
Python: A Simple Tutorial

Slides by Matt Huenerfauth

•  Python is an open source scripting language.
•  Developed by Guido van Rossum in the early 1990s
•  Named after Monty Python
•  Available on lab computers
•  Available for download from http://www.python.org

Python

Why Python?
•  Very Object Oriented

•  Python much less verbose than Java
•  NLP Processing: Symbolic

•  Python has built-in datatypes for strings, lists, and more.
•  NLP Processing: Statistical

•  Python has strong numeric processing capabilities: matrix
operations, etc.

•  Suitable for probability and machine learning code.
•  NLTK: Natural Language Tool Kit

•  Widely used for teaching NLP
•  First developed for this course
•  Implemented as a set of Python modules
•  Provides adequate libraries for many NLP building blocks

•  Google “NLTK” for more info, code, data sets, book..

The Power of NLTK & Good Libraries

Technical Issues

Installing & Running Python

The Python Interpreter
•  Interactive interface to Python

 % python
Python 2.5 (r25:51908, May 25 2007, 16:14:04)
[GCC 4.1.2 20061115 (prerelease) (SUSE Linux)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

•  Python interpreter evaluates inputs:

 >>> 3*(7+2)
 27

The IDLE GUI Environment (Windows)

IDLE Development Environment
•  Shell for interactive evaluation.
•  Text editor with color-coding and smart indenting

for creating Python files.
•  Menu commands for changing system settings

and running files.

Running Interactively on UNIX
On Unix…
% python

>>> 3+3

6

•  Python prompts with ‘>>>’.
•  To exit Python (not Idle):

•  In Unix, type CONTROL-D
•  In Windows, type CONTROL-Z + <Enter>

Running Programs on UNIX
% python filename.py

You can create python files using emacs.
(There’s a special Python editing mode for xemacs

and emacs-22. Can download for emacs-21.
 M-x load-file python-mode.elc)

You could even make the *.py file executable and
add the following text to top of the file to make it
runable: #!/usr/bin/python

The Basics

A Code Sample

 x = 34 - 23 # A comment
 y = “Hello” # Another one.
 z = 3.45
 if z == 3.45 or y == “Hello”:
 x = x + 1
 y = y + “ World” # String concat.
 print x

 print y

Our Code Sample in IDLE
 x = 34 - 23 # A comment.
 y = “Hello” # Another one.

 z = 3.45

 if z == 3.45 or y == “Hello”:

 x = x + 1

 y = y + “ World” # String concat.

 print x

 print y

Enough to Understand the Code
•  Assignment uses = and comparison uses ==.
•  For numbers + - * / % are as expected.

•  Special use of + for string concatenation.
•  Special use of % for string formatting (as with printf in C)

•  Logical operators are words (and, or, not)
not symbols

•  The basic printing command is print.
•  The first assignment to a variable creates it.

•  Variable types don’t need to be declared.
•  Python figures out the variable types on its own.

Basic Datatypes
•  Integers (default for numbers)

z = 5 / 2 # Answer is 2, integer division.

•  Floats
x = 3.456

•  Strings
•  Can use “” or ‘’ to specify.
“abc” ‘abc’ (Same thing.)

•  Unmatched can occur within the string.
“matt’s”

•  Use triple double-quotes for multi-line strings or strings than contain
both ‘ and “ inside of them:
“““a‘b“c”””

Whitespace
Whitespace is meaningful in Python: especially

indentation and placement of newlines.
•  Use a newline to end a line of code.

•  Use \ when must go to next line prematurely.
•  No braces { } to mark blocks of code in Python…

Use consistent indentation instead.
•  The first line with less indentation is outside of the block.
•  The first line with more indentation starts a nested block

•  Often a colon appears at the start of a new block.
(E.g. for function and class definitions.)

Comments
•  Start comments with # – the rest of line is ignored.
•  Can include a “documentation string” as the first line of

any new function or class that you define.
•  The development environment, debugger, and other tools

use it: it’s good style to include one.
def my_function(x, y):
 “““This is the docstring. This

function does blah blah blah.”””
The code would go here...

Assignment
•  Binding a variable in Python means setting a name to hold

a reference to some object.
•  Assignment creates references, not copies

•  Names in Python do not have an intrinsic type. Objects
have types.
•  Python determines the type of the reference automatically based on

the data object assigned to it.

•  You create a name the first time it appears on the left side
of an assignment expression:

 x = 3

•  A reference is deleted via garbage collection after any
names bound to it have passed out of scope.

Accessing Non-Existent Names

•  If you try to access a name before it’s been properly
created (by placing it on the left side of an assignment),
you’ll get an error.

>>> y

Traceback (most recent call last):
 File "<pyshell#16>", line 1, in -toplevel-
 y
NameError: name ‘y' is not defined
>>> y = 3
>>> y
3

Multiple Assignment
•  You can also assign to multiple names at the same time.

>>> x, y = 2, 3
>>> x
2
>>> y
3

Naming Rules
•  Names are case sensitive and cannot start with a number.

They can contain letters, numbers, and underscores.
 bob Bob _bob _2_bob_ bob_2 BoB

•  There are some reserved words:
 and, assert, break, class, continue, def, del,
elif, else, except, exec, finally, for, from,
global, if, import, in, is, lambda, not, or,
pass, print, raise, return, try, while

Assignment (redundant)
•  Binding a variable in Python means setting a

name to hold a reference to some object.
•  Assignment creates references, not copies

•  Names in Python do not have an intrinsic type.
Objects have types.
•  Python determines the type of the reference automatically

based on what data is assigned to it.

•  You create a name the first time it appears on the
left side of an assignment expression:

 x = 3

•  A reference is deleted via garbage collection after
any names bound to it have passed out of scope.

•  Python uses reference semantics (more later)

Accessing Non-Existent Names
(redundant)

•  If you try to access a name before it’s been properly
created (by placing it on the left side of an assignment),
you’ll get an error.

