
CHAPTER 2
BASIC VIBRATION THEORY

Ralph E. Blake

INTRODUCTION

This chapter presents the theory of free and forced steady-state vibration of single
degree-of-freedom systems. Undamped systems and systems having viscous damp-
ing and structural damping are included. Multiple degree-of-freedom systems are
discussed, including the normal-mode theory of linear elastic structures and
Lagrange’s equations.

ELEMENTARY PARTS OF VIBRATORY SYSTEMS

Vibratory systems comprise means for storing potential energy (spring), means for
storing kinetic energy (mass or inertia), and means by which the energy is gradually
lost (damper). The vibration of a system involves the alternating transfer of energy
between its potential and kinetic forms. In a damped system, some energy is dissi-
pated at each cycle of vibration and must be replaced from an external source if a
steady vibration is to be maintained. Although a single physical structure may store
both kinetic and potential energy, and may dissipate energy, this chapter considers
only lumped parameter systems composed of ideal springs, masses, and dampers
wherein each element has only a single function. In translational motion, displace-
ments are defined as linear distances; in rotational motion, displacements are
defined as angular motions.

TRANSLATIONAL MOTION

Spring. In the linear spring shown in Fig. 2.1, the
change in the length of the spring is proportional
to the force acting along its length:

F = k(x − u) (2.1)

The ideal spring is considered to have no mass;
thus, the force acting on one end is equal and

2.1

FIGURE 2.1 Linear spring.
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opposite to the force acting on the other end.The constant of proportionality k is the
spring constant or stiffness.

Mass. A mass is a rigid body (Fig. 2.2) whose
acceleration ẍ according to Newton’s second law is
proportional to the resultant F of all forces acting on
the mass:*

F = mẍ (2.2)

Damper. In the viscous damper shown in Fig. 2.3,
the applied force is proportional to the relative
velocity of its connection points:

F = c(ẋ −u̇) (2.3)

The constant c is the damping coefficient, the charac-
teristic parameter of the damper. The ideal damper
is considered to have no mass; thus the force at one
end is equal and opposite to the force at the other
end. Structural damping is considered below and
several other types of damping are considered in
Chap. 30.

ROTATIONAL MOTION

The elements of a mechanical system which moves with pure rotation of the parts
are wholly analogous to the elements of a system that moves with pure translation.
The property of a rotational system which stores kinetic energy is inertia; stiffness
and damping coefficients are defined with reference to angular displacement and
angular velocity, respectively. The analogous quantities and equations are listed in
Table 2.1.

2.2 CHAPTER TWO

TABLE 2.1 Analogous Quantities in Translational 
and Rotational Vibrating Systems

Translational quantity Rotational quantity

Linear displacement x Angular displacement α
Force F Torque M
Spring constant k Spring constant kr

Damping constant c Damping constant cr

Mass m Moment of inertia I
Spring law F = k(x1 − x2) Spring law M = kr(α1 − α2)
Damping law F = c(ẋ1 − ẋ2) Damping law M = cr(α̈1 − α̇2)
Inertia law F = mẍ Inertia law M = Iα̈

* It is common to use the word mass in a general sense to designate a rigid body. Mathematically, the mass
of the rigid body is defined by m in Eq. (2.2).

FIGURE 2.2 Rigid mass.

FIGURE 2.3 Viscous damper.
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Inasmuch as the mathematical equations for a rotational system can be written by
analogy from the equations for a translational system, only the latter are discussed in
detail.Whenever translational systems are discussed, it is understood that correspond-
ing equations apply to the analogous rotational system, as indicated in Table 2.1.

SINGLE DEGREE-OF-FREEDOM SYSTEM

The simplest possible vibratory system is shown in Fig. 2.4; it consists of a mass m
attached by means of a spring k to an immovable support.The mass is constrained to
translational motion in the direction of the X axis so that its change of position from

an initial reference is described fully by
the value of a single quantity x. For this
reason it is called a single degree-of-
freedom system. If the mass m is dis-
placed from its equilibrium position and
then allowed to vibrate free from further
external forces, it is said to have free
vibration. The vibration also may be
forced; i.e., a continuing force acts upon
the mass or the foundation experiences a
continuing motion. Free and forced
vibration are discussed below.

FREE VIBRATION WITHOUT DAMPING

Considering first the free vibration of the undamped system of Fig. 2.4, Newton’s
equation is written for the mass m. The force mẍ exerted by the mass on the spring
is equal and opposite to the force kx applied by the spring on the mass:

mẍ + kx = 0 (2.4)

where x = 0 defines the equilibrium position of the mass.
The solution of Eq. (2.4) is

x = A sin �� t + B cos �� t (2.5)

where the term �k�/�m� is the angular natural frequency defined by

ωn = �� rad/sec (2.6)

The sinusoidal oscillation of the mass repeats continuously, and the time interval to
complete one cycle is the period:

τ = (2.7)

The reciprocal of the period is the natural frequency:

fn = = =  �� =   �� (2.8)
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FIGURE 2.4 Undamped single degree-of-
freedom system.
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where W = mg is the weight of the rigid body forming the mass of the system shown
in Fig. 2.4. The relations of Eq. (2.8) are shown by the solid lines in Fig. 2.5.

2.4 CHAPTER TWO

FIGURE 2.5 Natural frequency relations for a single degree-of-freedom system. Relation of
natural frequency to weight of supported body and stiffness of spring [Eq. (2.8)] is shown by solid
lines. Relation of natural frequency to static deflection [Eq. (2.10)] is shown by diagonal-dashed
line. Example: To find natural frequency of system with W = 100 lb and k = 1000 lb/in., enter at 
W = 100 on left ordinate scale; follow the dashed line horizontally to solid line k = 1000, then ver-
tically down to diagonal-dashed line, and finally horizontally to read fn = 10 Hz from right ordi-
nate scale.

Initial Conditions. In Eq. (2.5), B is the value of x at time t = 0, and the value of A
is equal to ẋ/ωn at time t = 0.Thus, the conditions of displacement and velocity which
exist at zero time determine the subsequent oscillation completely.

Phase Angle. Equation (2.5) for the displacement in oscillatory motion can be
written, introducing the frequency relation of Eq. (2.6),

x = A sin ωnt + B cos ωnt = C sin (ωnt + θ) (2.9)

where C = (A2 + B2)1/2 and θ = tan−1 (B/A). The angle θ is called the phase angle.

Static Deflection. The static deflection of a simple mass-spring system is the
deflection of spring k as a result of the gravity force of the mass, δst = mg/k. (For
example, the system of Fig. 2.4 would be oriented with the mass m vertically above
the spring k.) Substituting this relation in Eq. (2.8),

fn = �� (2.10)
g
�
δst

1
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2π
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The relation of Eq. (2.10) is shown by the diagonal-dashed line in Fig. 2.5. This rela-
tion applies only when the system under consideration is both linear and elastic. For
example, rubber springs tend to be nonlinear or exhibit a dynamic stiffness which
differs from the static stiffness; hence, Eq. (2.10) is not applicable.

