
VOLUME TWELVE, NUMBER FOUR, NOVEMBER 1980. ISSN 004-8917

PUBLISHED FOR THE AUSTRALIAN COMPUTER SOCIETY INCORPORATED
Registered for posting as a publication — Category B.

.■... .

-̂---

- ■ '- ■*\-':rMt&P*;

I 1jl

This is the 200m2, Snaplock
access floor installed in
June 1980 at the Perth offices
of Woodside Petroleum Limited.
It supports computers used
to process data for the
North-West Shelf gas field
development.

The floor uses Series 800
metal panels on 300mm
pedestals and has a Heritage II,
monolithic, anti-static carpet
finish.

Partitioning was also
installed at the same time as
the floor.

Cemac Tate’s all-metal
access floor system offers four
panel sizes, with or without
stringers and the widest range
of finishes-high pressure
laminate, wood parquet, cork
and vinyl asbestos - as well

as anti-static carpet.
Cemac also has a patented,

adjustable pedestal base which
ensures a level floor on a
sloping slab. So, for access
flooring, or complete office
interior layout (floors,
systems furniture, ceilings,
partitions and task or ambient
lighting), call Cemac Interiors.

Brochures and details from Cemac Interiors:

Sydney
Melbourne
Brisbane_

2903788
4198233

_2215099

Licensees:
Adelaide
Hobart___
Perth____

_ 45 3656
295444

4447888
CEIN0022

laws Eiefs from fia
Scmpifar UJcrld

"News Briefs from the Computer World" is a regular
feature which covers local and overseas developments in
the computer industry including new products, interest­
ing techniques, newsworthy projects and other topical
events of interest.

RESEARCH GUIDE AVAILABLE
The most comprehensive guide yet published on

CSIRO’s research activities throughout Australia became
available in late October.

The guide, containing descriptions of all CSIRO’s
more than 700 research programs and sub-programs, is a
valuable source of information to industry, government,
research and educational institutions.

In clear, non-technical language, it outlines research
problems being tackled by CSIRO and the implications
of research findings, as well as providing details of where
the research is being conducted, how many staff are
involved, and how it is funded.

The CSIRO research guide was first published four
years ago, and demand for the publication has indicated
a strong requirement for information on the Organiza­
tion’s research.

A new-look edition published for the first time last
year in line with a Government directive that CSIRO
should provide a comprehensive research directory, went
to a second printing.

More than 750 copies were sold, the majority to
industry, while another 800 were sent to public libraries,
college and university libraries, State and Commonwealth
departments, parliamentary libraries and the Academy of
Science.

Copies of the publication, titled CSIRO Research
Programs 1980-81, are available for $12.50 (postage
included) from the CSIRO Editorial and Publications
Service, P.O. Box 89, East Melbourne, Victoria, 3002.

THE ABC-24 MICRO-COMPUTER

G.M. O’Reilly & Associates, North Sydney, NSW
are announcing the Australian release of a major new
micro-computer — the ABC-24, a micro-computer designed
to meet the Australian market’s specific needs.

The ABC-24 is the product of the Japanese computer
manufacturer, Ai Electronics and the design efforts and
experience of G.M. O’Reilly & Associates.

The ABC-24 has been designed to operate in a stand­
alone environment but is equally at ease as part of a
communications network.

The ABC-24 can utilise virtually all computer lan-
gauges and protocols to link it with other computers. For
instance, the ABC-24 can exchange information with others
of its type, store the information and transmit it to large
mainframe computers.

Jones & Rickard new range of
FREQUENCY CHANGERS
& MAINS ISOLATION SETS

• Predominantly single shaft brushless construction.
• Bodies assembled on building plugs-to minimise weight,

cost and manufacturing time.
• High performance necessary for computer and aircraft

ground support supplies.
• Control Gear mounted above and-pre-wired to machines

- to reduce installation costs.
• Jones & Rickard sets operating in all Australian mainland

States.
Our Services include: Dynamic Balancing-All weightsand
sizes, Heavy Electrical Rewinding and Repairs, Lifting
Magnet Manufacture and Repair, G.E. of U.S. Franchised
Service Shop.

1 BB J □ \
■ m 1

I 4 ■1 1 4
;.... ...

** mr £|

J & R 50 KVA 50/60 HZ 600 R.P.M.
Single Shaft Brushless
Frequency Changer.

SINCE 1926

JONES & RICKARD
PTY. LTD.

869 South Dowling Street,
Waterloo, Sydney 2017.
Telephone 663 3938

The Australian Computer journal, Vol. 72, No. 4, November 7980

The ABC-24 can also handle a very wide range of
standalone business applications. These applications include
general ledger accounting, inventory management, order
entry and invoicing, word processing, time recording and
costing, job costing, maintenance of chemical formulae and
many others. As such it has a major contribution to make
to professional organisations such as accounting practices,
architects’ offices, legal and medical practices as well as
commercial, service and government organisations of every
type.

Much of the software for all these applications has
been designed and developed by G.M. O’Reilly &
Associates. Other software has been introduced from major
suppliers in the US. All software is totally supported by the
company.

TRIM BIN DESIGN KIT
Tecnico Electronics, Lane Cove, NSW and Northcote,

Victoria announces the arrival of the new Bourns Trim Bin
in Australia. The Trim Bin contains an assortment of the
most popular trimmers and “MFT” multi-function
trimmer/resistors, all in a functional, convenient and attrac­
tive package.

As in America the Trim Bin is offered at a price only
about half that of the total cost of the components bought
as separate lots.

The Bourns Trim Bin contains the following:
Fifteen of the most popular trimmers and “MFT”

trimmer/resistor models with 50 varieties of resistance and
pin styles, for a total of 127 units.

Design aids for Model 20, 3005, 3006, 3099, 3386,
3299, 3339 and 3359.

One each H-90and H-91 screwdrivers.
These quality components include rectangular, square

and round types; sealed and open-frame, wirewound and
cermet, single and multi-turn.

Trim Bin should prove popular in engineering
research and development labs where design-in and proto­
type models are produced.

HONEYWELL TRACKS GOLFERS’ SCORES
AT MEMPHIS TOURNAMENT

A sophisticated golf scoring system using Honeywell
hardware and software was unveiled recently at the Danny
Thomas Memphis Golf Classic. While PGA personnel did
the official scoring. Honeywell, through a Level 6 small
computer and ten VIP 7700s, provided instantaneous, on­
line scoring tabulations and summaries. A level 6 software
support specialist working out of the firm’s Gulf Coast
Branch, worked long, 10-12 hour days perfecting the
pilot program. During the tournament, fans could pick up
a computer printout each morning detailing the play of the
previous day on a hole-by-hole basis. Honeywell printed
2,000 of these reports each night. In keeping with the
purpose of the tournament, all of Honeywell’s hardware,
software and maintenance services were donated.

FREE 1981 ANNUAL TANDY ELECTRONICS
CATALOGUE

Tandy Electronics is pleased to announce the
arrival of their 148-page catalogue for 1981 featuring
five additions to the TRS-80 family of micro­
computers and accessories. It is free from any one of
nearly 250 Tandy Stores and participating dealers across
Australia.

//

The 1981 catalogue, with over 100 full colour pages,
is a showcase for an exclusive range of more than 2,300
products under Tandy’s brand names.

Easily one of the biggest outside commercial printing
feats ever performed in Australia, the Catalogue consumed
135 tonnes of paper, 5,625 litres (2,250 gallons) of ink and
required 158 hours of press time in its production. Thous­
ands of catalogues are being given away.

SOLDER REEL ATTACHMENT FOR ROYEL
TOOL REST

Royston Electronics have now produced a solder reel
atttachment for their popular Model TD150 solder tool
rest.

The TD150, which accepts Adcola, Royel and other
popular soldering tools, is a bench unit which provides a
convenient receptacle for a soldering tool while idling. The
tool is held firmly, at just the right angle, but inserts and
extracts without effort. The unit also protects the tool
itself, as well as the operator and the work bench.

Its heavy cast base gives the required stability without
clamps or bolts, and a recess in the base holds the tip
wiping sponge which is slotted to achieve the most
effective, easy cleaning action.

The addition of the solder reel attachment now
makes it the ultimate convenience accessory for all hand
soldering operations.

The TD150 tool rest, and the new solder reel attach­
ment, are available from electronics parts suppliers or from
Royston Electronics, Notting Hill, Victoria or Punchbowl,
NSW.

ROBUST SOFTWARE FOR MICRO-COMPUTER
USERS

The alliance “C. Abaci” has released robust software
in several areas for scientific computer users. Exacting
benchmarks on accuracy, efficiency, and testing which

(Continued at hack)

The'Australian Computer Journal, Vol. 12, No. 4, November 1980

The Australian Computer Journal is an official publi­
cation of the Australian Computer Society
Incorporated.

Office Bearers. President: G.E. Wastie; Vice-Presi­
dents: R.C.A. Paterson, A.W. Goldsworthy) Immediate
past president: A.R. Benson; National treasurer:
CS.V. Pratt; Chief executive officer:,R.W. Rutledge,
PO Box N26, Grosvenor Street, Sydney, 2000, tele­
phone (02) 267 5725.

Editorial Committee: Editor: C.K. Yuen, CSIRO Div­
ision of Computing Research, P.O. Box 1800,
Canberra, A.C.T. 2601. Associate Editors: J.M.
Bennett, T. Pearcey, P.C. Poole, A.Y. Montgomery,
J. Lions.

SUBSCRIPTIONS: The annual subscription is $15.00.
All subscriptions to the Journal are payable in advance
and should be sent (in Australian currency) to the
Australian Computer Society Inc., PO Box N26,
Grosvenor Street, Sydney, 2000. A subscription form
may be found at the end of the August issue.

THE ISSN 004-8917

VOLUME 12, NUMBER 4, NOVEMBER 1980

CONTENTS
PRICE TO NON-MEMBERS: There are now 4 issues
per annum. The price of individual copies of back
issues still available is $2.00. Some already out of
print. Issues for the current year are available at $5.00
per copy. All of these may be obtained from the
National Secretariat, P.O. Box 640, Crows Nest,
N.S.W., 2065. No trade discounts are given, and agents
should recover their own handling charges. Special
rates apply to members of other Computer Societies
and applications should be made to the Society con­
cerned.

MEMBERS: The current issue of the Journal is sup­
plied to personal members and to Corresponding
Institutions. A member joining partway through a
calendar year is entitled to receive one copy of each
issue of the Journal published earlier in that calendar
year. Back numbers are supplied to members while
supplies last, for a charge of $2.00 per copy. To ensure
receipt of all issues, members should advise the Branch
Honorary Secretary concerned, or the National Sec­
retariat, promptly of any change of address.

REPRINTS: 50 copies of reprints will be provided to
authors. Additional reprints can be obtained, accor­
ding to the scale of charges supplied by the publishers
with proofs. Reprints of individual papers may be
purchased for 50 cents each from the Printers
(Publicity Press).

PAPERS: Papers should be submitted to the Editor,
authors should consult the notes published in Volume
12, pp. 71-75 (or request a copy from the National
Secretariat).

MEMBERSHIP: Membership of the Society is via a
Branch. Branches are autonomous in local matters,
and may charge different membership subscriptions.
Information may be obtained from the following
Branch Honorary Secretaries. Canberra: P.O. Box
446, Canberra City, A.C.T., 2601. NSW: Science
House, 35-43 Clarence St, Sydney, N.S.W., 2000.
Qld: Box 1484, G.P.O., Brisbane, Qld, 4001. S.A.:
Box 2423, G.P.O., Adelaide, S.A., 5001. W.A: Box
F320, G.P.O. Perth, W.A., 6001. Vic: P.O. Box 98,
East Melbourne, Vic, 3002. Tas: P.O. Box 216,
Sandy Bay, Tas, 7005.

Copyright © 1980. Australian Computer Society Inc.

Published by: Associated Business Publications, 28
Chippen Street, Chippendale, N.S.W., 2008. Tel:
699-5601,699-1154.
All advertising enquiries should be referred to the
above address.

Printed by: Publicity Press Ltd., 29-31 Meagher Street,
Chippendale, N.S.W., 2008.

RESEARCH PAPERS
125-131 FACETS: A Language Feature for Security and Flexibility

WARREN BURTON and BRIAN LINGS

132-136 The Minimal Directed Spanning Graph for Combined
Optimization

SELIM G. AKL

137-139 Marginal Totals for Multi dimensional Arrays
JOHN BURR

TUTORIAL ARTICLES
140-145 Distributed Computing and its Competitors

L.M. CASEY
146-152 Program Control by State Transition Tables

PETER JULIFF

INDUSTRIAL APPLICATIONS
153-156 Computer Aided Design of Printed Circuit Board Layouts

G.L. COCK

SPECIAL FEATURES
124 Editorial

157 Letters to the Editor
158-162 Book Reviews

This journal is Abstracted or Reviewed by the following services: :

Publisher Service

ACM Bibliography and Subject Index of Current Computing
Literature.

ACM Computing Reviews.

AMS Mathematical Reviews.

CSA Computer and Information Systems Abstracts.
Data Processing Digest.

ENGINEERING
INDEX INC. Engineering Index.

INSPEC Computer and Control Abstracts.

INSPEC Electrical and Electronic Abstracts.

SPRINGER-
VERLAG

Zentralblatt fur Mathematick und ihre Grenzgebiete.

The Australian Computer Journal, Vol. 12, No. 4, November 1980 123

Editorial

Journal bashing is something of a favourite sport among ACS members. Like most sports, this inter­
esting activity follows a set of standard rituals. A typical exchange consists of a practitioner complaining
“the Journal’s too academic” and an academic answering back “because practitioners don’t write papers
for it”. The numerous discussions that have taken place in the past seldom went beyond variations on this
basic theme, never giving results other than a simmering dissatisfaction on both sides.

This unhappy state of affairs really reflects a fundamental controversy about the function and purpose
of the Journal. If one regards the Journal simply as a vehicle of service to ACS members, then one is bound
to reach the conclusion that the Journal is not giving most members the material they want to see. Now
one can always argue that the fault is with the reader rather than the material, because members “don’t
know what’s good for them”, “didn’t tell us what they need” or “should write some industry-oriented
papers instead of just complaining about lack of them”. Although this may be good for winning argu­
ments, it does not win the Journal many friends. The question is too important to be quickly dismissed
in this way.

What one has to get across to the practitioner is that, the Journal is more than just a publication for
supplying technical reading material to ACS members. It is meant to serve a range of functions. One of
these is to provide a medium for publishing new findings of computing research and new experiences
gained in computing practice, to bring the work described to the attention of an international audience,
and provide a permanent record of the authors’ contributions to computing knowledge. By publishing
such a journal, ACS establishes in a concrete manner its claim to be a society of learning, a society with
the advancement of computing knowledge as part of its charter. In this indirect and rather elusive way
the Journal does provide a service to ACS members. What is unfortunate is the lack of balance, in that we
do not receive enough material of other types that serve members at large in a more direct fashion.

It is often thought that the Journal represents a heavy financial burden to the members, and indeed
publishing-cost discussions on the Journal virtually constitute a standing item on the Council agenda. When,
however, one works out the net cost (after subtracting subscription incomes), it comes to about $2 per
head, hardly a major component of the annual membership fee. Whatever shortcomings the Journal might
have, extravagance is not one.

Another charge frequently levelled at the Journal is editorial bias towards academia. Indeed the
Editorial Committee, authors, referees and book reviewers of the Journal are largely drawn from uni­
versity and college computing departments and government research organizations. But the main reason
for this is, simply, that these are where we can find people prepared to take on, without pay, the time-
consuming efforts involved. In the past numerous attempts were made to obtain more contributions from
industry, and it was our lack of success on that front, for whatever reason, that made the Journal what it is.

Nevertheless, we have not yet entirely given up the hope of making the Journal please everyone, at
least a little. While continuing to publish research type papers, we are hopeful that some of our traditional
authors would also be willing to spare a little time to write tutorial papers oriented at a broader audience.
The special issues we intend to publish (Computer Networks, May ’81; Database Management, November
’81) represent another effort with the same objective. If you would like to see the Journal do more for
ACS members, perhaps you could start by sending in some material for the special issues?

C.K. Yuen

124 The Australian Computer Journal, VoL 12, No. 4, November 1980

FACETS: A Language Feature for
Security and Flexibility
Warren Burton* and Brian Lings*

Current designs in programming languages stress the need for data abstraction facilities. This
paper views a data abstraction as one facet of the behaviour of its underlying data type. This facet
hides the implementation details but presents a full view of allowable operations on objects associated
with it. It is argued that, particularly in an environment where security is important, it is necessary
to provide a facility for precisely defining other, more limited facets of the behaviour of a type.
These can then be used for fully controlling access to sensitive data.

Language facilities for defining and using facets of both simple types and type combinations
are developed in a Pascal environment. Various examples of ‘safe’ generic procedures and their use
with sensitive data are presented.

Keywords and Phrases: Abstract data types, access control, generic procedures, iteration
statements, programming languages, programming methodology, security, type checking.

CR Categories: 4.20, 4

1. INTRODUCTION
The motivation behind much work in programming

language design has been the realization that the reli­
ability and understandability of programs can be signifi­
cantly improved through the use of abstraction.

Abstraction is used not only for program segments,
through the use of procedures, but also for data objects,
through the use of abstract data types (Dahl, Myhrhaug
and Nygaard, 1970; Guttag, Horowitz and Musser, 1978;
Liskov, Snyder, Atkinson and Schaffert, 1977; Wulf,
London and Shaw, 1976). Both concepts break up the
implementation problem into manageable pieces, and
delay many implementation decisions until the shell, or
program abstraction, has been fully designed.

For each abstract data type a set of primitive oper­
ations are defined. The representation of instances of the
type and the implementation of the primitive operations
are completely internal to the abstract data type defin­
ition. The set of operations must be complete, in the sense
that every operation required for a given object during
the execution of a program must be derivable from the
set of operations provided for the type with which the
object is associated. Strong type checking forces con­
formity. One further advantage follows: the contexts in
which a data object may appear are defined by the legal
operations for that object. Hence code can be written
not only without knowing the underlying representation
of an object (data independence) but also without know­
ing more about its type than that certain operations are
defined for it. Such generic procedures allow the express­
ion of the logic of a routine without over-defining the
objects on which it can work. The saving on programmer
effort is obvious: if several abstract data types have certain
operations in common, then it is possible to write generic
procedures in terms of these common operations (Gries
andGehani, 1977; Liskov etal., 1977; Wulf et at., 1976).

“Copyrighti© 1980, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

* Warren Burton is with the School of Computing Studies, University
of Computer Science, University of Queensland, St. Lucia, Australia, 41

’.2, 4.33

Even in a language such as Pascal, which does not
support data abstractions as such, there exist operations
which are defined for many different types. These include
succ , pred, ‘>’ , *<’ etc. for ordered types, ':=’ for all
types, and etc. for numeric types. Any routines
expressed in terms of such operators could, in theory, be
generic. There is a strong parallel here with variant record
types. With a variant record, routines can be written which
will accept any of the possible variants of a record but
access only the fixed part of such records. Just as such a
routine can only ‘use’ those fields which all records of the
variant have in common1, a generic routine can only use
those operations which all objects appearing in that con­
text have in common. The necessary set of operations in
such a context for an object we call a requirement. Con­
sider the requirementsortable. A list issortabie if

(i) an ordering relation is defined on the com­
ponents of the list, and

(ii) any two elements in the list can be inter­
changed.

Thus the primitive operations required before an object
can appear in a sortable context are

(i) an inorder operation, which acts on a given
pair of list components to yield a boolean
result; and

(ii) a swap operation, which interchanges two
components of a list.

Although the first of these operations is likely to be
a primitive for a data type (if it applies at all), the swap
operation is not. In general the basic operations for a
procedure, in this case a sort routine, may be at a higher
level than is likely for the primitive operations of a data
type. The latter is likely to support a general copy oper­
ation (or assignment) instead. If, rather than the swap
operation given above, the assignment operator were to be
specified in requirement sortabie, we can see that we
would be demanding more power than is absolutely necess­
ary. When considering the general operation of generic
procedures this fact is not particularly worrying: the

1. (Short of testing the tag field to find out more about the
object).

of East Anglia, Norwich, England. Brian Lings is with the Department
67. Manuscript received 16 May 1980.

The Australian Computer Journal, Voi, 12, No. 4, November 1980 125

FACETS

swap procedure can be included in line, or written as a
generic procedure itself. However, the implications for
generic procedures in a security-conscious environment
are somewhat greater.

It has been suggested that security can be provided
in programming languages by allowing a user to restrict the
set of operations which a procedure may apply to a para­
meter (Jones and Liskov, 1978). For example, a user may
pass a file as a parameter to a procedure, but restrict
usage by the procedure to the append operation. The
procedure would be prohibited from accessing or over­
writing confidential information.

It is the thesis of this paper that, if security of data
is required, it is not enough to be able to limit a sub­
user’s access to data by passing him only a subset of the
defined primitive operations on that data. These oper­
ations in themselves may be too powerful, and only certain
aspects of their behaviour should be given.

Let us consider the problem of sorting an array of
confidential records. We want to be able to invoke a sort
procedure in such a way that it will not be possible for the
sort procedure to examine or copy individual records. At
the very least, it must be possible for the sort procedure
to compare the key values of two array elements and to
exchange two arbitrary array elements. In order to ex­
change two array elements, both the primitive operation
to access an array element and the primitive operation to
redefine an array element must be used. If a programmer
can exchange two elements in an array through the use of
these primitive operations, then he can also exchange
elements between the given array and a rigged private
array. A solution to the problem is to define a non­
primitive swap operation which will exchange two elements
of a single array. This non-primitive operation may be
permitted, rather than the more powerful set of primitive
operations which must be used to implement swap.

In section 2, a facet is defined to be a set of oper­
ations2 for a data type. In general, given one view of data,
a facet can be used to define another (possibly more
restricted) view. It is possible for a program to pass a
facet of a data instance (i.e., the data instance with the
restriction that only facet operations may be applied to
it) as a parameter to a procedure and thereby precisely
control, the procedure’s use of the data instance.

For purposes of illustration, programming language
features for defining and using facets are introduced
through a number of examples. We do not attempt a full
or formal definition of the language used. We base our
notation on Pascal (Jensen and Wirth, 1974; Wirth, 1971).

In section 3 we consider facets of compound data
instances. By packaging parameters into a single facet
definition, a user can control operations involving more
than one data instance. For example, a user may permit
information to be moved from one data instance to another
specific data instance without allowing information to be
moved to an arbitrary data instance. Section 4 addresses
some issues which, for the sake of clarity of presentation,
are only lightly touched on in the earlier text.

The problem of generalizing iteration to user defined
data types (e.g., so that it is possible to iterate over nodes
of a tree as well as elements of an array) has been con-

2. We consider all operations to take the form of function and
procedure invocations. The ideas presented here can be applied
in environments supporting other types of operations.

7 26

procedure sort (var \/: sortable <T> ; n : integer)-,

var /, / : integer;

begin

for / := 1 to /?—1 do

for / := 1 to n-i do

if not T.injorder (V,jJ+1) then

T.swap (V,j,j+1)

end;

Figure 1: A generic bubble sort.

specification of sortabie requirement for 7”;

function in_order (T; integer-, integer)-, boolean

procedure swap (var 7";integer)integer))

Figure 2: Specification of the sortable requirement.

sidered by others (Liskov et at., 1977; Shaw, Wulf and
London, 1977). In section 5 we show how generalized
iteration can be supported through the use of facets,
without any special case extensions to a language. We
also consider briefly the interaction between facets and
parameterized types (Gries and Gehani, 1977; Liskov eta/.,
1977; Wulf et a/., 1976).

The language features discussed here are currently
being implemented. Some implementation considerations
are mentioned in section 6. Section 7 is the conclusion.

2. FACETS OF SINGLE OBJ ECTS
If it is known that particular operations are defined

for a formal parameter, then it may be possible to write a
generic procedure which will process the parameter using
only these operations. Instances of any type supporting
the operations may be processed.

Using a notation similar to that of Gries and Gehani
(1977), Figure 1 shows a generic procedure to sort a
vector, V, having n elements. In effect, the type of V is
passed to the formal parameter T. We qualify the unknown
type, T, with sortable to indicate that the actual type
corresponding to T must satisfy the sortabie requirement,
which is defined in Figure 2. A requirement specifies the
set of operations and the format of each. No semantic
information is currently given3.

If index ^vector is an abstract data type supporting
the primitive operations in-order and swap such that, for
any instance x of index ^vector,

3. It is anticipated that semantic information will eventually
be added using algebraic axioms. These would have to be satisfied
by any facet purporting to satisfy a requirement.

The Australian Computer Journal, Vol. 12, No. 4, November 1980

FACETS

type employeejrecord = record

key : integer;

name : text

end;

index .vector = array [1..1003 oft employee jrecord;

define keyorder = sortable facet of index.vector having

function in.order (vec: keyorder; i,j\ integer)'.boolean;

begin in.order :=rep vec[i) ^ .key <= rep vec{j] ‘t.key end;

procedure swap (war vec\ keyorder; i,j: integer);

var temp\ \ employee .record;

begin

temp := rep vec [/];

rep vec [i] := rep vec (/];

rep vec [/] := temp

end;

Figure 3: Definition of a sortable facet.

index, vector, in .order (x,i,j)
returns true when the value of the /' th element of x is in the
correct order (less than or equal to for a sort into ascend­
ing order) with respect to the j th element and false other­
wise, and

index .vector.swap (x,i,j)
will exchange the / th and/ th elements of x, then

sort (x,n)
will sort the first n elements of x.
Unfortunately, an abstract data type for vectors may not
have in.order and swap defined as primitive operations.
However, it is likely that these operations can be defined
in terms of lower level primitive operations. Therefore,
we can define a restricted view of a type, called a facet, as
shown in Figure 3. The restricted view is expressed in terms
of a set of permitted operations.

