) Z[Z-]/(Y - 1) 1s a semi-P.I.R. (For definition and reference, see 
[ 6, Theorem 0.4 1.) 

(B) If f(T) is a prime factor of (T” - 1) and if E is a cyclic module 
over Z 1 t] = Z [r]/‘(T), then k(E) = k(F) for some permutation (actually 
trivial) t-module F 16. Theorem l.l(iii)]. 

When n is not prime. (A) is false and (B) is still an open statement. This 
twofold difftculty is removed by Corollaries 5 and 7 above. 

We finally remark that knowledge of both order(H) and dim,(V) may 
yield the rationality of k(v)” when Theorems 2 and 8 fail to. As an example, 
k(V)” is rational when order(H) = 39 > dim,(V). 

2. THE KLEIN CASE 

In this section, we drop the assumption that (the abelian) H is cyclic and 
we prove the rationality of k(V)’ for dim, V < 5. 

We first prove the following simple lemma. The facts that Z[T)/(T’ - 1) 
is a semi-P.I.R. and that a monomial automorphism of order 2 has a rational 
fixed field [ 6 ] are freely used. 

LEMMA 9. Let E, , E, be the endomorphisms on HJ defined bJl 

El((~,,az~a3~a,>)= (q1al,a3.a4). 

E,((~,,a,,~,,a,))=(a,,~z,~,,~,). 

Let I/ be a rank 4 subgroup of Z” invariant under both E, and E,. Then I/ 
has a system (u,, u2, u,, u,} of generators such that both u, and uz arefixed 
bv E, and by EZ and such that either 

(1) E,: u3+upu3, 

Ez: 

u3 + -uj + au, + puz 

1u +-u +cfu +pu 4 3 I 1’ 

or 

(2) E,: u3pu3; U1+-UJ+aU,+PUZ, 

Ez : uj --t u, ; u3 + -u3 +p, + vuz. 
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where a, /I, ,u, v are integers which are significant only up to their values 
mod 2. 

ProoJ Let u,, u2 be generators of the subgroup W of U consisting of the 
elements fixed by E, and Ez, and let e, be the endomorphism induced on 
U/W by E, . It is easy to see that the minimal polynomial of e, is T* - 1: 
and thus the group-ring R = Z[e,], being ;Z[T]/(T’ - l), is a semi-P.I.R. 
Hence, the torsion-free R-module U/W decomposes into the direct sum of 
cyclic R-modules. Since rank(U/W) = 2, and since T? - 1 is the smallest 
polynomiai that annihilates e, , it follows immediately that there are only the 
following two possibilities: 

(i) CJ/W=Rfi,whereoEU,LS=t’+WandAnn,(C)=e~-1. 

(ii) U/W = RLr, @ Rb,, where ~1~ E U, fij = uj + W, and Ann,(Fj) = 
e, - (-1)j. 

To obtain (1) from (i), set U) = L’ and observe that 

(E,E, + id)?,! = (E, + Ez)v E W. 

To obtain (2) from (ii), set uj = U, and uJ = t’:. 
The last statement follows from observing the effect the change of the 

basis {u,, u?, u,, u,} into {u,, I(~, u; , U; } has on the equations in (1) and 
(2), where U; - u3 and u; - u, are in W. fl 

We now return to our problem. We form the irredundant decomposition 
@r=, Vi of V into N-eigen spaces and we use the normality of N in G to 
prove that each g in G acts as a permutation on the set (V,,..., V,}. 
Assuming that N is its own centralizer, one sees that the elements of N are 
the only elements of G that act as the identity permutation. Thus H = G/N is 
isomorphic to a subgroup of the symmetric group S,. The only abelian non- 
cyclic subgroups of S, (m < dim,(V) < 5) are the Klein subgroups of S,. 
Thus we assume that dim,(V) = m = 4, that dim,( Vi) = 1 and that H is a 
Klein group. Let g, and g, be elements of G representing generators of Zf, 
and let p, and pz be the elements of S, corresponding to g, and g,. Let JJi be 
a basis of (the one-dimensional) Vi, let P be the subgroup of k( v>* 
generated by k* and ( y, ,..., Jo}, and let A be the subgroup of P fixed by N. 
By Fischer’s argument, A is a rank 4 subgroup of P with k(A) = k(V)“. If p, 
and p2 are the transposition (1 2) and (3 4), then by Lemma 9 one 
constructs a base {x, y, z, w} of k(V)” ( over k) on which the action of g, and 
g? is either of the actions described in (V) and (VI) of Table I. Ifp, and pz 
are (1 2)(3 4) and (1 3)(2 4), then by a lemma parallel to Lemma 9, one 
constructs a base (x, y, z, w} on which the action of g, and g, is one of the 
actions described in (I), (II), (III) and (IV) of Table I. We let K = k(x, y, 
z, IC) = k( I’)“, K, = KR1 and K,, = Kf’. We now establish the rationality of 
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TABLE II 
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(Cl) 
(C.2) 
(C3) 
WI 
(-1 
63) 
(C7) 
(C8) 
(C9) 
(ClO) 