>>> y

Traceback (most recent call last):
 File "<pyshell#16>", line 1, in -toplevel-
 y
NameError: name ‘y' is not defined
>>> y = 3
>>> y
3

Sequence types:
 Tuples, Lists, and Strings

Sequence Types
1.  Tuple

•  A simple immutable ordered sequence of items
•  Items can be of mixed types, including collection types

2.  Strings
•  Immutable
•  Conceptually very much like a tuple

3.  List
•  Mutable ordered sequence of items of mixed types

Similar Syntax
•  All three sequence types (tuples, strings, and

lists) share much of the same syntax and
functionality.

•  Key difference:
•  Tuples and strings are immutable
•  Lists are mutable

•  The operations shown in this section can be
applied to all sequence types
•  most examples will just show the operation

performed on one

Sequence Types 1

•  Tuples are defined using parentheses (and commas).
>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)

•  Lists are defined using square brackets (and commas).
>>> li = [“abc”, 34, 4.34, 23]

•  Strings are defined using quotes (“, ‘, or “““).
>>> st = “Hello World”
>>> st = ‘Hello World’
>>> st = “““This is a multi-line
string that uses triple quotes.”””

Sequence Types 2
•  We can access individual members of a tuple, list, or string

using square bracket “array” notation.
•  Note that all are 0 based…

>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> tu[1] # Second item in the tuple.
 ‘abc’

>>> li = [“abc”, 34, 4.34, 23]
>>> li[1] # Second item in the list.
 34

>>> st = “Hello World”
>>> st[1] # Second character in string.
 ‘e’

Positive and negative indices

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with 0.
 >>> t[1]
 ‘abc’

Negative lookup: count from right, starting with –1.

 >>> t[-3]
 4.56

Slicing: Return Copy of a Subset 1

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Return a copy of the container with a subset of the original
members. Start copying at the first index, and stop copying
before the second index.

 >>> t[1:4]
 (‘abc’, 4.56, (2,3))

You can also use negative indices when slicing.

 >>> t[1:-1]
 (‘abc’, 4.56, (2,3))

Slicing: Return Copy of a Subset 2

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

Omit the first index to make a copy starting from the beginning
of the container.

 >>> t[:2]
 (23, ‘abc’)

Omit the second index to make a copy starting at the first
index and going to the end of the container.

 >>> t[2:]
 (4.56, (2,3), ‘def’)

Copying the Whole Sequence

To make a copy of an entire sequence, you can use [:].
 >>> t[:]
 (23, ‘abc’, 4.56, (2,3), ‘def’)

Note the difference between these two lines for mutable
sequences:

>>> list2 = list1 # 2 names refer to 1 ref
 # Changing one affects both

>>> list2 = list1[:] # Two independent copies, two refs

The ‘in’ Operator
•  Boolean test whether a value is inside a container:

>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 in t
True
>>> 4 not in t
False

•  For strings, tests for substrings
>>> a = 'abcde'
>>> 'c' in a
True
>>> 'cd' in a
True
>>> 'ac' in a
False

•  Be careful: the in keyword is also used in the syntax of
for loops and list comprehensions.

The + Operator
•  The + operator produces a new tuple, list, or string whose

value is the concatenation of its arguments.

>>> (1, 2, 3) + (4, 5, 6)
 (1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]
 [1, 2, 3, 4, 5, 6]

>>> “Hello” + “ ” + “World”
 ‘Hello World’

The * Operator
•  The * operator produces a new tuple, list, or string that
“repeats” the original content.

>>> (1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> “Hello” * 3
‘HelloHelloHello’

Mutability:
Tuples vs. Lists

Tuples: Immutable

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> t[2] = 3.14

Traceback (most recent call last):
 File "<pyshell#75>", line 1, in -toplevel-
 tu[2] = 3.14
TypeError: object doesn't support item assignment

You can’t change a tuple.
You can make a fresh tuple and assign its reference to a previously

used name.
 >>> t = (23, ‘abc’, 3.14, (2,3), ‘def’)

Lists: Mutable

>>> li = [‘abc’, 23, 4.34, 23]
>>> li[1] = 45
>>> li

[‘abc’, 45, 4.34, 23]

•  We can change lists in place.
•  Name li still points to the same memory reference when

we’re done.
•  The mutability of lists means that they aren’t as fast as

tuples.

Operations on Lists Only 1

>>> li = [1, 11, 3, 4, 5]

>>> li.append(‘a’) # Our first exposure to method syntax
>>> li
[1, 11, 3, 4, 5, ‘a’]

>>> li.insert(2, ‘i’)
>>>li
[1, 11, ‘i’, 3, 4, 5, ‘a’]

The extend method vs the + operator.
•  + creates a fresh list (with a new memory reference)
•  extend operates on list li in place.

>>> li.extend([9, 8, 7])
>>>li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7]

Confusing:
•  Extend takes a list as an argument.
•  Append takes a singleton as an argument.
>>> li.append([10, 11, 12])
>>> li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7, [10, 11, 12]]

Operations on Lists Only 3
>>> li = [‘a’, ‘b’, ‘c’, ‘b’]

>>> li.index(‘b’) # index of first occurrence
1

>>> li.count(‘b’) # number of occurrences
2

>>> li.remove(‘b’) # remove first occurrence
>>> li
 [‘a’, ‘c’, ‘b’]

Operations on Lists Only 4
>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place*
>>> li
 [8, 6, 2, 5]

>>> li.sort() # sort the list *in place*
>>> li
 [2, 5, 6, 8]

>>> li.sort(some_function)
 # sort in place using user-defined comparison

Tuples vs. Lists
•  Lists slower but more powerful than tuples.

•  Lists can be modified, and they have lots of handy operations we
can perform on them.

•  Tuples are immutable and have fewer features.