If x is of type index.vector then
sort (x <keyorder>, 100)

will cause x to be sorted. The restriction, <keyorder>,
constrains sort to the keyorder facet of x.

Within the definition of the keyorder facet, the rep
operator may be applied to a parameter of type keyorder
to produce the underlying index.vector. Hence the key-
order operations may be defined in terms of index.vector
operations. The rep operator may not be used elsewhere.
(See §4 for further discussion of rep).

We have defined a secure interface between a calling
program and a sort procedure. It would not be possible for
sort to look at or modify any of the records to which
elements of x point. At most sort can determine the per­
mutation required to correctly order x. At worst sort
can return an incorrectly ordered vector, but one with no
information added or removed. The same interface could
be used for more complicated and more efficient sort
procedures4.
4. We have restricted ourselves to a simple problem where it
probably is as easy to define a safe sort procedure as it is to define
a safe interface to an unknown sort procedure. However, the
method generalizes to more complicated situations.

type bankrecard = record

account; 0.. 999999;

name ; text;

balance ; integer;

status ; (credit, overdrawn)

end;

bankfiie = array [1.. 1000] of bankrecord;

define name.order = sortabie facet of bankfiie having

function in.order (bf ; namejorder; i,j ; integer) ; boolean;

begin in.order := rep bf [/] .name <= rep bf [j] .name end;

procedure swap (var bf : name.order; i,j ; integer);

var temp ; bankrecord;

begin

temp := rep bf [/] ;

rep bf [/] ;= rep bf [/];

rep bf [/'] := temp

end;

define accountjorder = sortabie facet of bankfiie having

function injorder (bf ; accountjorder; i, j : integer) ; boolean;

begin in.order := rep bf [/] .account <= rep bf [j] .account end;

procedure swap (var bf ; accountjorder; i,j ; integer);

begin namejorder.swap (rep bf <name_order> ,i,j) end;

Figure 4; Two sortabie facets of a common type.

We emphasize that, unlike basic operations in a
data abstraction definition, the operations defined in a
facet are user oriented and will be defined in terms of the
more primitive operations available for the data type.
They can also be redefined for different facets of the same
data type which also meet the given requirement.

The first point is important when libraries of data
abstractions are being used; the fact that required oper­
ations do not exist as primitives for a type does not in
itself preclude the presentation, to a routine, of a specific
facet of an instance of that type. The second point is
important if true generality is to be achieved; there may be
several ordering relations by which, for example, an array
may be sorted. Both points are essential if full control
over access to data is to be maintained.

In Figure 4, two different sortabie facets are defined
for a bankfiie. The statement

sort (savings <name.ordef>, n)
will sort the first n records of the savings bankfiie on the
name field, while

sort (savings <account.ordef>, n)
will sort on the account field.

The Australian Computer Journal, Vol. 12, No. 4, November 1980 127

FACETS

specification of selectable requirement for T;

function is .required (T\ integer): boolean-,

procedure select (var T; integer, var integer)-,

define select.debtors = selectable facet of [from, to', bankfiie] having

function is.required (pair: seiectjdebtors; i:integer):boolean;

begin isjequired := rep pair,from[i]. status = overdrawn end;

procedure select (var pair: seiectjdebtors-, i: integer-,var j: integer);

begin

/;= /+1;

rep pair, to [j] :=rep pair, from [/']

end;

Figure 5: A facet of a compound object.

This example is,based on an example given in Jones
and Liskov (1978). The solution given there would permit
a rogue programmer to exchange information between the
given bankfiie and a rigged private bankfiie. In addition,
separate procedures would be required for sorting on
different fields.

We note that facets may be used in any situation
where it is necessary to map one view of data onto another
(possibly more restricted) view. For example, given a point
in a plane represented in polar co-ordinates, it would be
possible to define a rectangular facet, supporting oper­
ations getx, setx, gety and sety (with obvious semantics),
to map the data onto a rectangular co-ordinate system
view.

3. FACETS OF COMPOUND OBJECTS
In addition to controlling the processing of indivi­

dual parameters, a user may wish to control the inter­
action of a combination of parameters.

Suppose we have two bankfiles (as defined in Figure
4) named main and red. We wish to invoke a procedure
to copy those bankrecords of main with status overdrawn
into red. We do not want to permit the procedure to copy
bankrecords of main to any other destination.

The definition of a seiectjdebtors facet of a pair
of bankfiles is given in Figure 5, and a generic procedure
which will process the facet is given in Figure 6. The
procedure may be invoked by:

prepare.subdist ([main, red]<seiect.debtors>, m,n),
where m is the number of bankrecords in main and on
exit n will contain the number of entries in red. The square
brackets indicate that main and red are to be treated, for
the purpose of the call, as a single unit. We call such a unit
a Compound. Within the definition of select-debtors
individual elements of the unit may be selected in the
same manner as components of a record structure.

Note that a procedure which processes a unit, such
as prepare.sub.iist, does not need to know (and in fact
cannot know) that one of its parameters is compound.
Facets of compounds satisfying a particular requirement
need not all be facets of compounds with the same number
of elements.

128

4. A CLOSER LOOK AT SECURITY
We have used the term ‘security’ freely in the text,

but have not as yet defined it. We now attempt such a
definition, though it is worth bearing in mind that this is
our working definition, not an attempt to force conform­
ity of view on the semantics of the term.

A data object is defined to be secure if the owner
(creator) of that object has precise control over granting
access to it. Such an object must only be accessible in a
prescribed manner, the prescriptions being individually
tailored according to need-to-know and right-to-know
criteria.

Total security is obviously impossible unless no
communication takes place at all: once access has been
granted we rely on the grantee to protect the information
with which he is provided. With these facts in mind let us
take an overview of requirements and facets.

Requirements and facets are governed by the same
scope rules as procedures. Conceptually, a complete pro­
gram must be compiled at once: any problems arising
through using separate compilation of modules must be
resolved in favour of the tight type checking provided
by single compilation.

If a subsystem programmer wishes to ‘protect’ one
of his own variables using a facet defined by another pro­
grammer (for example, the project leader) then he must
have implicit trust in the facet definition. If, however,
tight security is required then a new facet must be defined
— perhaps as a copy of the original — to bring it under the
control of the subsystem.

Whoever owns (that is, defines) a facet, F, of a
type, T, has amplification rights (Wulf et a/., 1976) within
the facet procedures and functions (via the rep operator).
These allow him to apply functions on type T to objects
whose F facets are supplied. Hence tight security is only
available to the creator of the facet.

5. FURTHER EXAMPLES AND EXTENSIONS
5.1 Iterators

In a traditional programming language it is possible
to iterate over the elements of an array (e.g.,

procedure prepare _subjist {var lists:selectable <T>

from_size:integer; varto_size:integer);

var current: integer;

begin

to_size := 0;

for current := 1 to fromjsize do

if T. is ^required (lists, current)

then T.se/ectdists,current, to^size)

end;

Figure 6: Procedure Prepare.Sub.List.

The Australian Computer Journal, Voi. 12, No. 4, November 1980

FACETS

for / := 1 to n do a[i] := 0;
will zero an array).

Gries and Gehani (1977) have suggested ad hoc
extensions so that

for element in structure do.. . ;
may be used to iterate over the elements of structure
where structure may be a set or any of a number of other
standard structured objects. Facilities for defining iteration
over the components of instances of a user defined abstract
type are provided in Alphard (Shaw et at., 1977) and
CLU (Liskov et al., 1977). Facets can be used to interface
arbitrary data structures to a generic for without ad hoc
extensions to a language, in this case Pascal-Plus (Welsh
and Bustard, 1979).

Rather than introduce special primitive forms, let us
consider an envelope,for. The envelope will have one
parameter, an iterable facet of an item. The requirement
iterable as defined in Figure 7 demands two procedures
and one function. The required envelope can now be
defined using only these three routines (Figure 8). If we
wish to iterate over the elements of a vector we can define
an iterable facet for the type combination [vector, integer],
where an instance of the record type will act as a cursor
during the iteration. Such a facet is shown in Figure 9; in
this instance we are processing the elements in reverse
lexicographic order. The elements in the vector vec can
now be printed by the statement

instance loop: for {[vec, /] <descending>)
write (vec[i]) ;

A nested loop can also be constructed easily, viz.:

instance outerJoop : for ([vec,I] <descending>)
instance inner-loop : for ([vec,j] <descending>)

begin

end;

We could, of course, treat iteration as a special case by
specifying the requirement iterable and the envelope for
in a language prelude. A special syntactic form similar to
those in current languages could then be provided as an
alternative to those above, viz.:

for / through vec<descending> do
for j through vec <descending> do

begin

end;

Such facilities are desirable, but in no way enhance the
power of the language features proposed.

A further example is shown in Fig. 10, where iter­
ation over the nodes of a tree (to be processed in sym­
metric order) is catered for. The ‘cursor’ in this case is a
refstack (or stack_of_tree). For convenience we assume
that refstack is a data structure for which the usual stack
procedures are provided. Using the notation introduced
above we may now say

for cursor! through treel <inordef> do
assuming correct declarations for cursorl and treel.
Further examples, assuming relevant definitions, are

The Australian Computer Journal, Vol 12, No. 4, November 1980

specification of iterable requirement for T;

procedure cursorJnit (var 7");

function more (T) : boolean;

procedure next (var T);

Figure 7. Specification of the iterable requirement.

envelope for (s:iterable<T>);

begin

T. cursor Jnit (s);

while T. more(s) do

begin

*** .

T. next(s)

end

end;
Figure 8. Declaration of a generic for.

for cursorl through treel <preorder> do
for cursor2 through tree2 <postorder> do

begin

end;

5.2 Private Types
Facet descriptions of compound objects are required

above by the need for a cursor local to the section of code
using the facet. In Ada (1979) the idea of a private type,
where only assignment and equality operators are defined,
is introduced. Particularly for recursion it is very useful to
have a routine provide storage for data which is otherwise
under the control of a facet: consider tree traversals or a
Quicksort algorithm. This can be accommodated in facets
in a simple and consistent manner by allowing type defin­
itions as well as procedure and function definitions within
a facet declaration. A procedure provided with a facet F
defining type t can then declare local variables of the
above form by the declaration

var a,b: F.t;

where a and b may only be employed as parameters to
procedures defined in F, and in the forms

(a= b)
a:= b;

Discussion is left to a subsequent paper.

129

FACETS

define descending = iterable facet of [iz: vector,i-.integer] having

procedure cursorJnitivar a: descending)',

begin

rep a.i: = rep a. v. top

end;

function more [a'.descending) : boolean;

begin

more := rep a.i> rep a. v. hot

end;

procedure next(var a: descending);

begin

rep 3./:= rep 3./-1

end;

Figure 9: Definition of the descending iterable facet for a vector.

5.3 Parameterized Types
Language facilities for parameterized types have

been widely advocated (Gries and Gehani, 1977; Liskov
et ai., 1977; Wulf et al., 1976). Facets can be used in an
environment which supports parameterized types.

Figure 11 depicts a modification to Fig. 10 in order
to allow the use of a generic type tree. If b is a tree
(integer) then we can process the values of the nodes of
b, in symmetric order, by

for cursor through b <Jnorder> do
In this case cursor must be of type stack_of_tree(u). 6

6. IMPLEMENTATION CONSIDERATIONS
There are several ways to implement generic pro­

cedures of the type considered in section 2.
A compiler can produce a separate object code pro­

cedure for each combination of actual parameter types
used in invocations of a generic procedure. We note that
if generic procedures were not provided, a user would have
to produce a separate source code procedure for each
combination of parameter types.

Alternatively, for each actual parameter corres­
ponding to a generic formal parameter, we can pass both
the data item and the operations with which to process it.
This would reduce speed slightly, but could significantly
reduce the amount of object code.

In some situations, a third approach may warrant
consideration. If a generic procedure is invoked by a
program running on one machine but is to be executed on
another, possibly untrustworthy, machine, then it may not
be desirable to pass secure data at all. Instead, the pro­
cedure may be required to request the invoking machine
to perform all desired operations on the secure data. This
is not likely to lead to a very efficient implementation.
Flowever, one machine is allowed to keep its data securely
at home, the other machine is allowed to keep its con­
fidential software secret, and yet the two can interact.

130

type tree = t cell;

cell = record left, right', tree;

value: integer

end;

define inorder = iterable facet of [f: tree,s', refstack] having

procedure cursor-init (var a :inorder);

var temp : tree ;

begin with rep a do begin

in it (s); temp :=t;

while temp < > nil do

begin push (s, temp) ; temp:=temp t . left end

end end;

function more (a: inorder): boolean;

begin

more := not empty(rep a.s)

end;

procedure next (var a:inorder);

var temp'.tree;

begin with rep a do begin

temp := top(s)t .right;

pop(s)

while temp< >nil do

begin

push(s, temp);

temp := temp t.left

end

end end;
Figure 10: Definition of the inorder iterable facet for a tree.

The implementation of facilities to support para­
meterized types has been considered elsewhere (Gries and
Gehani, 1977). No particular problems appear to arise from
the interaction of facets and parameterized types.

Compound objects, as discussed in section 3, can
be passed as records of pointers. A record will have one
field for each object in the package.

The Australian Computer Journal, Vol. 12, No. 4, November 1980

FACETS

type tree (u: type) = tcell (u) ;

cell (u:type) = record left, right-, tree [u);

value (u)

end;

define inorder = iterable facet of [f.tree {u),s:stack {tree (u))] having

type refstack = stack (tree (u));

procedure cursor Jnit (var a\ inorder);

procedure next (var a : inorder) ;

var femp : free (u) ;

Figure 11: Definition of a general tree and part of its inorder
iterable facet.

7. CONCLUSION
A facet is an alternative (often restricted) view of a

data type. The view is expressed as a set of permitted
operations. The extensions to a language needed to pro­
vide the facet facility are seen to be minimal. The resultant
increase in the power of the language is, however, sig­
nificant.

Security can be greatly enhanced by using facets to
define safe interfaces between procedures.

Even where security is not important, facets are
useful in mapping one view of data onto another. In partic­
ular, facets may be used to define a uniform restricted
view of several types. Generic procedures can be written
in terms of the uniform view. For example, a generic for
may be written to iterate over components of a compound
data structure. In some cases, several different forms of
iteration for a single type may be desired (e.g., preorder
and postorder for trees). A facet may be defined for each
form of iteration required. Each facet defines a different
interface to the generic for.

Many other facilities are desirable, though they do
not enhance the basic power of the proposed features.
These include new combining forms for facets and the
parameterization of facets. We are currently investigating
the use of facets in a parallel environment.

ACKNOWLEDGEMENT
The authors would like to thank Dr M.R. Sleep for

various suggestions made after reading an early draft of

The Australian Computer Journal, Vol. 12, No. 4, November 1980

this paper. In particular, it was Dr Sleep who suggested
that when facets are used in a network environment data
need not be transported to an untrustworthy machine.

REFERENCES
ADA (1979), Preliminary Ada reference manual, ACM SIGPLAN

Notices 14, 6 Part A (June, 1979).
DAHL, O.-J., and HOARE, C.A.R. (1972), Hierarchical program

structures, in Structured Programming, O.-J. Dahl, E.W.
Dijkstra, and C.A.R. Hoare, Academic Press, New York,
1972, pp. 175-220.

DAHL, O.-J., MYHRHAUG, B., and NYGAARD, K. (1970), The
Simula 67 Common Base Language, Norwegian Computing
Ctr., Oslo, 1970.

GESCHKE, C., and MITCHELL,). (1975), On the problem of
Uniform references to data structures. IEEE Trans: Soft­
ware Eng. SE-1,2 (June 1975), 207-219.

GRIES, D., and GEHANI, N. (1977), Some ideas on data types in
high-level languages. Comm. ACM 20, 6 (June 1977), 414-
420.

GUTTAG, J.V., HOROWITZ, E., and MUSSER, D.R. (1978),
Abstract data types and software validation. Comm ACM
21,12 (Dec. 1978), 1048-1064.

JENSEN, K., and WIRTH, N. (1974), PASCAL User Manual and
Report. Springer-Verlag, Berlin, 1974.

JONES, A.K., and LISKOV, B.H. (1978), A language extension
for expressing constraints on data access. Comm. ACM 21,
5 (May 1978), 358-367.

LISKOV, B., SNYDER, A., ATKINSON, R., and SCHAFFERT,
C. (1977), Abstraction mechanisms in CLU. Comm. ACM
20, & (Aug. 1977), 564-576.

SHAW, M,, WULF, W.A., and LONDON, R.L. (1977), Abstraction
and verification in Alphard: Defining and specifying iter­
ation and generators. Comm. ACM 20, 8 (Aug. 1977),
553-564.

WELSH, J., and BUSTARD, D.W. (1979), Pascal-Plus - Another
Language for Modular Multiprogramming. Software Pract­
ice and Experience 9, 11 (Nov. 1979), 947-958.

WIRTH, N. (1971), The programming language Pascal. Acta Inform-
atica 1 (1971), 35-63.

WULF, W.A., LONDON, R.L., and SHAW, M. (1976), An intro­
duction to the construction and verification of Alphard
programs. IEEE Trans. Software Eng. SE-2, 4 (Dec. 1976),
253-265.

BIOGRAPHICAL NOTE
F. Warren Burton received a B.S. degree in Applied

Mathematics and an M.A. in Mathematics from Colorado
University, both in 1972, and a Ph.D. in Computing from
the University of East Anglia in 1977.

He was an Assistant Professor of Computer Science
at Michigan Technological University for two and a half
years, and joined the Computing Studies faculty of the
University of East Anglia in January of 1979. His research
interests include data structures, programming languages
and computational geometry.

Brian Lings received a B.Sc. (Hon) degree in Pure
Mathematics in 1971 and a Ph.D. in Computer Science
in 1975, both from the University of East Anglia. He
joined the Computer Science department at the University
of Queensland, Australia, as a lecturer in 1975. His research
interests include programming languages and data base
management systems.

The Minimal Directed Spanning
Graph for Combinatorial
Optimization
Selim G. Akl*

This paper introduces a graph theoretic structure for combinatorial optimization: the minimal
directed spanning graph. The new structure — a generalization of the minimal spanning tree
for directed graphs — is used to design an approximation algorithm for the asymmetric travelling
salesman problem. Experiments with the algorithm are described which suggest that future studies of
the applicability of the new structure to The solution of other combinatorial optimization problems
might prove worthwhile.

Short-form title: The Minimal Directed Spanning Graph.
Keywords and phrases: approximation algorithm, asymmetric travelling salesman problem,

bipartite matching, combinatorial optimization, minimal directed spanning graph.
CR categories: 5.25, 5.39, 8.3

1. INTRODUCTION
The travelling salesman problem (TSP) is the prob­

lem facing a salesman who has to visit each of a number of
cities exactly once and return to his point of departure
while minimizing the cost of his trip. The TSP belongs to
the infamous class of NP — hard problems24 for which no
polynomial-time algorithm is known. Existing algorithms
have running times which grow exponentially with the
number of cities4'22. For large problems this is impractical
and approximation algorithms have been devised to yield
a satisfactory — but not necessarily optimal — answer9'20
The reader unfamiliar with the TSP should consult the
excellent surveys in References 5 and 12. Some actual
applications where the problem arises are discussed in
Reference 19.

One interesting feature of the majority of published
algorithms for the TSP is that, they rely primarily on the
symmetry of the cost matrix (i.e., the cost of going from
city a to city b is equal to the cost of going from city b
to city a). On the other hand, algorithms for general prob­
lems — which do not assume symmetry — behave very
badly on symmetric cases6'7. In this paper, we describe
an approximation algorithm especially designed for the
directed (i.e., asymmetric) TSP. The algorithm is intimately
related to the one for the symmetric case appearing in
Reference 9 and uses the same basic principles.

In Section 2 the terminology is introduced and a
graph-theoretic concept upon which our algorithm is
based is defined. The algorithm is stated and analyzed in
Section 3. Section 4 is devoted to the discussion of a
topic related to our present study — the weighted bipartite
matching problem. The results of an empirical analysis of
the TSP algorithm are reported in Section 5.

2. DEFINITIONS
One way of expressing a TSP is through the use of a

“Copyright © 1980, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

graph where nodes represent the cities and arcs the routes
connecting them. For this reason, various concepts from
graph theory have greatly influenced the work on approx­
imation algorithms for the TSP. These include the minimal
spanning tree, the optimal perfect matching, the Euler
circuit and the Flamilton circuit. In particular, the con­
tribution of the minimal spanning tree was twofold: it
provided good estimates for the optimal tour7'12, as well
as efficient algorithms for an approximate solution9'25.
Let us therefore recall some of these useful concepts from
graph theory. The terminology we shall use is mostly from
Reference 18 to which the reader is referred for the more
fundamental definitions.

1. A tree is a connected graph which contains no
cycles. Given an undirected connected graph G, a partial
graph G’C G which is a tree connecting together all nodes is
called a spanning tree.

2. In a directed graph the number of arcs leaving a
node is called the out-degree of that node. The in-degree
of a node is the number of arcs entering that node. If
for a given node the in-degree is larger than the out-degree
we say that the node has an out-degree deficiency whose
value is the in-degree minus the out-degree. The in-degree
deficiency is defined similarly. A graph is balanced when
for each node the in-degree equals the out-degree.

3. A directed tree is either rooted to a node or
from a node. A tree rooted from a node is a tree in which
the in-degree of that node is zero and the in-degree of each
of the other nodes is at most one. A tree rooted to a node
is a tree in which the out-degree of that node is zero and
the out-degree of the other nodes is at most one. A
directed spanning tree (rooted to or from a node) is a
directed graph whose underlying undirected graph is a
spanning tree.

4. A graph in which a number Wjj is associated
with every arc (i,j) in the graph is called a weighted graph
and the number Wjj is called the weight of arc (i,j). A
minima! spanning tree (MST) is that spanning tree with
the minimum sum of arc-weights. The minimal directed
spanning tree (MDST) is defined similarly. The cost matrix
of an n-city TSP is an nxn matrix whose (i,j)th entry is

*The author is with the Department of Computing and Information Science, Queen's University, Kingston, Ontario, Canada. This work was
supported in part by the Natural Sciences and Engineering Research Council of Canada under Grant NSERC-A3336. Manuscript received
16 October, 1979. Revised 18 August, 1980.

132 The Australian Computer Journal, Vol. 12, No. 4, November 1980

MinimaI Directed Spanning Graph

the cost of going from city i to city j. This cost is equal to
wy the weight of arc (i,j) in the corresponding directed
graph.

5. An Euler circuit of a directed graph is a circuit
such that every arc of the graph appears on it exactly once.
A directed graph whose underlying undirected graph is
connected possesses an Euler circuit if and only if it is
balanced. Such a graph is termed Eulerian.

6. A Hamilton circuit of a directed graph is a
circuit such that every node of the graph appears on it
exactly once. The solution to the TSP defined on a directed
graph is a minimum-weight Hamilton circuit.

7. A bipartite graph is a graph whose nodes can
be partitioned into two sets T-\ and I2 such that no two
nodes in T; or in T2 are adjacent (i.e., all arcs extend
“between T^ and T2"). A subset of the arcs of a bipartite
graph is said to be a matching if no two arcs in it are
incident to the same node. A matching which ‘covers’ all
nodes is said to be complete.

8. A directed graph is said to be complete if for
any two of its nodes i and j there exists an arc connecting
i to j. A complete directed graph on n nodes has therefore
n(n-1) arcs.

9. Finally, we introduce a new definition of our
own: a minimal directed spanning graph (MDSG) is a
partial graph of a complete directed and weighted graph
on n nodes which has minimum weight and whose under­
lying undirected graph is connected and acyclic. This is
equivalent to saying that the underlying graph is an MST
in which arc (i,j) is such that Wjj=min(wjj,Wjj), where (i,j)
and (j,i) are arcs of the complete graph. It should be noted
that the MDSG differs from the MDST in that it:

(a) is unrooted, and
(b) has no restrictions imposed on the in- or out-

degree of its nodes.
This concept of an MDSG will be used in the next section
to develop an approximation algorithm for the asym­
metric TSP.

that cost, i.e., i-*j or j-*i.
Step 2: Since

2[(in - degree deficiencies) - (out-degree
deficiencies)] =0, the addition to the
MDSG of arcs leaving nodes with out-
degree deficiency and entering nodes
with in-degree deficiency yields a bal­
anced graph which is also connected
and hence Eulerian. Again, as in Step 1,
the arc directions must be kept. Note
that choosing an arbitrary set of arcs to
obtain a balanced graph is a straight­
forward matter. An algorithm for obtain­
ing a ‘good’ set of arcs is discussed in the
next section.

Step 3: A simple algorithm will generate the
Euler circuit8. Here we note the import­
ance of keeping the arc directions as
mentioned in Step 1 and 2. This is clear
from the example in Fig. 1: the Euler
circuits resulting from graphs (a) and (b)
in Fig. 1 will be quite different.

