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This is the 200m2, Snaplock 
access floor installed in 
June 1980 at the Perth offices 
of Woodside Petroleum Limited. 
It supports computers used 
to process data for the 
North-West Shelf gas field 
development.

The floor uses Series 800 
metal panels on 300mm 
pedestals and has a Heritage II, 
monolithic, anti-static carpet 
finish.

Partitioning was also 
installed at the same time as 
the floor.

Cemac Tate’s all-metal 
access floor system offers four 
panel sizes, with or without 
stringers and the widest range 
of finishes-high pressure 
laminate, wood parquet, cork 
and vinyl asbestos - as well

as anti-static carpet.
Cemac also has a patented, 

adjustable pedestal base which 
ensures a level floor on a 
sloping slab. So, for access 
flooring, or complete office 
interior layout (floors, 
systems furniture, ceilings, 
partitions and task or ambient 
lighting), call Cemac Interiors.

Brochures and details from Cemac Interiors:

Sydney 
Melbourne 
Brisbane_

2903788 
4198233 

_2215099

Licensees:
Adelaide
Hobart___
Perth____

_ 45 3656 
295444 

4447888
CEIN0022
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"News Briefs from the Computer World" is a regular 
feature which covers local and overseas developments in 
the computer industry including new products, interest­
ing techniques, newsworthy projects and other topical 
events of interest.

RESEARCH GUIDE AVAILABLE
The most comprehensive guide yet published on 

CSIRO’s research activities throughout Australia became 
available in late October.

The guide, containing descriptions of all CSIRO’s 
more than 700 research programs and sub-programs, is a 
valuable source of information to industry, government, 
research and educational institutions.

In clear, non-technical language, it outlines research 
problems being tackled by CSIRO and the implications 
of research findings, as well as providing details of where 
the research is being conducted, how many staff are 
involved, and how it is funded.

The CSIRO research guide was first published four 
years ago, and demand for the publication has indicated 
a strong requirement for information on the Organiza­
tion’s research.

A new-look edition published for the first time last 
year in line with a Government directive that CSIRO 
should provide a comprehensive research directory, went 
to a second printing.

More than 750 copies were sold, the majority to 
industry, while another 800 were sent to public libraries, 
college and university libraries, State and Commonwealth 
departments, parliamentary libraries and the Academy of 
Science.

Copies of the publication, titled CSIRO Research 
Programs 1980-81, are available for $12.50 (postage 
included) from the CSIRO Editorial and Publications 
Service, P.O. Box 89, East Melbourne, Victoria, 3002.

THE ABC-24 MICRO-COMPUTER

G.M. O’Reilly & Associates, North Sydney, NSW 
are announcing the Australian release of a major new 
micro-computer — the ABC-24, a micro-computer designed 
to meet the Australian market’s specific needs.

The ABC-24 is the product of the Japanese computer 
manufacturer, Ai Electronics and the design efforts and 
experience of G.M. O’Reilly & Associates.

The ABC-24 has been designed to operate in a stand­
alone environment but is equally at ease as part of a 
communications network.

The ABC-24 can utilise virtually all computer lan- 
gauges and protocols to link it with other computers. For 
instance, the ABC-24 can exchange information with others 
of its type, store the information and transmit it to large 
mainframe computers.

Jones & Rickard new range of 
FREQUENCY CHANGERS 
& MAINS ISOLATION SETS

• Predominantly single shaft brushless construction.
• Bodies assembled on building plugs-to minimise weight, 

cost and manufacturing time.
• High performance necessary for computer and aircraft 

ground support supplies.
• Control Gear mounted above and-pre-wired to machines 

- to reduce installation costs.
• Jones & Rickard sets operating in all Australian mainland 

States.
Our Services include: Dynamic Balancing-All weightsand 
sizes, Heavy Electrical Rewinding and Repairs, Lifting 
Magnet Manufacture and Repair, G.E. of U.S. Franchised 
Service Shop.
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J & R 50 KVA 50/60 HZ 600 R.P.M. 
Single Shaft Brushless 
Frequency Changer.

SINCE 1926

JONES & RICKARD 
PTY. LTD.

869 South Dowling Street, 
Waterloo, Sydney 2017. 
Telephone 663 3938
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The ABC-24 can also handle a very wide range of 
standalone business applications. These applications include 
general ledger accounting, inventory management, order 
entry and invoicing, word processing, time recording and 
costing, job costing, maintenance of chemical formulae and 
many others. As such it has a major contribution to make 
to professional organisations such as accounting practices, 
architects’ offices, legal and medical practices as well as 
commercial, service and government organisations of every 
type.

Much of the software for all these applications has 
been designed and developed by G.M. O’Reilly & 
Associates. Other software has been introduced from major 
suppliers in the US. All software is totally supported by the 
company.

TRIM BIN DESIGN KIT
Tecnico Electronics, Lane Cove, NSW and Northcote, 

Victoria announces the arrival of the new Bourns Trim Bin 
in Australia. The Trim Bin contains an assortment of the 
most popular trimmers and “MFT” multi-function 
trimmer/resistors, all in a functional, convenient and attrac­
tive package.

As in America the Trim Bin is offered at a price only 
about half that of the total cost of the components bought 
as separate lots.

The Bourns Trim Bin contains the following:
Fifteen of the most popular trimmers and “MFT” 

trimmer/resistor models with 50 varieties of resistance and 
pin styles, for a total of 127 units.

Design aids for Model 20, 3005, 3006, 3099, 3386, 
3299, 3339 and 3359.

One each H-90and H-91 screwdrivers.
These quality components include rectangular, square 

and round types; sealed and open-frame, wirewound and 
cermet, single and multi-turn.

Trim Bin should prove popular in engineering 
research and development labs where design-in and proto­
type models are produced.

HONEYWELL TRACKS GOLFERS’ SCORES 
AT MEMPHIS TOURNAMENT

A sophisticated golf scoring system using Honeywell 
hardware and software was unveiled recently at the Danny 
Thomas Memphis Golf Classic. While PGA personnel did 
the official scoring. Honeywell, through a Level 6 small 
computer and ten VIP 7700s, provided instantaneous, on­
line scoring tabulations and summaries. A level 6 software 
support specialist working out of the firm’s Gulf Coast 
Branch, worked long, 10-12 hour days perfecting the 
pilot program. During the tournament, fans could pick up 
a computer printout each morning detailing the play of the 
previous day on a hole-by-hole basis. Honeywell printed
2,000 of these reports each night. In keeping with the 
purpose of the tournament, all of Honeywell’s hardware, 
software and maintenance services were donated.

FREE 1981 ANNUAL TANDY ELECTRONICS 
CATALOGUE

Tandy Electronics is pleased to announce the 
arrival of their 148-page catalogue for 1981 featuring 
five additions to the TRS-80 family of micro­
computers and accessories. It is free from any one of 
nearly 250 Tandy Stores and participating dealers across 
Australia.

//

The 1981 catalogue, with over 100 full colour pages, 
is a showcase for an exclusive range of more than 2,300 
products under Tandy’s brand names.

Easily one of the biggest outside commercial printing 
feats ever performed in Australia, the Catalogue consumed 
135 tonnes of paper, 5,625 litres (2,250 gallons) of ink and 
required 158 hours of press time in its production. Thous­
ands of catalogues are being given away.

SOLDER REEL ATTACHMENT FOR ROYEL 
TOOL REST

Royston Electronics have now produced a solder reel 
atttachment for their popular Model TD150 solder tool 
rest.

The TD150, which accepts Adcola, Royel and other 
popular soldering tools, is a bench unit which provides a 
convenient receptacle for a soldering tool while idling. The 
tool is held firmly, at just the right angle, but inserts and 
extracts without effort. The unit also protects the tool 
itself, as well as the operator and the work bench.

Its heavy cast base gives the required stability without 
clamps or bolts, and a recess in the base holds the tip 
wiping sponge which is slotted to achieve the most 
effective, easy cleaning action.

The addition of the solder reel attachment now 
makes it the ultimate convenience accessory for all hand 
soldering operations.

The TD150 tool rest, and the new solder reel attach­
ment, are available from electronics parts suppliers or from 
Royston Electronics, Notting Hill, Victoria or Punchbowl, 
NSW.

ROBUST SOFTWARE FOR MICRO-COMPUTER 
USERS

The alliance “C. Abaci” has released robust software 
in several areas for scientific computer users. Exacting 
benchmarks on accuracy, efficiency, and testing which

(Continued at hack)
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Editorial

Journal bashing is something of a favourite sport among ACS members. Like most sports, this inter­
esting activity follows a set of standard rituals. A typical exchange consists of a practitioner complaining 
“the Journal’s too academic” and an academic answering back “because practitioners don’t write papers 
for it”. The numerous discussions that have taken place in the past seldom went beyond variations on this 
basic theme, never giving results other than a simmering dissatisfaction on both sides.

This unhappy state of affairs really reflects a fundamental controversy about the function and purpose 
of the Journal. If one regards the Journal simply as a vehicle of service to ACS members, then one is bound 
to reach the conclusion that the Journal is not giving most members the material they want to see. Now 
one can always argue that the fault is with the reader rather than the material, because members “don’t 
know what’s good for them”, “didn’t tell us what they need” or “should write some industry-oriented 
papers instead of just complaining about lack of them”. Although this may be good for winning argu­
ments, it does not win the Journal many friends. The question is too important to be quickly dismissed 
in this way.

What one has to get across to the practitioner is that, the Journal is more than just a publication for 
supplying technical reading material to ACS members. It is meant to serve a range of functions. One of 
these is to provide a medium for publishing new findings of computing research and new experiences 
gained in computing practice, to bring the work described to the attention of an international audience, 
and provide a permanent record of the authors’ contributions to computing knowledge. By publishing 
such a journal, ACS establishes in a concrete manner its claim to be a society of learning, a society with 
the advancement of computing knowledge as part of its charter. In this indirect and rather elusive way 
the Journal does provide a service to ACS members. What is unfortunate is the lack of balance, in that we 
do not receive enough material of other types that serve members at large in a more direct fashion.

It is often thought that the Journal represents a heavy financial burden to the members, and indeed 
publishing-cost discussions on the Journal virtually constitute a standing item on the Council agenda. When, 
however, one works out the net cost (after subtracting subscription incomes), it comes to about $2 per 
head, hardly a major component of the annual membership fee. Whatever shortcomings the Journal might 
have, extravagance is not one.

Another charge frequently levelled at the Journal is editorial bias towards academia. Indeed the 
Editorial Committee, authors, referees and book reviewers of the Journal are largely drawn from uni­
versity and college computing departments and government research organizations. But the main reason 
for this is, simply, that these are where we can find people prepared to take on, without pay, the time- 
consuming efforts involved. In the past numerous attempts were made to obtain more contributions from 
industry, and it was our lack of success on that front, for whatever reason, that made the Journal what it is.

Nevertheless, we have not yet entirely given up the hope of making the Journal please everyone, at 
least a little. While continuing to publish research type papers, we are hopeful that some of our traditional 
authors would also be willing to spare a little time to write tutorial papers oriented at a broader audience. 
The special issues we intend to publish (Computer Networks, May ’81; Database Management, November 
’81) represent another effort with the same objective. If you would like to see the Journal do more for 
ACS members, perhaps you could start by sending in some material for the special issues?

C.K. Yuen
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FACETS: A Language Feature for 
Security and Flexibility
Warren Burton* and Brian Lings*

Current designs in programming languages stress the need for data abstraction facilities. This 
paper views a data abstraction as one facet of the behaviour of its underlying data type. This facet 
hides the implementation details but presents a full view of allowable operations on objects associated 
with it. It is argued that, particularly in an environment where security is important, it is necessary 
to provide a facility for precisely defining other, more limited facets of the behaviour of a type. 
These can then be used for fully controlling access to sensitive data.

Language facilities for defining and using facets of both simple types and type combinations 
are developed in a Pascal environment. Various examples of ‘safe’ generic procedures and their use 
with sensitive data are presented.

Keywords and Phrases: Abstract data types, access control, generic procedures, iteration 
statements, programming languages, programming methodology, security, type checking.

CR Categories: 4.20, 4

1. INTRODUCTION
The motivation behind much work in programming 

language design has been the realization that the reli­
ability and understandability of programs can be signifi­
cantly improved through the use of abstraction.