•  To convert between tuples and lists use the list() and tuple()
functions:
li = list(tu)
tu = tuple(li)

Understanding Reference Semantics in
Python

(Adapts several slides by
Guido van Rossum)

Understanding Reference Semantics
•  Assignment manipulates references

— x = y does not make a copy of the object y references
— x = y makes x reference the object y references

•  Very useful; but beware!
•  Example:

>>> a = [1, 2, 3] # a now references the list [1, 2, 3]
>>> b = a # b now references what a references
>>> a.append(4) # this changes the list a references
>>> print b # if we print what b references,
[1, 2, 3, 4] # SURPRISE! It has changed…

 Why??

Understanding Reference Semantics II
•  There is a lot going on when we type:

x = 3

•  First, an integer 3 is created and stored in memory
•  A name x is created
•  An reference to the memory location storing the 3 is then

assigned to the name x
•  So: When we say that the value of x is 3
•  we mean that x now refers to the integer 3

Type: Integer
Data: 3

Name: x
Ref: <address1>

name list memory

Understanding Reference Semantics III
•  The data 3 we created is of type integer. In Python, the

datatypes integer, float, and string (and tuple) are
“immutable.”

•  This doesn’t mean we can’t change the value of x, i.e.
change what x refers to …

•  For example, we could increment x:
>>> x = 3
>>> x = x + 1
>>> print x
4

Understanding Reference Semantics IV
•  If we increment x, then what’s really happening is:

1.  The reference of name x is looked up.
2.  The value at that reference is retrieved.

Type: Integer
Data: 3 Name: x

Ref: <address1>

>>> x = x + 1

Understanding Reference Semantics IV
•  If we increment x, then what’s really happening is:

1.  The reference of name x is looked up.
2.  The value at that reference is retrieved.

3.  The 3+1 calculation occurs, producing a new data element 4 which
is assigned to a fresh memory location with a new reference.

Type: Integer
Data: 3 Name: x

Ref: <address1>
Type: Integer
Data: 4

>>> x = x + 1

Understanding Reference Semantics IV
•  If we increment x, then what’s really happening is:

1.  The reference of name x is looked up.
2.  The value at that reference is retrieved.

3.  The 3+1 calculation occurs, producing a new data element 4
which is assigned to a fresh memory location with a new
reference.

4.  The name x is changed to point to this new reference.

Type: Integer
Data: 3 Name: x

Ref: <address1>
Type: Integer
Data: 4

>>> x = x + 1

Understanding Reference Semantics IV
•  If we increment x, then what’s really happening is:

1.  The reference of name x is looked up.
2.  The value at that reference is retrieved.

3.  The 3+1 calculation occurs, producing a new data element 4
which is assigned to a fresh memory location with a new
reference.

4.  The name x is changed to point to this new reference.

5.  The old data 3 is garbage collected if no name still refers to it.

Name: x
Ref: <address1>

Type: Integer
Data: 4

>>> x = x + 1

Assignment 1

•  So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Assignment 1

•  So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Assignment 1

•  So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Name: y
Ref: <address1>

Assignment 1

•  So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Type: Integer
Data: 4

Name: y
Ref: <address1>

Assignment 1

•  So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Type: Integer
Data: 4

Name: y
Ref: <address2>

Assignment 1

•  So, for simple built-in datatypes (integers, floats, strings),
assignment behaves as you would expect:

>>> x = 3 # Creates 3, name x refers to 3
>>> y = x # Creates name y, refers to 3.
>>> y = 4 # Creates ref for 4. Changes y.
>>> print x # No effect on x, still ref 3.
3

Type: Integer
Data: 3

Name: x
Ref: <address1>

Type: Integer
Data: 4

Name: y
Ref: <address2>

Assignment 2

•  For other data types (lists, dictionaries, user-defined types),
assignment works differently.

•  These datatypes are “mutable.”
•  When we change these data, we do it in place.
•  We don’t copy them into a new memory address each time.
•  If we type y=x and then modify y, both x and y are changed.

>>> x = 3 x = some mutable object
>>> y = x y = x
>>> y = 4 make a change to y
>>> print x look at x
3 x will be changed as well

immutable mutable

a
1 2 3

b

a
1 2 3

b
4

a = [1, 2, 3]

a.append(4)

b = a

a 1 2 3

Why? Changing a Shared List

Our surprising example surprising no more...

•  So now, here’s our code:

>>> a = [1, 2, 3] # a now references the list [1, 2, 3]
>>> b = a # b now references what a references
>>> a.append(4) # this changes the list a references
>>> print b # if we print what b references,
[1, 2, 3, 4] # SURPRISE! It has changed…

Dictionaries

Dictionaries: A Mapping type
•  Dictionaries store a mapping between a set of keys

and a set of values.
•  Keys can be any immutable type.
•  Values can be any type
•  A single dictionary can store values of different types

•  You can define, modify, view, lookup, and delete
the key-value pairs in the dictionary.

Creating and accessing dictionaries

>>> d = {‘user’:‘bozo’, ‘pswd’:1234}

>>> d[‘user’]
‘bozo’

>>> d[‘pswd’]
1234

>>> d[‘bozo’]

Traceback (innermost last):
 File ‘<interactive input>’ line 1, in ?
KeyError: bozo

Updating Dictionaries
>>> d = {‘user’:‘bozo’, ‘pswd’:1234}

>>> d[‘user’] = ‘clown’
>>> d
{‘user’:‘clown’, ‘pswd’:1234}

•  Keys must be unique.
•  Assigning to an existing key replaces its value.

>>> d[‘id’] = 45
>>> d
{‘user’:‘clown’, ‘id’:45, ‘pswd’:1234}

•  Dictionaries are unordered

•  New entry might appear anywhere in the output.
•  (Dictionaries work by hashing)

Removing dictionary entries
>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

>>> del d[‘user’] # Remove one.
>>> d
{‘p’:1234, ‘i’:34}

>>> d.clear() # Remove all.
>>> d
{}

Useful Accessor Methods
>>> d = {‘user’:‘bozo’, ‘p’:1234, ‘i’:34}

>>> d.keys() # List of keys.
[‘user’, ‘p’, ‘i’]

>>> d.values() # List of values.
[‘bozo’, 1234, 34]

>>> d.items() # List of item tuples.
[(‘user’,‘bozo’), (‘p’,1234), (‘i’,34)]

Functions in Python

The indentation matters…
First line with less
indentation is considered to be
outside of the function definition.

