\qquad Date \qquad
\qquad R \qquad S

$$
\bar{A} t=A_{0}(0.5)^{n}
$$

Determine Half-Life $\left(t_{1 / 2}\right)$:

Half-Life Practice Worksheet 1

$A_{t}=A_{0}\left(\frac{1}{2}\right)^{n}$
 carbon-14?
a. Calculate how many half-lives have passed during the decay of the 100.0 g sample. (2)

$$
A_{0}=1000 \mathrm{~g}
$$

$$
A t=259
$$

$t T=11460 \mathrm{yrs}$

$$
t \frac{1}{2}=?
$$

b. Solve for the half-life. (\$730 yrs)

$$
\dot{t} / 2=? \quad t \frac{i}{2}=\frac{t r}{n}=\frac{11460 y r}{2}=1530 \mathrm{yrs} \Rightarrow \text { half life of carbant4. }
$$

2. What is the half-life of a 100.0 g sample of nitrogen- 16 that decays to 12.5 g of nitrogen- 16 in 21.6 s ? (7.25)
3. All isotopes of technetium are radioactive, but they have widely varying half-lives. If an 800.0 g sample
$t \frac{1}{2}=?$ oft
$A_{0}=800 \mathrm{~g}$
$A t=1000$

$$
t T=t i 9000 \mathrm{yr}
$$

$$
t \frac{1}{2}=\frac{t r}{n}=\frac{639000 \mathrm{yr}}{3}=213000 \mathrm{yr}
$$

$$
t \frac{1}{2}=?
$$

4. A 208 g sample of sodium- 24 decays to 13.0 g of sodium- 24 within 60.0 hrs . What is the half-life of this radioactive isotope? (15 hrs)
$A_{0}=2089$
$A t=13.0 \mathrm{~g} \Rightarrow n=4$ half ines
$t \tau=60 \mathrm{hr}$

$$
t^{\frac{1}{2}=?}
$$

$$
t \cdot \frac{1}{2}=\frac{t_{T}}{n}=\frac{6 u h r}{4}=15 \mathrm{hrs}
$$

$$
\begin{aligned}
& t \frac{1}{2}=\frac{t 1}{n}=\frac{21.65}{2}=1 \frac{7.2 \text { seconds } \Rightarrow \text { haifife of nitwom-16 }}{} \\
& t=21.65
\end{aligned}
$$

5. Thallium- $\mathbf{2 0 8}$ has a half-life of $\mathbf{3 . 0 5 3} \mathbf{~ m i n}$. How long will it take for 120.0 g to decay to $\mathbf{7 . 5 0} \mathbf{g}$?

Determine Total Time elapsed (t_{r}):

$$
A t=6.25 \mathrm{~g}
$$

$$
t^{\frac{1}{2}}=8.10 \mathrm{day}
$$

$$
t T=? \quad t T=\left(t \frac{1}{2}\right)(n)=(8.10 \text { day })(3)=24.3 \text { days }
$$ original mass? (0.05 second 5)

$$
\begin{aligned}
& A_{c}=560 \mathrm{~g} \\
& A t=560\left(\frac{1}{4}\right)=140 \mathrm{~g} \\
& t \frac{1}{2}=0.0255 \\
& t T=?
\end{aligned}
$$

8. Chromium -48 has a short half-life of 21.6 h . How long will it take 360.00 g of chromium- $\mathbf{4 8}$ to decay to 11.25 g ? ($10 \delta \mathrm{hrs}$)
$t \frac{1}{2}=21.6 \mathrm{~h}$

$$
t T=\left(t_{\frac{1}{2}}\right)(n)=(21.6 \mathrm{~h})(5)=108 \mathrm{hrs}
$$

$$
\begin{aligned}
& A_{0}=360.0 \mathrm{~g} \\
& 300 / 2 \xrightarrow{Q} 180 / 2 \xrightarrow{(2)} 90 / 2 \\
& \stackrel{(3)}{ } 45 / 2 \xrightarrow{(4)} 225 / 2 \xrightarrow{(9)} 11.25 \\
& A t=11.25 \mathrm{~g} \Rightarrow n=5
\end{aligned}
$$