Abstraction is used not only for program segments, 
through the use of procedures, but also for data objects, 
through the use of abstract data types (Dahl, Myhrhaug 
and Nygaard, 1970; Guttag, Horowitz and Musser, 1978; 
Liskov, Snyder, Atkinson and Schaffert, 1977; Wulf, 
London and Shaw, 1976). Both concepts break up the 
implementation problem into manageable pieces, and 
delay many implementation decisions until the shell, or 
program abstraction, has been fully designed.

For each abstract data type a set of primitive oper­
ations are defined. The representation of instances of the 
type and the implementation of the primitive operations 
are completely internal to the abstract data type defin­
ition. The set of operations must be complete, in the sense 
that every operation required for a given object during 
the execution of a program must be derivable from the 
set of operations provided for the type with which the 
object is associated. Strong type checking forces con­
formity. One further advantage follows: the contexts in 
which a data object may appear are defined by the legal 
operations for that object. Hence code can be written 
not only without knowing the underlying representation 
of an object (data independence) but also without know­
ing more about its type than that certain operations are 
defined for it. Such generic procedures allow the express­
ion of the logic of a routine without over-defining the 
objects on which it can work. The saving on programmer 
effort is obvious: if several abstract data types have certain 
operations in common, then it is possible to write generic 
procedures in terms of these common operations (Gries 
andGehani, 1977; Liskov etal., 1977; Wulf et at., 1976).

“Copyrighti© 1980, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of 
this material is granted; provided that ACJ’s copyright notice is 
given and that reference is made to the publication, to its date of 
issue, and to the fact that reprinting privileges were granted by 
permission of the Australian Computer Society.”
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Even in a language such as Pascal, which does not 
support data abstractions as such, there exist operations 
which are defined for many different types. These include 
succ , pred, ‘>’ , *<’ etc. for ordered types, ':=’ for all 
types, and etc. for numeric types. Any routines
expressed in terms of such operators could, in theory, be 
generic. There is a strong parallel here with variant record 
types. With a variant record, routines can be written which 
will accept any of the possible variants of a record but 
access only the fixed part of such records. Just as such a 
routine can only ‘use’ those fields which all records of the 
variant have in common1, a generic routine can only use 
those operations which all objects appearing in that con­
text have in common. The necessary set of operations in 
such a context for an object we call a requirement. Con­
sider the requirementsortable. A list issortabie if

(i) an ordering relation is defined on the com­
ponents of the list, and

(ii) any two elements in the list can be inter­
changed.

Thus the primitive operations required before an object 
can appear in a sortable context are

(i) an inorder operation, which acts on a given 
pair of list components to yield a boolean 
result; and

(ii) a swap operation, which interchanges two 
components of a list.

Although the first of these operations is likely to be 
a primitive for a data type (if it applies at all), the swap 
operation is not. In general the basic operations for a 
procedure, in this case a sort routine, may be at a higher 
level than is likely for the primitive operations of a data 
type. The latter is likely to support a general copy oper­
ation (or assignment) instead. If, rather than the swap 
operation given above, the assignment operator were to be 
specified in requirement sortabie, we can see that we 
would be demanding more power than is absolutely necess­
ary. When considering the general operation of generic 
procedures this fact is not particularly worrying: the

1. (Short of testing the tag field to find out more about the 
object).

of East Anglia, Norwich, England. Brian Lings is with the Department 
67. Manuscript received 16 May 1980.
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swap procedure can be included in line, or written as a 
generic procedure itself. However, the implications for 
generic procedures in a security-conscious environment 
are somewhat greater.

It has been suggested that security can be provided 
in programming languages by allowing a user to restrict the 
set of operations which a procedure may apply to a para­
meter (Jones and Liskov, 1978). For example, a user may 
pass a file as a parameter to a procedure, but restrict 
usage by the procedure to the append operation. The 
procedure would be prohibited from accessing or over­
writing confidential information.

It is the thesis of this paper that, if security of data 
is required, it is not enough to be able to limit a sub­
user’s access to data by passing him only a subset of the 
defined primitive operations on that data. These oper­
ations in themselves may be too powerful, and only certain 
aspects of their behaviour should be given.

Let us consider the problem of sorting an array of 
confidential records. We want to be able to invoke a sort 
procedure in such a way that it will not be possible for the 
sort procedure to examine or copy individual records. At 
the very least, it must be possible for the sort procedure 
to compare the key values of two array elements and to 
exchange two arbitrary array elements. In order to ex­
change two array elements, both the primitive operation 
to access an array element and the primitive operation to 
redefine an array element must be used. If a programmer 
can exchange two elements in an array through the use of 
these primitive operations, then he can also exchange 
elements between the given array and a rigged private 
array. A solution to the problem is to define a non­
primitive swap operation which will exchange two elements 
of a single array. This non-primitive operation may be 
permitted, rather than the more powerful set of primitive 
operations which must be used to implement swap.

In section 2, a facet is defined to be a set of oper­
ations2 for a data type. In general, given one view of data, 
a facet can be used to define another (possibly more 
restricted) view. It is possible for a program to pass a 
facet of a data instance (i.e., the data instance with the 
restriction that only facet operations may be applied to 
it) as a parameter to a procedure and thereby precisely 
control, the procedure’s use of the data instance.

For purposes of illustration, programming language 
features for defining and using facets are introduced 
through a number of examples. We do not attempt a full 
or formal definition of the language used. We base our 
notation on Pascal (Jensen and Wirth, 1974; Wirth, 1971).

In section 3 we consider facets of compound data 
instances. By packaging parameters into a single facet 
definition, a user can control operations involving more 
than one data instance. For example, a user may permit 
information to be moved from one data instance to another 
specific data instance without allowing information to be 
moved to an arbitrary data instance. Section 4 addresses 
some issues which, for the sake of clarity of presentation, 
are only lightly touched on in the earlier text.

The problem of generalizing iteration to user defined 
data types (e.g., so that it is possible to iterate over nodes 
of a tree as well as elements of an array) has been con-

2. We consider all operations to take the form of function and
procedure invocations. The ideas presented here can be applied 
in environments supporting other types of operations.

7 26

procedure sort (var \/: sortable <T> ; n : integer)-, 

var /, / : integer; 

begin

for / := 1 to /?—1 do 

for / := 1 to n-i do

if not T.injorder (V,jJ+1) then 

T.swap (V,j,j+1)

end;

Figure 1: A generic bubble sort.

specification of sortabie requirement for 7”;

function in_order (T; integer-, integer)-, boolean 

procedure swap (var 7";integer)integer))

Figure 2: Specification of the sortable requirement.

sidered by others (Liskov et at., 1977; Shaw, Wulf and 
London, 1977). In section 5 we show how generalized 
iteration can be supported through the use of facets, 
without any special case extensions to a language. We 
also consider briefly the interaction between facets and 
parameterized types (Gries and Gehani, 1977; Liskov eta/., 
1977; Wulf et a/., 1976).

The language features discussed here are currently 
being implemented. Some implementation considerations 
are mentioned in section 6. Section 7 is the conclusion.

2. FACETS OF SINGLE OBJ ECTS
If it is known that particular operations are defined 

for a formal parameter, then it may be possible to write a 
generic procedure which will process the parameter using 
only these operations. Instances of any type supporting 
the operations may be processed.

Using a notation similar to that of Gries and Gehani 
(1977), Figure 1 shows a generic procedure to sort a 
vector, V, having n elements. In effect, the type of V is 
passed to the formal parameter T. We qualify the unknown 
type, T, with sortable to indicate that the actual type 
corresponding to T must satisfy the sortabie requirement, 
which is defined in Figure 2. A requirement specifies the 
set of operations and the format of each. No semantic 
information is currently given3.

If index ^vector is an abstract data type supporting 
the primitive operations in-order and swap such that, for 
any instance x of index ^vector,

3. It is anticipated that semantic information will eventually 
be added using algebraic axioms. These would have to be satisfied 
by any facet purporting to satisfy a requirement.
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type employeejrecord = record

key : integer; 

name : text 

end;

index .vector = array [1..1003 oft employee jrecord; 

define keyorder = sortable facet of index.vector having

function in.order (vec: keyorder; i,j\ integer)'.boolean;

begin in.order :=rep vec[i) ^ .key <= rep vec{j] ‘t.key end; 

procedure swap (war vec\ keyorder; i,j: integer); 

var temp\ \ employee .record; 

begin

temp := rep vec [/]; 

rep vec [i] := rep vec (/]; 

rep vec [/] := temp 

end;

Figure 3: Definition of a sortable facet. 

index, vector, in .order (x,i,j)
returns true when the value of the /' th element of x is in the 
correct order (less than or equal to for a sort into ascend­
ing order) with respect to the j th element and false other­
wise, and

index .vector.swap (x,i,j) 
will exchange the / th and/ th elements of x, then

sort (x,n)
will sort the first n elements of x.
Unfortunately, an abstract data type for vectors may not 
have in.order and swap defined as primitive operations. 
However, it is likely that these operations can be defined 
in terms of lower level primitive operations. Therefore, 
we can define a restricted view of a type, called a facet, as 
shown in Figure 3. The restricted view is expressed in terms 
of a set of permitted operations.

If x is of type index.vector then 
sort (x <keyorder>, 100)

will cause x to be sorted. The restriction, <keyorder>, 
constrains sort to the keyorder facet of x.

Within the definition of the keyorder facet, the rep 
operator may be applied to a parameter of type keyorder 
to produce the underlying index.vector. Hence the key- 
order operations may be defined in terms of index.vector 
operations. The rep operator may not be used elsewhere. 
(See §4 for further discussion of rep).

We have defined a secure interface between a calling 
program and a sort procedure. It would not be possible for 
sort to look at or modify any of the records to which 
elements of x point. At most sort can determine the per­
mutation required to correctly order x. At worst sort 
can return an incorrectly ordered vector, but one with no 
information added or removed. The same interface could 
be used for more complicated and more efficient sort 
procedures4.
4. We have restricted ourselves to a simple problem where it 
probably is as easy to define a safe sort procedure as it is to define 
a safe interface to an unknown sort procedure. However, the 
method generalizes to more complicated situations.

type bankrecard = record

account; 0.. 999999; 

name ; text; 

balance ; integer; 

status ; (credit, overdrawn) 

end;

bankfiie = array [1.. 1000] of bankrecord; 

define name.order = sortabie facet of bankfiie having

function in.order (bf ; namejorder; i,j ; integer) ; boolean;

begin in.order := rep bf [/] .name <= rep bf [j] .name end; 

procedure swap (var bf : name.order; i,j ; integer); 

var temp ; bankrecord; 

begin

temp := rep bf [/] ; 

rep bf [/] ;= rep bf [/]; 

rep bf [/'] := temp 

end;

define accountjorder = sortabie facet of bankfiie having

function injorder (bf ; accountjorder; i, j : integer) ; boolean;

begin in.order := rep bf [/] .account <= rep bf [j] .account end; 

procedure swap (var bf ; accountjorder; i,j ; integer); 

begin namejorder.swap (rep bf <name_order> ,i,j) end;

Figure 4; Two sortabie facets of a common type.

We emphasize that, unlike basic operations in a 
data abstraction definition, the operations defined in a 
facet are user oriented and will be defined in terms of the 
more primitive operations available for the data type. 
They can also be redefined for different facets of the same 
data type which also meet the given requirement.

The first point is important when libraries of data 
abstractions are being used; the fact that required oper­
ations do not exist as primitives for a type does not in 
itself preclude the presentation, to a routine, of a specific 
facet of an instance of that type. The second point is 
important if true generality is to be achieved; there may be 
several ordering relations by which, for example, an array 
may be sorted. Both points are essential if full control 
over access to data is to be maintained.

In Figure 4, two different sortabie facets are defined 
for a bankfiie. The statement

sort (savings <name.ordef>, n) 
will sort the first n records of the savings bankfiie on the 
name field, while

sort (savings <account.ordef>, n) 
will sort on the account field.
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specification of selectable requirement for T;

function is .required (T\ integer): boolean-, 

procedure select (var T; integer, var integer)-, 

define select.debtors = selectable facet of [from, to', bankfiie] having 

function is.required (pair: seiectjdebtors; i:integer):boolean;

begin isjequired := rep pair,from[i]. status = overdrawn end; 

procedure select (var pair: seiectjdebtors-, i: integer-,var j: integer); 

begin

/;= /+1;

rep pair, to [j] :=rep pair, from [/'] 

end;

Figure 5: A facet of a compound object.