Defining Functions

No header file or declaration of types of function or arguments.

def get_final_answer(filename):
 “Documentation String”
 line1

 line2
 return total_counter

Function definition begins with “def.” Function name and its arguments.

The keyword ‘return’ indicates the
value to be sent back to the caller.

	
Colon.	

Python and Types

Python determines the data types of variable
 bindings in a program automatically. “Dynamic Typing”

But Python’s not casual about types, it

enforces the types of objects. “Strong Typing”

So, for example, you can’t just append an integer to a string. You

must first convert the integer to a string itself.

 x = “the answer is ” # Decides x is bound to a string.
 y = 23 # Decides y is bound to an integer.

 print x + y # Python will complain about this.

Calling a Function

•  The syntax for a function call is:
 >>> def myfun(x, y):
 return x * y
 >>> myfun(3, 4)
 12

•  Parameters in Python are “Call by Assignment.”
•  Sometimes acts like “call by reference” and sometimes like “call by

value” in C++.
— Mutable datatypes: Call by reference.
— Immutable datatypes: Call by value.

Functions without returns

•  All functions in Python have a return value
•  even if no return line inside the code.

•  Functions without a return return the special value
None.
•  None is a special constant in the language.
•  None is used like NULL, void, or nil in other languages.
•  None is also logically equivalent to False.
•  The interpreter doesn’t print None

Function overloading? No.

•  There is no function overloading in Python.
•  Unlike C++, a Python function is specified by its name alone

—  The number, order, names, or types of its arguments cannot
be used to distinguish between two functions with the same
name.

•  Two different functions can’t have the same name, even if
they have different arguments.

•  But: see operator overloading in later slides

(Note: van Rossum playing with function overloading for the future)

Functions are first-class objects in Python
•  Functions can be used as any other data type
•  They can be

•  Arguments to function
•  Return values of functions
•  Assigned to variables
•  Parts of tuples, lists, etc
•  …

>>> def myfun(x):
 return x*3

>>> def applier(q, x):
 return q(x)

>>> applier(myfun, 7)
21

Logical Expressions

True and False

•  True and False are constants in Python.

•  Other values equivalent to True and False:
•  False: zero, None, empty container or object
•  True: non-zero numbers, non-empty objects

•  Comparison operators: ==, !=, <, <=, etc.
•  X and Y have same value: X == Y
•  Compare with X is Y :

— X and Y are two variables that refer to the identical same
object.

Boolean Logic Expressions
•  You can also combine Boolean expressions.

•  true if a is true and b is true: a and b
•  true if a is true or b is true: a or b
•  true if a is false: not a

•  Use parentheses as needed to disambiguate
complex Boolean expressions.

Special Properties of and and or

•  Actually and and or don’t return True or False.
•  They return the value of one of their sub-expressions

(which may be a non-Boolean value).
•  X and Y and Z

•  If all are true, returns value of Z.
•  Otherwise, returns value of first false sub-expression.

•  X or Y or Z
•  If all are false, returns value of Z.
•  Otherwise, returns value of first true sub-expression.

•  And and or use lazy evaluation, so no further expressions
are evaluated

The “and-or” Trick

•  A trick to implement a simple conditional
 result = test and expr1 or expr2

•  When test is True, result is assigned expr1.
•  When test is False, result is assigned expr2.
•  Works almost like (test ? expr1 : expr2) expression of C++.

•  But if the value of expr1 is ever False, the trick doesn’t work.
•  Avoid (hard to debug), but you may see it in the code.
•  Made unnecessary by conditional expressions in Python 2.5

(see next slide)

Conditional Expressions: New in Python 2.5
•  x = true_value if condition else false_value
•  Uses lazy evaluation:

•  First, condition is evaluated
•  If True, true_value is evaluated and returned
•  If False, false_value is evaluated and returned

•  Suggested use:
•  x = (true_value if condition else false_value)

Control of Flow

Control of Flow
•  There are several Python expressions that control

the flow of a program. All of them make use of
Boolean conditional tests.
•  if Statements
•  while Loops
•  assert Statements

if Statements
if x == 3:

 print “X equals 3.”
elif x == 2:

 print “X equals 2.”
else:

 print “X equals something else.”
print “This is outside the ‘if’.”

Be careful! The keyword if is also used in the syntax
of filtered list comprehensions.
Note:
•  Use of indentation for blocks
•  Colon (:) after boolean expression

while Loops
x = 3
while x < 10:
 x = x + 1
 print “Still in the loop.”
print “Outside of the loop.”

break and continue
•  You can use the keyword break inside a loop to

leave the while loop entirely.

•  You can use the keyword continue inside a loop
to stop processing the current iteration of the
loop and to immediately go on to the next one.

assert
•  An assert statement will check to make sure that

something is true during the course of a program.
•  If the condition if false, the program stops.

 assert(number_of_players < 5)

Generating Lists using
“List Comprehensions”

List Comprehensions
•  A powerful feature of the Python language.

•  Generate a new list by applying a function to every member
of an original list.

•  Python programmers use list comprehensions extensively.
You’ll see many of them in real code.

•  The syntax of a list comprehension is somewhat
tricky.
•  Syntax suggests that of a for-loop, an in operation, or an if

statement
— all three of these keywords (‘for’, ‘in’, and ‘if’) are also used

in the syntax of forms of list comprehensions.

Using List Comprehensions 1

>>> li = [3, 6, 2, 7]
>>> [elem*2 for elem in li]
[6, 12, 4, 14]

[expression for name in list]

•  Where expression is some calculation or operation acting
upon the variable name.

•  For each member of the list, the list comprehension

1.  sets name equal to that member,
2.  calculates a new value using expression,

•  It then collects these new values into a list which is the return
value of the list comprehension.