$$
\begin{aligned}
& A C=120 \mathrm{cg}
\end{aligned}
$$

$$
\begin{aligned}
& t_{T}=? \quad t_{T=?} \mid t_{T}=(t 1 / 2)(n)=(3.053 \mathrm{~min})(4)=12.212 \mathrm{mix} \text { (time } \\
& \text { taken for thallimen-2ef } \\
& \text { to decay from } 120 \mathrm{~g} \text { to } \\
& \text { 7.5.0.2) (24.3 day } \\
& \text { 6. If the half-life of iodine- } 131 \text { is } 8.10 \text { days, how long will it take a } 50.00 \mathrm{~g} \text { sample to decay to } 6.25 \mathrm{~g} \text { ? (} 24.3 \text { day }
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. Solve for the total time elapsed. (} 12.212 \mathrm{~min} \text {) } \\
& t_{T}=? \left\lvert\, t_{T}=\left(t \frac{1}{2}\right)(n)=(3.053 \mathrm{~min})(4)\right.
\end{aligned}
$$

\qquad Date \qquad

9. The half-life of Carbon -14 is $\mathbf{5 7 3 0}$ years. A scientist finds a fossil of a flower that has $\mathbf{3 0 0}$ million atoms of Carbon-14 remaining. If a living sample of this flower has $\mathbf{4 8 0 0}$ million atoms of Carbon-14, how old is the fossil? $(22920$ yrs old)
Ac $=4800$ million items
$A t=300$ million chitons
$\underset{\sim}{4800 / 2}$ (1) $2400 / 2 \xrightarrow{(2)} 1200 / 2 \xrightarrow{(3)} 600 / 2$
$\xrightarrow{4}$
300

$$
t \cdot \frac{1}{2}=5730 \mathrm{yrs}
$$

$$
\Rightarrow n=4
$$

$$
t T=?
$$

$t T=\left(t \frac{1}{2}\right)(n)=(5730 \mathrm{yr})(4)=22920 \mathrm{yrsold}=$
10. An ancient artifact is found to have a ratio of carbon-14 to carbon-12 that is $1 / 8$ of the ratio of carbon14 to carbon- 12 found in a similar object today. How old is the artifact? (17145 yrs old)

Fraction of
Remaining

$$
=\frac{A t}{A_{0}}=\frac{1}{8}
$$

$t \frac{1}{2}$ of cubic- $14=5.715 \mathrm{y}$-s

$$
\left\{\begin{array}{l}
\frac{1}{8}=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \Rightarrow n=3 \text { half lives } \\
\text { or } \quad 1 \xrightarrow{(1)} \cdot \frac{1}{2} / 2 \xrightarrow{(2)} \frac{1}{4} / 2 \xrightarrow{(3)} \frac{1}{8} \\
t_{T}=\left(t \frac{1}{2}\right)(n)=(5715)(3)=1745 \text { yr bid }
\end{array}\right.
$$

$$
t \frac{1}{2}=1599 \mathrm{yrs}
$$

Fraction of Remaking

$$
=\frac{A t}{A 0}=\frac{i}{16}
$$

$$
\begin{aligned}
& \frac{1}{16}=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \Rightarrow n=4 \text { half lives. } \\
& \text { or } 1 \xrightarrow{(1)} \frac{1}{2} / 2 \xrightarrow{(2)} \frac{1}{4} / 2 \xrightarrow{(3)} \frac{1}{8 / 2} \\
& t_{T}=\left(t \frac{1}{2}\right)(n)=(1599)(4)=6396 \text { yrsold }
\end{aligned}
$$

$t \uparrow=$? 12. The half-life of polonium- 218 is 3.0 min . If you start with 16 mg of polonium- 218 and only 1.0 mg is remained after using to find the age of a sample, how old is the sample? (12 min 0 d)

$$
\begin{array}{rl}
A_{0} & =16 \mathrm{mg} \\
A_{t} & =1.0 \mathrm{mg} \\
t \frac{1}{2} & =3 \mathrm{mill} \\
t T & t ?
\end{array}
$$

$$
1 t / 2 \xrightarrow{(1)}+8 / 2 \xrightarrow{\text { Metludit }} \underset{(4)}{ }+2 / 2
$$

$$
\xrightarrow{\left(4^{t}\right)} 1.0 \Rightarrow n=4
$$

$$
\begin{aligned}
t T^{-}=\left(t \frac{1}{2}\right)(n) & =(3 \min)(4) \\
& =12 \min
\end{aligned}
$$

Method B
Fraction of Remaining

$$
\begin{aligned}
& =\frac{A t}{A_{0}}=\frac{1.0}{16}=\frac{1}{16} \\
& \frac{1}{16}=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \\
& \Rightarrow n=4 \\
& t T=\left(t \frac{1}{2}\right)(n)=(3 \text { min })(4)=12
\end{aligned}
$$