----- MDSG obtained in Step 1 ----- MST obtained in Step 1
-------- Arcs added in Step 2 -------- Arc added in Step 2

(a) (b)

Figure 1

3. AN ALGORITHM FOR THE DIRECTED TSP
Given a complete directed and weighted graph G

with n nodes, the algorithm below computes a nearly
optimal solution to the TSP defined on G. For clarity of
presentation, step-by-step comments follow the algorithm.

3.1

3.2

Algorithm S
Stepl: Obtain an MDSG.
Step 2: Add a set of arcs to the MDSG in order

to make the directed graph thus obtained
Eulerian.

Step 3: Find an Euler circuit in this directed
graph.

Step 4: This Euler circuit can be used (in a
manner described below) to derive
several Hamilton circuits: among all such
Hamilton circuits, choose the one with
minimum weight. Stop.

Comments
Step 1: If we replace every w,j by min (wjj,wjj)

in -the cost matrix, and apply an MST
algorithm23 on the new matrix we
obviously get an MST with the same
weight as the MDSG. It is important to
store along with every entry in the cost
matrix the direction of the edge having

Step 4: The method of getting a Hamilton circuit
from the Euler circuit is simple. Assume
the Euler circuit is (n-|,n2, . . . ,n/_i,n/)
where the nj’s represent the nodes of the
graph and are not necessarily distinct.
Since an Euler circuit visits every node
at least once, one can build a Hamilton
circuit by: starting at node n-|, moving
to the right and introducing a node in
the Hamilton circuit only if it appears
for the first time. In order to generate
all Hamilton circuits obtainable from
the Euler circuit, two copies of the
Euler circuit are placed contiguously,
ni,n2, . . . ,n/_i,n/,ni,n2, . . . ,n/_i,n/,
and the method just described is applied
repeatedly / times, every time using the
next node in (ni,n2, . . . ,n/) as the start­
ing node.

3.3 Complexity
In Step 1, the MDSG can be obtained in 0(n2) time

if — as mentioned above — a modified-MST algorithm is
used. A straightforward implementation of Step 2 will run
in linear time: create a list of nodes with out-degree defi­
ciency and a list of nodes with in-degree deficiency; then

The Australian Computer Journal, Vol, 12, No. 4, November 1980 133

Minima! Directed Spanning Graph

TABLE 1
1 OO 7 65 68 34 81
2 19 OO 22 27 59 29
3 14 43 OO 62 77 65
4 76 53 64 OO 6 51
5 39 58 38 27 OO 13
6 46 67 27 11 38 OO

1 2 3 4 5 6

match a node from the first list with the first available
node on the second list. Similarly, Step 3 is 0(n): the
MDSG has (n-1) edges; at most as many edges will be
added in Step 2 and the resulting Eulerian graph will have
0(n) edges which can be traversed in linear time. Step 4 is
obviously 0(n2). The overall time-complexity for the
algorithm is therefore quadratic in n. The memory require­
ment is also 0(n2) when the cost matrix is stored in core.

3.4 Example
We now illustrate the operation of the algorithm by

trying it on a small problem published in the literature®.
For the cost matrix of Table 1 the best known TSP tour
is (1,2,4,5,6,3,1) with cost 94 units.

The step-by-step solution using algorithm S is as
follows:

Step 1: Obtain an MDSG; this is shown in Fig. 2.
Step 2: Nodes with out-degree deficiency =

{4,5}.
Nodes with in-degree deficiency = {3,6} .
The set of additional arcs is {(4,3), (5,6)}
The Eulerian graph is shown in Fig. 2.

Step 3: An Euler circuit of the graph in Fig. 3 is
(1,2,4,5,6,4,3,1).

Step 4: There are two Hamilton circuits obtain­
able from the Euler circuit.
1) (1,2,4,5,6,3,1) with cost 94 units.
2) (5,6,4,3,1,2,5) with cost 168 units.
The first circuit is chosen as the answer.

4. AN APPROXIMATION ALGORITHM FOR THE
WEIGHTED BIPARTITE MATCHING PROBLEM
It is not difficult to observe that a large number of

arcs in the final answer yielded by algorithm S will be
contributed by the MDSG and the set of arcs added in
Step 2. It is therefore a good idea to try to make the
weight of the set of arcs obtained in Step 2 as small as
possible. By taking a number of copies of each node equal
to its in- or out-degree deficiency the problem is easily
reduced to the weighted bipartite matching problem18:

1 1

Figure 2 Figure 3

Given an arc-weighted bipartite graph, find a complete
matching for which the sum of the weights of the arcs is
minimum. There is an elegant solution to this problem
which runs in 0(n3) time1®. For large values of n, how­
ever, this would probably be prohibitive. In practice, it is
important that we keep the complexity of our algorithm
within the quadratic bound. An 0(n2) approximation
algorithm for the weighted bipartite matching problem
which yields a good but not necessarily optimal answer
should be considered (an exact 0(n2) algorithm is not
known to exist).

Let N and T be the lists of nodes with in- and out-
degree deficiency respectively after Step 1 of algorithm S.
Let N’ and T’ be the lists obtained when N and T are
augmented as follows: if a node has an in-degree (out-
degree) deficiency equal to x, then (x-1) copies of that
node are added to its list. Note that N’ and T’ have the
same cardinality. Now consider the complete bipartite
graph consisting of the two sets of nodes N’ and T’ and a
set of arcs X such that each node in T’ is connected to all
nodes in N’. The algorithm below will yield an approxi­
mate solution to the matching problem. We should point
out that the algorithm is of the ‘greedy’ type11 and is
based on the same ideas as the one for the nonbipartite
matching problem described in Reference 2.

“Select a node i e T’ at random. Choose the arc (i,j)
— where j e N’ — of minimum weight incident to i
and add it to the matching. Delete nodes i and j and
all incident arcs. Repeat until all nodes have been
matched.”

This algorithm is simple to implement and experiments
showed it to be quite efficient. It suffers, however, from a
serious drawback: in some instances “greed does not pay”
and the algorithm is often forced to make very bad choices
towards the end of its task. A modification of this algor­
ithm is now presented in an attempt to cure this weakness.
The idea is to try to match, early enough in the procedure,
those nodes to which some heavily-weighted arcs are
incident, thereby reducing the number of bad choices at
the final stages.

4.1 Algorithm M
Step 1: For each node i e T’ find w, the sum of

weights of the arcs in X incident at i.
Step 2: Find the node j e T’ for which Wj > W|<

for all k e T’ (resolve ties arbitrarily).
Step 3: Choose the arc (j,i) such that Wji < Wjk

where i,k e N’, and i and k are not yet in
the matching.

Step 4: Arc (j,i) is added to the matching, Wj is
set to zero and wk is replaced by wk—wkj
for all unmatched k e T’.

Step 5: If any nodes are still unmatched go to
Step 2. Else stop.

The set of arcs obtained at exit from this algorithm is the
one to be used in Step 2 of algorithm S.

4.2 Complexity
Each of Steps 2, 3 and 4 consists (at most) of n oper­

ations and is executed n times. The algorithm has therefore
a complexity of 0(n2).

4.3 Example
For the cost matrix of Table 2 the best known

directed TSP tour is (1,3,9,4,8,5,10,6,7,2,1) with cost 146

134 the Australian Computer Journal, Vol. 12, No. 4, November 1980

Minima! Directed Spanning Graph

1 OO 24 18 22
TABLE 2

31 19 33 25 30 26
2 15 OO 19 27 26 32 25 31 28 18
3 22 23 OO 23 16 29 27 18 16 27
4 24 31 18 OO 19 13 28 9 19 27
5 23 18 34 20 OO 31 24 15 25 8
6 24 12 17 15 10 OO 11 16 21 31
7 28 15 27 35 19 18 OO 21 21 19
8 13 24 18 13 13 22 25 OO 29 24
9 17 21 18 24 27 24 34 31 OO 18

10 18 19 29 16 23 17 18 31 23 OO

1 2 3 4 5 6 7 8 9 10

units11.
The behaviour of algorithm S (using algorithm M in

Step 2) on this cost matrix is outlined below.
Step 1: Obtain an MDSG; this is shown in Fig. 4.
Step 2: The set of additional arcs is given by

{(1,6),(2,3),(5J8),(5J4)J{7J6),(9,3),(10,6)}
Step 3: Obtain an Euler circuit in the graph of

Fig. 5; this is given by
(1.6.2.3.9.3.5.4.8.5.10.6.7.6.5.8.1) .

Step 4: The minimum-weight Flamilton circuit
obtainable from the Euler circuit in Step
3 is
(1.2.3.9.4.8.5.10.6.7.1)
with cost 169 units.

5. EXPERIMENTS
In dealing with a class of combinatorial problems —

like the TSP — for which all known exact algorithms have
a running time that grows exponentially with the size of
the input, it is often useful to estimate the expected solut­
ion, or put some bounds on it. This estimate (or bound)
can serve several purposes:
(1) In some distribution management problems it is

sometimes necessary to estimate the expected dis­
tance that would be involved in supplying customers
— when the exact locations of the customers are not
known in advance — in order to decide, for example,
upon the number and locations of depots.

(2) The branch-and-bound approach17 uses lower bounds
to eliminate from further consideration whole parts
of the decision tree that would otherwise have to be
investigated.

(3) Finally, and most important for our purpose, when

Figure 4

Figure 5

an approximation algorithm is tested, a lower bound
serves as a reference point against which near-optimal
solutions are compared.
In the case of the symmetric TSP, a variety of esti­

mates of (and bounds on) an optimal tour have been
derived3’7’12,13’14. This, and the fact that a set of stand­
ard problems of up to a few hundred cities appear in the
literature15’21, that can be used for comparison pur­
poses, usually make the task of evaluating an approxim­
ation algorithm for the symmetric TSP a relatively easy
one.

Quite surprisingly, very few asymmetric cost-matrices
for the TSP have been published and even these are for
trivial values of the number of cities1’6)1 °’17>22’26’27.
Furthermore, in contrast with the symmetric case, it is
quite complicated to derive an estimate of the solution, or
put some bound on it, for general directed TSPs. Of course,
a variety of lower bounds can be obtained for a particular
instance of the TSP by solving the corresponding assign­
ment problem®’7. These, however, usually involve non­
trivial computations which would defeat the purpose of a
fast approximation algorithm.

In this section we propose to empirically estimate
the quality of the answer provided by algorithm S. In
order to do so we shall need — as noted above — a reference
point against which our approximate solution is to be
compared. It is interesting to observe that a lower bound
on the weight of the optimal tour for a directed TSP is
the weight of the MDSG. (To see this, remove the arc of
largest weight from the optimal tour: what is left is a
directed spanning graph whose weight is larger than or
equal to that of the MDSG.) The computation of this
bound is not only simple but also a basic step of the
algorithm we are trying to evaluate.

Algorithm S was tested on random asymmetric cost
matrices. Matrix entries were selecred uniformly from the
interval (0,1) by a uniform random number generator. Let

n = number of cities,
S = weight of the approximate solution pro­

vided by algorithm S,
MDSG = weight of the MDSG

and R = S/MDSG.

Table 3 summarizes the result of a Monte Carlo
experiment where E(R) and SD(R) are average value and
standard deviation of R computed over 100 randomly
generated problems with asymmetric cost matrices.

The Australian Computer Journal, Vol. 72, No. 4, November 1980 135

Minima! Directed Spanning Graph

TABLE 3

n E(R) SD(R)

50 1.38 0.04

100 1.30 0.04

150 1.21 0.03

200 1.16 0.03

As Table 3 shows, the answer provided by algorithm
S for n < 200 is on the average no worse than 3/2 times
the lower bound.

In conclusion, we mention that various algorithms
using the ideas presented in this paper are currently being
developed to address a number of related combinatorial
optimization problems.

REFERENCES
1. ACKOFF, R.L. and SASIENI, M.W., Fundamentals of

Operations Research, Wiley, New York, 1968.
2. AVIS, D., and AKL, S.G., An Empirical Study of Heuristics

for the Weighted Matching Problem, unpublished manu­
script.

3. BEARDWOOD, J., HALTON, H.H., and HAMMERSLEY,
J.M., The Shortest Path Through Many Points, Proceedings
of the Cambridge Philosophical Society, 55, 1959, pp.
299-327.

4. BELLMAN, R., Dynamic Programming Treatment of the
Travelling Salesman Problem, Journal of the ACM, 9, 1962,
pp. 61-63.

5. BELLMORE, M., and NEMHAUSER, G.L., The Travelling
Salesman Problem: A Survey, Operations Research, 16,
1968, pp. 538-558.

6. BELLMORE, M., and MALONE, J.C., Pathology of Travell­
ing Salesman Subtour-Elimination Algorithms, Operations
Research, 19, 1971, pp. 278-307.

7. CHRISTOFIDES, N., Bounds for the Travelling Salesman
Problem, Operations Research, 20, 1972, pp. 1044-1056.

8. CHRISTOFIDES, N., Graph Theory: An Algorithmic Ap­
proach, Academic Press, New York, 1975.

9. CHRISTOFIDES, N., Worst-Case Analysis of a New Heuris­
tic for the Travelling Salesman Problem, Management Sci­
ences Research Report No. 388, Carnegie Mellon University,
February 1976.

10. CONWAY, R.W., MAXWELL, W.L., and MILLER, L.W.,
Theory of Scheduling, Addison Wesley, Reading, Massachu-
setta, 1967.

11. EDMONDS, J., Matroids and the Greedy Algorithm, Math­
ematical Programming, 1, 1971, pp. 127-136.

12. EILON, S., WATSON-GANDY, C.D.T., and CHRISTO­
FIDES, N., Distribution Management, Griffin, London,
1971.

13. FEW, L., The Shortest Path and the Shortest Road Through
n Points, Mathematika, 2, 1955, pp. 141-144.

14. HAMMERSLEY, J.M., and HANDSCOMB, D.C., Monte
Carlo Methods, Methuen, London, 1964.

15. KARG, R.L., and THOMPSON, G.L., A Heuristic Approach
to Solving Travelling Salesman Problems, Management
Science, Vol. 10, No. 2, 1964, pp. 225-248.

16. KUHN, H.W., The Hungarian Method for the Assignment
Problem, Naval Res. Logist. Quart., 2, 1955, pp. 83-97.

17. LAWLER, E.L., and WOOD, D.E., Branch-and-Bound: A
Survey, Operations Research, 14, 1966, pp. 699-719.

18. LAWLER, E.L., Combinatorial Optimization: Networks
and Matroids, Holt, Rinehart and Winston, New York, 1976.

19. LENSTRA, J.K., and R1NNOOY KAN, A.H., Some Simple
Applications of the Travelling Salesman Problem, Operational
Research Quarterly, Vol. 26, No. 4, 1975, pp. 717-733.

20. LIN, S., Computer Solutions of the Travelling Salesman
Problem, Bell System Technical journal, Vol. 44, 1965,
pp. 2245-2269.

21. LIN, S., and KERNIGHAN, B.W., An Effective Heuristic
Algorithm for the Travelling Salesman Problem, Operations
Research, 21,1973, pp. 498-516.

22. LITTLE, J.D.C., MURTY, K.G., SWEENEY, D.W., and
KAREL, C., An Algorithm for the Travelling Salesman
Problem, Operations Research, 11, 1963, pp. 972-989.

23. PRIM, R.C., Shortest Connection Networks and Some
Generalizations, Bell System Technical Journal, 36, 1957,
pp. 1389-1401.

24. REINGOLD, E.M., NEIVERGELT, J., and DEO, N., Com­
binatorial Algorithms Theory and Practice, Prentice Hall,
Englewood Cliffs, New jersey, 1977.

25. ROSENKRANTZ, D.J., STEARNS, R.E., and LEWIS,
R.M., An Analysis of Several Heuristics for the Travelling
Salesman Problem, SIAM Journal on Computing, Vol. 6,
No. 3, 1977, pp. 563-581.

26. SASIENI, M., YASPAN, A., and FRIEDMAN, L., Oper­
ations Research, Wiley, New York, 1959.

27. WAGNER, H.M., Principles of Operations Research, Prentice
Hall, Englewood Cliffs, New Jersey, 1969.

BIOGRAPHICAL NOTE
Selim G. Akl received the B.Sc. and M.Sc. degrees

in Electrical Engineering in 1971 and 1975 respectively,
both from the University of Alexandria and the Ph.D.
degree in Computer Science from McGill University in
1978. He is currently an Assistant Professor of Computing
and Information Science at Queen's University in Kingston.
His research interests are primarily in the area of algorithm
design and analysis, in particular for problems in com­
binatorics, artificial intelligence and pattern recognition.
Dr Akl is a founding member of the Canadian Applied
Mathematics Society, a member of the Canadian inform­
ation Processing Society, the IEEE Computer Society
and the ACM.

136 The Australian Computer Journal, Vol. 12, No. 4, November 1980

Marginal Totals for
Multidimensional Arrays
John Burr*

Efficient procedures are derived for computing arrays of marginal totals S from any given
multidimensional array X, for use when the number of dimensions in X or S is unknown at the time
of writing the program. Generalized transposition of X is included as a special case.

Keywords: marginal totals, multidimensional array, transposition.
CR category: 4.22

1. INTRODUCTION
This paper develops two efficient procedures for

computing arrays of marginal totals S from any given
multidimensional array X. This problem is of special
interest in those cases where the number of dimensions in
X or S, that is, the number of subscripts needed to identify
any one element of the array, is unknown at the time of
writing the program. The same procedure can be used to
effect generalized transposition of X, which is merely the
special case when S has the same number of dimensions
as X.

The first procedure runs sequentially through the
elements of X, and this will be the natural choice when
main memory can hold S but is too small to hold the
whole of X. The second procedure runs sequentially
through the elements of S, that is, it sums all those ele­
ments of X that contribute to a given element of S before
setting to work on the next element of S. This will be the
natural choice if the elements of S are to be used without
necessarily being stored, for example, if we only wish to
know the sum of the squares of the elements of S. When
memory size is not a constraint, the second procedure
will usually execute a little faster than the first.

This problem occurs in survey analysis, and in the
analysis of variance of complete factorial experiments. I
developed these procedures for use in my own programs
15 years ago, and I feel sure that other programmers must
be using them also, but I have never seen them in pub­
lished form. There is some slight overlap with the work of
Guttmann (1976) and Meyer (1978) on multiple sums of
a function with many arguments.

2. TERMINOLOGY AND NOTATION
I propose to borrow two words, factors and levels,

from the terminology of factorial experiments. My aim
is to avoid the ambiguity associated with the term “dimen­
sion”, by replacing it with a term having more concrete
associations. As an example, an agricultural field trial may
be designed to compare yields of wheat with four differ­
ent strengths of application of a fertilizer. We then say
that “Fertilizer” is a factor with four levels. The same
experiment might also employ “Depth of ploughing” as
a factor with two levels, “Harvest time” as a factor with

“Copyright © 1980, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

three levels, “Varieties” (of wheat) as a factor with five
levels, and “Blocks” as a factor with two levels. In a com­
plete factorial experiment, all possible combinations of
levels occur, so that the design described above would be
called a five-factor experiment involving

4x2x3x5x2 = 240 observations.
Notice that the five varieties will probably be labelled
1, 2, 3, 4 and 5 in some arbitrary order, the labels having
no quantitative significance, but we nevertheless say that
this factor “occurs at five levels”. It is convenient to
abbreviate each factor name by its initial letter, so that the
five-dimensional array X may be called FDHVB. If we now
refer to an array of marginal totals (or means) by the
name FHV, it is at once apparent that this will be a three-
dimensional array obtained by summing (or averaging)
over all levels of D and B. In the sequel, I shall sometimes
refer to the factors (or dimensions) of X by the names
A, B, C, D, .. . in that order.

In the algorithms and program fragments in this
paper, all variables and arrays, other than formal para­
meters, are treated as global. V is a real one-dimensional
array large enough for the physical storage of both X
and S, and T is a real variable. (Alternatively, V, X, S and
T could be all integer, or all double precision, or all com­
plex, but for definiteness I shall call them real.) All other
variables and arrays are of type integer, and most of these
are described below.

nfx
nfs =
nfns =

k =
lev(k)
jmax(k) =
j(k) =
nx =

ns =
I OCX =
Iocs =
jx
js

number of factors in X.
number of factors in S.
number of factors not in S
nfx — nfs.
index ranging from 1 to nfx.
number of levels of the kth factor in X.
lev(k) — 1.
kth subscript value in X, with range 0 to jmax(k).
number of elements in X
product of lev(1),. .., lev(nfx).
number of elements in S.
starting point for X in the array V.
starting point for S in the array V.
index ranging from locx to locx + nx — 1.
index ranging from Iocs to Iocs + ns — 1.

I have adopted a convention compatible with Fort­
ran, such that as we scan the elements of X from left to
right starting at V(locx), where every j(k) is initially zero,

*Department of Computing Science, University of New England, Armidale, NSW, 2351. Manuscript received 25 July 1980.

The Australian Computer Journal, Vol. 12, No. 4, November 1980 137

Marginal Totals for Multidimensional Arrays

the values of j(1) will cycle most rapidly, the values of
j(2) will cycle less rapidly than those of j(1) but more
rapidly than those of j(3), and so on. Hence the general
element of X, with subscripts j(1), . . . , j(nfx), will be
physically stored at V(jx), where

jx = locx + mx(1)*j(1) + . .. + mx(nfx)*j(nfx)
and the multipliers mx(k) are defined by:

mx(1) = I,
mx(k) = mx(k—1)*lev(k—1), k = 2,. . ., nfx.

Other integer arrays will be described as the need arises.
To improve readability, I sometimes use hyphens

within procedure names, and I use closing delimiters endif
and endfor to avoid the ugly proliferation of the delimiters
begin .. . end.

3. SUMMING SEQUENTIALLY IN X
If we knew the number of factors in X to be 4,

for example, we could use the following loops to gener­
ate marginal totals in S, after some suitable initialization
(to be described below).

jx «-locx;
for j(4) "-0 to jmax(4) do

for j(3) <-0 to jmax(3) do
for j(2) <-0 to jmax(2) do

for j(1) *0 to jmax(1) do
js * Iocs + ms(1)*j(1) + ms(2)*j(2)

+ ms(3)*j(3) + ms(4)*j(4);
V(js) * V(js) + V(jx); jx * jx + 1

endfor
endfor

endfor
endfor

The elements of S, that is, the ns elements of V starting
at V(locs), must be initially set to zero, and the multi­
pliers ms must be initialized in the manner described
below. I give first a simple example, then the general case.

Suppose that the factor name of X is ABCD and the
factor name of S is CAD, which means that we are not
only summing over the levels of B, but also transposing so
that C becomes the most rapidly varying factor in S. Here
ms(3) is 1, since js must be increased by 1 whenever j(3)
increases by 1. As we scan the elements of S from left to
right, we see that j(1), the subscript for A, only changes
after j(3) has run through its full range, that is, after lev(3)
steps. Hence ms(1) must equal lev(3). We can determine
in like fashion that ms(4) must equal lev(3)*lev(1). Finally,
ms(2) must be zero, since if two sets of subscript values
for the array X differ only in the second subscript j(2),
then the corresponding elements of X must map into the
same element of S.