Note: Non-standard
colors on next several
slides to help clarify
the list comprehension
syntax.

Using List Comprehensions 2
[expression for name in list]

•  If list contains elements of different types, then expression
must operate correctly on the types of all of list members.

•  If the elements of list are other containers, then the name
can consist of a container of names that match the type and
“shape” of the list members.

>>> li = [(‘a’, 1), (‘b’, 2), (‘c’, 7)]
>>> [n * 3 for (x, n) in li]
[3, 6, 21]

[expression for name in list]

•  expression can also contain user-defined
functions.

>>> def subtract(a, b):

 return a – b

>>> oplist = [(6, 3), (1, 7), (5, 5)]
>>> [subtract(y, x) for (x, y) in oplist]
[-3, 6, 0]

Using List Comprehensions 3

Filtered List Comprehension 1

 [expression for name in list if filter]
•  Filter determines whether expression is performed on each

member of the list.
•  For each element of list, checks if it satisfies the filter

condition.
•  If it returns False for the filter condition, it is omitted from the

list before the list comprehension is evaluated.

Filtered List Comprehension 2
 [expression for name in list if filter]

>>> li = [3, 6, 2, 7, 1, 9]
>>> [elem * 2 for elem in li if elem > 4]
[12, 14, 18]

•  Only 6, 7, and 9 satisfy the filter condition.
•  So, only 12, 14, and 18 are produced.

Nested List Comprehensions

•  Since list comprehensions take a list as input and produce
a list as output, they are easily nested:

>>> li = [3, 2, 4, 1]
>>> [elem*2 for elem in

 [item+1 for item in li]]
[8, 6, 10, 4]

•  The inner comprehension produces: [4, 3, 5, 2].
•  So, the outer one produces: [8, 6, 10, 4].

For Loops

For Loops / List Comprehensions
•  Python’s list comprehensions and split/join

operations provide natural idioms that usually
require a for-loop in other programming
languages.
•  As a result, Python code uses many fewer for-loops
•  Nevertheless, it’s important to learn about for-loops.

•  Caveat! The keywords for and in are also used in
the syntax of list comprehensions, but this is a
totally different construction.

For Loops 1

•  A for-loop steps through each of the items in a list, tuple,
string, or any other type of object which is “iterable”

for <item> in <collection>:
<statements>

•  If <collection> is a list or a tuple, then the loop steps
through each element of the sequence.

•  If <collection> is a string, then the loop steps through each
character of the string.
for someChar in “Hello World”:
 print someChar

Note: Non-
standard colors
on these slides.

For Loops 2
for <item> in <collection>:

<statements>

•  <item> can be more complex than a single variable name.
•  When the elements of <collection> are themselves sequences,

then <item> can match the structure of the elements.

•  This multiple assignment can make it easier to access the
individual parts of each element.

for (x, y) in [(a,1), (b,2), (c,3), (d,4)]:
 print x

For loops and the range() function
•  Since a variable often ranges over some sequence of

numbers, the range() function returns a list of numbers
from 0 up to but not including the number we pass to it.

•  range(5) returns [0,1,2,3,4]
•  So we could say:

for x in range(5):
 print x

•  (There are more complex forms of range() that provide
richer functionality…)

Some Fancy Function Syntax

Lambda Notation

•  Functions can be defined without giving them names.
•  This is most useful when passing a short function as an

argument to another function.

 >>> applier(lambda z: z * 4, 7)
 28

•  The first argument to applier() is an unnamed function that
takes one input and returns the input multiplied by four.

•  Note: only single-expression functions can be defined
using this lambda notation.

•  Lambda notation has a rich history in program language
research, AI, and the design of the LISP language.

Default Values for Arguments
•  You can provide default values for a function’s arguments
•  These arguments are optional when the function is called

>>> def myfun(b, c=3, d=“hello”):

 return b + c
>>> myfun(5,3,”hello”)
>>> myfun(5,3)
>>> myfun(5)

All of the above function calls return 8.

The Order of Arguments
•  You can call a function with some or all of its arguments out of

order as long as you specify them (these are called keyword
arguments). You can also just use keywords for a final subset of
the arguments.

>>> def myfun(a, b, c):

 return a-b
>>> myfun(2, 1, 43)
 1
>>> myfun(c=43, b=1, a=2)
 1
>>> myfun(2, c=43, b=1)
 1

Assignment and Containers

Multiple Assignment with Sequences

•  We’ve seen multiple assignment before:

>>> x, y = 2, 3

•  But you can also do it with sequences.
•  The type and “shape” just has to match.

>>> (x, y, (w, z)) = (2, 3, (4, 5))
>>> [x, y] = [4, 5]

•  Assignment creates a name, if it didn’t exist already.
 x = 3 Creates name x of type integer.

•  Assignment is also what creates named references to

containers.
 >>> d = {‘a’:3, ‘b’:4}

•  We can also create empty containers:
 >>> li = []
 >>> tu = ()
 >>> di = {}

•  These three are empty, but of different types

Empty Containers 1

Note: an empty container
is logically equivalent to
False. (Just like None.)

Empty Containers 2
• Why create a named reference to empty container?

•  To initialize an empty list, for example, before using append.
•  This would cause an unknown name error a named reference to

the right data type wasn’t created first

 >>> g.append(3)
 Python complains here about the unknown name ‘g’!
 >>> g = []
 >>> g.append(3)
 >>> g
 [3]

String Operations

String Operations
•  A number of methods for the string class perform useful

formatting operations:

>>> “hello”.upper()
‘HELLO’

•  Check the Python documentation for many other handy
string operations.

•  Helpful hint: use <string>.strip() to strip off final
newlines from lines read from files

String Formatting Operator: %
•  The operator % allows strings to be built out of many data

items in a “fill in the blanks” fashion.
•  Allows control of how the final string output will appear.
•  For example, we could force a number to display with a specific

number of digits after the decimal point.