(I), (III), (119 P = 0) 
tII,P= 1) 
(IV, E! = 0) 
(IV,p= I,v=O) 
(IV,,u = I, I? = 1.9, = I) 
(IV,p= l,v= I,s,=-1) 

(V) 
(VI, lav-/3/l= I) 
(VI.a=p=o) 
(VI.a=p=l,p=r=o) 

k(V)” by establishing the rationality of K,? for each of the actions of g, and 
g, of Table I. 

THEOREM 10. If G is meta-abelian and if dim,(V) < 5, then k(V)” is 
rational over k. 

Proof: We rearrange the six cases (I)-(VI) of Table I to form the ten 
cases (Clt(C 10) of Table II. Note that to obtain (VI) from (C8)-(C IO), 
one might need to interchange the roles of g, and g,, x and y, or x and XJ’. 

Set: <=(I -x)/(1 +x), r]=(l -~)/(l +Y), s=(x-J4’)/(x+y), 

i=z+g,(z) if z+g,(z)fO 

Z otherwise, 

u = It’ + g,(w) if it’ + g,(kl) # 0 

= M’ otherwise 

(C 1) Here, K = k(t, rl, C. w ) , and g, is homothetic, g, monomial. 

(C2) Here, K, = 44, B, C, D), where A = 1 - #, B= 
(1 + So/( 1 - d2), C = (8’. t = 0 or 1, and D = o. If s, = I, then the action 
of g, on A. B, C, D is monomial. If s, = -1, then by examining the action of 
g2 on A, B, C, D, one easily sees that K,Z is generated by the live elements 
D + gz(D), B + g,(B), CD - g,(D)Y(B - g,(B)), (B - g,(B))*, 
V - g,WK where e = 0 or 1, and that in the algebraic dependence 
among the first four, the fourth is linear. 

(C3) If p = v = a = 0, then the proof of (C 1) goes through. Otherwise, 
interchanging the roles of g, and g, reduces this case to a previous one. 

(C4) Set 

c;= c + g,(C) if i + g,(C) + 0 

= c otherwise. 
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Then K, = k(s, + (1 + r’)/( 1 - {‘), q/r, ct’, o), t = 0 or 1. If r2 = 1, then g, 
acts monomially. Otherwise, using g, g2 for g, and interchanging x and J’ 
reduces this case to (C3). 

((25) Define [ as in (C4). Then K, is generated by (1 - c’)( 1 - q’), 
q/r, w( 1 - <‘)/( 1 - <q) and &‘, f = 0 or 1; and g, is monomial. 

(C6) Define c as in (C4). K, is generated by A = e, B = q/r, C = c{ 
(where f = 0, 1) and D = o<( 1 - q’)/(c - q). K,2 is then generated by the 
five elements: A, B’, D + g,(D), (D - g,(D))/B, CE’; and the algebraic 
dependence among the first four is linear in the second. 

(C7) If d = 1, take a and /? so that a/? < 0, and choose t, and fZ in 
(0, 1 } so that uf, + /If2 = 0. Then K, is generated by z + W, ZW, x(z - M’)“, 
?‘(z - wp; and g, acts monomially. 

If d = - 1, interchange x and J, or replace x by X/Y if necessary, so that 
s, = 1 Since d=s”s” then s2 = - 1 and j3 = - 1. Then K, is generated by x, 
(z - b$)‘, (z + MI) &dz;(z - W)ZW?C-“; and g, acts monomially. 

(C8) Here, both g, and gz are homothetic relative to the base: 
z + g#), z - gz(z), w + g*(M.), 1%’ - g,(w). 

(C9) Relative to the base (x, JJ, z, (1 - w)/( 1 + w)}, g, is homothetic, 
and gZ is monomial. 

(C 10) Let ti = 1 (resp. 0) if si = -1 (resp. 1) and let W, = w + g,(w), 
M?* = w - g,(w), A =x/w,, B = JJ(w~)‘~ and C = z(w~)~‘/w,. Since 
(A -‘Cg,(C) + 4f,A)(w,)“’ is in k*, then (A, B, C + g*(C), C - g,(C)} is a 
base of K, on which gZ acts monomially. I 
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