Railway Alignment Design and Geometry

Pasi Lautala, Michigan Tech University Tyler Dick, HDR, Inc.

> American Railway Engineering and Maintenance-of-Way Association

Topics

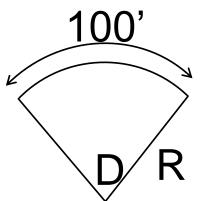
- Horizontal and Vertical geometry
 Clearances
 Turnout design
- Structures and loading

RailPictures.Net - Image Copyright © WAYNE TROWBRIDGE

Railroad vs. Highway – Passenger Vehicles

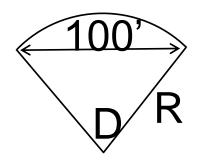
	Passenger Car	Light rail vehicle
Top speed (mph)	65+	65
Weight (tons)	1.4	53.5
Power to weight ratio (hp/ton)	150	9.3
Length (ft)	15	92 (articulated)
# of passengers	5	160
Propulsion method	Gasoline engine	Electric (or diesel- electric)

Railroad vs. Highway – Freight



	Semi-trailer Truck	Freight (Unit) Train
Top speed (mph)	55+	40+
Weight (tons)	40	18,000
Power to weight ratio (hp/ton)	12.5	0.73
Length (ft)	65	7,000
# of power units	1	1-4
# of trailing units	1	Up to 125
Propulsion method	Diesel engine	Diesel-electric

Horizontal Geometry – Degree of Curve


- Arc (Roadway and LRT)
 - Angle measured along the length of a section of curve subtended by a 100' arc

D/360 = 100/2(pi)R

- 1-deg curve, R= 5729.58'
- 7-deg curve, R=818.51'

- Chord (Railroad)
 - Angle measured along the length of a section of curve subtended by a 100' chord

R = 50/sin(D/2)

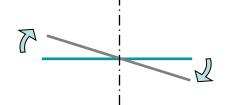
- 1-deg curve, R=5729.65'
- 7-deg curve, R=819.02'

REES Module #6 - Railway Alignment Design and Geometry 4

Curve length difference

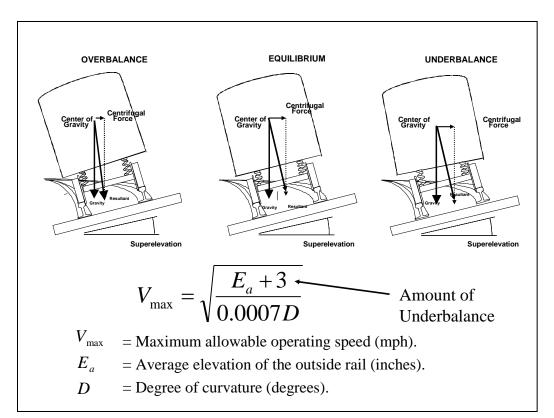
Railway D	Radiu	Equiv. Hwy D	Arc length (ft)	% of error
100 ft chord	s	100 ft arc	of a 100 ft chord	longer
	(feet)			
1° 00'	5,729.65	0° 59' 59.95"	100.0013	0.0013 %
3° 00'	1,910.08	2° 59' 58.77"	100.0114	0.0114 %
$6^{\circ} 00'$	955.37	5° 59' 50,13"	100,0457	0.0457 %
9° 00'	637.27	8° 59' 26.70"	100,1029	0.1029 %
$12^{\circ} 00'$	478.34	11° 58' 41.09"	100,1830	0.1830 %
$16^{\circ} 00'$	359.26	15° 56' 53.03"	100.3257	0.3257 %
$20^{\circ} 00^{\circ}$	287.94	19° 53' 55.02"	100,5095	0.5095 %
$30^{\circ} 00^{\circ}$	193.19	29° 39' 30.52"	101,1515	1,1515 %
$40^{\circ} 00'$	146.19	39° 11' 33.44"	102,0600	2,0600 %
$60^{\circ} 00^{\circ}$	100.00	57° 17' 44.81"	104.7198	4,7198 %
80° 00'	77.79	73° 39' 28,92"	108,6100	8,6100 %