To generalize and automate the above, we need a
concise way of numerically coding the description of S.
I propose to use an array fs (acronym for factors of S)
with nfs elements. The ith element fs(i) will contain an
integer k denoting that the ith factor in the name of S is
the same as the kth factor in the name of X. Hence, in
the example given above, we have:

fs(1) = 3, ms(3) = 1
fs(2) = 1, ms(1) = ms(3)*lev(3)
fs(3) = 4, ms(4) = ms(1)*lev(1)

138

This leads easily to the general algorithm for setting up
the array ms:

procedure setup-ms;
begin

for k <-1 to nfx do ms(k) *0 endfor;
m «- 1;
for i <-1 to nfs do

k *fs(i); ms(k) *m;m <-m*lev(k)
endfor

end

The next step toward a general marginal-total algor­
ithm is to expand the four “for” and “endfor” statements,
as shown below:

L4: j(4) <-0;
L3: j 3) *-0;
L2: j(2) -0;
LI: j(l) -0;
L0:...........

if j(1) < jmax(1) then j(1) *j(1) + 1; go to L0 endif;
if j (2) < jmax(2) then j(2) j (2) + 1;go to L1 endif;
if j(3) < jmax(3) then j(3) + j(3) + 1; go to L2 endif;
if j(4) < jmax(4) then j(4) <-j(4) + 1; go to L3 endif

This is easily generalized to the case where nfx, the number
of factors in X is not necessarily 4:

k <- nfx + 1;
L10: k + k — 1; j(k) <*-0;
L20: if k > 1 then go to L10 endif;

L30: if j(k) <jmax(k) then
j(k) <-j(k) + 1; go to L20 endif;

k * k + 1; if k < nfx then go to L30 endif

It remains only to improve efficiency by removing the
lengthy calculation of js from the innermost loop. We can
achieve this, and at the same time remove all the multi­
plications, by observing that whenever j(k) is incremented
by 1, js needs to be increased by ms(k), and whenever
j(k) is reduced from jmax(k) to zero, js must be decre­
mented by a suitably initialized array element that I shall
call jsdec(k). Since the purpose of this decrement is to
undo the effect of jmax(k) increments each of size ms(k),
it is clear that the value of jsdec(k) must be ms(k)*jmax(k).
This decrementing can be done just before the statement
k * k +1 in the last line of the program fragment shown
above. Also, if we insert the statement j(k) «- 0 in the same
place, then the two lines labelled L10 and L20 can be
removed from the main loop, with a further gain in speed
of execution. The final version of the algorithm is shown
below.

procedure margin-1; (**sequential in X**)
begin

setup-ms;
for k * 1 to nfx do

j(k) <-0; jsdec(k) «-ms(k)*jmax(k)
endfor;
for js *■ Iocs to Iocs + ns — 1 do V(js) * 0 endfor;
jx «-locx; js "-Iocs;

(**summation loop begins**)
LI: V(js) *V(js) + V(jx); jx <-jx +1; k +1;

the Australian Computer Journal, Vol. 12, No. 4, November 1980

Marginal Totals for Multidimensional Arrays

L2: if j(k) < jmax(k) then
j(k)-j(k) + 1;js*-js + ms(k);
go to L1 endif;

j(k) <-0; js ♦ js — jsdec(k); k * k + 1;
if k < nfx then go to L2 endif

end

4. SUMMING SEQUENTIALLY IN S
Consider first the example from the last section,

where the factor names of X and S are ABCD and CAD.

js -Hoes;
for j(4) <-0 to jmax(4) do

for j(1) <-0 to jmax(1) do
for j(3) *0 to jmax(3) do

T*0;
for j(2) <-0 to jmax(2) do

jx •■-locx + mx(2)*j(2) + mx(3)*j(3)
+ mx(1)*j(1) + mx(4)*j(4);

T-T + V(jx)
endfor;

V(js) "-T; js *js +1
endfor

endfor
endfor

In preparation for generalizing this, I introduce an
array named perm whose first four elements, in this
example, will be 2, 3, 1 and 4. In general, perm will have
nfx elements, the last nfs of which point to the nfs factors
occurring in the name of S, while the first nfx-nfs elements
point to the factors of X that do not appear in S. For
setting up the array perm, it is useful to have a boolean
function named member(v, n, k) that returns the value
true or false accordingly as k is or is not a member of the
set v(1), .. ., v(n):

boolean function member(v, n, k);
begin

for i ♦ 1 to n do
if v(i) = k then return true endif

endfor;
return false

end

procedure setup-perm;
begin il *0; i2 *0; nfns ♦nfx — nfs;

for k * 1 to nfx do
if member(fs, nfs, k) then

i2 * i2 + 1; perm(nfns + i2) * fs(i2)
else il ♦ il + 1; perm(il) ♦ k endif

endfor
end

I now introduce an array h such that h(k) =
j(perm(k)), so that the nfx elements of h are a permut­
ation of the subscripts j(1), . . ., j(nfx). The corresponding
permutations of the upper bounds, increments and decre­
ments will be denoted by hmax, mh and hxdec. This
leads to the general algorithm shown below. Note that the
procedures transpose-x and sum-x could easily be com­
bined, since the first is only a special case of the second,

The Australian Computer Journal, Vol, 12, No. 4, November 1980

but this would lead to some loss in clarity and an increase
in execution time.

procedure margin-2; (**sequential in S**)
begin setup-perm;

for k * 1 to nfx do
h(k) *0; i ♦perm(k); mh(k) ♦mx(i);
hmax(k) ♦ jmax(i); hxdec(k) ♦hmax(k)*mh(k)

endfor;
jx ♦locx; js ♦Iocs;
if nfs = nfx then transpose-x else sum-x endif

end

procedure sum-x;
begin T*0;
L1: T ♦T + V(jx); k ♦ 1;
L2: if h(k) < hmax(k) then

h(k) ♦h(k) + 1; jx ♦ jx + mh(k);
go to LI endif;

if k = nfns then
V(js) ♦TjT ♦O; js ♦js + 1 endif;

h(k) ♦O; jx ♦jx — hxdec(k); k ♦ k + 1;
if k < nfx then go to L2 endif

end

procedure transpose-x; (**degenerate form of sum-x**)
begin
LI: V(js) ♦ V(jx); js ♦ js + 1; k ♦ 1;
L2: if h(k) < hmax(k) then

h(k) ♦h(k) + 1; jx ♦jx + mh(k);
go to L1 endif;

h(k) ♦O; jx ♦jx — hxdec(k); k ♦ k + 1;
if k < nfx then go to L2 endif

end

5. IMPLEMENTATION
After completing the procedures margin-1 and

margin-2 in the forms shown above, I translated them
into Fortran subroutines and successfully tested them on
the University’s DEC 2060. Execution time in micro­
seconds was found to be approximately

72+ K*nx,
where the constant 72 is accounted for by the CALL and
RETURN statements, and the multiplier K ranges from
about 9 to 16 microseconds depending principally on the
value of hmax(1) or jmax(1). The procedure margin-2 was
generally about five to 15 percent faster than margin-1,
except when the values of lev(1), . . . , lev(nfx) were only
2 or 3, when margin-2 was sometimes a little slower.

REFERENCES
GUTTMANN, A.J. (1976), Multi-dimensional summations in

Fortran. Software - Practice and Experience, Vol. 6, p. 221.
MEYER, B. (1978), A note on computing multiple sums. Soft­

ware — Practice and Experience, Vol. 8, p. 3.

BIOGRAPHICAL NOTE
John Burr obtained his M.Sc. in Mathematics from

the University of Queensland in 1954, and his Ph.D. in
Mathematical Statistics from the University of New
England in 1963. He has been Professor of Computing
Science at the University of New England since 1973. His
chief field of interest is applications software.

139

Distributed Computing
and its Competitors
L.M. Casey*

With the falling cost of processors and memory modules there has been a rising interest in
their interconnection to: form larger systems. This paper surveys the factors affecting general per­
formance for the following three architectural options:
(i) High speed ‘single’fnain processor.
(ii) Multiple processors connected to a common memory.
(iii) Multiple computers connected by a high speed (short distance) communication link.

Both hardware and software issues are covered.
Keywords and Phrases: Distributed computing, multiprocessor, performance, concurrency.
CR Categories: 4.32

1. INTRODUCTION
The rising performance and cost effectiveness of

microprocessors will lead in the future to the widespread
use of private dedicated computers. However, there will
still be a large demand for shared computing facilities
such as those provided by many of today’s mainframes.
Shared centralised databases and expensive high band­
width peripherals provide an incentive for sharing com­
puting power. Individual microprocessor systems may not
be able to provide users with as good response times as a
more powerful shared facility. There are many half-hidden
costs in operating and maintaining diverse, dispersed,
small systems. Mindful of these, an organisation may
wish to keep its computing centralised.

Multiple microprocessors could be used in the pro­
vision of the larger scale computing facility. Indeed, the
most economic of future systems may be those on a single
undiced wafer, the individual (good) chips on the wafer
being interconnected to make the complete system. This
paper surveys the hardware and software issues involved
in three possible types of system. These three types are:

1. The Uniprocessor System
This is the conventional computer. The central pro­

cessing unit may be constructed with conventional random
logic, gate arrays and/or bit slices. Within the central
processing unit there may be more than one arithmetic
and logic unit. The essential characteristics of a unipro­
cessor system is that it executes a single stream of in­
structions.

2. The Multiprocessor System
A multiprocessor system has a number of processing

units, each of which executes its own stream of instruct­
ions. All processors share a common primary memory.
This is often called tight coupling. A multiprocessor system
has a single operating system.

“Copyright © ,1980, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

3. The Distributed System
In a distributed computer system a number of sep­

arate computers interact with each other by means of a
fast communications subsystem. It is often called a loosely
coupled system. Each computer processes its own instruct­
ion stream. Given the requirement of speedy communic­
ation it is unlikely that the computers will be geographic­
ally dispersed. Indeed in the near future the communic­
ation subsystem could be a bus laid out on a single board.
Concomitant with the hardware structure the operating
system must be constructed in such a way as to present
the user with a single unified system. This attribute is
frequently missing from systems labelled ‘distributed’
(Enslow, 1978).

This paper concentrates on the provision of general
purpose computing power, the type of computing pro­
vided for time shared systems by today’s mainframes
and larger minis. Many of the points made are also applic­
able to other environments such as process control. Any
one of the above three types of system should be replace­
able by another without impacting the user interface
(changes in performance excepted). The substitution of
uniprocessors by multiprocessors is a common occur­
rence. Replacement of either by distributed systems has
yet to be fully demonstrated. It is an area of active re­
search. Nevertheless quite a lot can be said about the
characteristics a successful distributed system would
exhibit.

Which type of system is to be preferred is chiefly
a matter of cost effectiveness, tempered by consider­
ations of reliability, availability and ease of expansion.

Since they consist of identical ‘building blocks’
multiprocessor and distributed systems have an obvious
potential for reliability and high availability. This potential
has been demonstrated in systems such as Pluribus (Orn-
stein, Crowther, Kraley, Bressler, Michel and Heart, 1975)
and the commercially available Tandem 16.

The reasons for the superior cost effectiveness of
microprocessors over mainframes are well known. Basic­
ally the volume of production of microprocessor systems
gives them lower per unit costs for design, manufacture,
checkout and (if produced!) software. Conversely the
low volume of mainframe sales means that the same tech-

*The author is with the DSiR Physics and Engineering Laboratory, Lower Hutt-, New Zealand. Manuscript received 13 June 1980.

140 The Australian Computer Journal, Vol. 12, No. 4, November 1980

Distributed Computing

(a) UNIPROCESSOR

(b) MULTIPROCESSOR

(c) DISTRIBUTED SYSTEM

Figure 1

nology has to be retained over a longer period if manu­
facturers are to recoup their investment. Even when the
latest LSI technology is applied to mainframes, the com­
plexity and speed of their processors means that its full
benefits cannot be reaped. (For a full discussion of these
issues see Borgerson 1976, Casey 1977, Tjaden and Cohn
1979).

The important question is whether performance
scales up when microprocessors are incorporated in multi­
processors or distributed systems. Both types of system
impact performance in two ways. The architecture itself
imposes limitations, which are discussed in the next sect­
ion. Specific computing tasks carry extra overheads if
they are distributed. This is discussed in Section 3.

2. ARCHITECTURAL ISSUES
2.1 Multiserver Effects

It is a generally accepted queuing theory result
that average response times of a single server system are
lower than the average response times of a m server system
where each server has 1/mth of the capacity of the single
server (Kleinrock, 1974). While both types of queuing
system have the same overall capacity the multiserver
system can only utilise it fully when there are at least m
jobs to be served. When there is only one job to be pro­
cessed the single server will deal with it m times faster

The Australian Computer Journal, Vol. 12, No. 4, November 1980

1 =UNIPROCESSOR
2 = MULTIPROCESSOR (m = 8)
3= DISTRIBUTED SYSTEM (m = 8

INCOMING JOB JOINS
. ^SHORTEST QUEUE
4= SYSTEM WHERE CHOICE OF

QUEUE IS RANDOM (m = 8)

a=40secs, b/C = 1sec

N = N° OF ACTIVE TERMINALS
Figure 2

than (one server of) the multiserver system.
Figure 1 depicts queue structure diagrams for a

time sharing system with N active terminals. The mean
‘think time’ of a terminal user is stipulated as ‘a’ seconds.
The average number of instructions required to service
each interaction is ‘b’. The uniprocessor (a) is assumed to
have a capacity of ‘C’ operations per second. Here it is
assumed that the individual processors of the multipro­
cessor (b) and the distributed system (c) have an effective
processing rate of 1/mth of the uniprocessor, where m is
the number of processors in the system. Thus the average
service time of an interaction is mb/C. In multiprocessors,
jobs are selected from a common queue while in a dis­
tributed system each computer maintains its own queue.

Sauer and Chandy (1979) have studied several aspects
of queuing in multiprocessor systems. Extensive studies
for distributed systems have not been performed but some
results are presented in (Casey, 1977). By way of an ex­
ample' of the differences between uniprocessors, multi­
processors and distributed systems we present below
results of an analytic/simulation study of response times
where m = 8.

Let the stretch factor be the factor by which the
service time on the uniprocessor of an interaction is multi­
plied to give its average response time. Thus the minimum
stretch factor for the uniprocessor is 1 and for the multi­
processor and distributed system it is m = 8. Figure 2
graphs stretch factors as a function of the number of
active terminals. For these curves a = 40 seconds, b/C is

141

Distributed Computing

assumed to be 1 second. Scheduling at each processor is
assumed to be 'processor sharing’, that is, round robin
with vanishingly small quantum. Curve 3 gives the stretch
factor for a distributed system where each incoming inter­
action is directed to the computer with the shortest queue.
This assumes that each computer can process all types of
interaction. (Curve 4, which is discussed in Section 3.3,
covers the case when computers are functionally spec­
ialised).

Most time sharing systems operate somewhere near
their ‘saturation’ point (Kieinrock, 1974). Forty-eight
active terminals is the ‘saturation’ point for the multi­
processor and distributed systems. For this loading the
average response times for an interaction requiring 0.1
seconds of processor time on the uniprocessor, are 1.0,
1.2 and 1.4 seconds for uniprocessor, multiprocessor and
distributed system respectively. The differences are hardly
going to be noticed by the user. Flowever, when the uni­
processor is lightly loaded with, say, 32 active terminals, a
user might be tempted to submit a large task. If the task
required 60 seconds of processing time his average res­
ponse time would be 3.1 minutes. The same task on the
distributed system with the same loading would have an
average response time of nearly nine minutes. While 3.1
minutes could be classified as interactive working, nine
minutes definitely is not.

The above examples illustrate the effect on res­
ponse times of work transferred from a mainframe uni­
processor to a multiprocessor or distributed system using
less powerful processors. Short interactions are virtually
unaffected but tasks requiring substantial bursts of pro­
cessing power will suffer. Subdividing large tasks into
parallel sub-tasks offers a potential remedy in some cases.
This is discussed further in Section 3.2.

2.2 Memory Requirements
In a uniprocessor system the multiprogramming

level is normally greater than 1 so that the central pro­
cessor is not held up by I/O for a particular task (this can
be I/O for the task or the I/O involved in swapping the
task for another one). For a multiprogramming level of
k there has to be enough primary memory to hold k task
images or working sets.

For a multiprocessor system with m processors
there must be at least enough primary memory to hold
m task images or working sets. Otherwise all m processors
could not be active simultaneously. Borgerson (1976)
suggests that the total multiprogramming level should be
m + k — 1, where k is the multiprogramming level of the
‘equivalent’ uniprocessor with the identical I/O subsystem.
Recently a more refined estimate has been produced
(Tjaden and Cohn, 1979). For systems with m greater
than about eight, the multiprogramming level required is
close to m.

For a distributed system each computer’s primary
memory must be of sufficient size to hold at least two
task images or working sets if any overlap of I/O and
processing is to be obtained. Since the total memory of a
distributed system is not contiguous, even more memory
must be provided to cater for fragmentation effects.

As well as its task images or working sets, a system
must have memory space for the resident portions of its
operating system. Again, the distributed system, with a
basic kernel in every computer (see Section 3.1), has the
greatest overall memory requirements.

142

The only compensation for a distributed system is
that the speed of its memory need not be as fast as that
for ‘equivalent’ uniprocessors and multiprocessors. Also,
if it is required, cache memory for each processor in a
distributed system can be provided as straightforwardly
as in a uniprocessor. Cache operation in a multiprocessor
system requires substantial extra hardware to ensure
coherence (Censier and Feautrier, 1978).

2.3 Contention
The fall-off in performance of multiprocessors due

to primary memory contention is well known and has
been extensively studied. The problem can be minimised
relatively cheaply by splitting memory into many inde­
pendent modules.

More serious is the contention for the processor to
memory pathway. The mechanisms used for the processor-
memory switch of multiprocessor systems are:
(i) full interconnection to multiported memories.
(ii) crossbar switch
(iii) bus

All three mechanisms severely limit the expansion
potential of multiprocessors. Full interconnection is not
really tenable for systems containing more than three or
four processors. A crossbar switch limits expansion to its
designed capacity. A switch with a large capacity is likely
to be very expensive, chiefly because of the large number
of external connections it would require. Such a switch
would wreck the cost effectiveness of small configurations.
There is not a direct limit to expansion using a bus but
bus contention ensures that the addition of extra pro­
cessors becomes less and less cost effective.

For distributed systems the preferred forms of the
communications subsystems are rings (Penny and Bagh­
dadi, 1979) and buses, including the Ethernet (Metcalfe
and Boggs, 1976) type of bus. As computer sizes shrink
a variant of the processor-memory type of bus will prob­
ably predominate. The bandwidth requirements of dis­
tributed systems are a lot less than those of multipro­
cessors. Simulation experiments suggest that 2 Mbytes/
second is an adequate bandwidth for a load balancing
distributed system of 20 computers, each equivalent to
one of today’s powerful minicomputers (Casey, 1977).
Thus for distributed systems the interconnection mech­
anism is not the expansion limiting factor it is for multi­
processors.

2.4 Size of Systems
The above points suggest that for both multipro­

cessors and distributed systems fewer processors of greater
power are preferable to more processors of low power.

When a processor consists of a single chip its cost,
relative to a complete system, is miniscule. Any savings
made on cheaper, less powerful processor chips would be
lost many times over with the extra memory, ‘real-estate’
and power supply requirements.

3. PROGRAMMING ISSUES
3.1 Concurrency

That distributed systems have not become very wide­
spread is probably due most to the lack of appropriate
software support. For distributed systems, as for others,
the main software issue is the handling of concurrency.
The special problem of distributed systems is that the
tasks that interact may reside in different computers.

The Australian Computer Journal, Vol, 12, No. 4, November 1980

Distributed Computing

Further, reliability and system expansion considerations
make system transparency an absolute necessity. The
physical location of the entities a programmer is working
with must be immaterial to him. Unless this is done, alter­
ing the underlying configuration of the system will be
a hazardous operation.

The software problems of distributed systems are
surmountable if a disciplined approach is taken to pro­
gramming. Currently two general programming disciplines
for handling concurrency are recognised: the message-
oriented approach and the procedure-oriented approach
(Lauer and Needham, 1978). Both are potentially suit­
able for distributed systems.

In both approaches each computer in the system is
managed by a kernel. Each kernel is aware of the location
of all resources in the system or, with the help of other
kernels, can locate resources when necessary.

In a message-oriented system resources are associ­
ated with processes. A resource is accessed by sending its
process a message and waiting for a reply. The function
of the kernel is to deliver the messages to the correct
destination processes, whether they be in the same com­
puter as the source or not. The message-oriented approach
has been adopted in such distributed systems as DCS
(Farber and Larson, 1972), DCN (Lay, Mills and Zelko-
witz, 1974), and HXDP (Jensen, 1978).

In a procedure-oriented system resources are accessed
by procedures. A computation consists of calls to-various
procedures. The kernel’s function in this case is to ensure
the orderly entry to and return from procedures includ­
ing the transmission of parameters. There are at least two
implementations in progress of distributed systems that
employ the procedure-oriented approach (Casey and
Shelness, 1977; Dowson, 1977).

Note that because the underlying mechanism for
exchanging data in distributed system is by message pas­
sing, it does not follow that the message-oriented approach
is superior to the procedure-oriented approach. The mess­
ages between computers are at a primitive protocol level.
At the higher level it matters little whether messages or
parameter lists are being passed about. Each approach
leads to a different style of programming. Each makes
some features easy to implement while making others
awkward. A more detailed analysis is carried out in (Casey,
1978) which concludes that the procedure-oriented ap­
proach has overall advantages.

Understanding of what mechanisms are required to
handle concurrency in a distributed system is only the
first step to producing appropriate programming language
constructs. Concurrency is an area of active programming
language research. But not all new constructs proposed
are feasible for distributed systems. Many proposals require
either centralised tables or shared memory locks for their
implementation. Progress is promising, however. Many
new languages incorporate a ‘module’ feature. Data within
a module is not directly accessible from outside of the
module. This will facilitate the siting of different modules
in different computers.

Currently, disciplined programming incurs very high
overheads, not only in distributed systems but also in
multiprocessors and uniprocessors. This is because message
passing, monitor entry and so on, is all carried out by
software. In multiprocessors and uniprocessors much over­
head can be avoided by using undisciplined mechanisms
such as priority and spin locks. But this should not be

The Australian Computer Journal, Vol. 12, No. 4, November 1980

the final solution. Software costs now so dominate hard­
ware costs that hardware should be designed to efficiently
support the mechanisms required for robust software.
This would benefit uniprocessors, multiprocessors and
distributed systems alike.

3.2 Task Decomposition
If the performance of a multiprocessor or distributed

system on a single task is inadequate then that task may be
decomposed into sub-tasks to improve its performance.
No general method of converting a sequential task into a
set of parallel sub-tasks has been found. It seems that
each program needs to be individually examined.

A decomposition into sub-tasks may lessen the
high primary memory requirements of multiprocessors
and distributed systems (Section 2.3). The decomposition
of the Harpy DECAL task developed for Cm* (Jones,
Chansler, Durham, Feiler, Scelza, Schwans and Vegdahl,
1978) occupied very little more space than a unipro­
cessor version. However, splitting a task into co-operating
sub-task involves overheads of two kinds.

First there are the overheads of co-operation and
interaction. There are the inefficiencies in the imple­
mentation of message passing and so on mentioned above.
Apart from this, any synchronisation of sub-tasks normally
causes one or more processors to idle, waiting for locks
to become free or messages to arrive.

The second kind of overhead is the extra instruct­
ions required to execute the parallel version of the task
compared to the sequential version. Wilkes (1977) identi­
fies a class of algorithms for which the parallel version
requires fewer overall instructions than the serial version.
But normally more instructions are required. In the Hear­
say II system approximately half of the total processor
time was used executing extra code that would not have
been present in a uniprocessor version (Fennel and Lesser,
1977). The overall performance of the Harpy DECAL
task using five LSI-11 processors was equal to that of a
PDP 11/40 uniprocessor version. A PDP 11/40 is approx­
imately three times as fast as an LSI-11.

A more disturbing result of both the Hearsay II
and Harpy projects was the inability to decompose the
tasks to use effectively more than about six processors.
More processors could be used but they produced little or
no decrease in the time taken to perform the task. Re­
search on task decomposition has a long way to go.

3.3 Task Assignment
A multiple computer system where each kind of

task was permanently assigned to one computer would
suffer the following three drawbacks compared to a dis­
tributed system that has dynamic task assignment.
(i) Availability and resilience would be diminished.

If one computer fails its tasks could no longer be
carried out.

(ii) Poor expansion characteristics would result after
major tasks (in terms of utilisation) each have their
own processors. Any computer added after that
would have very little effect on the system’s per­
formance.

(iii) Variations in the load on each computer would
mean that some were overloaded while others were
idle. This results in poor response times. Curve 4 of
figure 2 shows the minimum average stretch factor
for a system of eight computers. Here it is assumed

143

Distributed Computing

that the overall average execution time of tasks
on each computer is the same (= 8 secs) and that the
average utilisation of each computer is identical. In
practice it would be nigh impossible to distribute
tasks so. The stretch factors shown in curve 4 would
be considerably worse if, for example, three of the
eight computers accounted for 90 per cent of the
system’s computing load.
The ability to dynamically alter the binding of tasks

to computers within a distributed system is a prerequisite
to fail-soft operation. Since the basic mechanisms must
be provided it is natural to look at moving tasks between
computers to balance the load on each. As figure 2 shows
the potential gains in performance are quite large, prob­
ably more than enough to offset the extra overheads
involved.

Again this is an area requiring a lot of research.
Several load balancing mechanisms have been proposed.
These include a special (duplicated) central hardware
device to queue all tasks (Ornstein et al., 1975), bidding
(Farber and Larson, 1972), and the broadcasting of cur­
rent status to other computers (Casey and Shelness, 1977).
As an example of the problems still to be faced consider
a group of co-operating sub-tasks. When the distributed
system is lightly loaded then ideally each sub-task should
be located in a different computer, so as to maximise
parallel operation. However, when the system is very
heavily loaded the preferred assignment may be to have
all sub-tasks in the same computer, so as to minimise
inter-task communication delays.

Load balancing and, to a lesser extent, fail-soft
requirements involve the exchange of status between
computers. The number of such messages is likely to
grow as the square of the number of computers in the
system (Casey, 1977). This explosive growth could be the
factor limiting the ultimate size of a distributed system.
Either the communications sub-system would become
overloaded or the entire processing capacity would be
dedicated to handling the status messages.

4. CONCLUSIONS
The preceding sections have identified points favour­

able and unfavourable to each of the three architectures
under consideration. It is not possible to conclude that
one type of system is superior to the others. Instead,
below is a ‘wish list’ of the attributes or advances each
system needs to improve its overall acceptability.
For uniprocessors:

• more reliability
• decreased processor hardware costs

For multiprocessors:
• lower cost for high capacity processor-memory
interconnection
• decreased primary memory prices
• advances in task decomposition methodology
• better programming language constructs for con­
currency

For distributed systems:
• substantially cheaper primary memory
• more hardware support for managing tasks and
their interactions
• better programming language constructs for con­
currency
• advances in task decomposition methodology
• practical load balancing strategies.

Even if uniprocessors should prove dominant the
research going on into distributed operating systems,
concurrency in programming languages and task decom­
position will not be wasted. Today’s ‘super’ computers,
with their long pipelines, banks of special registers and
caches, have little remaining potential for architectural
improvement. Yet there is an unsatisfied demand for
massive computing power. The only way to meet some
of this demand may be to link together ‘super’ computers.