•  Very similar to the sprintf command of C.

>>> x = “abc”
>>> y = 34
>>> “%s xyz %d” % (x, y)
‘abc xyz 34’

•  The tuple following the % operator is used to fill in the
blanks in the original string marked with %s or %d.
•  Check Python documentation for whether to use %s, %d, or

some other formatting code inside the string.

Printing with Python

•  You can print a string to the screen using “print.”
•  Using the % string operator in combination with the print

command, we can format our output text.
>>> print “%s xyz %d” % (“abc”, 34)
abc xyz 34

 “Print” automatically adds a newline to the end of the string. If you
include a list of strings, it will concatenate them with a space
between them.
>>> print “abc” >>> print “abc”, “def”
abc abc def

•  Useful trick: >>> print “abc”, doesn’t add newline just a
single space

String Conversions

String to List to String

•  Join turns a list of strings into one string.

 <separator_string>.join(<some_list>)

 >>> “;”.join([“abc”, “def”, “ghi”])
 “abc;def;ghi”

•  Split turns one string into a list of strings.

 <some_string>.split(<separator_string>)

 >>> “abc;def;ghi”.split(“;”)
 [“abc”, “def”, “ghi”]

•  Note the inversion in the syntax

Note: Non-standard
colors on this slide
to help clarify the
string syntax.

Convert Anything to a String
•  The built-in str() function can convert an instance

of any data type into a string.
•  You can define how this function behaves for user-created

data types. You can also redefine the behavior of this
function for many types.

>>> “Hello ” + str(2)
“Hello 2”

Importing and Modules

Importing and Modules

•  Use classes & functions defined in another file.
•  A Python module is a file with the same name (plus the .py

extension)
•  Like Java import, C++ include.
•  Three formats of the command:
 import somefile

 from somefile import *

 from somefile import className

What’s the difference?
What gets imported from the file and what name refers to it
after it has been imported.

import …

import somefile

•  Everything in somefile.py gets imported.
•  To refer to something in the file, append the text “somefile.” to

the front of its name:

somefile.className.method(“abc”)
somefile.myFunction(34)

from … import *

from somefile import *

•  Everything in somefile.py gets imported
•  To refer to anything in the module, just use its name. Everything

in the module is now in the current namespace.
•  Caveat! Using this import command can easily overwrite the

definition of an existing function or variable!

className.method(“abc”)
myFunction(34)

from … import …

from somefile import className

•  Only the item className in somefile.py gets imported.
•  After importing className, you can just use it without a module

prefix. It’s brought into the current namespace.
•  Caveat! This will overwrite the definition of this particular name if

it is already defined in the current namespace!

className.method(“abc”) ç This got imported by this command.
myFunction(34) ç This one didn’t.

Commonly Used Modules

•  Some useful modules to import, included with
Python:

•  Module: sys - Lots of handy stuff.
•  Maxint

•  Module: os - OS specific code.
•  Module: os.path - Directory processing.

More Commonly Used Modules

•  Module: math - Mathematical code.
•  Exponents
•  sqrt

•  Module: Random - Random number code.
•  Randrange
•  Uniform
•  Choice
•  Shuffle

Defining your own modules

●  You can save your own code files (modules) and
import them into Python.

●  NLTK modules will often be useful (see end of this
packet of slides..)

Directories for module files

Where does Python look for module files?

•  The list of directories in which Python will look for the files
to be imported: sys.path

 (Variable named ‘path’ stored inside the ‘sys’ module.)

•  To add a directory of your own to this list, append it to this
list.

 sys.path.append(‘/my/new/path’)

Object Oriented Programming
in Python: Defining Classes

It’s all objects…
•  Everything in Python is really an object.

•  We’ve seen hints of this already…
“hello”.upper()
list3.append(‘a’)
dict2.keys()

•  These look like Java or C++ method calls.
•  New object classes can easily be defined in addition to these

built-in data-types.

•  In fact, programming in Python is typically done
in an object oriented fashion.

Defining a Class
•  A class is a special data type which defines how

to build a certain kind of object.
•  The class also stores some data items that are shared by all

the instances of this class.
•  Instances are objects that are created which follow the

definition given inside of the class.
•  Python doesn’t use separate class interface

definitions as in some languages. You just define
the class and then use it.

Methods in Classes
•  Define a method in a class by including function

definitions within the scope of the class block.
•  There must be a special first argument self in all method

definitions which gets bound to the calling instance
•  There is usually a special method called __init__ in most

classes
•  We’ll talk about both later…

A simple class definition: student
class student:
“““A class representing a student.”””
def __init__(self,n,a):
 self.full_name = n
 self.age = a
def get_age(self):
 return self.age

Creating and Deleting Instances

Instantiating Objects
•  There is no “new” keyword as in Java.
•  Merely use the class name with () notation and

assign the result to a variable.
•  __init__ serves as a constructor for the class.

Usually does some initialization work.
•  The arguments passed to the class name are

given to its __init__() method.
•  So, the __init__ method for student is passed “Bob” and 21

here and the new class instance is bound to b:

b = student(“Bob”, 21)

Constructor: __init__
•  An __init__ method can take any number of

arguments.
•  Like other functions or methods, the arguments can be

defined with default values, making them optional to the
caller.

•  However, the first argument self in the definition
of __init__ is special…

Self
•  The first argument of every method is a reference to the

current instance of the class.
•  By convention, we name this argument self.

•  In __init__, self refers to the object currently being
created; so, in other class methods, it refers to the instance
whose method was called.
•  Similar to the keyword this in Java or C++.
•  But Python uses self more often than Java uses this.

Self
•  Although you must specify self explicitly when

defining the method, you don’t include it when
calling the method.

•  Python passes it for you automatically.

Defining a method: Calling a method:
(this code inside a class definition.)

def set_age(self, num): >>> x.set_age(23)
self.age = num

Deleting instances: No Need to “free”
•  When you are done with an object, you don’t

have to delete or free it explicitly.
•  Python has automatic garbage collection.
•  Python will automatically detect when all of the references to

a piece of memory have gone out of scope. Automatically
frees that memory.