This example is,based on an example given in Jones 
and Liskov (1978). The solution given there would permit 
a rogue programmer to exchange information between the 
given bankfiie and a rigged private bankfiie. In addition, 
separate procedures would be required for sorting on 
different fields.

We note that facets may be used in any situation 
where it is necessary to map one view of data onto another 
(possibly more restricted) view. For example, given a point 
in a plane represented in polar co-ordinates, it would be 
possible to define a rectangular facet, supporting oper­
ations getx, setx, gety and sety (with obvious semantics), 
to map the data onto a rectangular co-ordinate system 
view.

3. FACETS OF COMPOUND OBJECTS
In addition to controlling the processing of indivi­

dual parameters, a user may wish to control the inter­
action of a combination of parameters.

Suppose we have two bankfiles (as defined in Figure 
4) named main and red. We wish to invoke a procedure 
to copy those bankrecords of main with status overdrawn 
into red. We do not want to permit the procedure to copy 
bankrecords of main to any other destination.

The definition of a seiectjdebtors facet of a pair 
of bankfiles is given in Figure 5, and a generic procedure 
which will process the facet is given in Figure 6. The 
procedure may be invoked by:

prepare.subdist ([main, red]<seiect.debtors>, m,n), 
where m is the number of bankrecords in main and on 
exit n will contain the number of entries in red. The square 
brackets indicate that main and red are to be treated, for 
the purpose of the call, as a single unit. We call such a unit 
a Compound. Within the definition of select-debtors 
individual elements of the unit may be selected in the 
same manner as components of a record structure.

Note that a procedure which processes a unit, such 
as prepare.sub.iist, does not need to know (and in fact 
cannot know) that one of its parameters is compound. 
Facets of compounds satisfying a particular requirement 
need not all be facets of compounds with the same number 
of elements.
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4. A CLOSER LOOK AT SECURITY
We have used the term ‘security’ freely in the text, 

but have not as yet defined it. We now attempt such a 
definition, though it is worth bearing in mind that this is 
our working definition, not an attempt to force conform­
ity of view on the semantics of the term.

A data object is defined to be secure if the owner 
(creator) of that object has precise control over granting 
access to it. Such an object must only be accessible in a 
prescribed manner, the prescriptions being individually 
tailored according to need-to-know and right-to-know 
criteria.

Total security is obviously impossible unless no 
communication takes place at all: once access has been 
granted we rely on the grantee to protect the information 
with which he is provided. With these facts in mind let us 
take an overview of requirements and facets.

Requirements and facets are governed by the same 
scope rules as procedures. Conceptually, a complete pro­
gram must be compiled at once: any problems arising 
through using separate compilation of modules must be 
resolved in favour of the tight type checking provided 
by single compilation.

If a subsystem programmer wishes to ‘protect’ one 
of his own variables using a facet defined by another pro­
grammer (for example, the project leader) then he must 
have implicit trust in the facet definition. If, however, 
tight security is required then a new facet must be defined 
— perhaps as a copy of the original — to bring it under the 
control of the subsystem.

Whoever owns (that is, defines) a facet, F, of a 
type, T, has amplification rights (Wulf et a/., 1976) within 
the facet procedures and functions (via the rep operator). 
These allow him to apply functions on type T to objects 
whose F facets are supplied. Hence tight security is only 
available to the creator of the facet.

5. FURTHER EXAMPLES AND EXTENSIONS
5.1 Iterators

In a traditional programming language it is possible 
to iterate over the elements of an array (e.g.,

procedure prepare _subjist {var lists:selectable <T>

from_size:integer; varto_size:integer);

var current: integer;

begin

to_size := 0;

for current := 1 to fromjsize do 

if T. is ^required (lists, current)

then T.se/ectdists,current, to^size)

end;

Figure 6: Procedure Prepare.Sub.List.
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for / := 1 to n do a[i] := 0; 
will zero an array).

Gries and Gehani (1977) have suggested ad hoc 
extensions so that

for element in structure do.. . ; 
may be used to iterate over the elements of structure 
where structure may be a set or any of a number of other 
standard structured objects. Facilities for defining iteration 
over the components of instances of a user defined abstract 
type are provided in Alphard (Shaw et at., 1977) and 
CLU (Liskov et al., 1977). Facets can be used to interface 
arbitrary data structures to a generic for without ad hoc 
extensions to a language, in this case Pascal-Plus (Welsh 
and Bustard, 1979).

Rather than introduce special primitive forms, let us 
consider an envelope,for. The envelope will have one 
parameter, an iterable facet of an item. The requirement 
iterable as defined in Figure 7 demands two procedures 
and one function. The required envelope can now be 
defined using only these three routines (Figure 8). If we 
wish to iterate over the elements of a vector we can define 
an iterable facet for the type combination [vector, integer], 
where an instance of the record type will act as a cursor 
during the iteration. Such a facet is shown in Figure 9; in 
this instance we are processing the elements in reverse 
lexicographic order. The elements in the vector vec can 
now be printed by the statement

instance loop: for {[vec, /] <descending>) 
write (vec[i]) ;

A nested loop can also be constructed easily, viz.:

instance outerJoop : for ([vec,I] <descending>)
instance inner-loop : for ([vec,j] <descending>) 

begin

end;

We could, of course, treat iteration as a special case by 
specifying the requirement iterable and the envelope for 
in a language prelude. A special syntactic form similar to 
those in current languages could then be provided as an 
alternative to those above, viz.:

for / through vec<descending> do
for j through vec <descending> do 

begin

end;

Such facilities are desirable, but in no way enhance the 
power of the language features proposed.

A further example is shown in Fig. 10, where iter­
ation over the nodes of a tree (to be processed in sym­
metric order) is catered for. The ‘cursor’ in this case is a 
refstack (or stack_of_tree). For convenience we assume 
that refstack is a data structure for which the usual stack 
procedures are provided. Using the notation introduced 
above we may now say

for cursor! through treel <inordef> do 
assuming correct declarations for cursorl and treel. 
Further examples, assuming relevant definitions, are
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specification of iterable requirement for T; 

procedure cursorJnit (var 7"); 

function more (T) : boolean; 

procedure next (var T);

Figure 7. Specification of the iterable requirement.

envelope for (s:iterable<T>); 

begin

T. cursor Jnit (s); 

while T. more(s) do

begin

*** .

T. next(s) 

end

end;
Figure 8. Declaration of a generic for.

for cursorl through treel <preorder> do
for cursor2 through tree2 <postorder> do 

begin

end;

5.2 Private Types
Facet descriptions of compound objects are required 

above by the need for a cursor local to the section of code 
using the facet. In Ada (1979) the idea of a private type, 
where only assignment and equality operators are defined, 
is introduced. Particularly for recursion it is very useful to 
have a routine provide storage for data which is otherwise 
under the control of a facet: consider tree traversals or a 
Quicksort algorithm. This can be accommodated in facets 
in a simple and consistent manner by allowing type defin­
itions as well as procedure and function definitions within 
a facet declaration. A procedure provided with a facet F 
defining type t can then declare local variables of the 
above form by the declaration

var a,b: F.t;

where a and b may only be employed as parameters to 
procedures defined in F, and in the forms

(a= b) 
a:= b;

Discussion is left to a subsequent paper.
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define descending = iterable facet of [iz: vector,i-.integer] having 

procedure cursorJnitivar a: descending)', 

begin

rep a.i: = rep a. v. top 

end;

function more [a'.descending) : boolean; 

begin

more := rep a.i> rep a. v. hot 

end;

procedure next(var a: descending); 

begin

rep 3./:= rep 3./-1 

end;

Figure 9: Definition of the descending iterable facet for a vector.

5.3 Parameterized Types
Language facilities for parameterized types have 

been widely advocated (Gries and Gehani, 1977; Liskov 
et ai., 1977; Wulf et al., 1976). Facets can be used in an 
environment which supports parameterized types.

Figure 11 depicts a modification to Fig. 10 in order 
to allow the use of a generic type tree. If b is a tree 
(integer) then we can process the values of the nodes of 
b, in symmetric order, by

for cursor through b <Jnorder> do 
In this case cursor must be of type stack_of_tree(u). 6

6. IMPLEMENTATION CONSIDERATIONS
There are several ways to implement generic pro­

cedures of the type considered in section 2.
A compiler can produce a separate object code pro­

cedure for each combination of actual parameter types 
used in invocations of a generic procedure. We note that 
if generic procedures were not provided, a user would have 
to produce a separate source code procedure for each 
combination of parameter types.

Alternatively, for each actual parameter corres­
ponding to a generic formal parameter, we can pass both 
the data item and the operations with which to process it. 
This would reduce speed slightly, but could significantly 
reduce the amount of object code.

In some situations, a third approach may warrant 
consideration. If a generic procedure is invoked by a 
program running on one machine but is to be executed on 
another, possibly untrustworthy, machine, then it may not 
be desirable to pass secure data at all. Instead, the pro­
cedure may be required to request the invoking machine 
to perform all desired operations on the secure data. This 
is not likely to lead to a very efficient implementation. 
Flowever, one machine is allowed to keep its data securely 
at home, the other machine is allowed to keep its con­
fidential software secret, and yet the two can interact.

130

type tree = t cell;

cell = record left, right', tree;

value: integer

end;

define inorder = iterable facet of [f: tree,s', refstack] having 

procedure cursor-init (var a :inorder); 

var temp : tree ; 

begin with rep a do begin 

in it (s); temp :=t; 

while temp < > nil do

begin push (s, temp) ; temp:=temp t . left end 

end end;

function more (a: inorder): boolean; 

begin

more := not empty(rep a.s) 

end;

procedure next (var a:inorder); 

var temp'.tree; 

begin with rep a do begin 

temp := top(s)t .right; 

pop(s)

while temp< >nil do 

begin

push(s, temp); 

temp := temp t.left 

end 

end end;
Figure 10: Definition of the inorder iterable facet for a tree.

The implementation of facilities to support para­
meterized types has been considered elsewhere (Gries and 
Gehani, 1977). No particular problems appear to arise from 
the interaction of facets and parameterized types.

Compound objects, as discussed in section 3, can 
be passed as records of pointers. A record will have one 
field for each object in the package.
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type tree (u: type) = tcell (u) ;

cell (u:type) = record left, right-, tree [u);

value (u)

end;

define inorder = iterable facet of [f.tree {u),s:stack {tree (u))] having 

type refstack = stack (tree (u)); 

procedure cursor Jnit (var a\ inorder);

procedure next (var a : inorder) ; 

var femp : free (u) ;

Figure 11: Definition of a general tree and part of its inorder 
iterable facet.

7. CONCLUSION
A facet is an alternative (often restricted) view of a 

data type. The view is expressed as a set of permitted 
operations. The extensions to a language needed to pro­
vide the facet facility are seen to be minimal. The resultant 
increase in the power of the language is, however, sig­
nificant.

Security can be greatly enhanced by using facets to 
define safe interfaces between procedures.

Even where security is not important, facets are 
useful in mapping one view of data onto another. In partic­
ular, facets may be used to define a uniform restricted 
view of several types. Generic procedures can be written 
in terms of the uniform view. For example, a generic for 
may be written to iterate over components of a compound 
data structure. In some cases, several different forms of 
iteration for a single type may be desired (e.g., preorder 
and postorder for trees). A facet may be defined for each 
form of iteration required. Each facet defines a different 
interface to the generic for.

Many other facilities are desirable, though they do 
not enhance the basic power of the proposed features. 
These include new combining forms for facets and the 
parameterization of facets. We are currently investigating 
the use of facets in a parallel environment.
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The Minimal Directed Spanning 
Graph for Combinatorial 
Optimization
Selim G. Akl*

This paper introduces a graph theoretic structure for combinatorial optimization: the minimal 
directed spanning graph. The new structure — a generalization of the minimal spanning tree 
for directed graphs — is used to design an approximation algorithm for the asymmetric travelling 
salesman problem. Experiments with the algorithm are described which suggest that future studies of 
the applicability of the new structure to The solution of other combinatorial optimization problems 
might prove worthwhile.