Watch out for LONG and SHARP curves

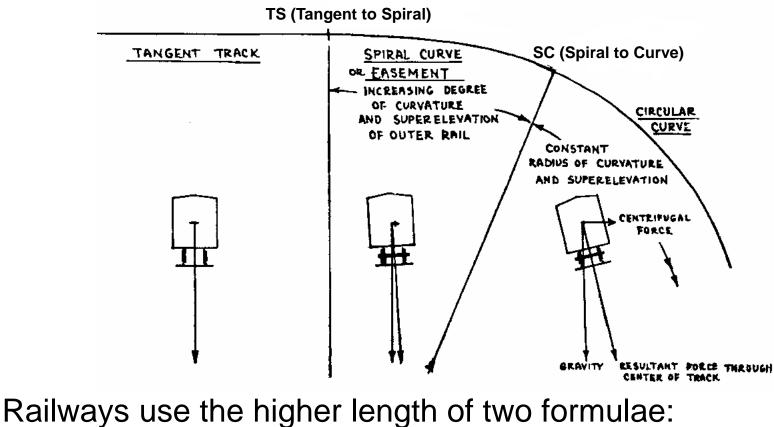

Horizontal Geometry – Curves

	Highway	Railroad
Criteria	- Design speed	-Design speed -Allowable superelevation
Typical values	Freeway: - 60 mph, R=1,340, D=4.28 - 70 mph, R=2,050, D=2.79	Main lines: -High speed: R > 5,729, D<1 -Typical: R >2,865, D<2 -Low speed: R>1,433, D<4 Industrial facilities: - R>764, D<7.5

Horizontal Geometry – Superelevation



71	
1	

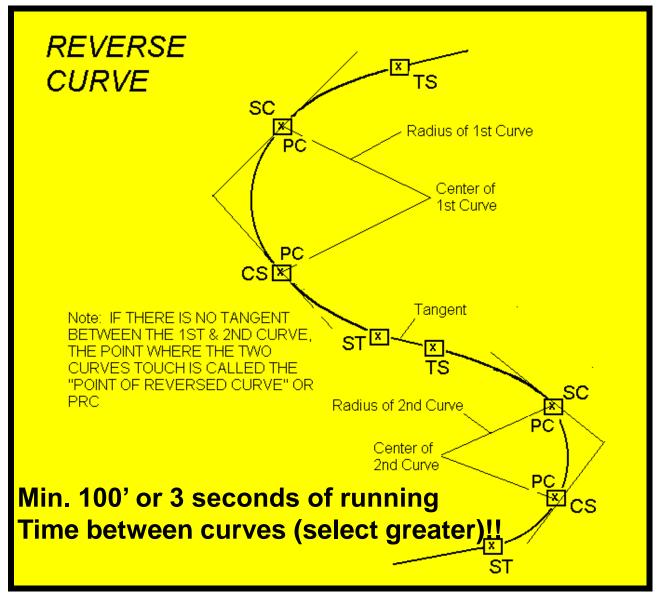

	Highway	Railroad
Expressed by	"e" expressed as cross-slope in percent	"E" is inches of elevation difference between "high rail" (outside) and "low rail" (inside)
Function of	Vehicle speed, curve radius and tire side friction (0.01e + f) / (1 - 0.01ef) = V ² /15R	Function of design speed, degree of curve $E = 0.0007V^2D - Eu$ Where Eu is unbalance (1-2" typical)
Max. values	6-8%	Freight: 6-7" Light Rail: 6"
Rotation point	Centerline	"Inside rail"
Transition	Runoff (2/3 on tangent, 1/3 in curve) 7	Spiral

Unbalanced Elevation

- Different maximum allowed speeds for different trains on the same track:
 - passenger, express freight, general freight
- Actual elevation on track to balance head and flange wear of both rails

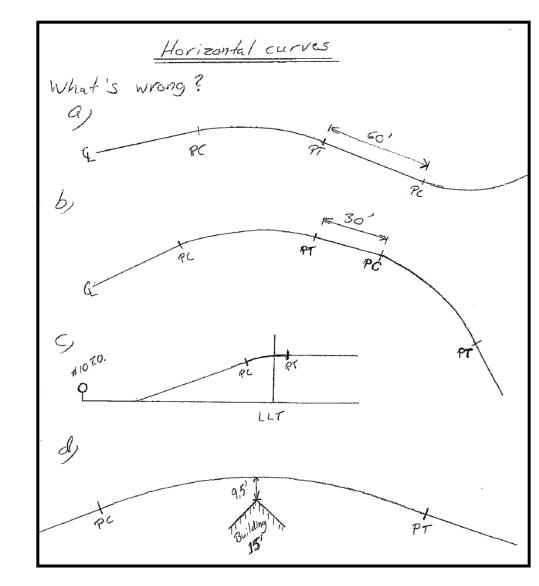
Spiral Transition Curves

•To limit unbalanced lateral acceleration acting on passengers to 0.03 g per second:


 $L = 1.63 E_{\parallel} V E_{\parallel} = unbalanced elevation (in.)$ •To limit track twist to 1 inch in 62 feet: $L = 62 E_{a}$

 $= E_a = actual elevation (in.)$ REES Module #6 - Railway Alignment Design and Geometry 9

Superelevation Tables


															C	DEGR	REE	OF	CL	IRVE	Ξ														2511
INCHES	SPEED	°.	°.	0,	0°	°.	1 °	1 °	·1 °	1.	⊳°	2°	N°	20	ω°	з°	ω°	°£	4°	4°	ບູ	Ω°	<i>б</i> °	6,0		8°	°6	10°	11°	12°	14°	16°	18°	20°	
	IN MILES	1										•	•				i.		3	6		1		•	•	•	•			16		1		× 1	
SUBTRACTED	PER HOUR	10,	20,	30,	40,	50 ʻ	00,	15,	30,	45	,00	15,	30,	45'	00,	15,	ŝΟ	45,	00,	30,	,00	30,	0,	30,	Ő,	Ő,	00,	00,	<u></u> ,	,00	,00	,00	00,	,00	
0			l	<u> </u>	h	4	1	EC	UIL	IB	RIUN	ΜE	LEV	ATI	ON	MIN	NUS	1	1/2"	OR	2	1/2 "	BA	SEC	ON ON	I SF	PEED)							
	10							1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2		1/2	1/2	1/2	1/2	1/2	1/2	
	20						1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	3⁄4					21/2	3	31/2	4	
	25					1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2		1/2	1/2	1/2	1/2	1/2	3/4	1	1	11/4	11/2		21/2	2¾	3 ¹ /4	3¾	41/2				
	30			•	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	3⁄4	3/4	1	11/4	13/4	L		21/2	3	31/2	4 ¹ /4								
11/2	35			1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	3⁄4	3⁄4		11/4	11/2		2				31/2	4	41/2										
2.	40		1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	3⁄4	1	11/4	11/2		********			3	31/2	4	41/2]												
	45	1/2	1/2	1/2	1/2	1/2	1/2	1/2	3⁄4	1	11/4	13/4	2	21/2	23⁄4	3	31/2	33/4	41/4]				THE	REG ERM1	IONA NE S	UPERE	SINE	ATIO	RACK N AN	WIL D EN	L US	E TH	IS T SCR	ABLE TO EEN OECV.
	50	1/2	1/2	1/2	1/2	1/2	1/2	3⁄4	11/4	11/2		21/2			33/4	4 ¹ /4								FIE		ERSO		ARE	10	USE	SCRE		ECV	TO F	IND THE
	55	1/2	1/2	1/2	1/2	1/2	1/2	11/4	1	21/4			33/4	41/4	43⁄4										ITS				51 - 5283 						
	60	1/2	1/2	1/2	1/2	1/2	1	13/4	21/4		31/2	+	43/4		:									10000	T BE	0.000000									
3/2	65 70	1/2	1/2 1/2	1/2 1/2	1/2 1/2	1/2	1/2	1 ¹ /4	23/4	23/4	-	41/4	5											RAS	ED D	N SP	FED I	AS FI		WS A	ND A	D.ILIS	TED	TO N	AN UNBALANCE EAREST ¼°. UDING 60 MPH MPH
	L			d	- h	-1					- J													NC	TE -	E = E =	0. 0 EQUI	007V	2 D I UM	ELEV	ATIC	N IN	I INC	HES	
			7. 2 8099																																
		L	_IM	ITS	i on	I SI	JPEI	REL	EVA	TIC	DN .						MIN	II MU DF	JM I SP I	RAL	GТН -	I													
1		MAXIM											•				XIMU HORIZ			NIMUN															
	2. 4 1/2 WHEN	" SUP	PEREI	LEVA	TION MAI	ON INTAI	N MA	ES GI	REATE	ER TI	HAN 3	SPE	ED.			S	PEED	1		1/2 IN	ICH C	DF							_						
	3. 4" 9 A Mé		M AL		N ON		- SIG	NALE	D BR	ANCH	LESS	ES H	AVIN	3	1	NEW (CONS		TION	AND	EXIS	STIN	G					Ċ	Ж		ς π	2ANS	POR	LATE	NN .
		SUPER							RE FR	REIGH	IT TR	AINS				UP	TO TO	50	6- 1 Van	31	FEET	3													
				-							DEMA	TUDG	08			70	TO 8	80		50	FEET						S	UPE	REL	_EV	ATI	ON	OF	CUI	RVES
	ACCE	VES S ELERA A DE	TED	WEAR	R ON	THE	HIGH	+ OR	LOW	RAIL	. A	REG	UEST	т		115			ING	TRACH															
	BE	SUBMI	TTEC	NO C	FORM	M "EL	EVAT	ION	CHAN	NGE F	REQUE	ST"	TO			55	TO S TO S AND	BO		39	FEET FEET	•				INEE	GEN RING	STAN	DARD	S &	R				CHIEF ENGINEER NANCE OF WAY
																											REPAR					R			MARCH 24, 1997 OVEMBER 25, 2002