•  Generally works well, few memory leaks.
•  There’s also no “destructor” method for classes.

Access to Attributes and Methods

Definition of student
class student:
“““A class representing a student.”””
def __init__(self,n,a):
 self.full_name = n
 self.age = a
def get_age(self):
 return self.age

Traditional Syntax for Access
>>> f = student (“Bob Smith”, 23)

>>> f.full_name # Access an attribute.
“Bob Smith”

>>> f.get_age() # Access a method.
23

Accessing unknown members
•  Problem: Occasionally the name of an attribute or

method of a class is only given at run time…

•  Solution: getattr(object_instance, string)
•  string is a string which contains the name of an attribute or

method of a class
•  getattr(object_instance, string) returns a

reference to that attribute or method

getattr(object_instance, string)

>>> f = student(“Bob Smith”, 23)

>>> getattr(f, “full_name”)
“Bob Smith”

>>> getattr(f, “get_age”)
 <method get_age of class studentClass at 010B3C2>

>>> getattr(f, “get_age”)() # We can call this.
23

>>> getattr(f, “get_birthday”)
 # Raises AttributeError – No method exists.

hasattr(object_instance,string)

>>> f = student(“Bob Smith”, 23)

>>> hasattr(f, “full_name”)
True

>>> hasattr(f, “get_age”)
True

>>> hasattr(f, “get_birthday”)
False

Attributes

Two Kinds of Attributes
•  The non-method data stored by objects are called

attributes.

•  Data attributes
•  Variable owned by a particular instance of a class.
•  Each instance has its own value for it.
•  These are the most common kind of attribute.

•  Class attributes
•  Owned by the class as a whole.
•  All instances of the class share the same value for it.
•  Called “static” variables in some languages.
•  Good for

— class-wide constants
— building counter of how many instances of the class have been made

Data Attributes
•  Data attributes are created and initialized by an __init__

() method.
•  Simply assigning to a name creates the attribute.
•  Inside the class, refer to data attributes using self

— for example, self.full_name

class teacher:
“A class representing teachers.”
def __init__(self,n):
 self.full_name = n
def print_name(self):
 print self.full_name

Class Attributes
•  Because all instances of a class share one copy of a class

attribute:
•  when any instance changes it, the value is changed for all instances.

•  Class attributes are defined
•  within a class definition
•  outside of any method

•  Since there is one of these attributes per class and not one per
instance, they are accessed using a different notation:

•  Access class attributes using self.__class__.name notation.

class sample: >>> a = sample()
 x = 23 >>> a.increment()
 def increment(self): >>> a.__class__.x
 self.__class__.x += 1 24

Data vs. Class Attributes

class counter:
overall_total = 0
 # class attribute
def __init__(self):
 self.my_total = 0
 # data attribute
def increment(self):
 counter.overall_total = \
 counter.overall_total + 1
 self.my_total = \
 self.my_total + 1

>>> a = counter()
>>> b = counter()
>>> a.increment()
>>> b.increment()
>>> b.increment()
>>> a.my_total
1
>>> a.__class__.overall_total
3
>>> b.my_total
2
>>> b.__class__.overall_total
3

Inheritance

Subclasses
•  A class can extend the definition of another class

•  Allows use (or extension) of methods and attributes already
defined in the previous one.

•  New class: subclass. Original: parent, ancestor or superclass
•  To define a subclass, put the name of the superclass in

parentheses after the subclass’s name on the first line of
the definition.
 class ai_student(student):
•  Python has no ‘extends’ keyword like Java.
•  Multiple inheritance is supported.

Redefining Methods
•  To redefine a method of the parent class, include a new

definition using the same name in the subclass.
•  The old code won’t get executed.

•  To execute the method in the parent class in addition to
new code for some method, explicitly call the parent’s
version of the method.

parentClass.methodName(self, a, b, c)
•  The only time you ever explicitly pass ‘self’ as an argument is

when calling a method of an ancestor.

Definition of a class extending student
class student:
“A class representing a student.”

 def __init__(self,n,a):
 self.full_name = n
 self.age = a

 def get_age(self):
 return self.age

class ai_student (student):
“A class extending student.”

def __init__(self,n,a,s):
 student.__init__(self,n,a) #Call __init__ for student

 self.section_num = s

def get_age(): #Redefines get_age method entirely
 print “Age: ” + str(self.age)

Extending __init__

•  Same as for redefining any other method…
•  Commonly, the ancestor’s __init__ method is executed in

addition to new commands.
•  You’ll often see something like this in the __init__ method of

subclasses:

 parentClass.__init__(self, x, y)

 where parentClass is the name of the parent’s class.

Special Built-In
Methods and Attributes

Built-In Members of Classes
•  Classes contain many methods and attributes that are

included by Python even if you don’t define them explicitly.
•  Most of these methods define automatic functionality triggered by

special operators or usage of that class.
•  The built-in attributes define information that must be stored for all

classes.
•  All built-in members have double underscores around their

names: __init__ __doc__

Special Methods

•  For example, the method __repr__ exists for all classes,
and you can always redefine it.

•  The definition of this method specifies how to turn an
instance of the class into a string.
•  print f sometimes calls f.__repr__() to produce a string for

object f.

•  If you type f at the prompt and hit ENTER, then you are also
calling __repr__ to determine what to display to the user as
output.

Special Methods – Example

class student:
 ...
 def __repr__(self):
 return “I’m named ” + self.full_name
 ...

>>> f = student(“Bob Smith”, 23)
>>> print f
I’m named Bob Smith
>>> f
“I’m named Bob Smith”

Special Methods

•  You can redefine these as well:
__init__ : The constructor for the class.
__cmp__ : Define how == works for class.
__len__ : Define how len(obj) works.
__copy__ : Define how to copy a class.

•  Other built-in methods allow you to give a class
the ability to use [] notation like an array or ()
notation like a function call.