Short-form title: The Minimal Directed Spanning Graph.
Keywords and phrases: approximation algorithm, asymmetric travelling salesman problem, 

bipartite matching, combinatorial optimization, minimal directed spanning graph.
CR categories: 5.25, 5.39, 8.3

1. INTRODUCTION
The travelling salesman problem (TSP) is the prob­

lem facing a salesman who has to visit each of a number of 
cities exactly once and return to his point of departure 
while minimizing the cost of his trip. The TSP belongs to 
the infamous class of NP — hard problems24 for which no 
polynomial-time algorithm is known. Existing algorithms 
have running times which grow exponentially with the 
number of cities4'22. For large problems this is impractical 
and approximation algorithms have been devised to yield 
a satisfactory — but not necessarily optimal — answer9'20 
The reader unfamiliar with the TSP should consult the 
excellent surveys in References 5 and 12. Some actual 
applications where the problem arises are discussed in 
Reference 19.

One interesting feature of the majority of published 
algorithms for the TSP is that, they rely primarily on the 
symmetry of the cost matrix (i.e., the cost of going from 
city a to city b is equal to the cost of going from city b 
to city a). On the other hand, algorithms for general prob­
lems — which do not assume symmetry — behave very 
badly on symmetric cases6'7. In this paper, we describe 
an approximation algorithm especially designed for the 
directed (i.e., asymmetric) TSP. The algorithm is intimately 
related to the one for the symmetric case appearing in 
Reference 9 and uses the same basic principles.

In Section 2 the terminology is introduced and a 
graph-theoretic concept upon which our algorithm is 
based is defined. The algorithm is stated and analyzed in 
Section 3. Section 4 is devoted to the discussion of a 
topic related to our present study — the weighted bipartite 
matching problem. The results of an empirical analysis of 
the TSP algorithm are reported in Section 5.

2. DEFINITIONS
One way of expressing a TSP is through the use of a

“Copyright © 1980, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of 
this material is granted; provided that ACJ’s copyright notice is 
given and that reference is made to the publication, to its date of 
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permission of the Australian Computer Society.”

graph where nodes represent the cities and arcs the routes 
connecting them. For this reason, various concepts from 
graph theory have greatly influenced the work on approx­
imation algorithms for the TSP. These include the minimal 
spanning tree, the optimal perfect matching, the Euler 
circuit and the Flamilton circuit. In particular, the con­
tribution of the minimal spanning tree was twofold: it 
provided good estimates for the optimal tour7'12, as well 
as efficient algorithms for an approximate solution9'25. 
Let us therefore recall some of these useful concepts from 
graph theory. The terminology we shall use is mostly from 
Reference 18 to which the reader is referred for the more 
fundamental definitions.

1. A tree is a connected graph which contains no 
cycles. Given an undirected connected graph G, a partial 
graph G’C G which is a tree connecting together all nodes is 
called a spanning tree.

2. In a directed graph the number of arcs leaving a 
node is called the out-degree of that node. The in-degree 
of a node is the number of arcs entering that node. If 
for a given node the in-degree is larger than the out-degree 
we say that the node has an out-degree deficiency whose 
value is the in-degree minus the out-degree. The in-degree 
deficiency is defined similarly. A graph is balanced when 
for each node the in-degree equals the out-degree.

3. A directed tree is either rooted to a node or 
from a node. A tree rooted from a node is a tree in which 
the in-degree of that node is zero and the in-degree of each 
of the other nodes is at most one. A tree rooted to a node 
is a tree in which the out-degree of that node is zero and 
the out-degree of the other nodes is at most one. A 
directed spanning tree (rooted to or from a node) is a 
directed graph whose underlying undirected graph is a 
spanning tree.

4. A graph in which a number Wjj is associated 
with every arc (i,j) in the graph is called a weighted graph 
and the number Wjj is called the weight of arc (i,j). A 
minima! spanning tree (MST) is that spanning tree with 
the minimum sum of arc-weights. The minimal directed 
spanning tree (MDST) is defined similarly. The cost matrix 
of an n-city TSP is an nxn matrix whose (i,j)th entry is

*The author is with the Department of Computing and Information Science, Queen's University, Kingston, Ontario, Canada. This work was 
supported in part by the Natural Sciences and Engineering Research Council of Canada under Grant NSERC-A3336. Manuscript received 
16 October, 1979. Revised 18 August, 1980.
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the cost of going from city i to city j. This cost is equal to 
wy the weight of arc (i,j) in the corresponding directed 
graph.

5. An Euler circuit of a directed graph is a circuit 
such that every arc of the graph appears on it exactly once. 
A directed graph whose underlying undirected graph is 
connected possesses an Euler circuit if and only if it is 
balanced. Such a graph is termed Eulerian.

6. A Hamilton circuit of a directed graph is a 
circuit such that every node of the graph appears on it 
exactly once. The solution to the TSP defined on a directed 
graph is a minimum-weight Hamilton circuit.

7. A bipartite graph is a graph whose nodes can 
be partitioned into two sets T-\ and I2 such that no two 
nodes in T; or in T2 are adjacent (i.e., all arcs extend 
“between T^ and T2"). A subset of the arcs of a bipartite 
graph is said to be a matching if no two arcs in it are 
incident to the same node. A matching which ‘covers’ all 
nodes is said to be complete.

8. A directed graph is said to be complete if for 
any two of its nodes i and j there exists an arc connecting 
i to j. A complete directed graph on n nodes has therefore 
n(n-1) arcs.

9. Finally, we introduce a new definition of our 
own: a minimal directed spanning graph (MDSG) is a 
partial graph of a complete directed and weighted graph 
on n nodes which has minimum weight and whose under­
lying undirected graph is connected and acyclic. This is 
equivalent to saying that the underlying graph is an MST 
in which arc (i,j) is such that Wjj=min(wjj,Wjj), where (i,j) 
and (j,i) are arcs of the complete graph. It should be noted 
that the MDSG differs from the MDST in that it:

(a) is unrooted, and
(b) has no restrictions imposed on the in- or out- 

degree of its nodes.
This concept of an MDSG will be used in the next section 
to develop an approximation algorithm for the asym­
metric TSP.

that cost, i.e., i-*j or j-*i.
Step 2: Since

2[(in - degree deficiencies) - (out-degree 
deficiencies)] =0, the addition to the 
MDSG of arcs leaving nodes with out- 
degree deficiency and entering nodes 
with in-degree deficiency yields a bal­
anced graph which is also connected 
and hence Eulerian. Again, as in Step 1, 
the arc directions must be kept. Note 
that choosing an arbitrary set of arcs to 
obtain a balanced graph is a straight­
forward matter. An algorithm for obtain­
ing a ‘good’ set of arcs is discussed in the 
next section.

Step 3: A simple algorithm will generate the
Euler circuit8. Here we note the import­
ance of keeping the arc directions as 
mentioned in Step 1 and 2. This is clear 
from the example in Fig. 1: the Euler 
circuits resulting from graphs (a) and (b) 
in Fig. 1 will be quite different.

----- MDSG obtained in Step 1 ----- MST obtained in Step 1
-------- Arcs added in Step 2 -------- Arc added in Step 2

(a) (b)

Figure 1

3. AN ALGORITHM FOR THE DIRECTED TSP
Given a complete directed and weighted graph G 

with n nodes, the algorithm below computes a nearly 
optimal solution to the TSP defined on G. For clarity of 
presentation, step-by-step comments follow the algorithm.

3.1

3.2

Algorithm S
Stepl: Obtain an MDSG.
Step 2: Add a set of arcs to the MDSG in order

to make the directed graph thus obtained 
Eulerian.

Step 3: Find an Euler circuit in this directed
graph.

Step 4: This Euler circuit can be used (in a
manner described below) to derive 
several Hamilton circuits: among all such 
Hamilton circuits, choose the one with 
minimum weight. Stop.

Comments
Step 1: If we replace every w,j by min (wjj,wjj)

in -the cost matrix, and apply an MST 
algorithm23 on the new matrix we 
obviously get an MST with the same 
weight as the MDSG. It is important to 
store along with every entry in the cost 
matrix the direction of the edge having

Step 4: The method of getting a Hamilton circuit
from the Euler circuit is simple. Assume 
the Euler circuit is (n-|,n2, . . . ,n/_i,n/) 
where the nj’s represent the nodes of the 
graph and are not necessarily distinct. 
Since an Euler circuit visits every node 
at least once, one can build a Hamilton 
circuit by: starting at node n-|, moving 
to the right and introducing a node in 
the Hamilton circuit only if it appears 
for the first time. In order to generate 
all Hamilton circuits obtainable from 
the Euler circuit, two copies of the 
Euler circuit are placed contiguously, 
ni,n2, . . . ,n/_i,n/,ni,n2, . . . ,n/_i,n/, 
and the method just described is applied 
repeatedly / times, every time using the 
next node in (ni,n2, . . . ,n/) as the start­
ing node.

3.3 Complexity
In Step 1, the MDSG can be obtained in 0(n2) time 

if — as mentioned above — a modified-MST algorithm is 
used. A straightforward implementation of Step 2 will run 
in linear time: create a list of nodes with out-degree defi­
ciency and a list of nodes with in-degree deficiency; then
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TABLE 1
1 OO 7 65 68 34 81
2 19 OO 22 27 59 29
3 14 43 OO 62 77 65
4 76 53 64 OO 6 51
5 39 58 38 27 OO 13
6 46 67 27 11 38 OO

1 2 3 4 5 6

match a node from the first list with the first available 
node on the second list. Similarly, Step 3 is 0(n): the 
MDSG has (n-1) edges; at most as many edges will be 
added in Step 2 and the resulting Eulerian graph will have 
0(n) edges which can be traversed in linear time. Step 4 is 
obviously 0(n2). The overall time-complexity for the 
algorithm is therefore quadratic in n. The memory require­
ment is also 0(n2) when the cost matrix is stored in core.

3.4 Example
We now illustrate the operation of the algorithm by 

trying it on a small problem published in the literature®. 
For the cost matrix of Table 1 the best known TSP tour 
is (1,2,4,5,6,3,1) with cost 94 units.

The step-by-step solution using algorithm S is as 
follows:

Step 1: Obtain an MDSG; this is shown in Fig. 2.
Step 2: Nodes with out-degree deficiency =

{4,5}.
Nodes with in-degree deficiency = {3,6} . 
The set of additional arcs is {(4,3), (5,6)} 
The Eulerian graph is shown in Fig. 2.

Step 3: An Euler circuit of the graph in Fig. 3 is
(1,2,4,5,6,4,3,1).

Step 4: There are two Hamilton circuits obtain­
able from the Euler circuit.
1) (1,2,4,5,6,3,1) with cost 94 units.
2) (5,6,4,3,1,2,5) with cost 168 units.
The first circuit is chosen as the answer.

4. AN APPROXIMATION ALGORITHM FOR THE
WEIGHTED BIPARTITE MATCHING PROBLEM
It is not difficult to observe that a large number of 

arcs in the final answer yielded by algorithm S will be 
contributed by the MDSG and the set of arcs added in 
Step 2. It is therefore a good idea to try to make the 
weight of the set of arcs obtained in Step 2 as small as 
possible. By taking a number of copies of each node equal 
to its in- or out-degree deficiency the problem is easily 
reduced to the weighted bipartite matching problem18:

1 1

Figure 2 Figure 3

Given an arc-weighted bipartite graph, find a complete 
matching for which the sum of the weights of the arcs is 
minimum. There is an elegant solution to this problem 
which runs in 0(n3) time1®. For large values of n, how­
ever, this would probably be prohibitive. In practice, it is 
important that we keep the complexity of our algorithm 
within the quadratic bound. An 0(n2) approximation 
algorithm for the weighted bipartite matching problem 
which yields a good but not necessarily optimal answer 
should be considered (an exact 0(n2) algorithm is not 
known to exist).

Let N and T be the lists of nodes with in- and out- 
degree deficiency respectively after Step 1 of algorithm S. 
Let N’ and T’ be the lists obtained when N and T are 
augmented as follows: if a node has an in-degree (out- 
degree) deficiency equal to x, then (x-1) copies of that 
node are added to its list. Note that N’ and T’ have the 
same cardinality. Now consider the complete bipartite 
graph consisting of the two sets of nodes N’ and T’ and a 
set of arcs X such that each node in T’ is connected to all 
nodes in N’. The algorithm below will yield an approxi­
mate solution to the matching problem. We should point 
out that the algorithm is of the ‘greedy’ type11 and is 
based on the same ideas as the one for the nonbipartite 
matching problem described in Reference 2.