Avoid Reversed Curves

Critical Issues with Horizontal Curves

- a) Too short tangent between reversed curves
- b) "Broken back" curve
- c) Curve within turnout
- Additional
 horizontal clearance
 required

Vertical Geometry - Grades

Rail – rarely exceeds 1% (2-2.5% for industry lines)

Highway – 4% common 6% on ramps Up to 8% on county roads

LRT – maximum 4 to 6% Up to 10% for short sections

REES Module #6 - Railway Alignment Design and Geometry 13

Design Grade for Railways

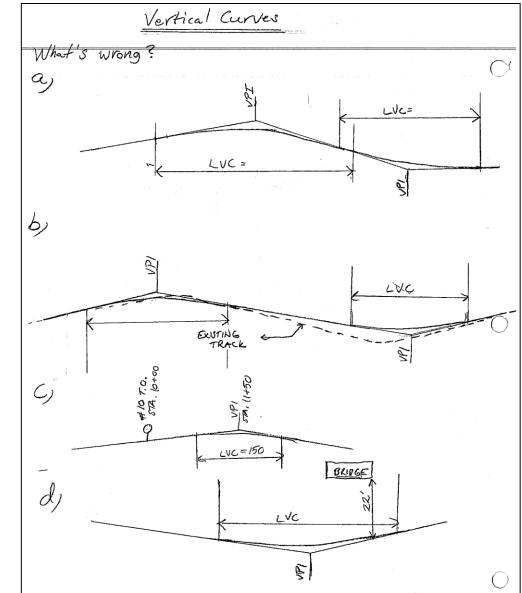
- Ideal maximum for railway grade:
 - Trains can roll safely down 0.3% grade without wasting energy on brakes
 - <0.1% for tracks for extensive storage
- Railway vertical curves old formula:

L = D / R

- D = algebraic difference of grade (ft. per 100-ft. station)
- R = rate of change per 100-ft. station
- 0.05 ft. per station for crest on main track
- 0.10 ft. per station for sag on main track
- Secondary line may be twice those for main line

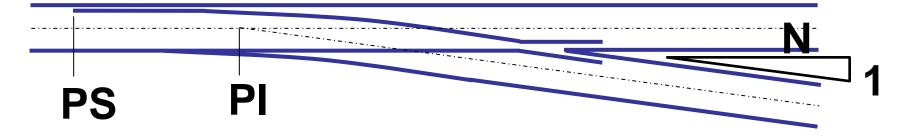
New Shorter Vertical Curves

- Old railway formula developed in 1880's for "hook and pin" couplers in those days
- Present day couplers can accommodate shorter vertical curves
- New formula developed in recent years:

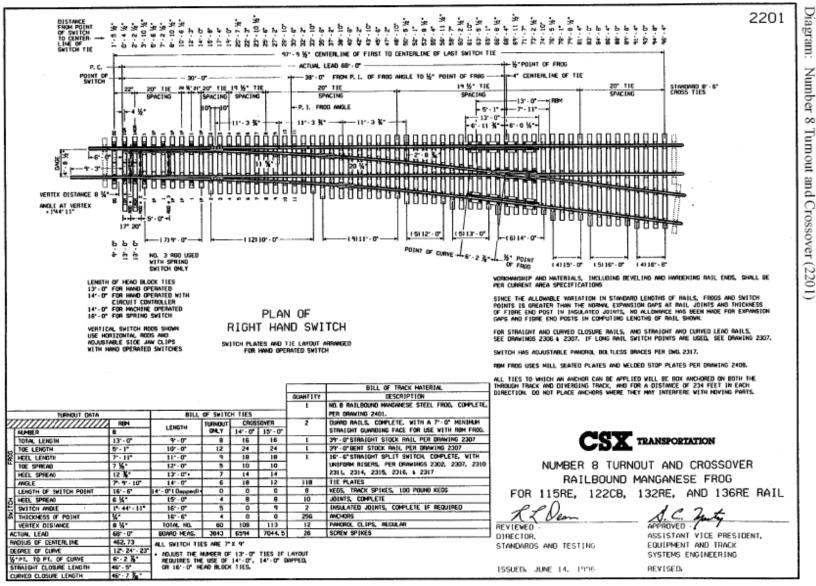

$$L = 2.15 V^2 D / A$$

- V = train speed in mph
- D = algebraic difference of grade in decimal
- A = vertical acceleration in ft./sec²