FREE VIBRATION WITH VISCOUS DAMPING

Figure 2.6 shows a single degree-of-freedom system with a viscous damper. The dif-
ferential equation of motion of mass m, corresponding to Eq. (2.4) for the
undamped system, is

mẍ + cẋ + kx = 0 (2.11)

The form of the solution of this equa-
tion depends upon whether the damp-
ing coefficient is equal to, greater than,
or less than the critical damping coeffi-
cient cc:

cc = 2�k�m� = 2mωn (2.12)

The ratio ζ = c/cc is defined as the frac-
tion of critical damping.

Less-Than-Critical Damping. If the damping of the system is less than critical,
ζ < 1; then the solution of Eq. (2.11) is

x = e−ct/2m(A sin ωdt + B cos ωdt)

= Ce−ct/2m sin (ωdt + θ) (2.13)

where C and θ are defined with reference to Eq. (2.9).The damped natural frequency
is related to the undamped natural frequency of Eq. (2.6) by the equation

ωd = ωn(1 − ζ2)1/2 rad/sec (2.14)

Equation (2.14), relating the damped
and undamped natural frequencies, is
plotted in Fig. 2.7.

Critical Damping. When c = cc, there
is no oscillation and the solution of Eq.
(2.11) is

x = (A + Bt)e−ct/2m (2.15)

Greater-Than-Critical Damping.
When ζ > 1, the solution of Eq. (2.11) is

x = e−ct/2m(Aeωn�ζ2�− 1� t + Be−ωn�ζ2�− 1� t)
(2.16)

This is a nonoscillatory motion; if the
system is displaced from its equilibrium
position, it tends to return gradually.

BASIC VIBRATION THEORY 2.5

FIGURE 2.6 Single degree-of-freedom system
with viscous damper.

FIGURE 2.7 Damped natural frequency as a
function of undamped natural frequency and
fraction of critical damping.
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Logarithmic Decrement. The degree of damping in a system having ζ < 1 may be
defined in terms of successive peak values in a record of a free oscillation. Substitut-
ing the expression for critical damping from Eq. (2.12), the expression for free vibra-
tion of a damped system, Eq. (2.13), becomes

x = Ce−ζωnt sin (ωdt + θ) (2.17)

Consider any two maxima (i.e., value of x when dx/dt = 0) separated by n cycles of
oscillation, as shown in Fig. 2.8. Then the ratio of these maxima is

= e−2πnζ/(1 − ζ2)1/2 (2.18)

Values of xn/x0 are plotted in Fig. 2.9 for
several values of n over the range of ζ
from 0.001 to 0.10.

The logarithmic decrement ∆ is the
natural logarithm of the ratio of the
amplitudes of two successive cycles of
the damped free vibration:

∆ = ln or    = e−∆ (2.19)
x2�
x1

x1�
x2

xn�
x0
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FIGURE 2.8 Trace of damped free vibration
showing amplitudes of displacement maxima.

FIGURE 2.9 Effect of damping upon the ratio of
displacement maxima of a damped free vibration.
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[See  also Eq. (37.10).] A comparison of this relation with Eq. (2.18) when n = 1 gives
the following expression for ∆:

∆ = (2.20)

The logarithmic decrement can be expressed in terms of the difference of successive
amplitudes by writing Eq. (2.19) as follows:

= 1 − = 1 − e−∆

Writing e−∆ in terms of its infinite series, the following expression is obtained which
gives a good approximation for ∆ < 0.2:

= ∆ (2.21)

For small values of ζ (less than about 0.10), an approximate relation between the
fraction of critical damping and the logarithmic decrement, from Eq. (2.20), is

∆ � 2πζ (2.22)

FORCED VIBRATION

Forced vibration in this chapter refers to the motion of the system which occurs in
response to a continuing excitation whose magnitude varies sinusoidally with time.
(See Chaps. 8 and 23 for a treatment of the response of a simple system to step, pulse,
and transient vibration excitations.) The excitation may be, alternatively, force
applied to the system (generally, the force is applied to the mass of a single degree-
of-freedom system) or motion of the foundation that supports the system. The
resulting response of the system can be expressed in different ways, depending upon
the nature of the excitation and the use to be made of the result:

1. If the excitation is a force applied to the mass of the system shown in Fig. 2.4, the
result may be expressed in terms of (a) the amplitude of the resulting motion of
the mass or (b) the fraction of the applied force amplitude that is transmitted
through the system to the support.The former is termed the motion response and
the latter is termed the force transmissibility.

2. If the excitation is a motion of the foundation, the resulting response usually is
expressed in terms of the amplitude of the motion of the mass relative to the
amplitude of the motion of the foundation. This is termed the motion transmissi-
bility for the system.

In general, the response and transmissibility relations are functions of the forcing
frequency and vary with different types and degrees of damping. Results are pre-
sented in this chapter for undamped systems and for systems with either viscous or
structural damping. Corresponding results are given in Chap. 30 for systems with
Coulomb damping, and for systems with either viscous or Coulomb damping in
series with a linear spring.

x1 − x2�
x1

x2�
x1

x1 − x2�
x1

2πζ
��
(1 − ζ2)1/2
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FORCED VIBRATION WITHOUT DAMPING

Force Applied to Mass. When the
sinusoidal force F = F0 sin ωt is applied to
the mass of the undamped single degree-
of-freedom system shown in Fig. 2.10,
the differential equation of motion is

mẍ + kx = F0 sin ωt (2.23)

The solution of this equation is

x = A sin ωnt + B cos ωnt +  sin ωt (2.24)

where ωn = �k�/m�. The first two terms represent an oscillation at the undamped nat-
ural frequency ωn.The coefficient B is the value of x at time t = 0, and the coefficient
A may be found from the velocity at time t = 0. Differentiating Eq. (2.24) and setting
t = 0,

ẋ(0) = Aωn + (2.25)

The value of A is found from Eq. (2.25).
The oscillation at the natural frequency ωn gradually decays to zero in physical

systems because of damping. The steady-state oscillation at forcing frequency ω is

x = sin ωt (2.26)

This oscillation exists after a condition of equilibrium has been established by decay
of the oscillation at the natural frequency ωn and persists as long as the force F is
applied.

The force transmitted to the foundation is directly proportional to the spring
deflection: Ft = kx. Substituting x from Eq. (2.26) and defining transmissibility T = Ft/F,

T = (2.27)

If the mass is initially at rest in the equilibrium position of the system (i.e., x = 0
and ẋ = 0) at time t = 0, the ensuing motion at time t > 0 is

x = (sin ωt − sin ωnt) (2.28)

For large values of time, the second term disappears because of the damping inher-
ent in any physical system, and Eq. (2.28) becomes identical to Eq. (2.26).

When the forcing frequency coincides with the natural frequency, ω = ωn and a
condition of resonance exists. Then Eq. (2.28) is indeterminate and the expression
for x may be written as

x = − t cos ωt + sin ωt (2.29)
F0�
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FIGURE 2.10 Undamped single degree-of-
freedom system excited in forced vibration by
force acting on mass.
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According to Eq. (2.29), the amplitude x
increases continuously with time, reach-
ing an infinitely great value only after
an infinitely great time.