“Select a node i e T’ at random. Choose the arc (i,j) 
— where j e N’ — of minimum weight incident to i 
and add it to the matching. Delete nodes i and j and 
all incident arcs. Repeat until all nodes have been 
matched.”

This algorithm is simple to implement and experiments 
showed it to be quite efficient. It suffers, however, from a 
serious drawback: in some instances “greed does not pay” 
and the algorithm is often forced to make very bad choices 
towards the end of its task. A modification of this algor­
ithm is now presented in an attempt to cure this weakness. 
The idea is to try to match, early enough in the procedure, 
those nodes to which some heavily-weighted arcs are 
incident, thereby reducing the number of bad choices at 
the final stages.

4.1 Algorithm M
Step 1: For each node i e T’ find w, the sum of

weights of the arcs in X incident at i.
Step 2: Find the node j e T’ for which Wj > W|<

for all k e T’ (resolve ties arbitrarily).
Step 3: Choose the arc (j,i) such that Wji < Wjk

where i,k e N’, and i and k are not yet in 
the matching.

Step 4: Arc (j,i) is added to the matching, Wj is
set to zero and wk is replaced by wk—wkj 
for all unmatched k e T’.

Step 5: If any nodes are still unmatched go to
Step 2. Else stop.

The set of arcs obtained at exit from this algorithm is the 
one to be used in Step 2 of algorithm S.

4.2 Complexity
Each of Steps 2, 3 and 4 consists (at most) of n oper­

ations and is executed n times. The algorithm has therefore 
a complexity of 0(n2).

4.3 Example
For the cost matrix of Table 2 the best known 

directed TSP tour is (1,3,9,4,8,5,10,6,7,2,1) with cost 146
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1 OO 24 18 22
TABLE 2

31 19 33 25 30 26
2 15 OO 19 27 26 32 25 31 28 18
3 22 23 OO 23 16 29 27 18 16 27
4 24 31 18 OO 19 13 28 9 19 27
5 23 18 34 20 OO 31 24 15 25 8
6 24 12 17 15 10 OO 11 16 21 31
7 28 15 27 35 19 18 OO 21 21 19
8 13 24 18 13 13 22 25 OO 29 24
9 17 21 18 24 27 24 34 31 OO 18

10 18 19 29 16 23 17 18 31 23 OO

1 2 3 4 5 6 7 8 9 10

units11.
The behaviour of algorithm S (using algorithm M in 

Step 2) on this cost matrix is outlined below.
Step 1: Obtain an MDSG; this is shown in Fig. 4.
Step 2: The set of additional arcs is given by

{(1,6),(2,3),(5J8),(5J4)J{7J6),(9,3),(10,6)} 
Step 3: Obtain an Euler circuit in the graph of

Fig. 5; this is given by
(1.6.2.3.9.3.5.4.8.5.10.6.7.6.5.8.1) .

Step 4: The minimum-weight Flamilton circuit
obtainable from the Euler circuit in Step 
3 is
(1.2.3.9.4.8.5.10.6.7.1) 
with cost 169 units.

5. EXPERIMENTS
In dealing with a class of combinatorial problems — 

like the TSP — for which all known exact algorithms have 
a running time that grows exponentially with the size of 
the input, it is often useful to estimate the expected solut­
ion, or put some bounds on it. This estimate (or bound) 
can serve several purposes:
(1) In some distribution management problems it is 

sometimes necessary to estimate the expected dis­
tance that would be involved in supplying customers 
— when the exact locations of the customers are not 
known in advance — in order to decide, for example, 
upon the number and locations of depots.

(2) The branch-and-bound approach17 uses lower bounds 
to eliminate from further consideration whole parts 
of the decision tree that would otherwise have to be 
investigated.

(3) Finally, and most important for our purpose, when

Figure 4

Figure 5

an approximation algorithm is tested, a lower bound 
serves as a reference point against which near-optimal 
solutions are compared.
In the case of the symmetric TSP, a variety of esti­

mates of (and bounds on) an optimal tour have been 
derived3’7’12,13’14. This, and the fact that a set of stand­
ard problems of up to a few hundred cities appear in the 
literature15’21, that can be used for comparison pur­
poses, usually make the task of evaluating an approxim­
ation algorithm for the symmetric TSP a relatively easy 
one.

Quite surprisingly, very few asymmetric cost-matrices 
for the TSP have been published and even these are for 
trivial values of the number of cities1’6)1 °’17>22’26’27. 
Furthermore, in contrast with the symmetric case, it is 
quite complicated to derive an estimate of the solution, or 
put some bound on it, for general directed TSPs. Of course, 
a variety of lower bounds can be obtained for a particular 
instance of the TSP by solving the corresponding assign­
ment problem®’7. These, however, usually involve non­
trivial computations which would defeat the purpose of a 
fast approximation algorithm.

In this section we propose to empirically estimate 
the quality of the answer provided by algorithm S. In 
order to do so we shall need — as noted above — a reference 
point against which our approximate solution is to be 
compared. It is interesting to observe that a lower bound 
on the weight of the optimal tour for a directed TSP is 
the weight of the MDSG. (To see this, remove the arc of 
largest weight from the optimal tour: what is left is a 
directed spanning graph whose weight is larger than or 
equal to that of the MDSG.) The computation of this 
bound is not only simple but also a basic step of the 
algorithm we are trying to evaluate.

Algorithm S was tested on random asymmetric cost 
matrices. Matrix entries were selecred uniformly from the 
interval (0,1) by a uniform random number generator. Let

n = number of cities,
S = weight of the approximate solution pro­

vided by algorithm S,
MDSG = weight of the MDSG

and R = S/MDSG.

Table 3 summarizes the result of a Monte Carlo 
experiment where E(R) and SD(R) are average value and 
standard deviation of R computed over 100 randomly 
generated problems with asymmetric cost matrices.
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TABLE 3

n E(R) SD(R)

50 1.38 0.04

100 1.30 0.04

150 1.21 0.03

200 1.16 0.03

As Table 3 shows, the answer provided by algorithm 
S for n < 200 is on the average no worse than 3/2 times 
the lower bound.

In conclusion, we mention that various algorithms 
using the ideas presented in this paper are currently being 
developed to address a number of related combinatorial 
optimization problems.
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Marginal Totals for 
Multidimensional Arrays
John Burr*

Efficient procedures are derived for computing arrays of marginal totals S from any given 
multidimensional array X, for use when the number of dimensions in X or S is unknown at the time 
of writing the program. Generalized transposition of X is included as a special case.
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1. INTRODUCTION
This paper develops two efficient procedures for 

computing arrays of marginal totals S from any given 
multidimensional array X. This problem is of special 
interest in those cases where the number of dimensions in 
X or S, that is, the number of subscripts needed to identify 
any one element of the array, is unknown at the time of 
writing the program. The same procedure can be used to 
effect generalized transposition of X, which is merely the 
special case when S has the same number of dimensions 
as X.

The first procedure runs sequentially through the 
elements of X, and this will be the natural choice when 
main memory can hold S but is too small to hold the 
whole of X. The second procedure runs sequentially 
through the elements of S, that is, it sums all those ele­
ments of X that contribute to a given element of S before 
setting to work on the next element of S. This will be the 
natural choice if the elements of S are to be used without 
necessarily being stored, for example, if we only wish to 
know the sum of the squares of the elements of S. When 
memory size is not a constraint, the second procedure 
will usually execute a little faster than the first.

This problem occurs in survey analysis, and in the 
analysis of variance of complete factorial experiments. I 
developed these procedures for use in my own programs 
15 years ago, and I feel sure that other programmers must 
be using them also, but I have never seen them in pub­
lished form. There is some slight overlap with the work of 
Guttmann (1976) and Meyer (1978) on multiple sums of 
a function with many arguments.

2. TERMINOLOGY AND NOTATION
I propose to borrow two words, factors and levels, 

from the terminology of factorial experiments. My aim 
is to avoid the ambiguity associated with the term “dimen­
sion”, by replacing it with a term having more concrete 
associations. As an example, an agricultural field trial may 
be designed to compare yields of wheat with four differ­
ent strengths of application of a fertilizer. We then say 
that “Fertilizer” is a factor with four levels. The same 
experiment might also employ “Depth of ploughing” as 
a factor with two levels, “Harvest time” as a factor with
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three levels, “Varieties” (of wheat) as a factor with five 
levels, and “Blocks” as a factor with two levels. In a com­
plete factorial experiment, all possible combinations of 
levels occur, so that the design described above would be 
called a five-factor experiment involving

4x2x3x5x2 = 240 observations.
Notice that the five varieties will probably be labelled 
1, 2, 3, 4 and 5 in some arbitrary order, the labels having 
no quantitative significance, but we nevertheless say that 
this factor “occurs at five levels”. It is convenient to 
abbreviate each factor name by its initial letter, so that the 
five-dimensional array X may be called FDHVB. If we now 
refer to an array of marginal totals (or means) by the 
name FHV, it is at once apparent that this will be a three- 
dimensional array obtained by summing (or averaging) 
over all levels of D and B. In the sequel, I shall sometimes 
refer to the factors (or dimensions) of X by the names 
A, B, C, D, .. . in that order.

In the algorithms and program fragments in this 
paper, all variables and arrays, other than formal para­
meters, are treated as global. V is a real one-dimensional 
array large enough for the physical storage of both X 
and S, and T is a real variable. (Alternatively, V, X, S and 
T could be all integer, or all double precision, or all com­
plex, but for definiteness I shall call them real.) All other 
variables and arrays are of type integer, and most of these 
are described below.

nfx
nfs =
nfns =

k =
lev(k) 
jmax(k) =
j(k) =
nx =

ns =
I OCX =
Iocs =
jx
js

number of factors in X. 
number of factors in S. 
number of factors not in S 
nfx — nfs.
index ranging from 1 to nfx. 
number of levels of the kth factor in X. 
lev(k) — 1.
kth subscript value in X, with range 0 to jmax(k).
number of elements in X
product of lev(1),. .., lev(nfx).
number of elements in S.
starting point for X in the array V.
starting point for S in the array V.
index ranging from locx to locx + nx — 1.
index ranging from Iocs to Iocs + ns — 1.

I have adopted a convention compatible with Fort­
ran, such that as we scan the elements of X from left to 
right starting at V(locx), where every j(k) is initially zero,
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the values of j(1) will cycle most rapidly, the values of 
j(2) will cycle less rapidly than those of j(1) but more 
rapidly than those of j(3), and so on. Hence the general 
element of X, with subscripts j(1), . . . , j(nfx), will be 
physically stored at V(jx), where

jx = locx + mx(1)*j(1) + . .. + mx(nfx)*j(nfx) 
and the multipliers mx(k) are defined by: 

mx(1) = I,
mx(k) = mx(k—1)*lev(k—1), k = 2,. . ., nfx.

Other integer arrays will be described as the need arises.
To improve readability, I sometimes use hyphens 

within procedure names, and I use closing delimiters endif 
and endfor to avoid the ugly proliferation of the delimiters 
begin .. . end.

3. SUMMING SEQUENTIALLY IN X
If we knew the number of factors in X to be 4, 

for example, we could use the following loops to gener­
ate marginal totals in S, after some suitable initialization 
(to be described below).

jx «-locx;
for j(4) "-0 to jmax(4) do 

for j(3) <-0 to jmax(3) do 
for j(2) <-0 to jmax(2) do 

for j(1) *0 to jmax(1) do 
js * Iocs + ms(1 )*j(1) + ms(2)*j(2)

+ ms(3)*j(3) + ms(4)*j(4);
V(js) * V(js) + V(jx); jx * jx + 1 

endfor 
endfor 

endfor 
endfor

The elements of S, that is, the ns elements of V starting 
at V(locs), must be initially set to zero, and the multi­
pliers ms must be initialized in the manner described 
below. I give first a simple example, then the general case.

Suppose that the factor name of X is ABCD and the 
factor name of S is CAD, which means that we are not 
only summing over the levels of B, but also transposing so 
that C becomes the most rapidly varying factor in S. Here 
ms(3) is 1, since js must be increased by 1 whenever j(3) 
increases by 1. As we scan the elements of S from left to 
right, we see that j(1), the subscript for A, only changes 
after j(3) has run through its full range, that is, after lev(3) 
steps. Hence ms(1) must equal lev(3). We can determine 
in like fashion that ms(4) must equal lev(3)*lev(1). Finally, 
ms(2) must be zero, since if two sets of subscript values 
for the array X differ only in the second subscript j(2), 
then the corresponding elements of X must map into the 
same element of S.