REFERENCES
BORGERSON, B.R. (1976), “The viability of multimicropro­

cessors systems”, IEEE Computer, Vol. 9, No. 1, January
1976, pp. 26-30.

CASEY, L.M. (1977), “Computer structures for distributed sys­
tems”, Ph.D. Thesis, CST-2-77, University of Edinburgh.

CASEY, L.M., and SHELNESS, N.S. (1977), “A domain structure
for distributed computer systems”, Proceedings of the
6th Symposium on Operating System Principles (Purdue),
November 1977, pp. 101-108.

CASEY, L.M. (1978), "On kernels for distributed computer sys­
tems”, Report CSR-27-78, University of Edinburgh, August
1978.

CENSIER, L.M., and FEAUTRIER, P. (1978), “A new solution
to coherence problems in multi-cache systems”, IEEE Trans­
actions on Computers, Vol. C-27, No. 12, December 1978,
pp. 1112-1118.

DOWSON, M. (1977), “DEMOS — a multiprocessor computer”,
Internal Report, Computer Science Division, National Phy­
sics Laboratory (Teddington, GB), October 1977.

ENSLOW, P.H. (1978), “What is a 'distributed' data processing
system?”, IEEE Computer, Vol. 11, No. 1, January 1978,
pp. 13-21.

FARBER, D.J., and LARSON, K.C. (1972), “The structure of
the Distributed Computer System — software”, Proceed­
ings of the Symposium on Computer Communications
Networks and Teletraffic (New York), April 1972, pp.
539-545.

FENNEL, R.D., and LESSER, V.R. (1977), "Parallelism in arti­
ficial intelligence problem solving: a case study of Hear­
say II”, IEEE Transactions on Computers, Vol. C-26, No. 2,
February 1977, pp. 98-111.

JENSEN, E.D. (1978), “The Honeywell experimental distributed
processor — an overview”, IEEE Computer, Vol. 11, No. 1,
January 1978, pp. 28-38.

JONES, A.K., CHANSLER, R.J., DURHAM, I., FEILER, P.H.,
SCELZA, P.A., SCHWANS, K., and VEGDAHL (1978),
“Programming issues raised by a multiprocessor”, Pro­
ceedings of the IEEE, Vol. 66, No. 2, February 1978, pp.
229-237.

KLEINROCK, L. (1974), “Resource allocation in computer sys­
tems and computer-communication networks”, Proceed­
ings IF IP Congress 74 (Stockholm), 1974, pp. 11-18.

LAUER, H.C., and NEEDHAM, R.M. (1978), “On the duality of
operating system structures”, Proceedings Second Inter­
national Symposium on Operating Systems, IRIA, October
1978, reprinted in ACM Operating Systems Review, Vol.
13, No. 2, April 1979, pp. 3-19.

LAY, W.M., MILLS, D.L., and ZELKOWITZ, M.V. (1974), "Oper­
ating systems architecture for a distributed computer net­
work”, Computer Networks: Conference of IEEE Computer
Society and NBS (Gaithersburg), May 1974, pp. 3944.

METCALFE, R.M., and BOGGS, D.R. (1976), “Ethernet: dis­
tributed packet switching for local computer networks”,
Communications of the ACM, Vol. 19, No. 7, July 1976,
pp. 395-404.

ORNSTEIN, S.M., CROWTHER, W.R., KRALEY, M.F., BRES-
SLER, R.D., MICHEL, A., and HEART, F.E. (1975), "Pluri-
bus — a reliable multiprocessor”, A FIPS Proc. Nat, Comp.
Conf., Voi. 44, 1975, pp. 551 -559.

PENNY, B.K., and BAGHDADI, A.A. (1979), “Survey of com­
puter communications loop networks”, Computer Com­
munications, Vol. 2, No. 4, August 1979, pp. 165-180
and Vol. 2, No. 5, October 1979. pp. 224-241.

SAUER, C.H., and CHANDY, K.M. (1979), “The impact of dis­
tributions and disciplines on multiple processor systems”,
Communications of the ACM, Vol. 22, No. 1, January
1979, pp. 25-33.

144 The Australian Computer Journal, Voi. 12, No. 4, November 1980

Distributed Computing

TJADEN, G., and COHN, M. (1979), “Some considerations in
the design of mainframe processors with microprocessor
technology”, IEEE Computer, Vol. 12, No. 8, August 1979,
pp. 68-74.

WILKES, M.V. (1977), “Beyond today’s computers", Proceedings
IFIP Congress 77 (Toronto), 1977, pp. 1-5.

BIOGRAPHICAL NOTE
Liam Casey is a scientist in the Computer Research

Section of the Physics and Engineering Laboratory, DSIR,

New Zealand. He started his career in the Applied Math­
ematics Division of DSIR. In 1974 he went to Edinburgh
University where he obtained a Ph.D in Computer Science.
He continued his Ph.D research into distributed com­
puting as a Post Doctoral fellow for 18 months before
returning to New Zealand in October 1978 to his current
position. His research interests centre on distributed com­
puting, and include performance modelling, load balancing
and language questions.

The Australian Computer Journal, Voi. 12, No. 4, November 1980 145

Program Control by
State Transition Tables
Peter Juliff*

The use of state transition tables as a means of program control provides a programming meth­
odology which is easy to construct, leads to concise source code and allows for ease of maintenance
without alteration to procedural code.

CR Categories: 4.0

INTRODUCTION
The use of state transition tables as a means of

controlling the execution of a program is a much neglected
topic. This is surprising given that this technique helps to
achieve two important criteria in program design:
(a) simplicity and elegance of the source code, and
(b) ease of subsequent amendment.

Whilst some use of state transition tables has been
made in specialist areas such as software controlled tele­
phony where state switching is a familiar engineering con­
cept, they have been largely ignored by programmers
working in more conventional environments. It is the aim
of this paper to explain their construction and operation
as drivers of individual sections of a program or of the
overall program logic.

RATIONALE
Working from the premise that:

(a) ease of ongoing amendment is one of the most
important factors to be considered in program
design, and

(b) program amendments which may be implemented
by the alteration of data are more desirable than
those which require the alteration of procedural
code,

then any technique which facilitates this end is a major
contributor to program flexibility. The use of a state
transition table may be confined to one individual module
within a program and may be part of the local data owned
by that module, or it may apply to the control of the
entire algorithm. The aim of its construction is to enable
modifications to the program’s behaviour to be effected
with little or no alteration of the procedural code.

PROGRAMS AS STATE ORIENTED ALGORITHMS
A program may be considered as an algorithm which

progresses from its current state to one of many other
possible states depending on changes in its operating
environment. The arrival at any one particular state
depends on the prior state and the occurrence of an event.

The tools required to harness these changes to con­
trol the operation of a program are:
(a) the ability to devise a table which specifies the
“Copyright © 1980, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

states in which a program may operate and the
events which cause a change from one state to any
other,

(b) the ability to define a data structure which embodies
this state table, and

(c) the availability of a computed branch instruction to
implement the program control,
e.g., a Computed GO TO in FORTRAN,

a CASE statement in ALGOL, PL/1 and PASCAL,
a GO TO ... DEPENDING ON ... in COBOL, or
an ON statement in BASIC.

The following examples are shown using COBOL
because of the ease of defining data and the explicit nature
of its syntax.

Example 1
A program accepts data from an operator at a term­

inal. One operation involves the acceptance of a monetary
value which may be of a variety of formats and which
will be deposited, left justified, in an eight-character field
with unused character positions to the right of the received
field containing spaces.

The rules governing the format of this value are:
(i) there may be a leading minus sign,
(ii) there may be leading spaces and the field may be

entirely blank,
(iii) the field will terminate on either the filling of the

entire eight-character field or on the encountering
of a non-leading space,

(iv) if the value consists of dollars only, the decimal
point may be omitted, but if a decimal point is
encountered it must be followed by at least one
further digit,

(vi) a maximum of four digits for dollars and two digits
for cents.
To summarise:

Valid Values
—12.34AA
AA—12AAA
.1 2AAAAA
-.12AAAA
1234.56A

Invalid Values
—12.AAAA
123-AAAA
.123AAAA
12345AAA
12.345AA

A state transition table specifying the permissible
formats of this field would be constructed as:

The author is with tire Department of Data Processing, Prahran CAE, Prahran, Victoria, 3181. Manuscript received 8 July 1980, and
revised 14 August 1980.

146 The Australian Computer Journal, Vol. 12, No. 4, November 1980

Program Control by State Transition Tables

Current
State

1. Before 1st
charade r.

2. Just after minus
sign.

3. Digits before dec.
point.

4. Just after dec.
point.

5. Digits after dec.
point.

6. Error discovered
7. Finished

Minus
Sign

2

6

6

6 5 6

6 5 6

Space End of Else
Field

1 7 6

6 6 6

7 7 6

6 6 6

7 7 6

New State Depending on Next Character:
Digit Dec.

Point

3 4

3 4

3 4

Typical input contents and the states traversed in
the algorithm would be:

Input Characters

State 1

Input Characters

State 1

Input Characters

State 1

- 1 2 3 4 A A

2 3 3 4 5 5 7

A A 1 2 3 4 A A

113 3 3 3 7

1 2 A A A A A

3 3 4 6

The program module charged with the task of valid­
ating and assembling this value will commence in State 1
and will progress through the other states depending on
the content of the input field. Each new state will be
selected on the basis of the current state (pointing to the
row in the table) and the next input character encountered
(pointing to the column in the table.

Each state reached may involve work to do on the
input field, e.g., accumulating an amount of dollars or
cents, or may merely operate to shift to another row in
the table and hence follow a potentially different set of
rules for the selection of the next state.

Excerpts of COBOL coding to implement this tech­
nique would appear as:

WORKING STORAGE SECTION.

01 SOURCE-FIELD.
03 SOURCE-CHARACTER

01 DESTINATION-FIELD.
03 DOLLARS
03 CENTS.

05 CENT

01 MONETARY-VALUE
REDEFINES DESTINATION-FIELD.

01 CONSTRAINTS.
03 SOURCE-SIZE
03 DOLLAR-SIZE
03 CENTS-SIZE

01 SWITCHES.
03 FINISHED
03 VALUE-OK
03 NEGATIVE-VALUE

01 SWITCH-VALUES.
03 TRUE
03 FALSE

01 ONE-CHARACTER.
03 ONE-DIGIT

01 CHARACTER-COUNTERS.
03 DOLLAR-COUNTER
03 CENT-COUNTER

01 STATE-TABLE.
03 FILLER
03 FILLER
03 FILLER
03 FILLER
03 FILLER

01 STATE-TABLE-AGAIN
REDEFINES STATE-TABLE.
03 STATE-ROW

05 STATE-COLUMN
07 NEW-STATE

01 CURRENT-STATE

PROCEDURE DIVISION.

PICX OCCURS 8
INDEXED BY SOURCE-INX.

PIC 9(4).

PIC 9 OCCURS 2
INDEXED BY CENT-INX.

PIC S9(4)V9(2)

PIC 9 VALUE 8.
PIC 9 VALUE 4.
PIC 9 VALUE 2.

PIC 9.
PIC 9.
PIC 9.

PIC 9 VALUE 1.
PIC 9 VALUE 0.

PIC 9.

PIC 9.
PIC 9.

PIC 9(6) VALUE 234176.
PIC 9 6 VALUE 634666.
PIC 9(6) VALUE 634776.
PIC 9(6) VALUE 656666.
PIC 9(6) VALUE 656776.

OCCURS 5 INDEXED BY ROW-INX.
OCCURS 6 INDEXED BY COL-INX.
PIC 9.
PIC 9.

ACCEPT SOURCE-FIELD.
MOVE FALSE TO FINISHED

NEGATIVE-VALUE.
MOVE TRUE TO VALUE-OK.

The Australian Computer Journal, Vol. 12, No. 4, November 1980 147

Program Control by State Transition Tables

SETSOURCE-INX
CENT-INX TO 1.

MOVE ZERO TO MONETARY-VALUE.
DOLLAR-COUNTER
CENT-COUNTER.

MOVE 1 TO CURRENT-STATE.
PERFORM 100-GET-VALUE UNTIL FINISHED = TRUE.
IF VALUE-OK = TRUE
AND NEGATIVE-VALUE = TRUE

MULTIPLY -1 BY MONETARY VALUE.

100-GET-VALUE SECTION.
101. IF SOURCE-INX >SOURCE-SIZE

MOVE 5 TO COL-INX
ELSE

MOVE SOURCE-CHARACTER (SOURCE-INX) TO ONE-CHARACTER
SETSOURCE-INX UP BY 1
IF ONE-CHARACTER =

MOVE 1 TO COL-INX
ELSE

IF ONE-CHARACTER IS NUMERIC
MOVE 2 TO COL-INX

ELSE
IF ONE-CHARACTER = “.”

MOVE 3 TO COL-INX
ELSE

IF ONE-CHARACTER = SPACE
MOVE 4 TO COL-INX

ELSE
MOVE 6 TO COL-INX.

MOVE CURRENT-STATE TO ROW-INX.
MOVE NEW-STATE (ROW-INX COL-INX) TO CURRENT STATE.
GO TO 109 102 103 109 105 106 107

DEPENDING ON CURRENT-STATE.
102.

MOVE TRUE TO NEGATIVE-VALUE.
GOTO 109.

103.
IF DOLLAR-COUNTER IS NOT <DOLLARS-SIZE

GO TO 106
ELSE

COMPUTE DOLLARS = 10 * DOLLARS + ONE-DIGIT
GOTO 109.

105.
IF CENT-COUNTER IS NOT <CENTS-SIZE

GOTO 106
ELSE

MOVE ONE-DIGIT TO CENT (CENT-INX)
SET CENT-INX UP BY 1
ADD 1 TO CENT-COUNTER
GOTO 109.

106.
MOVE FALSE TO VALUE-OK.

107.
MOVETRUETO FINISHED.

109.
EXIT.

Changes in the rules governing the format of the
value may be implemented by altering the content of the
state transition table.

Consider the following:
(i) leading spaces are no longer allowed,
(ii) all values must contain a decimal point, however

there needs be no following cents digits if the field
contains only dollars and no preceding dollars digits
if the field contains only cents,

(iii) the field must not be entirely blank.
The state table, altered to reflect these new rules,

would appear as:

2 3 4 6 6 6
6 3 4 6 6 6
6 3 4 6 6 6
6 5 6 7 7 6
6 5 6 7 7 6

Altering the contents of STATE-TABLE to incor­
porate these new values would effect the desired amend­
ment to the algorithm without any alteration being
required to the procedural code.

148 The Australian Computer journal, Vol. 12, No. 4, November 1980

Program Control by State Transition Tables

Example 2
A record in a cataloguing system contains a Part

Number field of the format a/b/c. The requirements of each
portion are:

a: numeric, 1 to 3 digits, must not be omitted
b: numeric, 1 to 4 digits, must not be omitted
c: either: numeric, 1 to 4 digits

or: alphabetic, 1 to 4 letters
but: not alphanumeric, must not be omitted.

The field terminates at the first space or upon ex­

haustion of its 13 permissible characters.
The field is to be checked for validity of format and,

if valid, assembled in a field of format ABC where:

A: 3 digits, right justified, leading zero fill
B: 4 digits, right justified, leading zero fill
C: 4 characters, left justified, trailing space fill

Excerpts of COBOL coding to process this field are
shown below, including the state table in comment format
for documentation purposes.

WORKING-STORAGE SECTION.

01 INPUT-PART-NO.
03 INPUT-CHARACTER PIC X OCCURS 13

INDEXED BY INPUT-INX.
01 OUTPUT-PART-NO.

03 A PIC 9(3)
03 B PIC 9(4).
03 C.

05 C-CHARACTER PIC X OCCURS 4
INDEXED BY C-INX.

01 CONSTRAINTS.
03 INPUT-SIZE PIC 9(2) VALUE 13.
03 A-SIZE PIC 9 VALUE 3.
03 B-SIZE PIC 9 VALUE 4.
03 C-SIZE PIC 9 VALUE 4.
03 DELIMITER PIC X VALUE

01 SWITCHES.
03 FINISHED PIC 9.
03 PART-NO-OK PIC 9.

01 SWITCH-VALUES.
03 TRUE PIC 9 VALUE 1.
03 FALSE PIC 9 VALUE 0.

01 ONE-CHARACTER.
03 ONE-DIGIT PIC 9.

01 CHARACTER-COUNTERS.
03 A-COUNTER PIC 9.
03 B-COUNTER PIC 9.

* STATE TRANSITION TABLE FOR PART NUMBER
* —-- INPUT CHARACTER —
* CURRENT STATE DIGIT SPACE LETTER “/” END OF ELSE
* FIELD
* 1. BEFORE 1ST CHAR. 2 8 8 8 8 8
* 2. DIGITS BEFORE 1ST 2 8 8 3 8 8
* 3. JUST AFTER 1ST 4 8 8 8 8 8
* 4. DIGITS BEFORE 2ND 4 8 8 5 8 8
* 5. JUST AFTER 2nd 6 8 7 8 . 8 8
* 6. DIGITS AFTER 2ND 6 9 8 8 9 8
* 7. LETTERS AFTER 2ND 8 9 7 8 9 8
* 8. ERROR
* 9. FINISHED <NEW STATE >

01 STATE-TABLE.
03 FILLER PIC 9(6) VALUE 288888.
03 FILLER PIC 9 6 VALUE 288388.
03 FILLER PIC 9 6 VALUE 488888.
03 FILLER PIC 9(6) VALUE 488588.
03 FILLER PIC 9 6 VALUE 687888.
03 FILLER PIC 9 6 VALUE 698898.
03 FILLER PIC 9(6 VALUE 897898.

01 STATE-TABLE-AGAIN
REDEFINES STATE-TABLE.
03 STATE-ROW

05 STATE-COLUMN
07 NEW-STATE

01 CURRENT-STATE

OCCURS 7 INDEXED BY ROW-INX.
OCCURS 6 INDEXED BY COL-INX.
PIC 9
PIC 9.

The Australian Computer Journal, Vol. 12, No. 4, November 1980 149

Program Control by State Transition Tables

PROCEDURE DIVISION.

MOVE FALSETO FINISHED.
MOVE TRUE TO PART-NO-OK.
SET INPUT-INX.

C-INX TO 1.
MOVE ZERO TO A A-COUNTER

B B-COUNTER.
MOVE SPACES TO C.
MOVE 1 TO CURRENT-STATE.
PERFORM 100-FIX-PART-NUMBER

UNTIL FINISHED = TRUE.
IF PART-NO-OK___
ELSE___

100-FIX-PART-NUMBER SECTION.
101.

IF INPUT-INX >INPUT SIZE
MOVE 5 TO COL-INX

ELSE
MOVE INPUT-CHARACTER (INPUT-INX) TO ONE-CHARACTER
SET INPUT-INX UP BY 1
IF ONE-CHARACTER IS NUMERIC

MOVE 1 TO COL-INX
ELSE

IF ONE-CHARACTER = SPACE
MOVE 2 TO COL-INX

ELSE
IF ONE-CHARACTER IS ALPHABETIC

MOVE 3 TO COL-INX
IF ONE-CHARACTER = DELIMITER

MOVE 4 TO COL-INX
ELSE

MOVE 6 TO COL-INX.
MOVE CURRENT-STATE TO ROW-INX.
MOVE NEW-STATE (ROW-INX COL-INX) TO CURRENT-STATE.
GOTO 110 102-A 110 104-B 110

106-C 106-C 108-ERROR 109-DONE
DEPENDING ON CURRENT-STATE.

102-A.
IF A-COUNTER IS NOT<A-SIZE

GO TO 108-ERROR
ELSE

COMPUTE A = 10 * A + ONE-DIGIT
ADD 1 TO A-COUNTER
GOTO 110.

104-B.
IF B-COUNTER IS NOT<B-SIZE

GOTO 108-ERROR
ELSE

COMPUTE B = 10 * B + ONE-DIGIT
ADD 1 TO B-COUNTER
GOTO 110

106-C.
IF C-INX >C-SIZE

GOTO 108-ERROR
ELSE
MOVE ONE CHARACTER TO C-CHARACTER (C-INX)
SET C-INX UP BY 1
GOTO 110.

108- ERROR.
MOVE FALSE TO PART-NO-OK.

109- DONE.
MOVE TRUE TO FINISHED.

110.
EXIT

Once again, a number of significant changes to the
permissible format of the Part Number could be accom­
modated by an alteration of values in the table, e.g.,
(i) permit leading spaces prior to the 1st character,
(ii) permit any, or all, of a, b and c to be omitted, i.e.,

provide for a, a/b, a//c, /b, /b/c, //c.
The state table necessary to provide for these new

formats would be:

2 1 8 3 9 8
2 9 8 3 9 8
4 9 8 5 9 8
4 9 8 5 9 8
6 9 7 8 9 8
6 9 8 8 9 8
8 9 7 8 9 8

150 The Australian Computer Journal, Vol. 12, No. 4, November 1980

Program Control by State Transition Tables

As in Example 1, the above alteration of the contents
of STATE-TABLE would effect the necessary changes in
the algorithm without any alteration to the procedural
code.

Example 3.
The previous two examples have related to the

control of an individual program module. The following
example illustrates the use of a state switching driver to
control the processing path of an entire program.

The example chosen is a standard sequential father/
son master file update where each of the input files may
exist in one of three possible conditions:

No record currently in buffer State: Vacant
Record read and available to process : Waiting
End-of-file reached : Ended.

The processing algorithm may then be in any of
nine possible states depending on the respective status of
the master and transaction files:

Write Master Record to Output File,
Read Master Record
If end-of-file State = 8
Else State = 5

If Master Key > Transaction Key,

If

If addition,
Else
State = 4.
Master Key :
If addition,

If Change,

If Deletion,

Write Transaction to Output File
Report Transaction as an Error.

Transaction Key,
Report Transaction as an Error
State = 4.
Amend Master Record
State = 4.
State = 1.

Procedure D:
Write Master Record to Output File.
Read Master Record.
If end-of-file, State = 6
Else State = 9.

Program Input File States
State

Master T ransition
1 Vacant Vacant
2 Vacant Waiting
3 Vacant Ended
4 Waiting Vacant
5 Waiting Waiting
6 Waiting Ended
7 Ended Vacant
8 Ended Waiting
9 Ended , Ended.

It is presumed that transactions will be either Addit­
ions of new master records, Changes to existing master
records or Deletions of existing master records.

The skeletal algorithm to drive the program’s execut­
ion would be of the format:

Update:
Set Current State = 1;
Repeat until FINISHED = TRUE:

Depending on Current State, Perform:
1: Procedure A
2: Procedure B
3: Procedure B
4: Procedure A
5: Procedure C
6: Procedure D
7: Procedure A
8: Procedure E
9: Set FINISHED = TRUE.

Procedure A:
Read Transaction Record.
If end-of-file State = State +2
Else State = State+1.

Procedure B:
Read Master Record.
If end-of-file State = State +6
Else State = State +3.

Procedure C:
If Master Key < Transaction Key,

Procedure E:
If Addition, Write Transaction to Output File
Else Report Transaction as an Error.
State = 7.

This example is somewhat different from the first
two in that, whilst not using a state transition table as
such, it adheres to the principle of regarding a program as
a state-oriented algorithm and directs control through a
Current State variable.

RELATIONSHIP WITH OTHER CONTROL TECH­
NIQUES AND OTHER LANGUAGES

It is useful to compare control via a state transition
table with alternative methods which also aim to provide
program flexibility. It has been suggested that the use of
88-level condition names or decision tables may provide
more readily understandable control mechanisms in
COBOL.

The limitations of these methods are imposed by
the number of potential conditions which must be catered
for. From the above examples it can be seen that the
number of possible conditions arising from combinations
of sequences of data is the product of the number of
states and the number of events which may cause a change
of state.

Hence, if there was the possibility of five states
and six events which could change those states, there
would be potentially 30 conditions to which to assign
individual names and for which to test if condition names
were used and 2” possible rules to cope with in a decision
table.

Although the above illustrations have been given in
COBOL it should be apparent that, as stated above, the
technique would be able to be implemented in any langu­
age with the facility to operate on a two-dimensional
array and a multiple branching technique.

References
It is common practice with papers such as this to

give a list of references to similar material. Despite recourse
to libraries and colleagues I am unable to find any other
work which covers this topic.

The Australian Computer journal, Vol. 12, No. 4, November 1980 151

Program Control by State Transition Tables

CONCLUSION
One of the foremost criteria in the design of any

program is the provision of future flexibility. Flexibility
is generally easier to achieve via the alteration of data
constructs rather than alteration of procedural code.

The use of state transition tables provides coding
which is, in general, more concise than that produced by
alternative methods of control and more amenable to on­
going maintenance.

BIOGRAPHICAL NOTE
The author is currently Head of the Department of

Data Processing at Prahran College of Advanced Educ­
ation, Melbourne. Prior to taking up his present position
he was Deputy Programming Manager for Health Compu­
ting Services and prior to that Senior Lecturer in Infor­
mation Processing at Caulfield institute of Technology.