Motion of Foundation. The differen-
tial equation of motion for the system of
Fig. 2.11 excited by a continuing motion
u = u0 sin ωt of the foundation is

mẍ = −k(x − u0 sin ωt)

The solution of this equation is

x = A1 sin ωnt + B2 cos ωnt + sin ωt

where ωn = k/m and the coefficients A1, B1 are determined by the velocity and dis-
placement of the mass, respectively, at time t = 0. The terms representing oscillation
at the natural frequency are damped out ultimately, and the ratio of amplitudes is
defined in terms of transmissibility T:

= T = (2.30)

where x = x0 sin ωt. Thus, in the forced vibration of an undamped single degree-of-
freedom system, the motion response, the force transmissibility, and the motion
transmissibility are numerically equal.

FORCED VIBRATION WITH VISCOUS DAMPING

Force Applied to Mass. The differ-
ential equation of motion for the single
degree-of-freedom system with viscous
damping shown in Fig. 2.12, when the
excitation is a force F = F0 sin ωt applied
to the mass, is

mẍ + cẋ + kx = F0 sin ωt (2.31)

Equation (2.31) corresponds to Eq.
(2.23) for forced vibration of an un-
damped system; its solution would cor-

respond to Eq. (2.24) in that it includes terms representing oscillation at the natural
frequency. In a damped system, however, these terms are damped out rapidly and
only the steady-state solution usually is considered. The resulting motion occurs at
the forcing frequency ω; when the damping coefficient c is greater than zero, the
phase between the force and resulting motion is different than zero. Thus, the
response may be written

x = R sin (ωt − θ) = A1 sin ωt + B1 cos ωt (2.32)

1
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1 − ω2/ωn
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1 − ω2/ωn
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FIGURE 2.11 Undamped single degree-of-
freedom system excited in forced vibration by
motion of foundation.

FIGURE 2.12 Single degree-of-freedom sys-
tem with viscous damping, excited in forced
vibration by force acting on mass.
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Substituting this relation in Eq. (2.31), the following result is obtained:

= = Rd sin (ωt − θ) (2.33)

where θ = tan−1 � �
and Rd is a dimensionless response factor giving the ratio of the amplitude of the
vibratory displacement to the spring displacement that would occur if the force F
were applied statically. At very low frequencies Rd is approximately equal to 1; it
rises to a peak near ωn and approaches zero as ω becomes very large. The displace-
ment response is defined at these frequency conditions as follows:

x � � � sin ωt [ω << ωn]

x = sin �ωnt + � = −  [ω = ωn] (2.34)

x � sin (ωt + π) = sin ωt [ω >> ωn]

For the above three frequency conditions, the vibrating system is sometimes
described as spring-controlled, damper-controlled, and mass-controlled, respectively,
depending on which element is primarily responsible for the system behavior.

Curves showing the dimensionless response factor Rd as a function of the fre-
quency ratio ω/ωn are plotted in Fig. 2.13 on the coordinate lines having a positive
45° slope. Curves of the phase angle θ are plotted in Fig. 2.14.A phase angle between
180 and 360° cannot exist in this case since this would mean that the damper is fur-
nishing energy to the system rather than dissipating it.

An alternative form of Eqs. (2.33) and (2.34) is

=

= (Rd)x sin ωt + (Rd)R cos ωt (2.35)

This shows the components of the response which are in phase [(Rd)x sin ωt] and 90°
out of phase [(Rd)R cos ωt] with the force. Curves of (Rd)x and (Rd)R are plotted as a
function of the frequency ratio ω/ωn in Figs. 2.15 and 2.16.

Velocity and Acceleration Response. The shape of the response curves changes
distinctly if velocity ẋ or acceleration ẍ is plotted instead of displacement x. Differ-
entiating Eq. (2.33),

= Rd cos (ωt − θ) = Rv cos (ωt − θ) (2.36)

The acceleration response is obtained by differentiating Eq. (2.36):

= − Rd sin (ωt − θ) = − Ra sin (ωt − θ) (2.37)
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The velocity and acceleration response factors defined by Eqs. (2.36) and (2.37) are
shown graphically in Fig. 2.13, the former to the horizontal coordinates and the lat-
ter to the coordinates having a negative 45° slope. Note that the velocity response
factor approaches zero as ω → 0 and ω → ∞, whereas the acceleration response fac-
tor approaches 0 as ω → 0 and approaches unity as ω → ∞.

BASIC VIBRATION THEORY 2.11

FIGURE 2.13 Response factors for a viscous-damped single degree-of-freedom system
excited in forced vibration by a force acting on the mass.The velocity response factor shown
by horizontal lines is defined by Eq. (2.36); the displacement response factor shown by diag-
onal lines of positive slope is defined by Eq. (2.33); and the acceleration response factor
shown by diagonal lines of negative slope is defined by Eq. (2.37).
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Force Transmission. The force transmitted to the foundation of the system is

FT = cẋ + kx (2.38)

Since the forces cẋ and kx are 90° out of phase, the magnitude of the transmitted
force is

	FT 	 = �c2ẋ2 + k2x2 (2.39)

The ratio of the transmitted force FT to the applied force F0 can be expressed in
terms of transmissibility T:

= T sin (ωt − ψ) (2.40)

where

T = � (2.41)

and

ψ = tan−1

The transmissibility T and phase angle ψ are shown in Figs. 2.17 and 2.18, respec-
tively, as a function of the frequency ratio ω/ωn and for several values of the fraction
of critical damping ζ.

2ζ(ω/ωn)3

���
1 − ω2/ωn

2 + 4ζ2ω2/ωn
2

1 + (2ζω/ωn)2

���
(1 − ω2/ωn

2)2 + (2ζω/ωn)2

FT�
F0
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FIGURE 2.14 Phase angle between the response displacement and the excitation
force for a single degree-of-freedom system with viscous damping, excited by a
force acting on the mass of the system.
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FIGURE 2.15 In-phase component of response factor of a viscous-damped system in
forced vibration. All values of the response factor for ω/ωn > 1 are negative but are plotted
without regard for sign. The fraction of critical damping is denoted by ζ.
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FIGURE 2.16 Out-of-phase component of response factor of a viscous-damped system in
forced vibration. The fraction of critical damping is denoted by ζ.
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FIGURE 2.17 Transmissibility of a viscous-damped system. Force transmissibility
and motion transmissibility are identical numerically. The fraction of critical damp-
ing is denoted by ζ.
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Hysteresis. When the viscous damped, single degree-of-freedom system shown
in Fig. 2.12 undergoes vibration defined by

x = x0 sin ωt (2.42)

the net force exerted on the mass by the spring and damper is

F = kx0 sin ωt + cωx0 cos ωt (2.43)

Equations (2.42) and (2.43) define the
relation between F and x; this relation is
the ellipse shown in Fig. 2.19. The
energy dissipated in one cycle of oscilla-
tion is

W = 
T + 2π/ω

T
F dt = πcωx0

2 (2.44)

Motion of Foundation. The excita-
tion for the elastic system shown in Fig.
2.20 may be a motion u(t) of the founda-
tion.The differential equation of motion
for the system is

mẍ + c(ẋ − u̇) + k(x − u) = 0 (2.45)

Consider the motion of the foundation
to be a displacement that varies sinu-

dx
�
dt

2.16 CHAPTER TWO

FIGURE 2.18 Phase angle of force transmission (or motion transmission) of a vis-
cous-damped system excited (1) by force acting on mass and (2) by motion of foun-
dation. The fraction of critical damping is denoted by ζ.