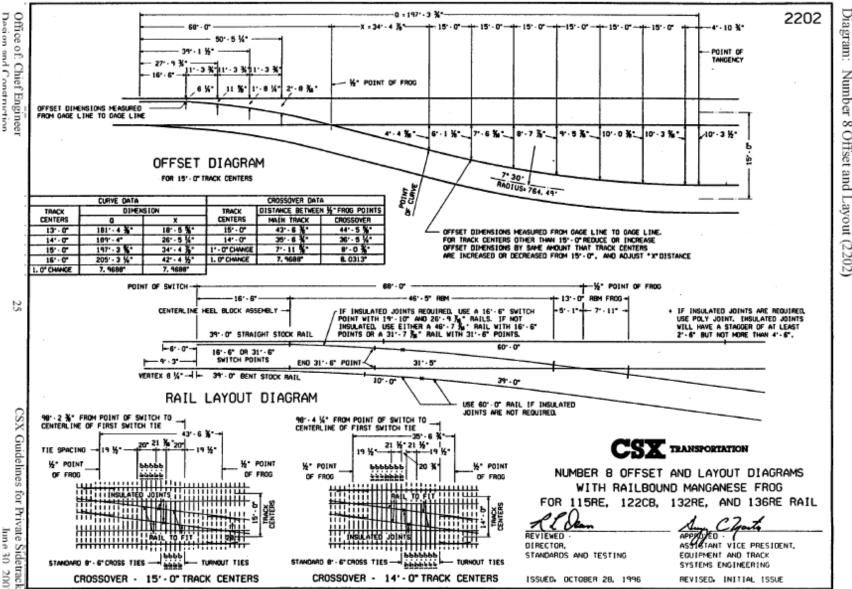
0.1 ft./ sec² for freight, 0.6 ft./ sec² for passenger or transit


Critical issues with Vertical Curves

- a) Overlapping vertical curves
- b) Avoid lowering existing tracks
- c) No vertical curves within turnouts
- d) Provide additional clearance in sag curves
- e) No vertical curves within horizontal spirals

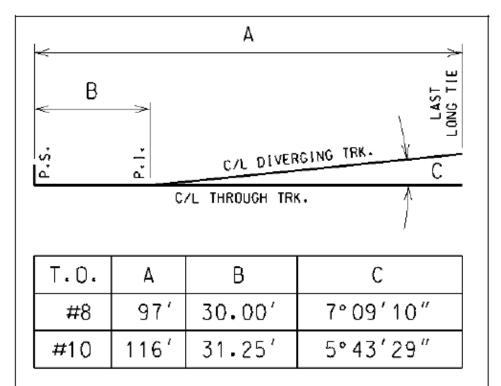

Railroad Turnouts

- Allows diverging from one track to another
- Identified by "frog number"



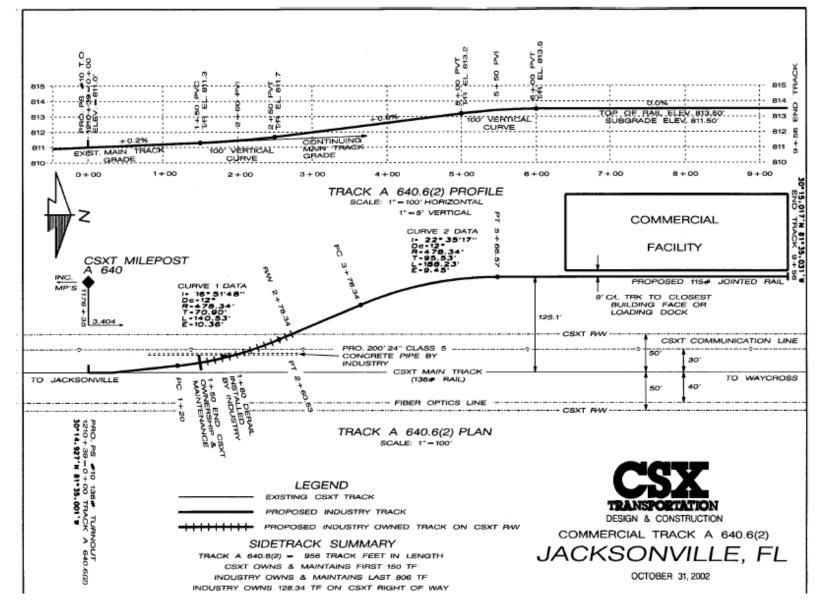
- Typical frog numbers:
 - Mainline No.20 or 24
 - Sidings No.15
 - Yards and Industry No. 11
- Diverging turnout speed ~ 2 x N