752 The Australian Computer Journal, Vol. 72, No. 4, November 7980

Computer Aided Design of Printed
Circuit Board Layouts
G.L. Cock*

A large percentage of equipment manufactured for industrial and home use containing elec­
tronic equipment includes printed circuit boards (PCBs) on which miniature electronic components
are mounted. Computer aided layout methods have been developed which avoid the laborious and
time-consuming manual steps that have been necessary to produce these boards and at the same
time allow the use of more accurate and more reliable production techniques. This paper describes
a computer program that will automatically route wiring paths for printed circuit boards. Conductor
path determination is a major step in the production of artwork for PCB manufacture.

Keywords and phrases: Computer aided design, CAD, Printed circuit board.
CR category: 3.24

1. INTRODUCTION
During the past decade the complexity of printed

circuit boards has been such that manual methods for
layout have been unable to cope. More and more manu­
facturers have been looking towards Computer Aided
Design (CAD) where the computer is used as a book­
keeping and drafting tool, or Design Automation (DA)
where the computer makes decisions such as where to
place components or how to route wire paths. Computer
Aided Editing (CAE) is normally used in association with
Design Automation and permits the designer to visually
modify a layout. Most attempts to produce wire (or con­
ductor) routing programs have been based on Lee’s Algor­
ithm (Lee, 1961) or some development of it (Dunne,
1966; Fisk, 1967; Akers, 1967; Whatmough, 1972; Rubin,
1974; Hoel, 1976). Due to the large number of integrated
circuit packages used these days the vertical/horizontal
method of wire routing has proven the most popular
(Zane and Harrell, 1968; Hightower, 1974; Rosa and
Lucio, 1979).

The Lee algorithm has some outstanding advantages
and disadvantages. If a path exists through the maze the
algorithm will find it. If more than one path exists it
will find a shortest path. However, because of the exhaust­
ive cellular search techniques the computer storage require­
ments can be great, and computer run times excessive.

In the vertical/horizontal method paths are laid
down on two planes on a regular grid (usually with 0.05 in.
spacing); one plane carries mainly horizontal lines and the
other mainly vertical. Only the co-ordinates of the ends of
the lines are stored, and this is a great improvement upon
Lee’s method of storing the contents of every basic cell
in the maze. The search through this structure, which links
together associated pieces of information, is quicker than
Lee’s exhaustive cellular search. The penalty paid for the
savings in storage and time is that some routes may not be
completed.

The program described in this paper incorporates
both methods of path routing, but from the practical

“Copyright © 1980, Australian Computer Society inc.
General permission to republish, but not for profit, all or part of
this material is granted; provided that ACJ’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

viewpoint the vertical/horizontal method is the more
acceptable. The program is called WREPCL — Wiring
RoutinE for Printed Circuit Layouts.

2. PRACTICAL REQUIREMENTS
Electronics covers a very wide field and some PCBs

are so specialised that they cannot be laid out by com­
puter aided methods, however the majority of PCBs does
not fall into this category. Computer methods must satisfy
the general functions shown by Figure 1.

A PCB may consist of a front and rear layer only
(termed a “double-sided” board), or it may consist of a
sandwich of layers (termed a “multi-layer” board). The
majority of PCBs are “double-sided”.

The component placement stage requires that the
components be placed on the board in accordance with
accepted standards and practices. In addition, components
are normally placed so that wiring lengths are minimized.

Conductors can have various widths. Wide con­
ductors are used to supply power to some components
and generally occupy predetermined paths on the board.
The thinner conductors (signal conductors) are generally
“free routing”, that is, they may be placed in any avail­
able space on the board.

The component placement and conductor routing
stages are most demanding and time-consuming for human
beings. If a computer can be used to fully or partially

Conductor
Routing

Drilling Topes

Diagrams

Component

Schematic
Diagrams

Assembly
Drawings

Parts
Lists

Figure 1. Layout functions.
*The author is with the Advanced Engineering Laboratory, Defence Research Centre, Salisbury, South Australia. Manuscript received 27 March
1980, and revised 23 June 1980.

The Australian Computer Journal, Voi. 12, No. 4, November 1980 153

Computer Aided Design of PCB Layouts

WREPCL.

Board Component Circuit Path Manufacture
Details Placement Description Routing Files

Figure 2. WREPCL phases.

automate these stages then considerable time will be
saved. The layout designer carries out the interesting layout
design steps and leaves the mundane repetitious steps to
be performed by the computer.

3. PROGRAM REQUIREMENTS
To aid practical acceptance a computer program to

aid PCB layout design must allow for manual interaction.
Design Automation, which generally completes 95 to
100 per cent of the required conductor routing, requires
manual interaction for the post-routing stage so that
remaining unconnected paths can be completed. Computer
Aided Design allows for manual interaction during the
whole layout and routing process.

A basic program must carry out path routing and
provide output for a photo-plotter (which produces the
artwork) and drilling data for the PCB manufacturing
process. A program may incorporate facilities to carry
out other functions shown in Figure 1. WREPCL is a
Design Automation program incorporating manual inter­
active component placement, manual and automatic
path routing, Computer Aided Editing, off-line photo­
plotting and drilling data output.

4. PROGRAM STRUCTURE
Figure 2 depicts the WREPCL program phases. The

routines have been written in Fortran IV. The first three
steps involve the input of board details, component place­
ment and circuit description, and convert information to
a form (known as the DATA file) suitable for reading by
the path routing phase. The majority of the routines in
the program is associated with the path routing phase.

When using the vertical/horizontal method, in the
path routing phase, a path does often exist, but it is too
devious for the search methods to find it. Failures can in
this case be corrected easily and quickly during the Editing
phase. The line segment data structure can be modified by
adding or deleting line segments. The Editing phase also
permits the addition of other information such as “text”.

The contents of the data structure (known as the
LAYOUT file) are processed by routines to create files in
a format suitable for reading by artwork production equip­
ment and numerically controlled drilling machinery.

5. PATH ROUTING ALGORITHMS
Prior to entering the actual path routing procedures

the program establishes an order of wiring priority (e.g.,
power wiring must precede signal wiring). Those con­
ductor paths that have been determined manually are
assigned directly to the line segment data structure.

154

Vertical / Horizontal Modified LeeSelect
Algorithm

Paths Found,

lulti-layer
BoardOption

/ All x
4-ayers Filled,

x All x

Paths Found,

Multi-layer
Board (>2L

List Paths
Not Found

Determine
Paths

Optimize
Paths

Sequence

Point Pairs

Create
“layout” File

Determine
Paths

Establish
Wiring Priority

Figure 3. Flowchart of the algorithms.

The first step in the vertical/horizontal algorithm is
to break each of the nodes (electrically common con­
ductors) into a number of sections, each section forming a
connection between a pair of points. A minimum tree
algorithm is used to ensure that the connections have
the minimum length of wiring, regardless of the order in
which they were specified. The order in which the routes
are completed is of vital importance if there is to be any
chance of completing the board wiring. A high priority is
allocated to those connections which have little choice of

The Australian Computer Journal, Voi. 12, No, 4, November 1980

Computer Aided Design of PCB Layouts

DATA
File

LAYOUT
File

Interactive
Graphic Display

Digitizer

Photo-plotter

Hard-copy
Unit

Hard-copy
Plotter

Line
Printer

Numerically
Controlled Drill

VDU
Terminal

Peripheral
Computer

System

Mainframe

Computer

WREPCL u

Figure 4. WREPCL operation facilities.

path, that is, the shortest connections are made first.
During the determination of paths in the vertical/

horizontal algorithm eight attempts are made to connect
two points, four in each direction. With each attempt the
initial starting direction is altered. A retries option permits
deeper search attempts to be made in order to complete
connections that were not made on the first pass.

An optimization routine optimizes paths in order to
reduce the number of interconnections between the two
sides (layers) of the board and hence simplify the manu­
facturing requirements. The resultant board may contain
vertical and horizontal conductors on both sides of the
board provided of course that no paths cross.

When using the modified Lee algorithm interconnect­
ions are first attempted in an order that depends on the
order in which the wiring data is submitted. For any one
node multiple target points are available for interconnect­
ions. If previously fitted branches block the way, some
earlier branches are removed and an attempt is made to
fit the branches in another order before deferring one or
more to subsequent layers (if the board is a multi-layer
board). The modified Lee algorithm assigns the path
between two points to one layer only.

The path routing procedure terminates after all
paths have been completed or when the remaining inter­
connections are too difficult for the search methods to
find in a reasonable time (CPU time). It is more economical
to place the few uncompleted paths manually during an
editing stage.

Although the vertical/horizontal method and Lee’s
algorithm may, in general, be applied individually to
multi-layer boards, WREPCL has been designed to use the
vertical/horizontal method for the first two layers and the
Lee algorithm for any subsequent layers. This is due to
the fact that a minimum amount of software change was
required to combine the use of the routing algorithms in
this way.

6. OPERATION
The WREPCL program interacts with an operator

who responds to a series of questions from the computer
by inserting design details. Prior to running the program

The Australian Computer journal, Vol. 12, No. 4, November 1980

• • .. «•

Figure 5. Artwork for board layers.

the layout designer should establish the positions of the
components on graph paper and show the desired pos­
itions of the power wiring. This helps to streamline the
layout operation when using the interactive graphic display
terminal or digitizing tablet.

A components library is provided since components
with the same number and position of pins occur extens­
ively. Component types are easily placed by merely indic­
ating position on the board and library reference.

Following manual placement of the power wiring
(and other desired pre-placed wiring) a list of the desired
signal interconnections (nodes) between components is
entered into the computer and data verification carried
out. The interconnections are then submitted to the auto­
matic path routing procedure. Following routing the
operator is informed of the interconnections that could
not be placed (normally less than five per cent). A hard­
copy plot is obtained at this stage so that the layout de­
signer can study the result for correctness and for avail­
able space in which to route paths not placed by the
routing algorithm. The path routing phase reads the DATA
file and creates a LAYOUT file.

The board layers are then displayed on an inter-

755

Computer Aided Design of PCB Layouts

Figure 6. Artwork for overlay.

active graphic display terminal. Unplaced interconnections
are inserted together with other necessary information
required for board identification and manufacture. A
component assembly diagram (Overlay) is produced by
WREPCL and it may also be displayed and modified. The
Editing phase updates or modifies the LAYOUT file. A
hard-copy plot is obtained from the LAYOUT file in
order for the layout designer to check for completeness
and correctness of paths entered during the Editing phase.

On completion of the layout the operator creates
the “manufacture” files used by the post-processing peri­
pheral computer system.

7. CAPABILITIES
The WREPCL program provides the following major

characteristics:
1. Layouts for PCBs up to a size of 380 mm square.
2. Choice of layout grid spacing, namely, 2.54 mm

(0.1 in), 1.27 mm (0.05in) or 0.64 mm (0.025in).
3. Three sizes of conductor widths.
4. Five pad (land) sizes for component mounting.
5. Incorporates a components library.
6. Optional interactive insertion of components, con­

ductors and text.
7. Provision for future inclusion of automatic com­

ponent placement and schematic diagram generation.
Figures 5 and 6 show the artwork produced for a

board designed with the aid of WREPCL. Figure 7 shows a
completed board. CPU time for automatic path routing
was 15 seconds using an IBM 370/3033 computer. In
general, artwork generation time is halved when using
the computer aided design system.

Although WREPCL can lay out paths for multi­
layer boards, a multi-layer board has not yet been manu­
factured.

8. CONCLUSIONS
The Design Automation process combined with

Computer Aided Editing can be a practical aid to designing
PCBs if the results can be obtained readily and econo­
mically — that means:
1. Easy access to a computer facility (and interactive

graphics).

■It -J'

Figure 7. Completed board.

2. Fast turn-around times, and
3. Low processing costs.

ACKNOWLEDGEMENT
The author would like to thank the many personnel

at the Defence Research Centre, Salisbury, who gave
advice or help towards the development of the WREPCL
program.

REFERENCES
AKERS, S.B. (1967), “A modification of Lee’s Connection Algor­

ithm”, IEEE Trans. Electron. Comput., Vol. EC-16, pp.
97-98.

DUNNE, G.V. (1966), “The Design of Printed Circuit Layouts
by Computer”, Proceedings of the Third Australian Com­
puter Conference, pp. 419-423.

FISK, C.J. (1967), “ACCEL — Automated Circuit Card Etching
Layout”, Proc. IEEE, November 1967, pp. 1971-1982.

HIGHTOWER, D.W. (1974), “The Interconnection Problem: A
tutorial”, Computer, April 1974.

HOEL, J.H. (1976), “Some Variations of Lee’s Algorithm”, IEEE
Trans, on Computers, Vol. C-25, pp. 19-24.

LEE, C.Y. {1961), “An Algorithm for Path Connections and its
Applications”, Trans. IEEE, Vol. EC-10, No. 3, pp. 346-365.

ROSA, R.C. and LUCIO, T.P. (l 979), “Programs for two-sided
printed circuit board design”, Computer Aided Design,
Vol. 11, No. 5, September 1979.

RUBIN, F. (1974), “The Lee Path Connection Algorithm”, IEEE
Trans, on Computers, Vol. C-23, pp. 907-914.

WHATMOUGH, R. (1972), “A method for automatic layout of
the conductor paths of printed circuit boards”, Dept, of
Supply, Weapons Research Establishment, WRE-Technical
Note 112 (AP), August 1972.

ZANE, R. and HARRELL, D.A.W. (1968), “PUZZLE - Com­
puter Aided Design of Printed Circuit Artwork”, University
of California, UCRL-18172, April 1968, SWM 6533U.

BIOGRAPHICAL NOTE
The author is a Senior Technical Officer in Digital

Systems Engineering Group, Advanced Engineering Lab­
oratory, Defence Research Centre, Salisbury. After attain­
ing a drafting background and experience in electronic
equipment design and development the author has, since
1970, been involved with system design and software
development for engineering applications of large and
small computers. The author has undertaken studies in
electronics and computer programming at the South
Australian institute of Technology.

156 The Australian Computer Journal, Vol. 12, No. 4, November 1980

Letters to the Editor
The Australian Computer Journal welcomes Letters

to the Editor for publication, either to comment on the
contents of recent issues, or to discuss topics In computing
likely to be of interest to the Journal’s readers. Letters
are not refereed. However, the Editor reserves the right to
make changes of a stylistic nature to any letters published,
or to return letters for modification should they contain
anything regarded as unsuitable for publication.

MAY EDITORIAL CRITICISED
I should like to make a few comments on your

editorial in the May 1980 issue of the Journal. Whilst I
found the first part of the editorial very enlightening, as a
“desk-chained program-progressor” I found the latter part
rather obnoxious and insulting to the computer pract­
itioner. It is a shame that the views you express are all
too typical of those prevailing in the Australian computer
science academic community. Your contention that all
worthwhile research originates from universities is, I feel,
extremely tenuous. As far as I am aware, most of the more
important developments in computer science have had
their birth in private research laboratories around the
world, rather than in computer science departments of
universities. I would seriously question just how much
university-originated research is really incorporated into
“tomorrow’s computing systems”. Even in Australia I
am personally aware of one large company which has
carried out quite extensive research as well as the develop­
ment of products which were not yet known on the world
market. Naturally, due to the highly competitive nature
of the industry, such work is very seldom publicised.
Perhaps this can excuse the arrogance of academics in
believing that they are the source of all enlightenment in
the computing community.

In order to overcome such misconceptions I believe
there should be a much closer co-operation between indus­
try and universities in Australia and would suggest that
this would be a field in which the ACS should become
active.

Greg Ward, MA CS,
A EG-Teiefunken,

Darmstadt, West Germany
Editor’s Remarks:

Although the Editorial under criticism was written
by my predecessor, and indeed I do not share all its senti­
ments, I must rise to its defence. The Editorial did not
claim that academics are the only ones who do research.
Rather, the Editorial stated that the value of research has
not been given adequate appreciation by most practitioners,
a situation which is unfortunately all too true.

COMMENT ON TAB ARTICLE
I refer to the essay, “Computer Applications in the

Totalizator Industry in Australia” (Vol. 12, No. 3, August,
1980) from Dr D.L. Overheu. These notes of Dr Overheu
contain a number of errors of fact and omission relating to
the computing activities of the Totalizator Agency Board of
NSW.

This Board ordered a dual 360/44 with 10, 2314
disks from IBM Australia in 1969 and the system com­
menced on-line operations, as scheduled, in August, 1971.

The Australian Computer Journal, Vol. 12, No. 4, November 1980

Two 2311 disks were installed, on lease, for a brief period
in 1970, pending delivery of the 2314 type. The first non­
metropolitan or country branches, in the Hunter Region,
to achieve on-line selling cutover in 1977, not 1973 as
stated in the Journal.

Maintenance of terminals, mini-computers, multi­
plexers and associated equipment was commenced by our
own staff in 1976, however, mainframe maintenance is
still carried out by the supplier. Thus, it is not accurate
to state that there was “total supplier dependence at
NSW/TAB” in 1977. This Board took delivery of 370/
135s in 1975/76 not 370/138s as stated. The IBM Series 1
mini-computers are being used for a Master Collator and
Display system but they were never envisaged for use in
dividend calculation.

It is understood that IBM determined to vacate the
totalizator terminal field after this Board decided upon
the A.W.A. MRT-2 mark sense reader as IBM was a tenderer
for the contract. It may not be generally known that the
MRT-2 was developed by A.W.A. to the specification of
this Board. We have never made “studies ... of the Alpha
language”; however, it is referenced within a quotation in
a paper prepared by our staff in 1978.

A.J. Windross, MACS,
Automation and Research Manager

NSW TAB

AUTHORS REPLY:
Mr Windross’s concern for accuracy is appreciated.

However, it should be pointed out that gaining factual
information about TAB computer developments is
extremely difficult1. My article makes extensive use of
several informed sources. Apart from typographical errors
we must therefore assume that these sources have some­
times been in error.

I would emphasise that the article was about general
trends that seem to be occurring in the industry and the
difficulty of satisfying some of its needs. These trends
have been towards some form of distributive processing,
often with mini-computers, self-operated cash sale
terminals for off-course, but not generally for on-course,
and towards the use of higher level programming languages
rather than assembly language for system development.

On the particular question of the MRT-2 terminal I
have no doubt that had IBM wished to do so they could
have gone into a redevelopment of their mark-sense term­
inal and a competitive marketing situation. My inform­
ation by personal communication is that AWA spent some
time talking with all TABs before deciding on the MRT-2
development. This company has considerable experience
of its own in totalizator systems and their requirements.

1. However the following further reference has surfaced.
VICKRESS, Frank, ‘An approach to design and specification
of a real time on-line Data collection and processing system’.
Proceedings of Fourth Australian Computer Conference,
Adelaide, SA, August 11-15, 1969, VI, p. 43.

D.L. Overheu,
Canberra CAE,

Board Member, ACT/TAB

157

Book Reviews
Infotech State of the Art Report, Micro-Computer Software.

Infotech International Ltd., 1979. £.130.
Vol. 1, Analysis and Bibliography. 223 pp; Vol. 2, Invited
papers. 282 pp.

Infotech is a UK-based organisation which regularly pub­
lishes reports on topics in computing which are judged to be of
current interest. These two volumes are about microcomputer
software and follow the standard Infotech format in which a
number of experts are invited to submit papers, 15 of which make
up Volume 2. An editor, in this case R. Dowsing of the University
of East Anglia, then takes extracts from these and other appropri­
ate papers and rearranges them together with a commentary to form
a comparative analysis of the subject which then forms Volume 1.

This publication is a qualified success. The invited papers in
Volume 2 seem at first to be somewhat unco-ordinated. Some
(e.g., ‘A Simple Microprocessor Task Monitor’, by D.M. England)
describe simple techniques which have been in use for decades on
larger systems, whereas others (e.g., ‘A Guide to Communicating
Sequential Processes’, by S.S. Kuo, M.H. Linch and S. Saadat)
describe theoretical work which has not yet been fully imple­
mented on any sized system. One paper, ‘Microprogram Assemblers
for Bit-Slice Microprocessors’, by V.M. Powers and J.H. Hernandez
is a comprehensive survey of available products in a particular
area, whereas another paper, 'Forth Programming Language for
Real-Time Mini and Microcomputer Applications’, by E. Rather
is a detailed description of a particular proprietary product. ‘Micro­
computing — The Software Dimension’ by P. Hazan is a spec­
ulative paper about how microcomputers may develop, whereas
‘Totally Portable DP Software’ by C. Hawkins describes practical
experience gained with a portable COBOL-based system. However,
on reflection, it seems that these papers may accurately reflect the
current state of confusion over microprocessor software. On the
one hand, it can be argued that microcomputer software ought
not to be considered a subject in its own right, as the same prin­
ciples should apply as on larger systems; on the other hand, those
struggling to implement applications on limited hardware with
inadequate aids know that, for the moment anyway, microcom­
puter software is different.

Unfortunately, the diversity of the invited papers makes the
comparative analysis in Volume 1 rather unsatisfactory; there is
just not enough common ground between the papers to make a
point-by-point comparison of items useful, in spite of the fact that
liberal use has also been made of excerpts from other volumes in
the Infotech series. Volume 1 does, however, contain a useful
bibliography of some 111 papers.

To conclude, if you are looking for comprehensive coverage
of the subject, full of ‘how to do it’ hints, then these volumes
would be a disappointment. If however you can use an up-to-date
collection of well written and thoroughly readable papers which
explore a number of interesting areas in microcomputer software,
then this somewhat expensive publication can be recommended.

David Rowe,
Monash University

Microprocessor Applications: International Survey of Practice
and Experience. Infotech International Ltd., 1979. 359 pp.
£49.50.

The major part of this publication is precisely what its title
suggests: a collection of 20 papers describing a broad spread of
microprocessor applications. This volume is not in the standard
‘Infotech State of the Art Report’ format in that it consists of
only one volume and does not have the usual comparative analysis.
This is possibly because there is not enough common ground bet­
ween the applications described in the papers to make a com­
parative analysis useful. Instead the volume opens with a 42-page
editorial introduction titled ‘Basics’ which is largely devoted to the
hardware technology of microprocessors. This is curious as it does
little to illuminate the papers where the emphasis is on applic­
ations, with the microprocessors themselves barely rating a mention.

The 20 invited papers have been carefully chosen to illus­
trate a range of applications in which the microprocessors are
used as replacements for dedicated logic, rather than as small-
scale general-purpose computers. There are three groups of papers:
the first describe applications-.in which the microprocessors are
used for monitoring and data collection, e.g., in a nuclear reactor,

158

for meteorological conditions and for human lung measurements.
The second group of papers describe applications where the micro­
processors are used to control some device, e.g., an autoclave used
in pharmaceutical manufacture, a turbo-jet engine and a hospital
drip-feed unit. The final group of papers describe rather more
complex uses of microprocessors in a number of areas, e.g., med­
ical, telecommunications and broadcasting fields. The emphasis
in most of the papers is on the nature of the problems which led to
the adoption of microprocessors in each case and the advantages
gained in doing so; in most papers there is less emphasis on the
details of the implementation. All of the papers are well written
and are quite readable.

A refreshing feature of the papers is their truly international
flavour; there are papers from Brazil, Eire, France, Holland, Italy,
Japan, UK and USA. It seems that microprocessor applications is
one of the few areas in computing which avoids the usual American
domination.

The volume also contains a bibliography of 87 references
and an eight-page glossary of technical terms.

To conclude, this is not a reference book on how to use
microprocessors, but it is a useful introduction to the range of
applications in which microprocessors may be used to advantage.
It is regrettable that the price is so high as similar information is
available in a range of other publications.

David Rowe,
Monash University

E.E. Swartzlander (1979), Computer Arithmetic, Dowden, Hutch­
inson and Ross (distributed by Academic Press). 378 pp.
$45.00.

This book is Volume 21 in the Benchmark Series in Elec­
trical Engineering and Computer Science. It contains 43 papers on
digital arithmetic as implemented in digital computers. These have
been carefully selected by the Editor from papers published over a
30-year period, and are considered as “benchmark” papers in the
field of Computer Arithmetic. The papers are reproduced in full,
and are presented in seven parts with the following headings:
1: Overview, II: Addition and Subtraction, III: Multiplication,
IV: Division, V: Logarithms, VI: Elementary Functions and VII:
Floating-Point Arithmetic. The papers in each part are preceded
by the Editor’s comments. These provide an introduction to the
historical development of the subject matter, a summary of each
paper’s contribution to this development and a list of other im­
portant and related papers not reproduced in this book. The book’s
bibliography contains over 250 references.

The Benchmark Series serve three major purposes: firstly to
provide a practical point of entry into an area of research, secondly
to provide a convenient means of study of areas related to the
reader’s principal interests, and thirdly to provide a compact col­
lection of the major works on which the reader’s present research
activities and interests are based. This volume on Computer Arith­
metic clearly serves these purposes. In these times of very rapid
technological advances in which more and more applications are
based on digital techniques (including digital arithmetic), this
book will undoubtedly be of immense value. Teachers in tertiary
educational establishments will find this book to be not only an
excellent reference but also a book on which an advanced course
in Electrical Engineering or Computer Science can be based. De­
signers of digital systems will find this book most useful. It is an
excellent book which should enhance the value of all public and
private collections.

D.G. Wong,
University of Sydney

G.V. Rao (1978), Microprocessors and Microcomputer Systems,
Van Nostrand Reinhold. $24.50.

It feels somewhat strange to review a book in 1980 first
published in 1978 and prepared and written in 1977 or earlier.
Therein lies the problem with any book in this constantly chang­
ing area of advanced technology. As such, it does not, or could
not, cover the new world of 16 bit “chips” such as the Intel 8086,
Zilog 8000 or Motorola 68000. In another way, however, this
superbly produced book is of value even if you may expect to
see it in a “remainder sale”.