FIGURE 2.19 Hysteresis curve for a spring
and viscous damper in parallel.
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soidally with time, u = u0 sin ωt. A
steady-state condition exists after the
oscillations at the natural frequency ωn

are damped out, defined by the dis-
placement x of mass m:

x = Tu0 sin (ωt − ψ) (2.46)

where T and ψ are defined in connection
with Eq. (2.40) and are shown graphi-
cally in Figs. 2.17 and 2.18, respectively.
Thus, the motion transmissibility T in
Eq. (2.46) is identical numerically to the
force transmissibility T in Eq. (2.40).The
motion of the foundation and of the
mass m may be expressed in any consis-
tent units, such as displacement, velocity,
or acceleration, and the same expression
for T applies in each case.

Vibration Due to a Rotating Eccentric
Weight. In the mass-spring-damper
system shown in Fig. 2.21, a mass mu is
mounted by a shaft and bearings to the
mass m. The mass mu follows a circular
path of radius e with respect to the bear-
ings. The component of displacement in
the X direction of mu relative to m is

x3 − x1 = e sin ωt (2.47)

where x3 and x1 are the absolute displacements of mu and m, respectively, in the X
direction; e is the length of the arm supporting the mass mu; and ω is the angular
velocity of the arm in radians per second.The differential equation of motion for the
system is

mẍ1 + mu ẍ3 + cẋ1 + kx1 = 0 (2.48)

Differentiating Eq. (2.47) with respect to time, solving for ẍ3, and substituting in 
Eq. (2.48):

(m + mu) ẍ1 + cẋ1 + kx1 = mueω2 sin ωt (2.49)

Equation (2.49) is of the same form as Eq. (2.31); thus, the response relations of
Eqs. (2.33), (2.36), and (2.37) apply by substituting (m + mu) for m and mueω2 for F0.
The resulting displacement, velocity, and acceleration responses are

= Rd sin (ωt − θ) = Rv cos (ωt − θ)
(2.50)

= − Ra sin (ωt − θ)
ẍ1m�

mueω2

ẋ1��km
�
mueω2

x1�
mueω2
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FIGURE 2.20 Single degree-of-freedom sys-
tem with viscous damper, excited in forced
vibration by foundation motion.

FIGURE 2.21 Single degree-of-freedom sys-
tem with viscous damper, excited in forced
vibration by rotating eccentric weight.
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Resonance Frequencies. The peak values of the displacement, velocity, and
acceleration response of a system undergoing forced, steady-state vibration occur at
slightly different forcing frequencies. Since a resonance frequency is defined as the
frequency for which the response is a maximum, a simple system has three resonance
frequencies if defined only generally. The natural frequency is different from any of
the resonance frequencies. The relations among the several resonance frequencies,
the damped natural frequency, and the undamped natural frequency ωn are:

Displacement resonance frequency: ωn(1 − 2ζ2)1/2

Velocity resonance frequency: ωn

Acceleration resonance frequency: ωn/(1 − 2ζ2)1/2

Damped natural frequency: ωn(1 − ζ2)1/2

For the degree of damping usually embodied in physical systems, the difference
among the three resonance frequencies is negligible.

Resonance, Bandwidth, and the Quality Factor Q. Damping in a system can
be determined by noting the maximum response, i.e., the response at the resonance
frequency as indicated by the maximum value of Rv in Eq. (2.36). This is defined by
the factor Q sometimes used in electrical engineering terminology and defined with
respect to mechanical vibration as

Q = (R�)max = 1/2ζ

The maximum acceleration and displacement responses are slightly larger, being

(Rd)max = (Ra)max =

The damping in a system is also indi-
cated by the sharpness or width of the
response curve in the vicinity of a reso-
nance frequency ωn. Designating the
width as a frequency increment ∆ω meas-
ured at the “half-power point” (i.e., at a
value of R equal to Rmax/2), as illustrated
in Fig. 2.22, the damping of the system is
defined to a good approximation by

= = 2ζ (2.51)

for values of ζ less than 0.1.The quantity
∆ω, known as the bandwidth, is com-
monly represented by the letter B.

Structural Damping. The energy dis-
sipated by the damper is known as hys-
teresis loss; as indicated by Eq. (2.44), it
is proportional to the forcing frequency
ω. However, the hysteresis loss of many
engineering structures has been found

1
�
Q

∆ω
�
ωn

(R�)max��
(1 − ζ2)1/2
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FIGURE 2.22 Response curve showing band-
width at “half-power point.”
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to be independent of frequency.To provide a better model for defining the structural
damping experienced during vibration, an arbitrary damping term k� = cω is intro-
duced. In effect, this defines the damping force as being equal to the viscous damp-
ing force at some frequency, depending upon the value of �, but being invariant with
frequency.The relation of the damping force F to the displacement x is defined by an
ellipse similar to Fig. 2.19, and the displacement response of the system is described
by an expression corresponding to Eq. (2.33) as follows:

= Rg sin (ωt − θ) =  (2.52)

where � = 2ζω/ωn.The resonance frequency is ωn, and the value of Rg at resonance is
1/� = Q.

The equations for the hysteresis ellipse for structural damping are

F = kx0 (sin ωt + � cos ωt)

x = x0 sin ωt
(2.53)

UNDAMPED MULTIPLE DEGREE-OF-FREEDOM

SYSTEMS

An elastic system sometimes cannot be described adequately by a model having
only one mass but rather must be represented by a system of two or more masses
considered to be point masses or particles having no rotational inertia. If a group of
particles is bound together by essentially rigid connections, it behaves as a rigid body
having both mass (significant for translational motion) and moment of inertia (sig-
nificant for rotational motion). There is no limit to the number of masses that may
be used to represent a system. For example, each mass in a model representing a
beam may be an infinitely thin slice representing a cross section of the beam; a dif-
ferential equation is required to treat this continuous distribution of mass.

DEGREES-OF-FREEDOM

The number of independent parameters required to define the distance of all the
masses from their reference positions is called the number of degrees-of-freedom N.
For example, if there are N masses in a system constrained to move only in transla-
tion in the X and Y directions, the system has 2N degrees-of-freedom. A continuous
system such as a beam has an infinitely large number of degrees-of-freedom.