To generalize and automate the above, we need a 
concise way of numerically coding the description of S.
I propose to use an array fs (acronym for factors of S) 
with nfs elements. The ith element fs(i) will contain an 
integer k denoting that the ith factor in the name of S is 
the same as the kth factor in the name of X. Hence, in 
the example given above, we have:

fs(1) = 3, ms(3) = 1
fs(2) = 1, ms(1) = ms(3)*lev(3)
fs(3) = 4, ms(4) = ms(1)*lev(1)
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This leads easily to the general algorithm for setting up 
the array ms:

procedure setup-ms; 
begin

for k <-1 to nfx do ms(k) *0 endfor;
m «- 1;
for i <-1 to nfs do

k *fs(i); ms(k) *m;m <-m*lev(k) 
endfor 

end

The next step toward a general marginal-total algor­
ithm is to expand the four “for” and “endfor” statements, 
as shown below:

L4: j(4) <-0;
L3: j 3) *-0;
L2: j(2) -0;
LI: j(l) -0;
L0:...........

if j(1) < jmax(1) then j(1) *j(1) + 1; go to L0 endif;
if j (2) < jmax(2) then j(2) j (2) + 1;go to L1 endif;
if j(3) < jmax(3) then j(3) + j(3) + 1; go to L2 endif;
if j(4) < jmax(4) then j(4) <-j(4) + 1; go to L3 endif

This is easily generalized to the case where nfx, the number 
of factors in X is not necessarily 4:

k <- nfx + 1;
L10: k + k — 1; j(k) <*-0;
L20: if k > 1 then go to L10 endif;

L30: if j(k) <jmax(k) then
j(k) <-j(k) + 1; go to L20 endif; 

k * k + 1; if k < nfx then go to L30 endif

It remains only to improve efficiency by removing the 
lengthy calculation of js from the innermost loop. We can 
achieve this, and at the same time remove all the multi­
plications, by observing that whenever j(k) is incremented 
by 1, js needs to be increased by ms(k), and whenever 
j(k) is reduced from jmax(k) to zero, js must be decre­
mented by a suitably initialized array element that I shall 
call jsdec(k). Since the purpose of this decrement is to 
undo the effect of jmax(k) increments each of size ms(k), 
it is clear that the value of jsdec(k) must be ms(k)*jmax(k). 
This decrementing can be done just before the statement 
k * k +1 in the last line of the program fragment shown 
above. Also, if we insert the statement j(k) «- 0 in the same 
place, then the two lines labelled L10 and L20 can be 
removed from the main loop, with a further gain in speed 
of execution. The final version of the algorithm is shown 
below.

procedure margin-1; (**sequential in X**) 
begin

setup-ms;
for k * 1 to nfx do

j(k) <-0; jsdec(k) «-ms(k)*jmax(k) 
endfor;
for js *■ Iocs to Iocs + ns — 1 do V(js) * 0 endfor; 
jx «-locx; js "-Iocs;

(**summation loop begins**)
LI: V(js) *V(js) + V(jx); jx <-jx +1; k +1;
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L2: if j(k) < jmax(k) then
j(k)-j(k) + 1;js*-js + ms(k); 
go to L1 endif;

j(k) <-0; js ♦ js — jsdec(k); k * k + 1; 
if k < nfx then go to L2 endif 

end

4. SUMMING SEQUENTIALLY IN S
Consider first the example from the last section, 

where the factor names of X and S are ABCD and CAD.

js -Hoes;
for j(4) <-0 to jmax(4) do 

for j(1) <-0 to jmax(1) do 
for j(3) *0 to jmax(3) do 

T*0;
for j(2) <-0 to jmax(2) do 

jx •■-locx + mx(2)*j(2) + mx(3)*j(3)
+ mx(1)*j(1) + mx(4)*j(4);

T-T + V(jx) 
endfor;

V(js) "-T; js *js +1 
endfor 

endfor 
endfor

In preparation for generalizing this, I introduce an 
array named perm whose first four elements, in this 
example, will be 2, 3, 1 and 4. In general, perm will have 
nfx elements, the last nfs of which point to the nfs factors 
occurring in the name of S, while the first nfx-nfs elements 
point to the factors of X that do not appear in S. For 
setting up the array perm, it is useful to have a boolean 
function named member(v, n, k) that returns the value 
true or false accordingly as k is or is not a member of the 
set v(1), .. ., v(n):

boolean function member(v, n, k); 
begin

for i ♦ 1 to n do
if v(i) = k then return true endif 

endfor; 
return false 

end

procedure setup-perm; 
begin il *0; i2 *0; nfns ♦nfx — nfs; 

for k * 1 to nfx do 
if member(fs, nfs, k) then 

i2 * i2 + 1; perm(nfns + i2) * fs(i2) 
else il ♦ il + 1; perm(il) ♦ k endif 

endfor 
end

I now introduce an array h such that h(k) = 
j(perm(k)), so that the nfx elements of h are a permut­
ation of the subscripts j(1), . . ., j(nfx). The corresponding 
permutations of the upper bounds, increments and decre­
ments will be denoted by hmax, mh and hxdec. This 
leads to the general algorithm shown below. Note that the 
procedures transpose-x and sum-x could easily be com­
bined, since the first is only a special case of the second,
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but this would lead to some loss in clarity and an increase 
in execution time.

procedure margin-2; (**sequential in S**) 
begin setup-perm; 

for k * 1 to nfx do 
h(k) *0; i ♦perm(k); mh(k) ♦mx(i); 
hmax(k) ♦ jmax(i); hxdec(k) ♦hmax(k)*mh(k) 

endfor;
jx ♦locx; js ♦Iocs;
if nfs = nfx then transpose-x else sum-x endif 

end

procedure sum-x; 
begin T*0;
L1: T ♦T + V(jx); k ♦ 1;
L2: if h(k) < hmax(k) then

h(k) ♦h(k) + 1; jx ♦ jx + mh(k); 
go to LI endif; 

if k = nfns then
V(js) ♦TjT ♦O; js ♦js + 1 endif; 

h(k) ♦O; jx ♦jx — hxdec(k); k ♦ k + 1; 
if k < nfx then go to L2 endif 

end

procedure transpose-x; (**degenerate form of sum-x**) 
begin
LI: V(js) ♦ V(jx); js ♦ js + 1; k ♦ 1;
L2: if h(k) < hmax(k) then

h(k) ♦h(k) + 1; jx ♦jx + mh(k); 
go to L1 endif;

h(k) ♦O; jx ♦jx — hxdec(k); k ♦ k + 1; 
if k < nfx then go to L2 endif 

end

5. IMPLEMENTATION
After completing the procedures margin-1 and 

margin-2 in the forms shown above, I translated them 
into Fortran subroutines and successfully tested them on 
the University’s DEC 2060. Execution time in micro­
seconds was found to be approximately 

72+ K*nx,
where the constant 72 is accounted for by the CALL and 
RETURN statements, and the multiplier K ranges from 
about 9 to 16 microseconds depending principally on the 
value of hmax(1) or jmax(1). The procedure margin-2 was 
generally about five to 15 percent faster than margin-1, 
except when the values of lev(1), . . . , lev(nfx) were only 
2 or 3, when margin-2 was sometimes a little slower.
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Distributed Computing 
and its Competitors
L.M. Casey*

With the falling cost of processors and memory modules there has been a rising interest in 
their interconnection to: form larger systems. This paper surveys the factors affecting general per­
formance for the following three architectural options:
(i) High speed ‘single’fnain processor.
(ii) Multiple processors connected to a common memory.
(iii) Multiple computers connected by a high speed (short distance) communication link.

Both hardware and software issues are covered.
Keywords and Phrases: Distributed computing, multiprocessor, performance, concurrency.
CR Categories: 4.32

1. INTRODUCTION
The rising performance and cost effectiveness of 

microprocessors will lead in the future to the widespread 
use of private dedicated computers. However, there will 
still be a large demand for shared computing facilities 
such as those provided by many of today’s mainframes. 
Shared centralised databases and expensive high band­
width peripherals provide an incentive for sharing com­
puting power. Individual microprocessor systems may not 
be able to provide users with as good response times as a 
more powerful shared facility. There are many half-hidden 
costs in operating and maintaining diverse, dispersed, 
small systems. Mindful of these, an organisation may 
wish to keep its computing centralised.

Multiple microprocessors could be used in the pro­
vision of the larger scale computing facility. Indeed, the 
most economic of future systems may be those on a single 
undiced wafer, the individual (good) chips on the wafer 
being interconnected to make the complete system. This 
paper surveys the hardware and software issues involved 
in three possible types of system. These three types are:

1. The Uniprocessor System
This is the conventional computer. The central pro­

cessing unit may be constructed with conventional random 
logic, gate arrays and/or bit slices. Within the central 
processing unit there may be more than one arithmetic 
and logic unit. The essential characteristics of a unipro­
cessor system is that it executes a single stream of in­
structions.

2. The Multiprocessor System
A multiprocessor system has a number of processing 

units, each of which executes its own stream of instruct­
ions. All processors share a common primary memory. 
This is often called tight coupling. A multiprocessor system 
has a single operating system.

“Copyright © ,1980, Australian Computer Society Inc.
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3. The Distributed System
In a distributed computer system a number of sep­

arate computers interact with each other by means of a 
fast communications subsystem. It is often called a loosely 
coupled system. Each computer processes its own instruct­
ion stream. Given the requirement of speedy communic­
ation it is unlikely that the computers will be geographic­
ally dispersed. Indeed in the near future the communic­
ation subsystem could be a bus laid out on a single board. 
Concomitant with the hardware structure the operating 
system must be constructed in such a way as to present 
the user with a single unified system. This attribute is 
frequently missing from systems labelled ‘distributed’ 
(Enslow, 1978).

This paper concentrates on the provision of general 
purpose computing power, the type of computing pro­
vided for time shared systems by today’s mainframes 
and larger minis. Many of the points made are also applic­
able to other environments such as process control. Any 
one of the above three types of system should be replace­
able by another without impacting the user interface 
(changes in performance excepted). The substitution of 
uniprocessors by multiprocessors is a common occur­
rence. Replacement of either by distributed systems has 
yet to be fully demonstrated. It is an area of active re­
search. Nevertheless quite a lot can be said about the 
characteristics a successful distributed system would 
exhibit.

Which type of system is to be preferred is chiefly 
a matter of cost effectiveness, tempered by consider­
ations of reliability, availability and ease of expansion.

Since they consist of identical ‘building blocks’ 
multiprocessor and distributed systems have an obvious 
potential for reliability and high availability. This potential 
has been demonstrated in systems such as Pluribus (Orn- 
stein, Crowther, Kraley, Bressler, Michel and Heart, 1975) 
and the commercially available Tandem 16.

The reasons for the superior cost effectiveness of 
microprocessors over mainframes are well known. Basic­
ally the volume of production of microprocessor systems 
gives them lower per unit costs for design, manufacture, 
checkout and (if produced!) software. Conversely the 
low volume of mainframe sales means that the same tech-

*The author is with the DSiR Physics and Engineering Laboratory, Lower Hutt-, New Zealand. Manuscript received 13 June 1980.
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(a) UNIPROCESSOR

(b) MULTIPROCESSOR

(c) DISTRIBUTED SYSTEM

Figure 1

nology has to be retained over a longer period if manu­
facturers are to recoup their investment. Even when the 
latest LSI technology is applied to mainframes, the com­
plexity and speed of their processors means that its full 
benefits cannot be reaped. (For a full discussion of these 
issues see Borgerson 1976, Casey 1977, Tjaden and Cohn 
1979).

The important question is whether performance 
scales up when microprocessors are incorporated in multi­
processors or distributed systems. Both types of system 
impact performance in two ways. The architecture itself 
imposes limitations, which are discussed in the next sect­
ion. Specific computing tasks carry extra overheads if 
they are distributed. This is discussed in Section 3.