The book consists of some 14 chapters and as is unusual

The Australian Computer Journal, Voi. 12, No. 4, November 1980

Book Reviews

for this type of book it covers very well the fundamental physics
of large scale integration and chip fabrication. At all points in the
book liberal use is made of detailed diagrams and tables, with
some form of illustration on almost every page.

Chapters 1 to 3 cover the basic electronics of solid state
devices although at times the coverage may be sketchy. There are
some problems at times where two different concepts or prin­
ciples are introduced together in these early chapters. For example,
in the section (3.7) related to electron-beam addressable memory
the concepts of electron-beam mask fabrication, lithographic
techniques and ion-implantation are also introduced in a section
that is only nine lines long. In this sense the background of the
book comes to the fore, i.e., it was created from a set of lecture
notes. Chapters 4 to 6 cover memory and peripheral topics, but
once again the date of the book is notable as the Intel MCS-85
chip set is covered in a whole section. Chapter 7 is a list of micro­
processors available at the time and each gets a small summary
paragraph. In most cases this works well but the coverage of "bit-
slice” technology, via the AMD-2900 series, suffers by being covered
in less than two pages. For software-oriented readers, Chapter 8
provides a sketchy and somewhat disoriented introduction to the
software available on microprocessors. However, the description
of PASCAL as a language capable of describing data and pro­
cedures in "pidgin English” is rather unusual as are many other
descriptions of hardware and software elements in the book. Chap­
ter 9 is occupied by a rather pointless reference chart on available
microprocessors at the time. Chapter 10 does contain a valuable
set of diagrams on basic digital logic. The remaining chapters cover
display units, reliability and application.

The short “fly leaf” description of the book claims that
the book has been designed to facilitate communication between
a number of groups including hardware and software people, mark­
eting and training groups, “students, faculty and laymen as this
science enters every facet of the home and industry”. About the
only thing I can agree with here is the last phrase in relation to the
so-called “microcomputer revolution”. The book is too fragmented
and sketchy for any really serious use and unfortunately it has
dated badly because of its extensive use of comparative tables.
The most rewarding section of the book is really its first few chap­
ters on the basic physics and electronics of advanced LSI tech­
nology. Providing one can ignore such excesses in style as a des­
cription of nuclear fusion as a provider of "superenergy” a perusal
of the arguments in these chapters is worthwhile.

W.J. Caelli,
Electronic Research Associates, Queanbeyan, NSW

iCL Technical Journal, Volume 1, Issue 2, May 1979

Well, they’ve done it again! In my review of the first issue
of this new journal, I expressed my pleasure at seeing a technical
journal that was addressed not only to academic people like the
reviewer, but also to the profession at large. My pleasure is rein­
forced by this second issue.

It contains six papers of tremendous variety. The first,
Computers in support of agriculture in developing countries by
G.P. Tottle, gives an interesting insight into the problems experi­
enced by developing countries. His conclusion that computers can
be used in these areas seems well justified, even though it is quite
contrary to conventional wisdom. The paper which interested me
most was the second, Software and algorithms for the Distributed-
Array Process by R.W. Gostick. The DAP was briefly described in
the first issue, and this paper fills out many of the details. As well
as describing the DAP, the author presents the solution as four
classical problems: matrix multiplication, searching an array, traver­
sing a graph and sorting. Although the description of the algorithms
is a little weak, perhaps due to space considerations, the programs
themselves are quite clear and illustrate the DAP very nicely. As an
educator, I was delighted to see that the algorithms needed for
these problems underline the importance of teaching general prin­
ciples in algorithm design, as well as the currently best techniques.
System performance is always an important consideration and the
next two papers, Hardware monitoring on the 2900 range by
A.J. Boswell and M.W. Brogan, and Network models of system
performance by C.M. Berners-Lee, address the topic. The first
gives a clear description of the TESDATA 1187 monitor, and
examples of its use. The second describes a class of models called
FAST (which means Football Analagy of System Throughput).
This paper is the only one in the journal which will place excessive
demands on the general reader. The fifth paper, Advanced tech­
nology in printing: the laser printer by A.J. Keen, describes, as its
title suggests, ICL’s LPS-14 laser printing system. As one con­

The Australian Computer Journal, Voi. 12, No. 4, November 1980

demned to a 300 I pm printer, I found the description of a 10,000
Ipm printer quite fascinating. The final paper, The next frontier:
three essays on job control is by David Barron, the only author
not on ICL’s staff. We are accustomed to entertaining papers by
this author — and we are not disappointed here. Perhaps the best
way to illustrate both the style and the content is to give two
quotations.

“ 'Man is born free but is everywhere in chains’, said Rous­
seau. A recent candidate in a computer-science degree exam­
ination put it more succinctly: ‘The function of the soft­
ware is to prevent people using the hardware’.”

“They (operating system designers) should not build into
the operating system a preconceived idea of how it is going
to be used, least of all if (as is most common) they have
never been users themselves.”

All round, another very impressive issue.
J.S. Rohl,

University of Western Australia

Bauer, F.L. and Broy, M. (eds) (1979), Program Construction.
Lecture Notes in Computer Science 69, Springer-Verlag.
651 pp. $US29.70.

The volume presents material from an International Summer
School under four headings which categories the main topics and
indicate their formal nature.
I The Thinking Programmer: Interplay between Invention

and Formal Techniques.
II Program Verification: Proofs, Programs and their Develop­

ment — The Axiomatic Approach.
III Program Development by Transformation: From Specific­

ation to Implementation — The Formal Approach.
IV Special Language Considerations and Formal Tools: Langu­

ages as Tools — Interactive Program Construction.
On first reading, sections II and III were found to be the

most informative and contained surveys of the two main approaches
to program construction. Some of the papers can be read with
few prerequisites but to get the most benefit from the volume an
appreciation of the notation of mathematical logic, including
lambda calculus, McCarthy (1963), and of structured program­
ming, Dijkstra (1976), is recommended. Good references are pro­
vided with most papers.

Section II develops the rules for verifying the correctness
of a program which are commonly associated with the term
“structured programming”. It follows with an account of the pro­
gramming language Euclid which was evolved from Pascal and
which incorporates these proof-rules. The section ends with the
applications of the method to the development of examples in
concurrent programming.

Section III, of 257 pages, introduces a second method of
developing correct programs based on transformation rules for
converting a piece of program to another form whilst preserving
its semantic meaning.

This can be used to express language constructs in terms of
more elementary ones for which correctness is readily established.
The method is of importance in the formal study of semantics
and the implementation of programming languages. The articles
provide a survey of transformation methods with simple examples
in a coherent form which offers a good starting point for study.

Sections I and IV contain some general articles but mainly
provide additional material to expand II and III respectively.

By presenting the two techniques outlined above, the work
gives a valuable perspective of current (1978) activity and will
repay serious study by students of advanced programming. In
particular it should encourage the use of verification in structured
programs and secondly makes material on transformation methods
more accessible.

REFERENCES
DIJKSTRA, E.W. (1976), "A Discipline of Programming", Prentice

Hall, Englewood Cliffs, N.J.
MCCARTHY, J. (1963), "A Basis for a Mathematical Theory of

Computation”, in P. Braffort, D. Hirschberg (eds), Computer
Programming and Formal Systems, North-Holland Publish­
ing Co., Amsterdam.

D.P. Hodgson,
Western Australian Institute of Technology

159

Book Reviews

Deutsh, D.R. (1979), Modelling and Measurement Techniques for
Evaluation of Design Alternatives in the Implementation of
Database Management Software, National Bureau of Stand­
ards, Washington, D.C. 231 pp. $7.70.

This text is a published Ph.D. thesis and, in consequence,
cannot be classified as light reading for the data processing pro­
fessional interested in evaluating database software. Its market is
to be found mainly in universities and CAEs with computing de­
partments engaged in database research. The author describes a
methodology which may be followed in database management
systems (DBMS) design in order to arrive at a product which is
both performance and cost efficient. A simulation modelling sys­
tem, called the set processor performance model (SPPM), is des­
cribed using SPPM, it is possible to design a DBMS and evaluate its
potential performance characteristics without actually construct­
ing it.

SPPM consists of over 200 Fortran modules that run on a
PDP-10 under the TOPSIO operating system. The author claims
that SPPM could be implemented on any similar system with a
Fortran compiler. Several pages of the text are devoted to defining
what many of the modules do, which I found rather tedious. How­
ever, for a research student involved in DBMS simulation these
would be important. I was rather disappointed at the author’s
failure to apply his method in making a comparison of existing
commercial DBMS systems. With this criticism in mind, I consider
chapter 8 to be the most interesting part of the book, with its
discussion of model evaluation. Also discussed in the chapter are
methods for validating the performance of a simulation program.

Overall the text would make a solid starting point for a
research student wishing to undertake a DBMS project. Over 170
references are cited in the bibliography. Also, the thesis does pro­
vide strong evidence that simulation is a powerful tool that the
data processing profession can employ to evaluate potential sys­
tems, whether or not they are databases.

D.J. Hubbard,
Bendigo College of Advanced Education

Boyer, R.S. and Moore, J.S. (1979), A Computational Logic, ACM
Monograph Series. Academic Press, New York, 397 pp.
$41.30.

This latest volume in the excellent ACM Monograph Series
summarises many years work by the authors into the discovery of
techniques for performing proofs by induction. In particular, they
describe heuristic techniques for proving properties of recursively
defined functions over inductively defined objects. Since examples
of inductively defined objects include integers, sequences, lists,
trees, expressions and formulas, the techniques described are im­
mediately applicable to proving properties of programs which
operate on such objects. More generally, the techniques are applic­
able to any proofs by mathematical induction.

Although the authors carefully define the logical system
they use, the main contribution of their book is the description of
the heuristics they use in proofs, and their techniques for using
previously proved theorems as lemmas. All their techniques are
illustrated through a well-chosen set of examples and have been
implemented in a large Lisp program capable of proving all the
theorems described in the book.

Examples of such theorems include:

(IMPLIES (PLISTP X)
(EQUAL (REVERSE (REVERSE X)) X))

and
(EQUAL (FLATTEN (SWAPTREE A))

(REVERSE(FLATTEN A)))

where PLISTP, REVERSE, FLATTEN and SWAPTREE are all
recursively defined functions over lists or trees. The climax of the
book is the description of the proofs of four complex examples:
the correctness of a theorem prover for propositional logic, the
correctness of a simple optimizing compiler for arithmetic express­
ions, the correctness of a fast string matching algorithm (written in
an imperative programming language), and the unique factoriz­
ation theorem (any positive integer can be represented as the
product of a finite sequence of primes, and any two finite seq­
uences of primes with the same product are permutations of one
another).

The main heuristics used by the authors to prove a given
formula are the following:
— Simplify the formula by applying axioms, “rewrite” lemmas

and function definitions.
— Replace “destructive” functions (e.g., CAR) by “construct­

ive” functions (e.g., CONS).
— Use equalities and then throw them away.
— Generalize the formula by introducing variables for terms

that have “played their role”.
— Eliminate irrelevant terms from the formula.
— Use induction to split the formula into two or more simpler

formulas to be proved.
Each of these heuristics is applied in turn. If any heuristic

succeeds in changing its input (without proving it), the whole pro­
cess is repeated on each of the output formulas. The process term­
inates when there are no formulas still to be proved (success) or
when a formula is recognizably not a theorem or fails to be changed
by this process (failure).

Each of these heuristics is carefully described in one or
more chapters. In each case the explanation is exemplary: first
some simple examples to motivate and informally describe the
heuristic, then a precise description of the heuristic, and finally a
more complex application of it. The first theorem presented above
is used as a running example in these descriptions.

Generally, the presentation and style of the book is excel­
lent. The authors write clearly and simply, motivating all their
descriptions with well-chosen examples. That parts of the book are
still difficult to understand is a consequence of the complexity
of the subject matter. One interesting aspect of the book is that
some sections consist entirely of the output of the authors’
theorem-proving program which describes its proof attempt in
perfectly clear, understandable English (refuting a common crit­
icism that proofs of program properties are always unreadable).

An appendix contains a complete list of function definitions
accepted by the system and theorems proved by it. An excellent
bibliography and index complete the book. In reading the book
fairly carefully, I detected one misprint. A minor quibble is the
authors’ perpetuation of the Lisp tradition of using CAR and CDR
as selectors whatever the abstract data type being considered.

Despite the value of the heuristics presented, and the success
of the authors’ theorem-proving program, it is clear that much
research remains to be done in this field. The following weak­
nesses in the system presented stand out:
— The necessity for some “bridging” lemmas in the more

complex proofs. These lemmas do not actually state useful
facts in their own right, but direct the theorem prover’s
course of action. Such lemmas require too much understand­
ing of the theorem prover by the person using the system.

— The necessity in one proof to define some functions un­
naturally (e.g., using [ID X] where ID is the identity funct­
ion) so that the induction heuristic will choose the “right”
induction scheme.

— The inability to generalize constants when required.
— The necessity to state how theorems should subsequently

be used as lemmas.
These are all difficult problems to overcome and I look

forward to seeing the authors’ subsequent attempts to solve them.
In summary, “A Computational Logic” is an excellent des­

cription of the techniques the authors have developed for per­
forming inductive proofs in a variety of domains automatically.
Readers with no previous experience in automatic theorem proving
would find this book a good starting point. Anyone remotely inter­
ested in mechanical program verification or the mechanization of
mathematical proofs in general should read it, and people seriously
interested in these topics will want to have their own copy. Every
computer science and mathematics library should certainly have
one. I recommend it.

R.W. Topor,
Monash University

Maynard, J., Computer Programming Made Simple, W.H. Allen,
London. 2nd ed. 1980. 350 pp. £2.50.

To my mind Computer Programming Made Simple is not a
simple book. The author states that it will be of interest to students
at schools and further education establishments but I believe the
average school student would find it generally unappealing. They
would not be inspired to read any further than the front cover. It
is a thick text book with small type, few diagrams, and several
out-of-date photographs. In fact, this is a library book or teacher
reference. I have looked at so many books that make similar claims.
They are usually written by tertiary level authors for a tertiary
level market but attempt to sell to a wider market by stating on
the cover that the book would be of interest to schools, too. How-

760 The Australian Computer Journal, Voi. 72, No. 4, November 1980

Book Reviews

ever, these two target audiences are not compatible. Although
the concepts are clearly explained, the very presentation of the
book excludes it from the school market. It would need to be
more visually stimulating to attract the average student’s attention.

To be critical on a second point, the book is a second edition
of a 1972 publication. The publisher claims that the book is com­
pletely updated and has an additional 50 pages on microprocessors,
home computers, and the BASIC programming language. In reality
this statement means that two short chapters on micros and BASIC
have been tacked onto the end of the book and two photographs of
micros inserted into the photograph section. The section on micros
is extremely brief and although it carefully and precisely provides
an understanding of the jargon of micro-computing, it goes into
too many technical details for a book whose title is Computer
Programming Made Simple. The section on BASIC is also brief
and refers to a fairly “mickey mouse” version of the language.

For an updated edition, comments like:
"Punched cards and punched paper tape represent between

them something over 95 per cent of the input media currently in
use in commercial computer installations". (p. 15)

"Keyboards cannot be considered for inputting a large
quantity of data". (p. 15)

"A typical dish pack can hold about 30 million characters
of information". (p. 25)
and on multiprogramming:

"The number of programs involved . . . would typically be
three for a medium-sized computer and up to about 16 for a large
computer. .. " (p. 45)
would seem to be incorrect.

On the good side, the book does have an understandable
introduction to general computing concepts and definitions of
computer terms in part 1 (60 pages) before it starts into its main
objective, computer programming, which consists of an extensive
introduction to COBOL (150 pages, the major part of the book)
plus short sections on FORTRAN and BASIC. There are review
questions at the back of the book, along with an index and glossary.

In summary, Computer Programming Made Simple is a
fairly thorough reference text, extensive in terms of the ground it
covers, but slightly out of date and not totally suited to the average
school student or to the general public as stated in its publicity.

John Read and Sandra Wills,
Elizabeth Computer Centre,

Education Department of Tasmania

Tucker, A.B., Text Processing - Algorithms, Languages and Applic­
ations, Academic Press, 1979. 171 pp. $23.

This is a useful little book that kills two birds with one
stone. Its avowed purpose is to introduce computer text process­
ing. Useful as this may be, I rather think that the book will be
more valuable in another context: to introduce computers to an
audience which is neither mathematically nor commercially orient­
ed, using text processing tasks as illustrating examples. So if you
are looking for a textbook for an introductory programming course
for typists, librarians or politicians, give this one a try. It would
be far more suitable than alternative books of more conventional
orientations.

The first chapter provides a brief introduction to text pro­
cessing and computer hardware/software. Although very short, the
part on computers does manage to get the idea across quite effect­
ively. Chapter 2 gives a reasonably complete discussion of the
basic features of PL/1. While the mathematical capabilities of the
languages are necessarily omitted, all the control structures, includ-
subroutines, are introduced and explained in an elementary but
clear fashion, together with, of course, the text manipulation
features of PL/1. With some augmentation by the teacher this
would do very well as an introduction to PL/1. Chapter 3, on
SNOBOL, is not quite as good, and requires greater effort on the
part of the reader. To take two examples, the list of pattern match­
ing function descriptions on page 91 is a bit obscure, and the
deferment of examples to a later section rather leaves the reader
up in the air. On pages 96-97 the same symbol S is used to mean
three different things all within short space of each other, and it
would have been helpful if the author had spaced the examples of
page 96 apart and separated out the two definitions of P and PUNC
from the pattern matching statements — it took me some time to
work out that the definitions are not part of the pattern match.
However, a good teacher would no doubt be alert enough to point
these problems out in class to save the students’ confusion.

Chapter 4 provides brief descriptions of the packages KWIC,
FUMULUS, and SCRIPT, and the IBM text editor CMS. The first

The Australian Computer Journal, Vol. 12, No. 4, November 1980

two are for bibliographical processing, the third for text prepar­
ation, and the last is general purpose, which could form the basis
of an introduction to on-line computer use for students not
specially interested in the previous three packages. Chapter 5
reviews the available literature on common programming languages
(the word PASCAL appears three times!), packages, and current
research, and refers to a total of 87 books and articles on various
aspects of the subject.

Each chapter has an extensive list of exercises, and selected
answers are provided. There are also three appendices on ASCII/
EBCDIC codes, tape and disk I/O, and a short glossary of 18 text
processing terms. Lastly there is an index, unfortunately too sparse
for looking up language constructs. Indeed the whole book could
use a bit of expansion. The book has been carefully produced,
and very carefully proof read. It is, to repeat, a useful little book.

C.K. Yuen

Rozenberg, G., and Salomaa, A., The Mathematical Theory of L
Systems, Academic Press, New York, 1980. 352 pp. $38.

An L system (named after Aristid Lindenmayer, of the
Theoretical Biology Group at Utrecht), is a rewriting system, of
the general type that we associate with the name of Post, but
with each symbol in the generated string rewritten at each discrete
time interval, whereas the usual Post productions used in formal
language theory rewrite only a single symbol at a time. This prop­
erty of parallel rewriting is shared by cellular automata, but the
individual cells in cellular automata merely change state, whereas
a symbol in an L system may expand into several symbols, anal­
ogous to the multiplication of cells. L systems have a practical
interest as models of aspects of the development of organisms, or
portions of organisms.

The book under review is by two major researchers in L
systems. Grzegorz Rozenberg was a pioneer in the study of L
systems, and Arto Salomaa has produced important results in
several areas of automata theory and formal language theory,
including L systems. As one might expect from two such experi­
enced researchers and authors, this book is both well-written and
authoritative. It belongs in every library which pretends to cover
theoretical computer science or mathematical biology.

Having given the book some well deserved praise, I must
now point out that it is not a book by which the average inter­
ested reader would be advised to venture into the field for the first
time. Its subject is indeed the mathematical theory of L systems,
and only the slightest motivation is provided. An earlier book by
Rozenberg, in collaboration with Gabor Herman, called Develop­
mental Systems and Languages is still the best place to start (with
the introduction contributed to that volume by Lindenmayer
especially worthwhile reading).

L systems today are divided into a bewildering number of
variations, the most mathematically tractable of which are design­
ated by number-letter strings ending in “OL”. The “O” merely
means that each symbol is rewritten without reference to adjacent
symbols (context freeness, in the formal language sense). The L, of
course, designates the parallel rewriting mentioned above.

Starting with a formal language in the usual (Chomsky)
sense, one can proceed to a “pure grammar”, in which the non­
terminal symbols are eliminated. A pure grammar to generate
{a+} would consist of a “start set" {a} and a single production
rule a •* aa. Notice that this is a deterministic system, in that there
is only one production rule that can be applied. If an ordinary
context free grammar is deterministic, it generates only a finite
set of strings, but this is not true for pure grammars. Now let us
consider the parallel rewriting interpretation: at each instant of
time, each a in the string is rewritten as two a’s The result at time
n + 1 a’s, so we say the grammar generates {anl n > 0} . Interest­
ingly, this language cannot be generated by any pure grammar,
which gives us an example of the power of parallel rewrit­
ing systems.

The system described above for generating\a I n > 0/is an
example of a DOL system (the D standing for “deterministic”).
Since it has no erasing productions, it is called “productive” and
thus is a PDOL system. If it were productive but not deterministic,
it would be a POL system. One can reintroduce the idea of non­
terminals and get what is called an EOL system. One can also
generalise by allowing in the grammar one or more sets of re­
writing rules that can operate on the string, but with rules from
only one set operating on a given string at a given time. These
systems are called TOL (the T standing for “table”) systems. If
the rewriting rules are deterministic within each set, then the
systems are DTOL. A TOL with nonterminal symbols is an ETOL.

161

Book Reviews

And so it goes on.
The relationship between the various families of languages

generated by the systems mentioned are, incidentally, as shown
in Fig. 1.

ETOL

POL DOL

PDOL
Figure 1

(The lines downward in the diagram indicate inclusion of the lower
family in the upper one). There are many other families mentioned
in the book, and their profusion tends to be a little confusing. My
main reason for preferring the presentation of Herman and Rozen­
berg is that this vast array of systems is much easier to sort out
when presented with at least some biological motivation. (This
holds true even for the non-biologist, since the motivations are
easy to understand).

There are a number of interesting mathematical results in
L system theory, however irrespective of motivation. The decide-
ability of the DOL equivalence problem (discussed in Chapter III)
is such a result. The material on complexity considerations in
Chapter VI is interesting and leads to a number of open problems.

The discussion of multi-dimensional L systems (also in Chapter VI)
is good mental exercise.

L.H. Reeker,
University of Queensland

Kahn, P.M. ed., Computational Probability Academic Press, 1980.
340 pp. $21.

The book is not a cohesive discussion of “Computational
Probability”, but the Proceedings of an Actuarial Research
Conference held on Computational Probability at Brown Univer­
sity in 1975. Except that they relate to the topic of computa­
tional probability, the chapters contained therein are unstructured.
Like the proceedings of other such conferences, this is both its
strength and weakness. For the informed reader, it gives a
broad spectrum view of the subject matter without necessarily
saying something new. For the student, it contains the infor­
mation he requires but not necessarily in a form which can be
easily assimilated.

Some of the papers address specific aspects of acturial
research (e.g. APL for Actuaries; Reversionary Annuities as
Applied to the Evaluation of Law Amendment Factors; Non-
life Business and Inflation; Simulation of a Multirisk Collective
Model), while others in comparison address quite theoretical
questions (e.g. Computational Problems Related to the Galton-
Watson Process; Central Limit Analogues for Markov Population
Processes; Backward Population Projection by a Generalized
Inverse). A few are rather pragmatic (e.g. Some Ideas in
Computational Probability; Experimental Computation) with the
odd one having only a tangential association with Computational
Probability (e.g. Symbolic Information Processing, Numerical
Fourier Inversion).

It is certainly not the type of book to which a computer
professional or scientist would turn for information about
algorithm aspects of computational probability. It does however
represent for such an audience an illustration of the range of
sophistication over when theoretical topics, such as probability,
can range computationally.

R.S. Anderssen
Division of Mathematics and Statistics,

CSIRO, Canberra

162 The Australian Computer Journal, Voi. 12, No. 4, November 1980

apply to large scale computer usage have been applied to
user protective packages for micro-users. The packages
include application programs and independently available
subroutines. All documentation is scope oriented.

The released programs include a linear equation sol­
ving package, based on the LINPACK project (SIAM 1979),
the ANSI/77 elementary function set in single and double
precision form, and a random number generation, simula­
tion, and testing package. The 32 elementary function
codes (sin, log, . . .) include a separate power (a to the
power b) function. The accuracy and scope of the elemen­
tary functions embedded in the delivered Fortrans has been
extended.

The linear equations packages, which solve up to 50
by 50 systems, operate on the IBM Series/1 and Radio
Shack Model II micro-computer. The elementary func­
tions and random number packages have been certified on
the Model II. Release in given environments is followed by
movement to other processors.

The software is produced by a consortium of
computer scientists, numerical mathematicians, and statis­
ticians which has set the development of robust, tutorial

“Verbatim will provide full technical and engineering'
backup for the locally produced products,” he said.

“We expect to increase our market share in Australia
significantly in the current financial year with excess
production being shipped overseas.