For each degree-of-freedom (each coordinate of motion of each mass) a differ-
ential equation can be written in one of the following alternative forms:

mjẍj = Fxj Ikα̈k = Mαk (2.54)

where Fxj is the component in the X direction of all external, spring, and damper
forces acting on the mass having the jth degree-of-freedom, and Mαk is the compo-
nent about the α axis of all torques acting on the body having the kth degree-of-
freedom. The moment of inertia of the mass about the α axis is designated by Ik.
(This is assumed for the present analysis to be a principal axis of inertia, and prod-

sin (ωt − θ)
��
�(1� −� ω�2/�ω�n

2�)2� +� ��2�
x

�
F0/k

BASIC VIBRATION THEORY 2.19

8434_Harris_02_b.qxd  09/20/2001  11:37 AM  Page 2.19



uct of inertia terms are neglected. See Chap. 3 for a more detailed discussion.) Equa-
tions (2.54) are identical in form and can be represented by

mjẍj = Fj (2.55)

where Fj is the resultant of all forces (or torques) acting on the system in the jth
degree-of-freedom, ẍj is the acceleration (translational or rotational) of the system
in the jth degree-of-freedom, and mj is the mass (or moment of inertia) in the jth
degree-of-freedom. Thus, the terms defining the motion of the system (displace-
ment, velocity, and acceleration) and the deflections of structures may be either
translational or rotational, depending upon the type of coordinate. Similarly, the
“force” acting on a system may be either a force or a torque, depending upon the
type of coordinate. For example, if a system has n bodies each free to move in three
translational modes and three rotational modes, there would be 6n equations of the
form of Eq. (2.55), one for each degree-of-freedom.

DEFINING A SYSTEM AND ITS EXCITATION

The first step in analyzing any physical structure is to represent it by a mathematical
model which will have essentially the same dynamic behavior. A suitable number
and distribution of masses, springs, and dampers must be chosen, and the input
forces or foundation motions must be defined. The model should have sufficient
degrees-of-freedom to determine the modes which will have significant response to
the exciting force or motion.

The properties of a system that must be known are the natural frequencies ωn, the
normal mode shapes Djn, the damping of the respective modes, and the mass distri-
bution mj. The detailed distributions of stiffness and damping of a system are not
used directly but rather appear indirectly as the properties of the respective modes.
The characteristic properties of the modes may be determined experimentally as
well as analytically.

STIFFNESS COEFFICIENTS

The spring system of a structure of N degrees-of-freedom can be defined completely
by a set of N 2 stiffness coefficients. A stiffness coefficient Kjk is the change in spring
force acting on the jth degree-of-freedom when only the kth degree-of-freedom is
slowly displaced a unit amount in the negative direction.This definition is a general-
ization of the linear, elastic spring defined by Eq. (2.1). Stiffness coefficients have the
characteristic of reciprocity, i.e., Kjk = Kkj.The number of independent stiffness coef-
ficients is (N 2 + N)/2.

The total elastic force acting on the jth degree-of-freedom is the sum of the
effects of the displacements in all of the degrees-of-freedom:

Fel = − �
N

k = 1
Kjkxk (2.56)

Inserting the spring force Fel from Eq. (2.56) in Eq. (2.55) together with the external
forces Fj results in the n equations:

mjẍj = Fj − �
k

Kjkxk (2.56a)
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FREE VIBRATION

When the external forces are zero, the preceding equations become

mj ẍj + �
k

Kjkxk = 0 (2.57)

Solutions of Eq. (2.57) have the form

xj = Dj sin (ωt + θ) (2.58)

Substituting Eq. (2.58) in Eq. (2.57),

mjω2Dj = �
k

KjkDk (2.59)

This is a set of n linear algebraic equations with n unknown values of D. A solution
of these equations for values of D other than zero can be obtained only if the deter-
minant of the coefficients of the D’s is zero:

(m1ω2 − K11) − K12 ⋅ ⋅ − Kin

− K21 (m2ω2 − K22) ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ = 0 (2.60)	 ⋅ ⋅ ⋅ ⋅ ⋅ 	

− Kni ⋅ ⋅ ⋅ (mnω2 − Knn)

Equation (2.60) is an algebraic equation of the nth degree in ω2; it is called the fre-
quency equation since it defines n values of ω which satisfy Eq. (2.57). The roots are
all real; some may be equal, and others may be zero.These values of frequency deter-
mined from Eq. (2.60) are the frequencies at which the system can oscillate in the
absence of external forces. These frequencies are the natural frequencies ωn of the
system. Depending upon the initial conditions under which vibration of the system
is initiated, the oscillations may occur at any or all of the natural frequencies and at
any amplitude.

Example 2.1. Consider the three degree-of-freedom system shown in Fig. 2.23;
it consists of three equal masses m and a foundation connected in series by three

BASIC VIBRATION THEORY 2.21

FIGURE 2.23 Undamped three degree-of-freedom system on foundation.

equal springs k. The absolute displacements of the masses are x1, x2, and x3. The 
stiffness coefficients (see section entitled Stiffness Coefficients) are thus K11 = 2k,
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K22 = 2k, K33 = k, K12 = K21 = −k, K23 = K32 = −k, and K13 = K31 = 0.The frequency equa-
tion is given by the determinant, Eq. (2.60),

(mω2 − 2k) k 0

	 k (mω2 − 2k) k 	 = 0
0 k (mω2 − k)

The determinant expands to the following polynomial:

� �
3

− 5 � �
2

+ 6 � � − 1 = 0

Solving for ω,

ω = 0.445�� , 1.25�� , 1.80��
Normal Modes of Vibration. A structure vibrating at only one of its natural fre-
quencies ωn does so with a characteristic pattern of amplitude distribution called a
normal mode of vibration. A normal mode is defined by a set of values of Djn [see
Eq. (2.58)] which satisfy Eq. (2.59) when ω = ωn:

ωn
2mjDjn = �

k
KjnDkn (2.61)

A set of values of Djn which form a normal mode is independent of the absolute
values of Djn but depends only on their relative values. To define a mode shape by a
unique set of numbers, any arbitrary normalizing condition which is desired can be
used. A condition often used is to set D1n = 1 but �

j
mjDjn

2 = 1 and �
j

mjDjn
2 = �

j
mj

also may be found convenient.

Orthogonality of Normal Modes. The usefulness of normal modes in dealing
with multiple degree-of-freedom systems is due largely to the orthogonality of the
normal modes. It can be shown that the set of inertia forces ωn

2mjDjn for one mode
does not work on the set of deflections Djm of another mode of the structure:

�
j

mjDjmDjn = 0 [m ≠ n] (2.62)

This is the orthogonality condition.