13. Gold-198 has a half-life of 2.7 days. How much of a 96 g sample of gold -198 will be left after 8.1 days?

$$
\begin{aligned}
& A_{0}=96 \mathrm{~g} \\
& A t=? \\
& t \frac{1}{2}=2.7 \text { days }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Calculate how many half-lives have passed during the decay of the } 96 \mathrm{~g} \text { sampl } \\
& n=\frac{t T}{t \frac{1}{2}}=\frac{81 \text { day } \mathrm{s}}{27 \text { days }}=3 \text { half lives }
\end{aligned}
$$

$$
\begin{equation*}
t T=8 \cdot 1 \text { days } \tag{3}
\end{equation*}
$$

b. Calculate how much of the sample will remain after 3.0 half-lives. (12 g)
14. Potassium -46 has a half-life of 12.4 hours. How much of an 848 g sample of potassium- 46 will be left after 62.0 hours? $(26.5 \mathrm{~g})$
$A_{0}=8489$
At $=$?

$$
\begin{aligned}
& t \frac{1}{2}=12.4 \mathrm{hr} \\
& t T=62 \mathrm{hr} .
\end{aligned}
$$

a. Calculate how many half-lives have passed during the decay of the 96 g sample. (3)

Half-Life Practice Worksheet 1

$$
848 / 2 \xrightarrow{(1)} 424 / 2 \xrightarrow{(2)} 212 / 2 \xrightarrow{(3)} 106 / 2 \xrightarrow{(4)} 53 / 2
$$

$$
\xrightarrow{(5)} 265 \mathrm{~g} \quad 26.59 \text { will remain }
$$

15. Carbon-14 has a half-life of 5730 yrs. How much of a 144 g sample of carbon- 14 will remain after 17190yrs? ($/ 8 \mathrm{~g}$)
$A_{0}=1449$
$A t=$?

$$
n=\frac{t T}{t \frac{1}{2}}=\frac{-17.190}{5730}=3 \text { half lives }
$$

$t \frac{1}{2}=5730 \mathrm{yrs}$

$$
144 / 2 \xrightarrow{(1)} 72 / 2 \xrightarrow{(2)} 36 \xrightarrow{(3)} 18
$$

$t T=17190 \mathrm{yrs}$
$\Rightarrow 189$ will remain
16. The half-life of iodine-131 is 8 days. If a hospital receives a shipment of 200 g of iodine-131, how much $1-131$ will remain after 32 days? $(12.5 \mathrm{~g})$
$A_{0}=200 \mathrm{~g}$
$A t=7$.

$$
n=\frac{t T}{t \frac{i}{2}}=\frac{32}{8}=4 \text { hail lives }
$$

$$
t \frac{1}{2}=8 \text { days }
$$

$$
200 / 2 \xrightarrow{(1)} 100 / 2 \xrightarrow{(2)} 50 / 2 \xrightarrow{(3)} 25 / 2 \xrightarrow{4} 12.5
$$

$t_{T}=32$ days $\Rightarrow 12.5 \mathrm{~g}$ wild remain

Name \qquad Date \qquad P \qquad R \qquad S Honors Chemistry

Half-Life Practice Worksheet 1
Determine Amount Original (\mathbf{A}_{0}):
17. If the half-life of uranium- $\mathbf{2 3 5}$ is $\mathbf{7 0 4 0 0 0 0 0 0} \mathbf{y r s}$ and $\mathbf{1 2 . 5} \mathbf{g}$ of uranium- $\mathbf{2 3 5}$ remain after $\mathbf{2 8 2 0 0 0 0 0 0 0}$ yrs, how much of the radioactive isotope was in the original sample? (2009)
$A 0=?$

$$
n=\frac{t T}{t \frac{1}{2}}=\frac{28^{2} 20000000}{704000}=4 \mathrm{half} \text { (iNes }
$$

$$
\begin{aligned}
& A t=12.5 \mathrm{~g} \\
& t \frac{1}{2}=704000000 \mathrm{yrs} \\
& t_{T}=2820000000 \mathrm{yrs}
\end{aligned}
$$

Working Backwards:

$$
12.5 \times 2 \xrightarrow{\text { Working backwards: }} 25 \times 2 \xrightarrow{(2)} 50 \times 2 \xrightarrow{(3)} 100 \times 2
$$