#8 RH Turnout

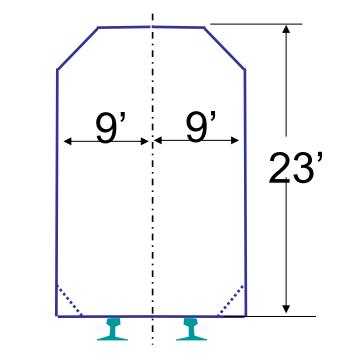

#8 – Offsets & layout

Number ∞ Offset and Layout (2202)

Designing a Turnout in Plans

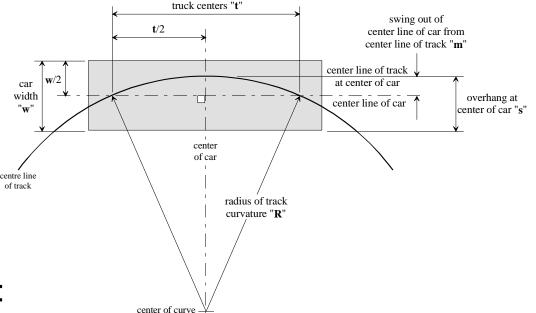

- Need to know:
 - PS to PI length (B)
 - Angle (C)
 - PS to LLT (A)
- Draw centerline of each track
- Good to mark PS & LLT
 - No curves and/or adjacent turnouts between PS and LLT

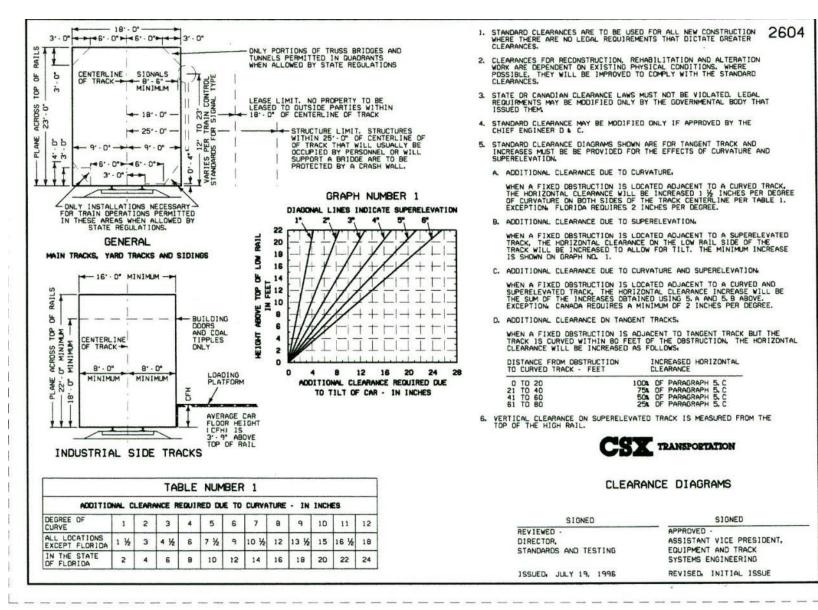
Legend: PS = Point of Switch PI = Point of intersection LLT = Last long tie Angle C = Turnout angle


REES Module #6 - Railway Alignment Design and Geometry 20

Basic Plan Sheet for Track Design

Track Clearances


- Specific clearances necessary for safe operations
- Size of car clearance envelope is based on dimensions of:
 - Locomotives
 - Cars
 - Potential large loads
- Requirements set by several agencies