Normal Modes and Generalized Coordinates. Any set of N deflections xj can
be expressed as the sum of normal mode amplitudes:

xj = �
N

n = 1
qnDjn (2.63)

The numerical values of the Djn’s are fixed by some normalizing condition, and a set
of values of the N variables qn can be found to match any set of xj’s. The N values of
qn constitute a set of generalized coordinates which can be used to define the position
coordinates xj of all parts of the structure. The q’s are also known as the amplitudes
of the normal modes, and are functions of time. Equation (2.63) may be differenti-
ated to obtain

ẍj = �
N

n = 1
q̈nDjn (2.64)

k
�
m

k
�
m

k
�
m

mω2

�
k

mω2

�
k

mω2

�
k
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Any quantity which is distributed over the j coordinates can be represented by a lin-
ear transformation similar to Eq. (2.63). It is convenient now to introduce the
parameter γn relating Djn and Fj/mj as follows:

= �
n

γnDjn (2.65)

where Fj may be zero for certain values of n.

FORCED MOTION

Substituting the expressions in generalized coordinates, Eqs. (2.63) to (2.65), in the
basic equation of motion, Eq. (2.56a),

mj �
n

q̈nDjn + �
k

kjk �
n

qnDkn − mj �
n

γnDjn = 0 (2.66)

The center term in Eq. (2.66) may be simplified by applying Eq. (2.61) and the equa-
tion rewritten as follows:

�
n

(q̈n + ωn
2qn − γn)mjDjn = 0 (2.67)

Multiplying Eqs. (2.67) by Djm and taking the sum over j (i.e., adding all the equa-
tions together),

�
n

(q̈n + ωn
2qn − γn) �

j
mjDjnDjm = 0

All terms of the sum over n are zero, except for the term for which m = n, according
to the orthogonality condition of Eq. (2.62). Then since �

j
mjDjn

2 is not zero, it fol-
lows that

q̈n + ωn
2qn − γn = 0

for every value of n from 1 to N.
An expression for γn may be found by using the orthogonality condition again.

Multiplying Eq. (2.65) by mjDjm and taking the sum taken over j,

�
j

FjDjm = �
n

γn �
j

mjDjnDjm (2.68)

All the terms of the sum over n are zero except when n = m, according to Eq. (2.62),
and Eq. (2.68) reduces to

γn = (2.69)

Then the differential equation for the response of any generalized coordinate to the
externally applied forces Fj is

q̈n + ωn
2qn = γn = (2.70)

�
j

FjDjn

��
�

j
mjDjn

2

�
j

FjDjn

��
�

j
mjDjn

2

Fj
�
mj
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where ΣFjDjn is the generalized force, i.e., the total work done by all external forces
during a small displacement δqn divided by δqn, and ΣmjDjn

2 is the generalized mass.
Thus the amplitude qn of each normal mode is governed by its own equation,

independent of the other normal modes, and responds as a simple mass-spring sys-
tem. Equation (2.70) is a generalized form of Eq. (2.23).

The forces Fj may be any functions of time. Any equation for the response of an
undamped mass-spring system applies to each mode of a complex structure by sub-
stituting:

The generalized coordinate qn for x

The generalized force �
j

FjDjn for F

(2.71)
The generalized mass �

j
mjDjn for m

The mode natural frequency ωn for ωn

Response to Sinusoidal Forces. If a system is subjected to one or more sinu-
soidal forces Fj = F0j sin ωt, the response is found from Eq. (2.26) by noting that k =
mωn

2 [Eq. (2.6)] and then substituting from Eq. (2.71):

qn = (2.72)

Then the displacement of the kth degree-of-freedom, from Eq. (2.63), is

xk = �
N

n = 1
(2.73)

This is the general equation for the response to sinusoidal forces of an undamped
system of N degrees-of-freedom. The application of the equation to systems free in
space or attached to immovable foundations is discussed below.

Example 2.2. Consider the system shown in Fig. 2.24; it consists of three equal
masses m connected in series by two equal springs k. The system is free in space and

Dkn �
j

F0jDjn sin ωt

���
ωn

2 �
j

mjDjn
2(1 − ω2/ωn

2)

sin ωt
��
(1 − ω2/ωn

2)

�
j

F0jDjn

��
ωn

2 �
j

mjDjn
2
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FIGURE 2.24 Undamped three degree-of-freedom system
acted on by sinusoidal force.

a force F sin ωt acts on the first mass. Absolute displacements of the masses are x1,
x2, and x3. Determine the acceleration ẍ3. The stiffness coefficients (see section enti-
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tled Stiffness Coefficients) are K11 = K33 = k, K22 = 2k, K12 = K21 = −k, K13 = K31 = 0, and
K23 = K32 = −k. Substituting in Eq. (2.60), the frequency equation is

(mω2 − k) k 0

	 k (mω2 − 2k) k 	 = 0
0 k (mω2 − k)

The roots are ω1 = 0, ω2 = �k�/m�, and ω3 = �3�k�/m�. The zero value for one of the natu-
ral frequencies indicates that the entire system translates without deflection of the
springs.The mode shapes are now determined by substituting from Eq. (2.58) in Eq.
(2.57), noting that ẍ = −Dω2, and writing Eq. (2.59) for each of the three masses in
each of the oscillatory modes 2 and 3:

mD21 � � = K11D21 + K21D22 + K31D23

mD22 � � = K12D21 + K22D22 + K32D23

mD23 � � = K13D21 + K23D22 + K33D23

mD31 � � = K11D31 + K21D32 + K31D33

mD32 � � = K12D31 + K22D32 + K32D33

mD33 � � = K13D31 + K23D32 + K33D33

where the first subscript on the D’s indicates the mode number (according to ω1 and
ω2 above) and the second subscript indicates the displacement amplitude of the par-
ticular mass. The values of the stiffness coefficients K are calculated above. The
mode shapes are defined by the relative displacements of the masses.Thus, assigning
values of unit displacement to the first mass (i.e., D21 = D31 = 1), the above equations
may be solved simultaneously for the D’s:

D21 = 1 D22 = 0 D23 = −1

D31 = 1 D32 = −2 D33 = 1

Substituting these values of D in Eq. (2.71), the generalized masses are determined:
M2 = 2m, M3 = 6m.

Equation (2.73) then can be used to write the expression for acceleration ẍ3:

ẍ3 = � + +  F1 sin ωt
(ω2/ω3

2)(+1)(+1)
��

6m(1 − ω2/ω3
2)

(ω2/ω2
2)(−1)(+1)

��
2m(1 − ω2/ω2

2)
1

�
3m

3k
�
m

3k
�
m

3k
�
m

k
�
m

k
�
m

k
�
m
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Free and Fixed Systems. For a structure which is free in space, there are six “nor-
mal modes” corresponding to ωn = 0. These represent motion of the structure 
without relative motion of its parts; this is rigid body motion with six degrees-of-
freedom.

The rigid body modes all may be described by equations of the form

Djm = ajmDm [m = 1,2, . . . ,6]

where Dm is a motion of the rigid body in the m coordinate and a is the displacement
of the jth degree-of-freedom when Dm is moved a unit amount. The geometry of the
structure determines the nature of ajm. For example, if Dm is a rotation about the Z
axis, ajm = 0 for all modes of motion in which j represents rotation about the X or Y
axis and ajm = 0 if j represents translation parallel to the Z axis. If Djm is a transla-
tional mode of motion parallel to X or Y, it is necessary that ajm be proportional to
the distance rj of mj from the Z axis and to the sine of the angle between rj and the
jth direction. The above relations may be applied to an elastic body. Such a body
moves as a rigid body in the gross sense in that all particles of the body move
together generally but may experience relative vibratory motion. The orthogonality
condition applied to the relation between any rigid body mode Djm and any oscilla-
tory mode Djn yields

�
j

mjDjnDjm = �
j

mjajmDjn = 0 �  (2.74)

These relations are used in computations of oscillatory modes, and show that normal
modes of vibration involve no net translation or rotation of a body.