“Data and word processing applications have been
expanding in recent years at more than 30 per cent a-year,
and the market for flexible disks in Australia has been
growing even faster,” he said.

COMPUTER NETWORK FOR AUSTRALIAN
PAPER MANUFACTURER

Nine computers are to be supplied to Associated Pulp
and Paper Mills (APPM) in Melbourne by Britain’s Inter­
national Computers Limited (ICL) under a $18 million
contract.

The computers — eight ‘ME29’ and one Model ‘2956’
— will be installed during the next two years in APPM’s
head office in Melbourne, and in the company’s four paper
mills in New South Wales, Victoria and Tasmania. They will
be linked together to form a distributed data processing
network using the advanced facilities of ICL’s information
processing architecture system. This will also provide the
enhanced capabilities necessary for the development and
operation of a comprehensive manufacturing system for
use in the paper mills and extensions to existing adminis­
tration systems.

ICL will also provide supporting services and soft­
ware under the contract.

RPG II ENHANCEMENTS OFFERED BY
DATA GENERAL

Data General Australia Pty Ltd has announced
several significant enhancements to its AOS and AOS/VS
RPG II programming languages.

The enhancements are designed to improve overall
program development and maintenance capabilities, as
well as to optimise RPG programs for high-speed
execution.

AOS RPG II operates under Data General’s Advan­
ced Operating System and executes on any ECLIPSE
data system with 512KB memory. AOS/VS RPG II
operates under the recently-announced AOS/VS operating

The Australian Computer Journal, Vol. 12, No. 4, November 7980

system and executes on 32-bit ECLIPSE computers.
Both AOS and AOS/VS RPG II include an interface

to Data General’s INFOS and INFOS II file management
systems, allowing users to create and maintain large data
bases in an on-line, multi-terminal environment.

AOS and AOS/VS RPG II languages include two
compilers — the Data General RPG Interactive Compiler
(DG/RIC) and Data General RPG Optimising Compiler
(DG/ROC).

DG/RIC runs interactively using an interpreter under
AOS or AOS/VS, and provides interactive debugging, for­
matted dump facilities, and dynamic paging for large
programs.

DG/ROC generates optimised machine-level code for
the production of fast-executing versions of RPG
programs.
software as its task, so as to make recent research advances
in computer science availble to micro-computer users.

C. Abaci can be contacted at 101 Dixie Trail, PO Box
5715, Raleigh, N.C. USA.

DIGITAL ANNOUNCES 124-MEGABYTE,
WINCHESTER-TECHNOLOGY DISK UNIT

£8532

VsS'-i;.

Simultaneously with its parent company, Digital
Equipment in Australia and New Zealand announced in late
October, its first Winchester-type disk drive, designed for
VAX computer systems.

Called the RM80, the new 124-megabyte unit uses
state-of-the-art microprocessor control to achieve high per­
formance and reliability with a low cost per megabyte for
program and data storage.

The RM80, designed and manufactured at Digital’s
Colorado Springs facility, in the US is the company’s first
disk product to employ Winchester technology, in which
read/write heads, platters, and spindle are constructed as a
sealed assembly, and which allows the heads to rest on
special “landing zones” when power is removed. The design
affords improved reliability because of the absence of con­
tamination associated with removal and replacement of
disk packs and cartridges. The sealed assembly also permits
more precise operating tolerances to allow higher data
recording densities.

The RM80 is intended for use with MASSBUS
equipped VAS-11/780 and VAX-11/750 systems. The
RM80 is obtainable either as a part of VAX-11/780 and

Hi

VAX-11/750 packaged systems or as separate add-on units
for currently installed systems. The disk subsystem (drive
and controller) is priced at approximately $34,000. Add-on
drives are priced at just over $22,000. Deliveries are sched­
uled to begin in the first half of next year.

The new product attains an average seek time of
25msec and an average access time (seek plus latency) of
33msec. Data transfer rate is 1.2 megabytes per second.
The head/disk assembly (HDA) contains four platters with
seven data recording surfaces, one surface for servo infor­
mation, and two read/write heads per data surface. The
HDA also incorporates a low-inertia rotary actuator.

The RM80 is available with single or optional dual
port access. A mixture of up to eight RM80 and other disk
products such as the RM03 and RM05 can operate on a
sigle MASSBUS controller.

An integral microprocessor controls all major drive
functions including servo adjustment and diagnostic
procedures. Microdiagnostics are used to verify drive
functions upon startup and to isolate faults to the field-
replaceable unit level, thereby minimising repair times.

The new device can be characterised as a midrange
disk product incorporating significant enhancements in
data integrity, performance, and economy.

The RM80 processes almost twice the storage
capacity of Digital’s RM03 disk system for about the
same price and a lower monthly maintenance charge.
The RM80’s average seek time, too, is exceptional for a
product of its price and capacity.

The new unit offers high data integrity — improved
reliability and lower error rates - through microprocessor
control.

The self-diagnostic capability, Digital’s first in a disk
product, eliminates the need for auxiliary test boxes or
tools. Furthermore, there are no requirements for
scheduled preventive maintenance.

The RM80 is designed to operate under normal office
conditions of temperature and humidity.

PHILIPS ANNOUNCE MAG CARD
WORDPROCESSOR CONVERSION

Philips has announced a conversion facility to allow
users of IBM magnetic card equipment to upgrade to its
P5002 word processing system.

The magnetic card converter can take the data from
up to 128 magnetic cards and with minor editing, trans­
fer that data onto one flexible disk.

Mr Barrie Hepworth of Philips Data Systems division
said that research undertaken for Philips into word proces­
sor buying trends plus estimates of the installed base of
IBM magnetic card equipment suggested the conversion
facility would offer an easy upgrade to the benefits of a
word processing system which offered a visual display
facility and flexible disks.

“It is estimated there are more than 3000 IBM
magnetic card machines installed in Australia. Our research
also indicates that users of this equipment, who are already
convinced of the benefits of word processing, will be well
disposed to moving into the more flexible disk format.”

Mr Hepworth said that not only was the magnetic
card limited in terms of adding to, updating and modifying
multi-page documents but it presented physical difficulties
in terms of filing.

“In turn searching documents, without a visual
display is difficult,” he said.

iv

The flexible disk word processor means many more
documents can be stored on a single disk, updating and
text manipulation is easy and searching and retrieval is
made simple with a full size video screen. Philips is also
hiring out the conversion facility.

PLOT 50 EASY GRAPHING AIDS
ENGINEERING ANALYSIS

The next Tektronix Plot Easy Graphing software
allows engineers to create presentation quality graphics
to report experimental or analytical data.

Tektronix designed Plot 50 Easy Graphing for users
with little previous graphing experience. The program
responds to simple command verbs to enter data and to
generate graphics on Tektronix 4050 Series Graphic
Computing Systems.

Plot 50 Easy Graphing is the second in a series of
software products with Standard File Formats, allowing
several programs to share the same data. Data generated by,
or data entered into, one software product can be
accessed by another product in the series.

Easy Graphing generates high-quality, fully labeled
graphics to aid comparison, interpretation, and illustration
of numerical data. The program includes line graphics to
illustrate trends, pie charts to show proportion relation­
ships between parts of a whole, bar graphs to dramatise
comparisons of quantities and scatter plots to analyse data
points. Command files permit repetitive graphs to be drawn
by adding only updated data.

Easy Graphing is a BASIC language version of Tek­
tronix Plot 10 Easy Graphing, which is recognised as the
industry standard in graphics software. It has five major
components, including a four-phase tutorial program to
review graphing concepts for first time users. The Easy
Graph program is a question-and-answer session to help
users generate graphs without knowledge of the Easy
Graphing command language. Help Files are available for
any Easy Graphing command, and utility programs are
included to copy, list, edit, and duplicate Plot 50 Easy
Graphing files.

LARGEST DISK COMPANY TO
MANUFACTURE IN AUSTRALIA

The largest manufacturer of flexible (floppy) disks in
the world, Verbatim Corporation of the United States, will
open a manufacturing facility in Australia this year.

Verbatim Corporation which has its headquarters in
California, offers a complete line of removable, mini-
magnetic media for data storage (diskettes, mini-disks, data
tape cartridges and digital cassettes) marketed under the
Verbatim trade name, as well as a full line for original
equipment manufacturers.

The new facility will be at 52-54 River Street, South
Yarra.

Mr Brian Johnstone, newly appointed General
Manager of Verbatim Australia Pty Ltd, said that produc­
tion of eight inch flexible disks would start before the end
of October, while five and a quarter inch mini-disks would
be manufactured in the first quarter of next year.

“The Australian made disks will feature our new
‘Datalife’ technology,” he said.

He said that Verbatim branded flexible disks have
been available in Australia for six years through Magnetic
Media Services Pty Ltd, who will also distribute the locally
produced products.

The Australian Computer Journal, Vol. 12, No. 4, November 1980

THE
AUSTRALIAN
COMPUTER

JOURNAL

Volume 12

February 1980 to November 1980

1. CUMULATIVE CONTENTS
Technical Contributions

I.T. Hawryszkiewycz Data Analysis — What are the necessary concepts 2- 14

j.P. Penny and C.R. Sheedy Measurement of response time performance in small time-sharing systems 15- 22

J.L. Keedy On the exportation of variables 23- 27

A. Theerachetmongkol and
A.Y. Montgomery

Semantic integrity constraints in the Query by Example data base
management language 28- 42

J.R. Quinlan An introduction to knowledge-based expert systems 56- 62

J.L. Keedy Virtual memory 63

B. Cheek A fast and stable list sorting algorithm 64- 69

W.T. Williams TWONET: A new program for the computation of a two-
neighbour network 70

G.L. Wolfendale The CSIRONET local computer network 85- 88

L.H. Reeker Natural language programming and natural programming languages 89- 92

D.L. Overheu Computer applications in the totalizator industry in Australia 93- 99

F. O’Brien The software compatible machine 100-104

G. M. Baudet, R.P. Brent and
H. T. Kung

Parallel execution of a sequency of tasks on an asynchronous
multiprocessor 105-112

F. Hirst and P. Hawryszkiewycz Computer elucidation of the occurrence of higher odd subharmonic
motion and other subharmonic phenomena 113-119

W. Burton and B. Lings FACETS: A language feature for security and flexibility 125-131

S.G. Akl The minimal directed spanning graph for combinatorial optimization 132-136

J. Burr Marginal totals for multidimensional arrays 137-139

L.M. Casey Distributed computing and its competitors 140-145

P. Juliff Program control by state transition tables 146-152

G.L. Cock Computer aided design of printed circuit board layouts 153-156

Miscellaneous Book Reviews 14, 22, 27, 42, 55, 62, 69,
75-79, 82,158-162

Letters to the Editor 120-121,157
Computer Science Theses 82
Editorials 46-47, 84,124

2. TITLE INDEX
(Titles of books reviewed in the journal given in italics.)

Advances in computers 78
Artificial intelligence, The limits of 79
Associated networks (Representation and use of

knowledge by computers) 75
CS/t Technical Journal 79
CSIRONET local computer network 85-88
Computational logic, A 160
Computational probability 162
Computer abuse 22
Computer aided design of printed circuit board layouts 163-156
Computer applications in the totalizator industry

in Australia 93-99
Computer Arithmetic 158
Computer Elucidation of the occurrence of higher

odd subharmonic motion and other subharmonic
phenomena 113-119

Computer programming made simple 160
Computer security 78
Computer simulation, Current issues in 55
Data analysis — What are the necessary concepts 2-14
Database management system standards.

Recommendations for 77
Digital signal processing and control and

estimation theory 69
Digital spectral analysis 42
Distributed computing and its competitors 140-145
Exportation of variables, On the 23-27
FACETS: A language feature for security and

flexibility 125-131
Fast and stable list sorting algorithm, A 64-69
!CL Technical journal 159
Information Privacy 75
L systems, The mathematical theory of 161
Marginal totals for multidimensional arrays 137-139

Measurement of response time performance in small
time-sharing systems 15-22

Microprocessor applications 158
Microprocessor software 158
Microprocessors and microcomputer systems 158
Minimal directed spanning graph for combinatorial

optimization, The 132-136
Mirroring parametric data Bases, A note on 120
Modelling and measurement techniques for evaluation of

design alternatives in the implementation of database
management software 160

Natural language programming and natural programming
languages 89-92

Knowledge-based expert systems, An introduction to 56-62
Parallel execution of a sequence of tasks on an asychronous

multiprocessor 105-112
Pattern-directed inference systems 76
Performance evaluation of numerical software 62
Program construction 159
Program control by state transition tables 146-152
Semantic integrity constraints in the Query by Example data base

management language 28-42
Semi-infinite programming 7 7
Signal analysis, Digital methods of 82
Software compatible machine, The 100-104
Software technology, Research directions in 14
Symbolic and algebraic computation 55
System optimization and analysis 14
Text processing - algorithms, language and applications 161
Theoretical computer science 18
TWONET: A new program for the computation of a two-

neighbour network 70
Vienna development method, The 27
Virtual memory 63

3. CONTRIBUTOR INDEX

AkI, S.G. 132-136
Anderssen, R.S. 162
Andrew, A.L. 77
Baudet, G.M. 105-112
Brent, R.P. 78,105-112
Brown, J. 42
Burr, J. 137-139
Burton, W. 125-131
Caelli, W.J. 158
Casey, L.M. 140-145
Cheek, B. 64-69
Cock, G.L. 153-156
Garner, B.j. 78
Goldsworthy, A.W. 75
Gupta, G.K. 62
Harris, R.P. 55

Hawryszkiewycz, I.T. 2-14
Hawryszkiewycz, P. 113-119
Herman, P.M. 14
Hirst, F. 113-119
Hodgson, D.P. 159
Hubbard, D.J. 160
Hwa, H.R. 82
Juliff, P. 79, 146-152
Keedy, J.L. 23-27, 63
Kung, H.T. 105-112
Kwong, K. 69
Lassez, J.L. 22
Lings, B. 125-131
Mackaskill, J.L.C. 55, 120
Montgomery, A.Y. 28-42, 77, 78
O’Brien, F. 22, 100-104

Osborne, M.R. 14
Overheu, D.L. 93-99
Penny, J.P. 15-22
Quinlan, J.R. 56-62
Read, J. 160
Reeker, L.H. 89-92, 161
Rohl, J.S. 159
Rowe, D. 158
Sacks-Davis, R. 78
Sale, A. 27
Sheedy, C.R. 15-22
Stanton, R.B. 76
Theerachetmonkol, A. 28-42
Topor, R.W. 160
Williams, W.T. 70
Wills, S. 160
Wolfendale, G. 85-88
Wong, D.G. 158
Yuen, C.K. 161

4.CR CATEGORIES INDEX
1. GENERAL TOPICS AND EDUCATION

1.3 Introductory and Survey Articles 56-62

3. APPLICATIONS
3.1 Natural Sciences

3.12 Biology 70
3.2 Engineering

3.2.4 Electrical; Electronic 153-156
3.5 Management Data Processing

3.50 General 2-14,28-42
3.59 Miscellaneous 93-99

3.6 Artificial Intelligence 56-62
3.8 Real-time Systems

3.81 Communications 85-88
3.89 Miscellaneous 93-99

4. SOFTWARE
4.0 General 146-152
4.1 Processors

4.12 Compilers and generators 23-27
4.2 Programming Languages

4.20 General 89-92,125-131
4.22 Procedure and problem oriented language

23-27, 125-131, 137-139
4.3 Supervisory Systems 100-104

4.32 Multiprogramming; Multiprocessing 15-22,
140-145

4.33 Database 2-14,28-42, 125-131
4.34 Data structures 2-14,15-22,28-42
4.39 Miscellaneous 93-99

4.6 Software Evaluation, Tests, and Measurements 15-22

5. MATHEMATICS
5.1 Numerical Analysis

5.17 Ordinary and practical differential equations
113-119

5.19 Miscellaneous 70
5.2 Metatheory

5.23 Formal language 89-92
5.25 Computational complexity 105-112,132-136

5.3 Combinatorial and Discreet Mathematics
5.32 Graph theory 70
5.39 Miscallaneous 132-136

6. HARDWARE
6.2 Computer Systems 100-104

6.20 General 105-112
6.21 General-purpose computers 23-27

6.3 Components and Circuits 63

8. FUNCTIONS
8.3 Operations Research/Decision Tables 132-136

The World's First NonStop DBMS
Tandem NonStop™ ENCOMPASS
ENCOMPASS is the only DBMS with
the benefit of running on a NonStop
system. It’s also the only high perform­
ance, relational data base management
system designed from scratch to provide
unmatched data integrity in high vol­
ume on-line transaction processing
environments.

We made

relational
fast.
A true data base operating system is
the foundation with much of the retrieval
techniques designed right in. And the
structure of data on disc is optimized
to minimize head movement. Memory
cache retains most frequently used
items in a buffer. In fact, any information
in a file that filled a 300M byte disc
drive could still be retrieved with an
average of one seek. Combined with
Tandem’s optional mirrored volumes, it
all adds up to tremendous speed and
throughput with all the benefits of
relational structuring.

PROCESSOR A PROCESSOR B

DISC 1 DISC 2

Mirrored volumes automatically main­
tain identical copies; write operations
occur simultaneously, read operations
performed using drive with head
closest to data.

Networking made easy.
Each individual system can be expanded
to sixteen processors, with additions of
memory, terminals, discs, and there will
be no loss whatsoever on the original
investment—hardware or software.

The relational nature of ENCOMPASS,
along with our networking software,
EXPAND, allows a single data base to
be distributed over multiple systems.
Easily and safely. Up to 255 systems,
each with as many as sixteen processors
and thousands of terminals, each with
unobstructed access to the data base
distributed throughout the network.

Automatic Terminal Management.
Terminal management has been the
classic nightmare of on-line data base
systems. No more. ENCOMPASS auto­
matically handles complete support for
the Tandem 6520 Multi Page Display,
Tandem 6510, and IBM 3270 connected
by a variety of communication lines
including Asynchronous, Byte Syn­
chronous, Multipoint, Point to Point,
X25 and SDLC.
Screen formatting, data validation,
screen sequencing and data mapping,
plus sequencing and control of multiple
terminals; these are all handled for the
application programmer automatically
and at a fraction of the cost in develop­
ment time and dollars.

Backout and recovery
over a distributed data base.

Consistency of the data base is essential.
Multiple files must be capable of being
updated simultaneously, even if located
across distributed nodes. If for any
reason a transaction cannot be 100%
completed, this is the one system in the
world which can un-do it completely.
Automatically.
The system will recover each piece of
the transaction from everywhere in the
distributed data base. Without cost­
killing overhead. A major breakthrough
in a network, DBMS. No one else even
comes close.

NonStop™ availability
in Hardware and Software.

Because of its unique architecture, the
system will keep on running without
interruption, without loss or duplication
of a transaction-in-process even if a
failure occurs in any processor, I/O
channel, disc or disc controller.

Tandem NonStop™architecture provides
not only this redundancy in hardware,
but the software to take advantage of it,
utilizing all available resources.
The NonStop™ system ensures that
every update is completed to the data
base. And with ENCOMPASS DBMS,
NonStop™ operation is automatically
built into all of your programs.

On-line’s as easy
to program as batch.

One key theme behind the performance
and reliability of our NonStop™ DBMS,
ENCOMPASS, is the ease of use for
programmers, systems designers and
users.
It’s easy to extend the data base, to
expand the system to a network, to
manipulate the data. And it’s easy to add
new resources, new hardware, new
software, new files. It’s easy to provide
controls and security. Easy to work with.
Easy to repair. And above all, easy to
learn.
You don’t need to learn a whole new
language with the ENCOMPASS sys­
tem: OPEN, READ, WRITE are the
verbs you’ve been using all along.
Industry standard COBOL, FORTRAN,
MUMPS and our own transaction-
oriented language TAL provide simple
interaction between programs and
data base.

The All-ENCOMPASSing DBMS.
And there’s still more. In addition to all
this, there’s a whole host of other features
that the ENCOMPASS data base man­
agement system will provide. To name
just a few:
• on-line data base backup
• transparent access to distributed
data base

■ efficient query-report generation
• dynamic and automatic adjustment to
varying transaction loads

All that remains for the user is:
• simple batch type application modules.

What could be simpler?

NonStop™
Systems

TANDEM COMPUTERS
DISTRIBUTED IN
AUSTRALIA BY:

MANAGEMENT INFORMATION SYSTEMS PTY. LTD.
3 Bowen Crescent, 22 Atchison Street, S.G. 1.0 Building,
Melbourne, Vic, 3004 St. Leonards, N S W. 2065 Cnr. Turbot & Albert Sts,
Telephone (03) 267 4133 Telephone (02) 438 4566 Brisbane, Queensland 4000

Telephone (07) 229 3830

CO
CO
w
S
<oz

The Australian Computer Journal is an official publi­
cation of the Australian Computer Society
incorporated.

Office Bearers. President: G.E. Wastie; Vice-Presi­
dents: R.C.A. Paterson, A.W. Goldsworthy; immediate
past president: A.R. Benson; National treasurer:
CS.V. Pratt; Chief executive officer: ,R.W. Rutledge,
PO Box N26, Grosvenor Street, Sydney, 2000, tele­
phone (02) 267 5725.

Editorial Committee: Editor: C.K. Yuen, CS1RO Div­
ision of Computing Research, P.O. Box 1800,
Canberra, A.C.T. 2601. Associate Editors: J.M.
Bennett, T. Pearcey, P.C. Poole, A.Y. Montgomery,
J. Lions.

SUBSCRIPTIONS: The annual subscription is $15.00.
All subscriptions to the Journal are payable in advance
and should be sent (in Australian currency) to the
Australian Computer Society Inc., PO Box N26,
Grosvenor Street, Sydney, 2000. A subscription form
may be found at the end of the August issue.

THE
/T\

ISSN 004-8917

©QMJQCai]CJ

VOLUME 12, NUMBER 4, NOVEMBER 1980

CONTENTS
PRICE TO NON-MEMBERS: There are now 4 issues
per annum. The price of individual copies of back
issues still available is $2.00. Some already out of
print. Issues for the current year are available at $5.00
per copy. All of these may be obtained from the
National Secretariat, P.O. Box 640, Crows Nest,
N.S.W., 2065. No trade discounts are given, and agents
should recover their own handling charges. Special
rates apply to members of other Computer Societies
and applications should be made to the Society con­
cerned.

MEMBERS: The current issue of the Journal is sup­
plied to personal members and to Corresponding
Institutions. A member joining partway through a
calendar year is entitled to receive one copy of each
issue of the Journal published earlier in that calendar
year. Back numbers are supplied to members while
supplies last, for a charge of $2.00 per copy. To ensure
receipt of all issues, members should advise the Branch
Honorary Secretary concerned, or the National Sec­
retariat, promptly of any change of address.

REPRINTS: 50 copies of reprints will be provided to
authors. Additional reprints can be obtained, accor­
ding to the scale of charges supplied by the publishers
with proofs. Reprints of individual papers may be
purchased for 50 cents each from the Printers
(Publicity Press).

PAPERS: Papers should be submitted to the Editor,
authors should consult the notes published in Volume
12, pp. 71-75 (or request a copy from the National
Secretariat).

MEMBERSHIP: Membership of the Society is via a
Branch. Branches are autonomous in local matters,
and may charge different membership subscriptions.
Information may be obtained from the following
Branch Honorary Secretaries. Canberra: P.O. Box
446, Canberra City, A.C.T., 2601. NSW: Science
House, 35-43 Clarence St, Sydney, N.S.W., 2000.
Qld: Box 1484, G.P.O., Brisbane, Qld, 4001. S.A.:
Box 2423, G.P.O., Adelaide, S.A., 5001. W.A: Box
F320, G.P.O. Perth, W.A., 6001. Vic: P.O. Box 98,
East Melbourne, Vic, 3002. Tas: P.O. Box 216,
Sandy Bay, Tas, 7005.

Copyright © 1980. Australian Computer Society Inc.

Published by: Associated Business Publications, 28
Chippen Street, Chippendale, N.S.W., 2008. Tel:
699-5601,699-1154.
AH advertising enquiries should be referred to the
above address.

Printed by: Publicity Press Ltd., 29-31 Meagher Street,
Chippendale, N.S.W., 2008.

RESEARCH PAPERS
125-131 FACETS: A Language Feature for Security and Flexibility

WARREN BURTON and BRIAN LINGS

132-136 The Minimal Directed Spanning Graph for Combined
Optimization

SELIM G. AKL

137-139 Marginal Totals for Multi dimensional Arrays
JOHN BURR

TUTORIAL ARTICLES
140-145 Distributed Computing and its Competitors

L.M. CASEY

146-152 Program Control by State Transition Tables
PETER JULIFF

INDUSTRIAL APPLICATIONS
153-156 Computer Aided Design of Printed Circuit Board Layouts

G.L. COCK

SPECIAL FEATURES
124 Editorial

157 Letters to the Editor
158-162 Book Reviews

This Journal is Abstracted or Reviewed by the following services: :

Publisher Service

ACM Bibliography and Subject Index of Current Computing
Literature.

ACM Computing Reviews.

AMS Mathematical Reviews.

CSA Computer and Information Systems Abstracts.
Data Processing Digest.

ENGINEERING
INDEX INC. Engineering Index.

INSPEC Computer and Control Abstracts.

INSPEC Electrical and Electronic Abstracts.

SPRINGER-
VERLAG

Zentralblatt fur Mathematick und ihre Grenzgebiete.