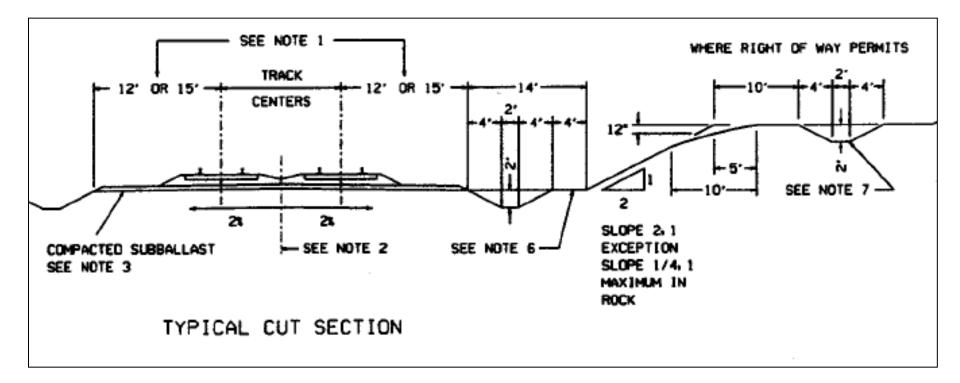


Horizontal Clearance

- Constant on tangent track
- Additional clearance:
 - In curves for car end swing and car overhang
 - In superelevated tracks to provide room for cant
- Use clearance chart (next page) to define horizontal clearance for:
 - Main track
 - 5.5 degree curve
 - 2 inch superelevation
 - 10 feet high object

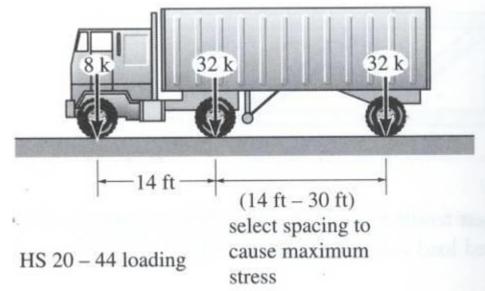
Clearance Chart

Vertical Clearance


- Constant on tangent track
- Additional clearance:
 - In sag vertical curves
 - In superelevated tracks
 - For specialized equipment (double-deck cars)
 - To provide threshold for future track maintenance and equipment changes

Typical Section - Railroad

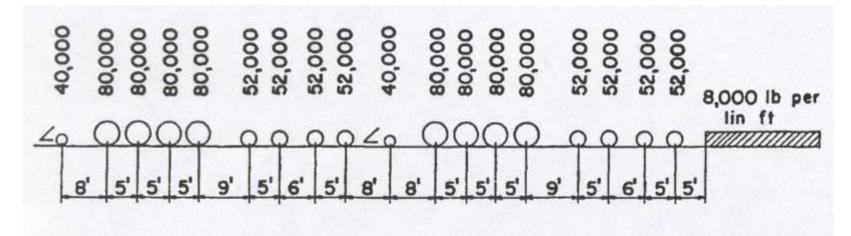
• Subgrade top width of 24' to 30' for single track


Typical section - multiple tracks

- •Track centerlines minimum 13' apart
- Roadbed sloped to drain
- •Sometimes wider shoulders for maintenance purposes