Special Data Items
•  These attributes exist for all classes.

__doc__ : Variable storing the documentation string for that
class.

__class__ : Variable which gives you a reference to
the class from any instance of it.

__module__ : Variable which gives you a reference to
the module in which the particular class is defined.

•  Useful:
•  dir(x) returns a list of all methods and attributes

defined for object x

Special Data Items – Example
>>> f = student(“Bob Smith”, 23)

>>> print f.__doc__
A class representing a student.

>>> f.__class__
< class studentClass at 010B4C6 >

>>> g = f.__class__(“Tom Jones”, 34)

Private Data and Methods
•  Any attribute or method with two leading underscores in its

name (but none at the end) is private. It cannot be
accessed outside of that class.
•  Note:

Names with two underscores at the beginning and the end are for
built-in methods or attributes for the class.

•  Note:
There is no ‘protected’ status in Python; so, subclasses would be
unable to access these private data either.

File Processing and Error Handling:
Learning on your own…

File Processing with Python

This is a good way to play with the error handing capabilities
of Python. Try accessing files without permissions or with
non-existent names, etc.
You’ll get plenty of errors to look at and play with!

fileptr = open(‘filename’)
somestring = fileptr.read()
for line in fileptr:
 print line
fileptr.close()

Exception Handling
•  Errors are a kind of object in Python.

•  More specific kinds of errors are subclasses of the general Error
class.

•  You use the following commands to interact with them:
•  Try
•  Except
•  Finally
•  Catch

My favorite statement in Python

•  yield(a,b,c)
•  Turns a loop into a generator function that can be used for

— Lazy evaluation
— Creating potentially infinite lists in a usable way…

•  See
Section 6.8 of the Python reference manual (click
here)

Finally…

•  pass
•  It does absolutely nothing.

•  Just holds the place of where something should go
syntactically. Programmers like to use it to waste time in
some code, or to hold the place where they would like put
some real code at a later time.
 for i in range(1000):

 pass

 Like a “no-op” in assembly code, or a set of empty braces {}
in C++ or Java.

NLTK & Simple String Processing

(Adapted from NLTK Tutorial
by Steven Bird, Ed Loper & Ewan Klein)

The Power of NLTK & Good Libraries

Sample Texts from Project Gutenberg

>>> from nltk.corpora import gutenberg
>>> gutenberg.items
[’austen-emma’, ’austen-persuasion’, ’austen-

sense’,
>>> count = 0
>>> for word in gutenberg.raw(’whitman-leaves’):
... count += 1
>>> print count
154873

Dictionaries: Example: Counting Word
Occurrences
 >>> from nltkcorpora import gutenberg
>>> count = {}
>>> for word in gutenberg.raw(’shakespeare-macbeth’):
... word = word.lower()
... if word not in count:
... count[word] = 0
... count[word] += 1

Now inspect the dictionary:

>>> print count[’scotland’]
12
>>> frequencies = [(freq, word) for (word, freq) in count.
>>> frequencies.sort()
>>> frequencies.reverse()
>>> print frequencies[:20]
[(1986, ’,’), (1245, ’.’), (692, ’the’), (654, "’"), (Steven Bird, Edward Loper,

Ewan Klein Programming Fundamentals and Python

Regular Expressions and Match Objects

•  Python provides a very rich set of tools for
pattern matching against strings in module re (for
regular expression)

•  For a gentle introduction to regular expressions
in Python see
http://www.diveintopython.org/regular_expressions/index.html

Or

 http://www.amk.ca/python/howto/regex/regex.html

Simple RE Matching in Python NLTK
Set up:

 >>> import re
 >>> from nltk_lite.utilities import re_show
 >>> sent = "colourless green ideas sleep furiously“

Matching using re_show from NLTK:

 >>> re_show(’l’, sent)
 co{l}our{l}ess green ideas s{l}eep furious{l}y
 >>> re_show(’green’, sent)
 colourless {green} ideas sleep furiously

Substitutions

•  E.g. replace all instances of l with s.
•  Creates an output string (doesn’t modify input)

>>> re.sub(’l’, ’s’, sent)
’cosoursess green ideas sseep furioussy’

•  Work on substrings (NB not words)
>>> re.sub(’green’, ’red’, sent)
’colourless red ideas sleep furiously’

More Complex Patterns

•  Disjunction:
 >>> re_show(’(green|sleep)’, sent)
 colourless {green} ideas {sleep} furiously
 >>> re.findall(’(green|sleep)’, sent)
 [’green’, ’sleep’]

•  Character classes, e.g. non-vowels followed by

vowels:
 >>> re_show(’[^aeiou][aeiou]’, sent)
 {co}{lo}ur{le}ss g{re}en{ i}{de}as s{le}ep {fu}{
 >>> re.findall(’[^aeiou][aeiou]’, sent)
 [’co’, ’lo’, ’le’, ’re’, ’ i’, ’de’, ’le’, ’fu’,

Structured Results

•  Select a sub-part to be returned
•  e.g. non-vowel characters which appear before a

vowel:
>>> re.findall(’([^aeiou])[aeiou]’, sent)
[’c’, ’l’, ’l’, ’r’, ’ ’, ’d’, ’l’, ’f’, ’r’]

•  generate tuples, for later tabulation
>>> re.findall(’([^aeiou])([aeiou])’, sent)
[(’c’, ’o’), (’l’, ’o’), (’l’, ’e’), (’r’, ’e’),

Texts: Brown Corpus

>>> from nltk_lite.corpora import brown
>>> brown.items
[’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’j’, ’k’, ’l’,…
>>> from nltk_lite.corpora import extract
>>> print extract(0, brown.raw())
[’The’, ’Fulton’, ’County’, ’Grand’, ’Jury’, ’said’,
’….

>>> print extract(0, brown.tagged())
[(’The’, ’at’), (’Fulton’, ’np-tl’), (’County’, ’nn-tl’),
….

Penn Treebank