A system attached to a fixed foundation may be considered as a system free in
space in which one or more “foundation” masses or moments of inertia are infinite.
Motion of the system as a rigid body is determined entirely by the motion of the
foundation. The amplitude of an oscillatory mode representing motion of the foun-
dation is zero; i.e., MjDjn

2 = 0 for the infinite mass. However, Eq. (2.73) applies
equally well regardless of the size of the masses.

Foundation Motion. If a system is small relative to its foundation, it may be
assumed to have no effect on the motion of the foundation. Consider a foundation
of large but unknown mass m0 having a motion x0 sin ωt, the consequence of some
unknown force

F0 sin ωt = −m0x0ω2 sin ωt (2.75)

acting on m0 in the x0 direction. Equation (2.73) is applicable to this case upon 
substituting

−m0x0ω2D0n = �
j

F0jDjn (2.76)

where D0n is the amplitude of the foundation (the 0 degree-of-freedom) in the nth
mode.

The oscillatory modes of the system are subject to Eqs. (2.74):

�
j

= 0 mjajmDjn = 0

Separating the 0th degree-of-freedom from the other degrees-of-freedom:

�
j = 0

mjajmDjn = m0a0mD0n + �
j = 1

mj ajmDjn

m ≤ 6
n > 6
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If m0 approaches infinity as a limit, D0n approaches zero and motion of the system as
a rigid body is identical with the motion of the foundation. Thus, a0m approaches
unity for motion in which m = 0, and approaches zero for motion in which m ≠ 0. In
the limit:

lim
m0→∞

m0D0n = − �
j

mjaj0Djn (2.77)

Substituting this result in Eq. (2.76),

lim
m0→∞ �

j
F0jDjn = x0ω2 �

j
mjaj0Djn (2.78)

The generalized mass in Eq. (2.73) includes the term m0D0n
2, but this becomes zero

as m0 becomes infinite.
The equation for response of a system to motion of its foundation is obtained by

substituting Eq. (2.78) in Eq. (2.73):

xk = �
N

n = 1
Dkn + x0 sin ωt (2.79)

DAMPED MULTIPLE DEGREE-OF-FREEDOM

SYSTEMS

Consider a set of masses interconnected by a network of springs and acted upon by
external forces, with a network of dampers acting in parallel with the springs. The
viscous dampers produce forces on the masses which are determined in a manner
analogous to that used to determine spring forces and summarized by Eq. (2.56).The
damping force acting on the jth degree-of-freedom is

(Fd)j = − �
k

Cjkẋk (2.80)

where Cjk is the resultant force on the jth degree-of-freedom due to a unit velocity of
the kth degree-of-freedom.

In general, the distribution of damper sizes in a system need not be related to the
spring or mass sizes. Thus, the dampers may couple the normal modes together,
allowing motion of one mode to affect that of another. Then the equations of
response are not easily separable into independent normal mode equations. How-
ever, there are two types of damping distribution which do not couple the normal
modes. These are known as uniform viscous damping and uniform mass damping.

UNIFORM VISCOUS DAMPING

Uniform damping is an appropriate model for systems in which the damping effect
is an inherent property of the spring material. Each spring is considered to have a
damper acting in parallel with it, and the ratio of damping coefficient to stiffness
coefficient is the same for each spring of the system. Thus, for all values of j and k,

= 2G (2.81)

where G is a constant.

Cjk
�
kjk

�
j

mjaj 0Djnx0 sin ωt

���
�

j
mjDjn

2(1 − ω2/ωn
2)

ω2

�
ωn

2
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Substituting from Eq. (2.81) in Eq. (2.80),

−(Fd)j = �
k

Cjk ẋk = 2G �
k

kjk ẋk (2.82)

Since the damping forces are “external” forces with respect to the mass-spring sys-
tem, the forces (Fd)j can be added to the external forces in Eq. (2.70) to form the
equation of motion:

q̈n + ωn
2qn = (2.83)

Combining Eqs. (2.61), (2.63), and (2.82), the summation involving (Fd)j in Eq. (2.83)
may be written as follows:

�
j

(Fd)jDjn = −2Gωn
2q̇n �

j
mjDjn

2 (2.84)

Substituting Eq. (2.84) in Eq. (2.83),

q̈n + 2Gωn
2q̇n + ωn

2qn = γn (2.85)

Comparison of Eq. (2.85) with Eq. (2.31) shows that each mode of the system
responds as a simple damped oscillator.

The damping term 2Gωn
2 in Eq. (2.85) corresponds to 2ζωn in Eq. (2.31) for a sim-

ple system. Thus, Gωn may be considered the critical damping ratio of each mode.
Note that the effective damping for a particular mode varies directly as the natural
frequency of the mode.

Free Vibration. If a system with uniform viscous damping is disturbed from its
equilibrium position and released at time t = 0 to vibrate freely, the applicable equa-
tion of motion is obtained from Eq. (2.85) by substituting 2ζω for 2Gωn

2 and letting
γn = 0:

q̈n + 2ζωnq̇n + ωn
2qn = 0 (2.86)

The solution of Eq. (2.86) for less than critical damping is

xj(t) = �
n

Djne−ζωnt(An sin ωdt + Bn cos ωdt) (2.87)

where ωd = ωn(1 − ζ2)1/2.
The values of A and B are determined by the displacement xj(0) and velocity

ẋj(0) at time t = 0:

xj(0) = �
n

BnDjn

ẋj(0) = �
n

(Anωdn − Bnζωn)Djn

�
j

(Fd)jDjn + �
j

FjDjn

���
�

j
mjDjn

2
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Applying the orthogonality relation of Eq. (2.62) in the manner used to derive Eq.
(2.69),

Bn =

(2.88)

Anωdn − Bnζωdn =

Thus each mode undergoes a decaying oscillation at the damped natural frequency
for the particular mode, and the amplitude of each mode decays from its initial
value, which is determined by the initial displacements and velocities.

UNIFORM STRUCTURAL DAMPING

To avoid the dependence of viscous damping upon frequency, as indicated by Eq.
(2.85), the uniform viscous damping factor G is replaced by �/ω for uniform struc-
tural damping.This corresponds to the structural damping parameter � in Eqs. (2.52)
and (2.53) for sinusoidal vibration of a simple system. Thus, Eq. (2.85) for the
response of a mode to a sinusoidal force of frequency ω is

q̈n + ωn
2q̇n + ωn

2qn = γn (2.89)

The amplification factor at resonance (Q = 1/�) has the same value in all modes.