18. The half-life of Potassium- 44 is 10 days. If after 50 days you end up with 15 grams of Potassium -44, how many grams did you start with? (480 g)

$$
\begin{aligned}
& A_{0}=? \\
& A_{t}=159 \\
& t \cdot \frac{i}{2}=10 \text { days } \\
& t T=50 \text { days }
\end{aligned}
$$

$$
n=\frac{t_{T}}{t^{\frac{1}{2}}}=\frac{50}{10}=5 \text { half lives }
$$

$$
15 \times 2 \xrightarrow{\text { (1) }} 30 \times 2 \xrightarrow{(2)} 60 \times 2 \xrightarrow{3} 120 \times 2 \xrightarrow{(4)} 240 \times 2
$$

$$
(5) 480 \Rightarrow 480 g \text { virginal out }
$$

19. The half-life of Magnesium- 26 is 30 days. How many milligrams of polonium- 210 start with if there is 200 milligrams left after 150 days? (6400 mg)
20. The half-life of Potassium-42 is $\mathbf{1 6 0 0}$ years. If after 4800 years you end up with 20 grams of Potassium42, how many grams did you start with? (1609)

$$
\left.\begin{array}{l|l}
\begin{array}{l}
\text { Ac }
\end{array}=? \\
\text { At } & 20 \mathrm{~g} \\
\begin{array}{l}
t \frac{1}{2}
\end{array}=1600 \mathrm{ys} & n=\frac{t T}{t \frac{1}{2}}=\frac{4800}{1600}=3 \text { half lives } \\
t T=4800 y r s
\end{array} \right\rvert\, \begin{array}{ll}
t & 20 \times 2 \xrightarrow{(1)} 40 \times 2 \xrightarrow{2} 80 \times 2 \xrightarrow{(3)} 1600
\end{array}
$$

$$
\begin{aligned}
& A_{C}=? \\
& A t=200 \mathrm{mg} \\
& t \frac{1}{2}=30 \text { days } \\
& t T=150 \text { day } \rightarrow 6400 \Rightarrow 6400 \mathrm{mg} \text { original ant }
\end{aligned}
$$

\qquad Date \qquad P. \qquad R \qquad S

Determine the Fraction of the original amount remaining (A_{t} / A_{0}):
21. Fluorine- 21 has a half-life of $\mathbf{5}$ seconds. What fraction of the original nuclei would remain after 1 minute? $\left(\frac{1}{40 t}\right)$

$$
t \frac{1}{2}=5 \sec
$$

$$
n=\frac{t_{T}}{t \frac{1}{2}}=\frac{60}{5}=12 \text { half lives }
$$

$$
t_{T}=1 \mathrm{~min}=60 \mathrm{sec}
$$

$$
\frac{A t}{A_{0}}=\left(\frac{1}{2}\right)^{n}=\frac{1}{2^{12}}=\frac{1}{2^{3} \cdot 2^{3} \cdot 2^{3} \cdot 2^{3}}=\frac{1}{8^{3} \times 8 \times 8}=\frac{1}{4096}
$$

$$
\frac{A t}{A_{0}}=?
$$

22. lodine-131 has a half-life of 8 days. What fraction of the original sample would remain at the end of 32 days? $\left(\frac{1}{16}\right)$

$$
\begin{array}{l|l}
t \frac{1}{2}=\delta \text { days } & n=\frac{t T}{t \frac{1}{2}}=\frac{32}{8}=4 \text { half lives } \\
t T=32 \text { days } & \frac{A t}{A_{0}}=\left(\frac{1}{2}\right)^{n}=\frac{1}{2^{4}}=\frac{1}{16} \\
\frac{A t}{A_{0}}=? &
\end{array}
$$

23. Chromium-48 decays. After 6 half-lives, what fraction of the original nuclei would remain? $\left(\frac{1}{64}\right)$

$$
\begin{aligned}
& n=6 \\
& \frac{A t}{A_{0}}=?
\end{aligned}
$$

24. The half-life of iodine-125 is 60 days. What fraction of iodine- 125 nuclide would be left after 360 days? $\left(\frac{1}{64}\right)$

$$
\begin{aligned}
& t \frac{1}{2}=60 \text { days } \\
& t_{T}=360 \text { days }
\end{aligned}
$$

$$
\frac{A t}{A_{0}}=?
$$

$$
\begin{aligned}
& n=\frac{t T}{t \frac{1}{2}}=\frac{360}{00}=6 \text { hart lies } \\
& \frac{A t}{A_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{6}=\frac{1}{2^{6}}=\frac{1}{64}
\end{aligned}
$$