Bridge Loading - Highway

• HS-20 truck loading

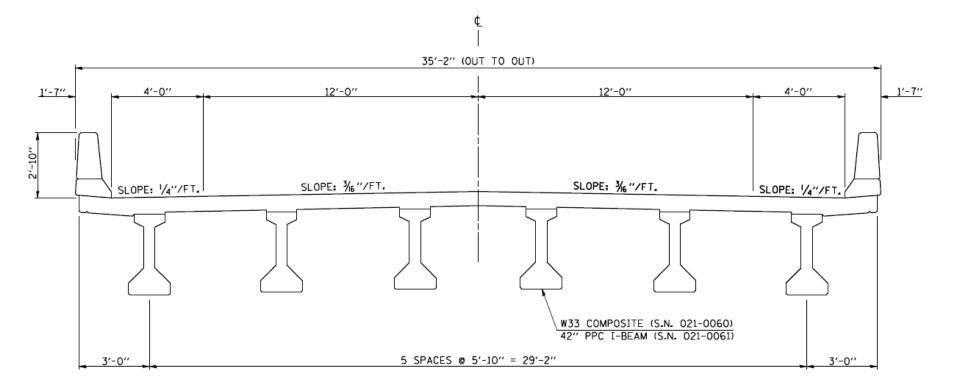


Impact Loading

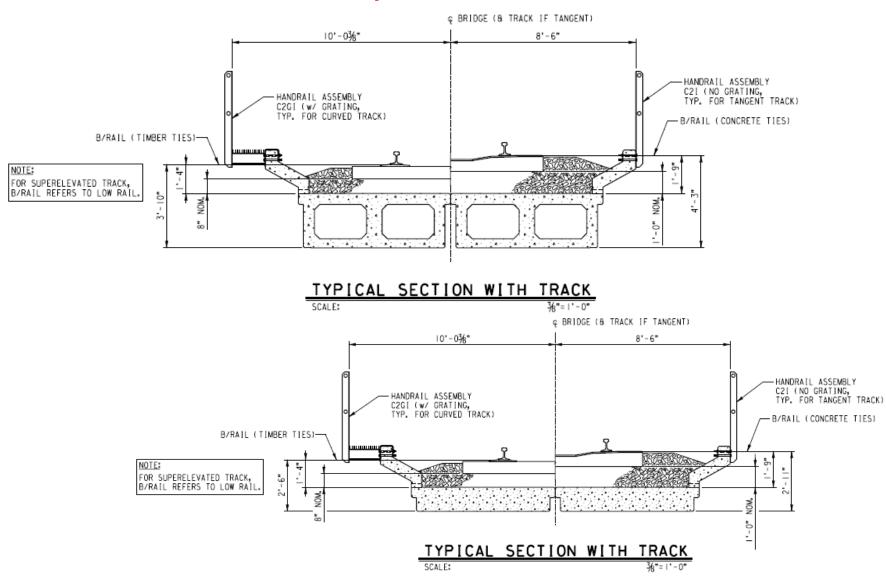
I = 50 / (L + 125) but I < 0.3

Bridge Loading - Railroad

Cooper E-80 railroad loading

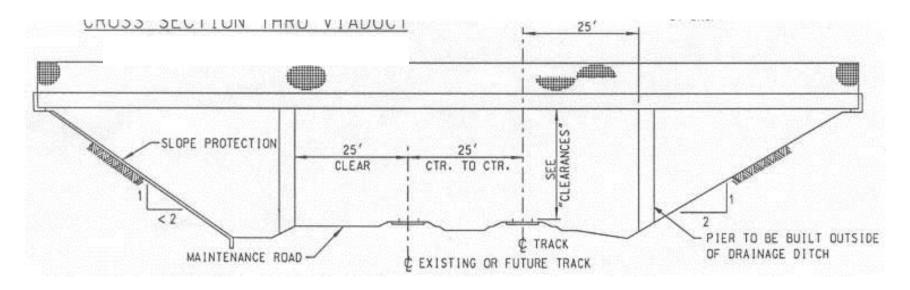

- Developed in 1890s
- "80" refers to 80kip driving axle load on steam locomotive

Bridge Loading – Railroad (cont.)


- Impact Loading
 - The following percentages of Live Load, applied at the top of rail and added to the axle loads (E-80 Loading)

For L ≤ 14 ft: I = 60For 14 ft < L ≤ 127 ft: $I = 225/\sqrt{L}$ For L> 127 ft: I = 20L = Span Length in ft

Typical Section – Roadway Superstructure



Typical Section – Railroad Concrete Superstructure

REES Module #6 - Railway Alignment Design and Geometry 32

Grade Separations – Road over Rail

- 23' vertical clearance, plus future track raise
- Allow for maintenance road and future second track
- Collision protection for piers within 25' of rail centerline
- Do not drain roadway on to tracks!
- Other details vary by specific railroad

Grade Separations – Rail over Road

- Steel preferred structure type as it can be repaired
- Concrete bridges "sacrificial beam" or "crash beam"
- Depth of structure increases rapidly with span length under railroad loading
 - Decreases clearance or increase required railroad fill
 - Need to minimize skew and span lengths

Copyright Restrictions and Disclaimer

Presentation Author

Pasi Lautala Director, Rail Transportation Program Michigan Tech University Michigan Tech Transportation Institute 318 Dillman Hall Houghton, MI 49931 (906) 487-3547 <ptlautal@mtu.edu>

It is the author's intention that the information contained in this file be used for non-commercial, educational purposes with as few restrictions as possible. However, there are some necessary constraints on its use as described below.

Copyright Restrictions and Disclaimer:

The materials used in this file have come from a variety of sources and have been assembled here for personal use by the author for educational purposes. The copyright for some of the images and graphics used in this presentation may be held by others. Users may not change or delete any author attribution, copyright notice, trademark or other legend. Users of this material may not further reproduce this material without permission from the copyright owner. It is the responsibility of the user to obtain such permissions as necessary. You may not, without prior consent from the copyright owner, modify, copy, publish, display, transmit, adapt or in any way exploit the content of this file. Additional restrictions may apply to specific images or graphics as indicated herein.

The contents of this file are provided on an "as is" basis and without warranties of any kind, either express or implied. The author makes no warranties or representations, including any warranties of title, noninfringement of copyright or other rights, nor does the author make any warranties or representation regarding the correctness, accuracy or reliability of the content or other material in the file.