UNIFORM MASS DAMPING

If the damping force on each mass is proportional to the magnitude of the mass,

(Fd)j = −Bmj ẋj (2.90)

where B is a constant. For example, Eq. (2.90) would apply to a uniform beam
immersed in a viscous fluid.

Substituting as ẋj in Eq. (2.90) the derivative of Eq. (2.63),

Σ(Fd)jDjn = −B �
j

mjDjn �
m

q̇mDjm (2.91)

Because of the orthogonality condition, Eq. (2.62):

Σ(Fd)jDjn = −Bq̇n �
j

mjDjn
2

Substituting from Eq. (2.91) in Eq. (2.83), the differential equation for the system is

q̈n + Bq̇n + ωn
2qn = γn (2.92)

2�
�
ω

�
j

ẋj(0)mjDjn

��
�

j
mjDjn

2

�
j

xj(0)mjDjn

��
�

j
mjDjn

2
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where the damping term B corresponds to 2ζω for a simple oscillator, Eq. (2.31).
Then B/2ωn represents the fraction of critical damping for each mode, a quantity
which diminishes with increasing frequency.

GENERAL EQUATION FOR FORCED VIBRATION

All the equations for response of a linear system to a sinusoidal excitation may be
regarded as special cases of the following general equation:

xk = �
N

n = 1
Rn sin (ωt − θn) (2.93)

where xk = displacement of structure in kth degree-of-freedom
N = number of degrees-of-freedom, including those of the foundation

Dkn = amplitude of kth degree-of-freedom in nth normal mode
Fn = generalized force for nth mode
mn = generalized mass for nth mode
Rn = response factor, a function of the frequency ratio ω/ωn (Fig. 2.13)
θn = phase angle (Fig. 2.14)

Equation (2.93) is of sufficient generality to cover a wide variety of cases, includ-
ing excitation by external forces or foundation motion, viscous or structural damp-
ing, rotational and translational degrees-of-freedom, and from one to an infinite
number of degrees-of-freedom.

LAGRANGIAN EQUATIONS

The differential equations of motion for a vibrating system sometimes are derived
more conveniently in terms of kinetic and potential energies of the system than by
the application of Newton’s laws of motion in a form requiring the determination of
the forces acting on each mass of the system. The formulation of the equations in
terms of the energies, known as Lagrangian equations, is expressed as follows:

− + = Fn (2.94)

where T = total kinetic energy of system
V = total potential energy of system
qn = generalized coordinate—a displacement
q̇n = velocity at generalized coordinate qn

Fn = generalized force, the portion of the total forces not related to the
potential energy of the system (gravity and spring forces appear in the
potential energy expressions and are not included here)

The method of applying Eq. (2.94) is to select a number of independent coordi-
nates (generalized coordinates) equal to the number of degrees-of-freedom, and to
write expressions for total kinetic energy T and total potential energy V. Differenti-
ation of these expressions successively with respect to each of the chosen coordi-
nates leads to a number of equations similar to Eq. (2.94), one for each coordinate
(degree-of-freedom). These are the applicable differential equations and may be
solved by any suitable method.

∂V
�
∂qn

∂T
�
∂qn

∂T
�
∂q̇n

d
�
dt

Fn�
mn

Dkn�
ωn

2
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Example 2.3. Consider free vibration of the three degree-of-freedom system
shown in Fig. 2.23; it consists of three equal masses m connected in tandem by equal
springs k. Take as coordinates the three absolute displacements x1, x2, and x3. The
kinetic energy of the system is

T = 1⁄2m(ẋ1
2 + ẋ2

2 + ẋ3
2)

The potential energy of the system is

V = [x1
2 + (x1 − x2)2 + (x2 − x3)2] = (2x1

2 + 2x2
2 + x3

2 − 2x1x2 − 2x2x3)

Differentiating the expression for the kinetic energy successively with respect to the
velocities,

= mẋ1 = mẋ2 = mẋ3

The kinetic energy is not a function of displacement; therefore, the second term in
Eq. (2.94) is zero. The partial derivatives with respect to the displacement coordi-
nates are

= 2kx1 − kx2 = 2kx2 − kx1 − kx3 = kx3 − kx2

In free vibration, the generalized force term in Eq. (2.93) is zero. Then, substituting
the derivatives of the kinetic and potential energies from above into Eq. (2.94),

mẍ1 + 2kx1 − kx2 = 0

mẍ2 + 2kx2 − kx1 − kx3 = 0

mẍ3 + kx3 − kx2 = 0

The natural frequencies of the system may be determined by placing the preceding
set of simultaneous equations in determinant form, in accordance with Eq. (2.60):

(mω2 − 2k) k 0

	 k (mω2 − 2k) k 	 = 0
0 k (mω2 − k)

The natural frequencies are equal to the
values of ω that satisfy the preceding
determinant equation.

Example 2.4. Consider the com-
pound pendulum of mass m shown in
Fig. 2.25, having its center-of-gravity
located a distance l from the axis of
rotation. The moment of inertia is I
about an axis through the center-of-
gravity. The position of the mass is
defined by three coordinates, x and y to
define the location of the center-of-
gravity and θ to define the angle of 
rotation.

∂V
�
∂x3

∂V
�
∂x2

∂V
�
∂x1

∂T
�
∂ẋ3

∂T
�
∂ẋ2

∂T
�
∂ẋ1

k
�
2

k
�
2
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The equations of constraint are y = l cos θ; x = l sin θ. Each equation of constraint
reduces the number of degrees-of-freedom by 1; thus the pendulum is a one degree-
of-freedom system whose position is defined uniquely by θ alone.

The kinetic energy of the pendulum is

T = 1⁄2(I + ml2)θ̇2

The potential energy is

V = mgl(1 − cos θ)

Then

= (I + ml2)θ̇ � � = (I + ml2)θ̈

= 0 = mgl sin θ

Substituting these expressions in Eq. (2.94), the differential equation for the pendu-
lum is

(I + ml2)θ̈ + mgl sin θ = 0

Example 2.5. Consider oscillation of
the water in the U-tube shown in Fig. 2.26. If
the displacements of the water levels in the
arms of a uniform-diameter U-tube are h1

and h2, then conservation of matter requires
that h1 = −h2. The kinetic energy of the water
flowing in the tube with velocity h1 is

T = 1⁄2ρSlḣ1
2

where ρ is the water density, S is the cross-
section area of the tube, and l is the devel-
oped length of the water column. The

potential energy (difference in potential energy between arms of tube) is

V = Sρgh1
2

Taking h1 as the generalized coordinate, differentiating the expressions for energy,
and substituting in Eq. (2.94),

Sρlḧ1 + 2ρgSh1 = 0

Dividing through by ρSl,

ḧ1 + h1 = 0

This is the differential equation for a simple oscillating system of natural frequency
ωn, where

ωn = ��2g
�
l

2g
�
l

∂V
�
∂θ

∂T
�
∂θ

∂T
�
∂θ̇

d
�
dt

∂T
�
∂θ̇
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