2. ARCHITECTURAL ISSUES
2.1 Multiserver Effects

It is a generally accepted queuing theory result 
that average response times of a single server system are 
lower than the average response times of a m server system 
where each server has 1/mth of the capacity of the single 
server (Kleinrock, 1974). While both types of queuing 
system have the same overall capacity the multiserver 
system can only utilise it fully when there are at least m 
jobs to be served. When there is only one job to be pro­
cessed the single server will deal with it m times faster
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1 =UNIPROCESSOR
2 = MULTIPROCESSOR (m = 8)
3= DISTRIBUTED SYSTEM (m = 8 

INCOMING JOB JOINS 
. ^SHORTEST QUEUE 
4= SYSTEM WHERE CHOICE OF 

QUEUE IS RANDOM (m = 8) 

a=40secs, b/C = 1sec

N = N° OF ACTIVE TERMINALS
Figure 2

than (one server of) the multiserver system.
Figure 1 depicts queue structure diagrams for a 

time sharing system with N active terminals. The mean 
‘think time’ of a terminal user is stipulated as ‘a’ seconds. 
The average number of instructions required to service 
each interaction is ‘b’. The uniprocessor (a) is assumed to 
have a capacity of ‘C’ operations per second. Here it is 
assumed that the individual processors of the multipro­
cessor (b) and the distributed system (c) have an effective 
processing rate of 1/mth of the uniprocessor, where m is 
the number of processors in the system. Thus the average 
service time of an interaction is mb/C. In multiprocessors, 
jobs are selected from a common queue while in a dis­
tributed system each computer maintains its own queue.

Sauer and Chandy (1979) have studied several aspects 
of queuing in multiprocessor systems. Extensive studies 
for distributed systems have not been performed but some 
results are presented in (Casey, 1977). By way of an ex­
ample' of the differences between uniprocessors, multi­
processors and distributed systems we present below 
results of an analytic/simulation study of response times 
where m = 8.

Let the stretch factor be the factor by which the 
service time on the uniprocessor of an interaction is multi­
plied to give its average response time. Thus the minimum 
stretch factor for the uniprocessor is 1 and for the multi­
processor and distributed system it is m = 8. Figure 2 
graphs stretch factors as a function of the number of 
active terminals. For these curves a = 40 seconds, b/C is
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assumed to be 1 second. Scheduling at each processor is 
assumed to be 'processor sharing’, that is, round robin 
with vanishingly small quantum. Curve 3 gives the stretch 
factor for a distributed system where each incoming inter­
action is directed to the computer with the shortest queue. 
This assumes that each computer can process all types of 
interaction. (Curve 4, which is discussed in Section 3.3, 
covers the case when computers are functionally spec­
ialised).

Most time sharing systems operate somewhere near 
their ‘saturation’ point (Kieinrock, 1974). Forty-eight 
active terminals is the ‘saturation’ point for the multi­
processor and distributed systems. For this loading the 
average response times for an interaction requiring 0.1 
seconds of processor time on the uniprocessor, are 1.0,
1.2 and 1.4 seconds for uniprocessor, multiprocessor and 
distributed system respectively. The differences are hardly 
going to be noticed by the user. Flowever, when the uni­
processor is lightly loaded with, say, 32 active terminals, a 
user might be tempted to submit a large task. If the task 
required 60 seconds of processing time his average res­
ponse time would be 3.1 minutes. The same task on the 
distributed system with the same loading would have an 
average response time of nearly nine minutes. While 3.1 
minutes could be classified as interactive working, nine 
minutes definitely is not.

The above examples illustrate the effect on res­
ponse times of work transferred from a mainframe uni­
processor to a multiprocessor or distributed system using 
less powerful processors. Short interactions are virtually 
unaffected but tasks requiring substantial bursts of pro­
cessing power will suffer. Subdividing large tasks into 
parallel sub-tasks offers a potential remedy in some cases. 
This is discussed further in Section 3.2.

2.2 Memory Requirements
In a uniprocessor system the multiprogramming 

level is normally greater than 1 so that the central pro­
cessor is not held up by I/O for a particular task (this can 
be I/O for the task or the I/O involved in swapping the 
task for another one). For a multiprogramming level of 
k there has to be enough primary memory to hold k task 
images or working sets.

For a multiprocessor system with m processors 
there must be at least enough primary memory to hold 
m task images or working sets. Otherwise all m processors 
could not be active simultaneously. Borgerson (1976) 
suggests that the total multiprogramming level should be 
m + k — 1, where k is the multiprogramming level of the 
‘equivalent’ uniprocessor with the identical I/O subsystem. 
Recently a more refined estimate has been produced 
(Tjaden and Cohn, 1979). For systems with m greater 
than about eight, the multiprogramming level required is 
close to m.

For a distributed system each computer’s primary 
memory must be of sufficient size to hold at least two 
task images or working sets if any overlap of I/O and 
processing is to be obtained. Since the total memory of a 
distributed system is not contiguous, even more memory 
must be provided to cater for fragmentation effects.

As well as its task images or working sets, a system 
must have memory space for the resident portions of its 
operating system. Again, the distributed system, with a 
basic kernel in every computer (see Section 3.1), has the 
greatest overall memory requirements.
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The only compensation for a distributed system is 
that the speed of its memory need not be as fast as that 
for ‘equivalent’ uniprocessors and multiprocessors. Also, 
if it is required, cache memory for each processor in a 
distributed system can be provided as straightforwardly 
as in a uniprocessor. Cache operation in a multiprocessor 
system requires substantial extra hardware to ensure 
coherence (Censier and Feautrier, 1978).

2.3 Contention
The fall-off in performance of multiprocessors due 

to primary memory contention is well known and has 
been extensively studied. The problem can be minimised 
relatively cheaply by splitting memory into many inde­
pendent modules.

More serious is the contention for the processor to 
memory pathway. The mechanisms used for the processor- 
memory switch of multiprocessor systems are:
(i) full interconnection to multiported memories.
(ii) crossbar switch
(iii) bus

All three mechanisms severely limit the expansion 
potential of multiprocessors. Full interconnection is not 
really tenable for systems containing more than three or 
four processors. A crossbar switch limits expansion to its 
designed capacity. A switch with a large capacity is likely 
to be very expensive, chiefly because of the large number 
of external connections it would require. Such a switch 
would wreck the cost effectiveness of small configurations. 
There is not a direct limit to expansion using a bus but 
bus contention ensures that the addition of extra pro­
cessors becomes less and less cost effective.

For distributed systems the preferred forms of the 
communications subsystems are rings (Penny and Bagh­
dadi, 1979) and buses, including the Ethernet (Metcalfe 
and Boggs, 1976) type of bus. As computer sizes shrink 
a variant of the processor-memory type of bus will prob­
ably predominate. The bandwidth requirements of dis­
tributed systems are a lot less than those of multipro­
cessors. Simulation experiments suggest that 2 Mbytes/ 
second is an adequate bandwidth for a load balancing 
distributed system of 20 computers, each equivalent to 
one of today’s powerful minicomputers (Casey, 1977). 
Thus for distributed systems the interconnection mech­
anism is not the expansion limiting factor it is for multi­
processors.

2.4 Size of Systems
The above points suggest that for both multipro­

cessors and distributed systems fewer processors of greater 
power are preferable to more processors of low power.

When a processor consists of a single chip its cost, 
relative to a complete system, is miniscule. Any savings 
made on cheaper, less powerful processor chips would be 
lost many times over with the extra memory, ‘real-estate’ 
and power supply requirements.

3. PROGRAMMING ISSUES 
3.1 Concurrency

That distributed systems have not become very wide­
spread is probably due most to the lack of appropriate 
software support. For distributed systems, as for others, 
the main software issue is the handling of concurrency. 
The special problem of distributed systems is that the 
tasks that interact may reside in different computers.
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Further, reliability and system expansion considerations 
make system transparency an absolute necessity. The 
physical location of the entities a programmer is working 
with must be immaterial to him. Unless this is done, alter­
ing the underlying configuration of the system will be 
a hazardous operation.

The software problems of distributed systems are 
surmountable if a disciplined approach is taken to pro­
gramming. Currently two general programming disciplines 
for handling concurrency are recognised: the message- 
oriented approach and the procedure-oriented approach 
(Lauer and Needham, 1978). Both are potentially suit­
able for distributed systems.

In both approaches each computer in the system is 
managed by a kernel. Each kernel is aware of the location 
of all resources in the system or, with the help of other 
kernels, can locate resources when necessary.

In a message-oriented system resources are associ­
ated with processes. A resource is accessed by sending its 
process a message and waiting for a reply. The function 
of the kernel is to deliver the messages to the correct 
destination processes, whether they be in the same com­
puter as the source or not. The message-oriented approach 
has been adopted in such distributed systems as DCS 
(Farber and Larson, 1972), DCN (Lay, Mills and Zelko- 
witz, 1974), and HXDP (Jensen, 1978).

In a procedure-oriented system resources are accessed 
by procedures. A computation consists of calls to-various 
procedures. The kernel’s function in this case is to ensure 
the orderly entry to and return from procedures includ­
ing the transmission of parameters. There are at least two 
implementations in progress of distributed systems that 
employ the procedure-oriented approach (Casey and 
Shelness, 1977; Dowson, 1977).

Note that because the underlying mechanism for 
exchanging data in distributed system is by message pas­
sing, it does not follow that the message-oriented approach 
is superior to the procedure-oriented approach. The mess­
ages between computers are at a primitive protocol level. 
At the higher level it matters little whether messages or 
parameter lists are being passed about. Each approach 
leads to a different style of programming. Each makes 
some features easy to implement while making others 
awkward. A more detailed analysis is carried out in (Casey, 
1978) which concludes that the procedure-oriented ap­
proach has overall advantages.

Understanding of what mechanisms are required to 
handle concurrency in a distributed system is only the 
first step to producing appropriate programming language 
constructs. Concurrency is an area of active programming 
language research. But not all new constructs proposed 
are feasible for distributed systems. Many proposals require 
either centralised tables or shared memory locks for their 
implementation. Progress is promising, however. Many 
new languages incorporate a ‘module’ feature. Data within 
a module is not directly accessible from outside of the 
module. This will facilitate the siting of different modules 
in different computers.

Currently, disciplined programming incurs very high 
overheads, not only in distributed systems but also in 
multiprocessors and uniprocessors. This is because message 
passing, monitor entry and so on, is all carried out by 
software. In multiprocessors and uniprocessors much over­
head can be avoided by using undisciplined mechanisms 
such as priority and spin locks. But this should not be
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the final solution. Software costs now so dominate hard­
ware costs that hardware should be designed to efficiently 
support the mechanisms required for robust software. 
This would benefit uniprocessors, multiprocessors and 
distributed systems alike.

3.2 Task Decomposition
If the performance of a multiprocessor or distributed 

system on a single task is inadequate then that task may be 
decomposed into sub-tasks to improve its performance. 
No general method of converting a sequential task into a 
set of parallel sub-tasks has been found. It seems that 
each program needs to be individually examined.

A decomposition into sub-tasks may lessen the 
high primary memory requirements of multiprocessors 
and distributed systems (Section 2.3). The decomposition 
of the Harpy DECAL task developed for Cm* (Jones, 
Chansler, Durham, Feiler, Scelza, Schwans and Vegdahl, 
1978) occupied very little more space than a unipro­
cessor version. However, splitting a task into co-operating 
sub-task involves overheads of two kinds.

First there are the overheads of co-operation and 
interaction. There are the inefficiencies in the imple­
mentation of message passing and so on mentioned above. 
Apart from this, any synchronisation of sub-tasks normally 
causes one or more processors to idle, waiting for locks 
to become free or messages to arrive.

The second kind of overhead is the extra instruct­
ions required to execute the parallel version of the task 
compared to the sequential version. Wilkes (1977) identi­
fies a class of algorithms for which the parallel version 
requires fewer overall instructions than the serial version. 
But normally more instructions are required. In the Hear­
say II system approximately half of the total processor 
time was used executing extra code that would not have 
been present in a uniprocessor version (Fennel and Lesser, 
1977). The overall performance of the Harpy DECAL 
task using five LSI-11 processors was equal to that of a 
PDP 11/40 uniprocessor version. A PDP 11/40 is approx­
imately three times as fast as an LSI-11.

A more disturbing result of both the Hearsay II 
and Harpy projects was the inability to decompose the 
tasks to use effectively more than about six processors. 
More processors could be used but they produced little or 
no decrease in the time taken to perform the task. Re­
search on task decomposition has a long way to go.

3.3 Task Assignment
A multiple computer system where each kind of 

task was permanently assigned to one computer would 
suffer the following three drawbacks compared to a dis­
tributed system that has dynamic task assignment.
(i) Availability and resilience would be diminished. 

If one computer fails its tasks could no longer be 
carried out.

(ii) Poor expansion characteristics would result after 
major tasks (in terms of utilisation) each have their 
own processors. Any computer added after that 
would have very little effect on the system’s per­
formance.

(iii) Variations in the load on each computer would 
mean that some were overloaded while others were 
idle. This results in poor response times. Curve 4 of 
figure 2 shows the minimum average stretch factor 
for a system of eight computers. Here it is assumed
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that the overall average execution time of tasks 
on each computer is the same (= 8 secs) and that the 
average utilisation of each computer is identical. In 
practice it would be nigh impossible to distribute 
tasks so. The stretch factors shown in curve 4 would 
be considerably worse if, for example, three of the 
eight computers accounted for 90 per cent of the 
system’s computing load.
The ability to dynamically alter the binding of tasks 

to computers within a distributed system is a prerequisite 
to fail-soft operation. Since the basic mechanisms must 
be provided it is natural to look at moving tasks between 
computers to balance the load on each. As figure 2 shows 
the potential gains in performance are quite large, prob­
ably more than enough to offset the extra overheads 
involved.

Again this is an area requiring a lot of research. 
Several load balancing mechanisms have been proposed. 
These include a special (duplicated) central hardware 
device to queue all tasks (Ornstein et al., 1975), bidding 
(Farber and Larson, 1972), and the broadcasting of cur­
rent status to other computers (Casey and Shelness, 1977). 
As an example of the problems still to be faced consider 
a group of co-operating sub-tasks. When the distributed 
system is lightly loaded then ideally each sub-task should 
be located in a different computer, so as to maximise 
parallel operation. However, when the system is very 
heavily loaded the preferred assignment may be to have 
all sub-tasks in the same computer, so as to minimise 
inter-task communication delays.

Load balancing and, to a lesser extent, fail-soft 
requirements involve the exchange of status between 
computers. The number of such messages is likely to 
grow as the square of the number of computers in the 
system (Casey, 1977). This explosive growth could be the 
factor limiting the ultimate size of a distributed system. 
Either the communications sub-system would become 
overloaded or the entire processing capacity would be 
dedicated to handling the status messages.

4. CONCLUSIONS
The preceding sections have identified points favour­

able and unfavourable to each of the three architectures 
under consideration. It is not possible to conclude that 
one type of system is superior to the others. Instead, 
below is a ‘wish list’ of the attributes or advances each 
system needs to improve its overall acceptability.
For uniprocessors:

• more reliability
• decreased processor hardware costs 

For multiprocessors:
• lower cost for high capacity processor-memory 
interconnection
• decreased primary memory prices
• advances in task decomposition methodology
• better programming language constructs for con­
currency

For distributed systems:
• substantially cheaper primary memory
• more hardware support for managing tasks and 
their interactions
• better programming language constructs for con­
currency
• advances in task decomposition methodology
• practical load balancing strategies.

Even if uniprocessors should prove dominant the 
research going on into distributed operating systems, 
concurrency in programming languages and task decom­
position will not be wasted. Today’s ‘super’ computers, 
with their long pipelines, banks of special registers and 
caches, have little remaining potential for architectural 
improvement. Yet there is an unsatisfied demand for 
massive computing power. The only way to meet some 
of this demand may be to link together ‘super’ computers.
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Program Control by 
State Transition Tables
Peter Juliff*

The use of state transition tables as a means of program control provides a programming meth­
odology which is easy to construct, leads to concise source code and allows for ease of maintenance 
without alteration to procedural code.

CR Categories: 4.0

INTRODUCTION
The use of state transition tables as a means of 

controlling the execution of a program is a much neglected 
topic. This is surprising given that this technique helps to 
achieve two important criteria in program design:
(a) simplicity and elegance of the source code, and
(b) ease of subsequent amendment.

Whilst some use of state transition tables has been 
made in specialist areas such as software controlled tele­
phony where state switching is a familiar engineering con­
cept, they have been largely ignored by programmers 
working in more conventional environments. It is the aim 
of this paper to explain their construction and operation 
as drivers of individual sections of a program or of the 
overall program logic.

RATIONALE
Working from the premise that:

(a) ease of ongoing amendment is one of the most 
important factors to be considered in program 
design, and

(b) program amendments which may be implemented 
by the alteration of data are more desirable than 
those which require the alteration of procedural 
code,

then any technique which facilitates this end is a major 
contributor to program flexibility. The use of a state 
transition table may be confined to one individual module 
within a program and may be part of the local data owned 
by that module, or it may apply to the control of the 
entire algorithm. The aim of its construction is to enable 
modifications to the program’s behaviour to be effected 
with little or no alteration of the procedural code.

PROGRAMS AS STATE ORIENTED ALGORITHMS
A program may be considered as an algorithm which 

progresses from its current state to one of many other 
possible states depending on changes in its operating 
environment. The arrival at any one particular state 
depends on the prior state and the occurrence of an event.

The tools required to harness these changes to con­
trol the operation of a program are:
(a) the ability to devise a table which specifies the
“Copyright © 1980, Australian Computer Society Inc.
General permission to republish, but not for profit, all or part of 
this material is granted; provided that ACJ’s copyright notice is 
given and that reference is made to the publication, to its date of 
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states in which a program may operate and the 
events which cause a change from one state to any 
other,

(b) the ability to define a data structure which embodies 
this state table, and

(c) the availability of a computed branch instruction to 
implement the program control,
e.g., a Computed GO TO in FORTRAN,

a CASE statement in ALGOL, PL/1 and PASCAL, 
a GO TO ... DEPENDING ON ... in COBOL, or 
an ON statement in BASIC.

The following examples are shown using COBOL 
because of the ease of defining data and the explicit nature 
of its syntax.

Example 1
A program accepts data from an operator at a term­

inal. One operation involves the acceptance of a monetary 
value which may be of a variety of formats and which 
will be deposited, left justified, in an eight-character field 
with unused character positions to the right of the received 
field containing spaces.

The rules governing the format of this value are:
(i) there may be a leading minus sign,
(ii) there may be leading spaces and the field may be 

entirely blank,
(iii) the field will terminate on either the filling of the 

entire eight-character field or on the encountering 
of a non-leading space,

(iv) if the value consists of dollars only, the decimal 
point may be omitted, but if a decimal point is 
encountered it must be followed by at least one 
further digit,

(vi) a maximum of four digits for dollars and two digits 
for cents.
To summarise:

Valid Values 
—12.34AA 
AA—12AAA 
.1 2AAAAA 
-.12AAAA 
1234.56A

Invalid Values
—12.AAAA 
123-AAAA 
.123AAAA 
12345AAA 
12.345AA

A state transition table specifying the permissible 
formats of this field would be constructed as:
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Current
State

1. Before 1st 
charade r.

2. Just after minus 
sign.

3. Digits before dec. 
point.

4. Just after dec. 
point.

5. Digits after dec. 
point.

6. Error discovered
7. Finished

Minus 
Sign

2 

6 

6

6 5 6

6 5 6

Space End of Else 
Field

1 7 6

6 6 6

7 7 6

6 6 6

7 7 6

New State Depending on Next Character:
Digit Dec.

Point

3 4

3 4

3 4

Typical input contents and the states traversed in 
the algorithm would be:

Input Characters 

State 1

Input Characters 

State 1

Input Characters 

State 1

- 1 2 3 4 A A

2 3 3 4 5 5 7

A A 1 2 3 4 A A

113 3 3 3 7

1 2 A A A A A

3 3 4 6

The program module charged with the task of valid­
ating and assembling this value will commence in State 1 
and will progress through the other states depending on 
the content of the input field. Each new state will be 
selected on the basis of the current state (pointing to the 
row in the table) and the next input character encountered 
(pointing to the column in the table.

Each state reached may involve work to do on the 
input field, e.g., accumulating an amount of dollars or 
cents, or may merely operate to shift to another row in 
the table and hence follow a potentially different set of 
rules for the selection of the next state.

Excerpts of COBOL coding to implement this tech­
nique would appear as:

WORKING STORAGE SECTION.

01 SOURCE-FIELD.
03 SOURCE-CHARACTER

01 DESTINATION-FIELD.
03 DOLLARS 
03 CENTS.

05 CENT

01 MONETARY-VALUE
REDEFINES DESTINATION-FIELD. 

01 CONSTRAINTS.
03 SOURCE-SIZE 
03 DOLLAR-SIZE 
03 CENTS-SIZE 

01 SWITCHES.
03 FINISHED 
03 VALUE-OK 
03 NEGATIVE-VALUE 

01 SWITCH-VALUES.
03 TRUE 
03 FALSE 

01 ONE-CHARACTER.
03 ONE-DIGIT 

01 CHARACTER-COUNTERS.
03 DOLLAR-COUNTER 
03 CENT-COUNTER 

01 STATE-TABLE.
03 FILLER 
03 FILLER 
03 FILLER 
03 FILLER 
03 FILLER

01 STATE-TABLE-AGAIN
REDEFINES STATE-TABLE.
03 STATE-ROW

05 STATE-COLUMN 
07 NEW-STATE 

01 CURRENT-STATE

PROCEDURE DIVISION.

PICX OCCURS 8
INDEXED BY SOURCE-INX.

PIC 9(4).

PIC 9 OCCURS 2
INDEXED BY CENT-INX. 

PIC S9(4)V9(2)

PIC 9 VALUE 8.
PIC 9 VALUE 4.
PIC 9 VALUE 2.

PIC 9.
PIC 9.
PIC 9.

PIC 9 VALUE 1.
PIC 9 VALUE 0.

PIC 9.

PIC 9.
PIC 9.

PIC 9(6) VALUE 234176.
PIC 9 6 VALUE 634666.
PIC 9(6) VALUE 634776.
PIC 9(6) VALUE 656666.
PIC 9(6) VALUE 656776.

OCCURS 5 INDEXED BY ROW-INX. 
OCCURS 6 INDEXED BY COL-INX. 
PIC 9.
PIC 9.

ACCEPT SOURCE-FIELD.
MOVE FALSE TO FINISHED

NEGATIVE-VALUE. 
MOVE TRUE TO VALUE-OK.
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SETSOURCE-INX 
CENT-INX TO 1.

MOVE ZERO TO MONETARY-VALUE.
DOLLAR-COUNTER
CENT-COUNTER.

MOVE 1 TO CURRENT-STATE.
PERFORM 100-GET-VALUE UNTIL FINISHED = TRUE.
IF VALUE-OK = TRUE
AND NEGATIVE-VALUE = TRUE

MULTIPLY -1 BY MONETARY VALUE.

100-GET-VALUE SECTION.
101. IF SOURCE-INX >SOURCE-SIZE

MOVE 5 TO COL-INX 
ELSE

MOVE SOURCE-CHARACTER (SOURCE-INX) TO ONE-CHARACTER 
SETSOURCE-INX UP BY 1 
IF ONE-CHARACTER =

MOVE 1 TO COL-INX
ELSE

IF ONE-CHARACTER IS NUMERIC 
MOVE 2 TO COL-INX

ELSE
IF ONE-CHARACTER = “.”

MOVE 3 TO COL-INX 
ELSE

IF ONE-CHARACTER = SPACE 
MOVE 4 TO COL-INX 

ELSE
MOVE 6 TO COL-INX.

MOVE CURRENT-STATE TO ROW-INX.
MOVE NEW-STATE (ROW-INX COL-INX) TO CURRENT STATE.
GO TO 109 102 103 109 105 106 107 

DEPENDING ON CURRENT-STATE.
102.

MOVE TRUE TO NEGATIVE-VALUE.
GOTO 109.

103.
IF DOLLAR-COUNTER IS NOT <DOLLARS-SIZE 

GO TO 106 
ELSE

COMPUTE DOLLARS = 10 * DOLLARS + ONE-DIGIT 
GOTO 109.

105.
IF CENT-COUNTER IS NOT <CENTS-SIZE 

GOTO 106 
ELSE

MOVE ONE-DIGIT TO CENT (CENT-INX)
SET CENT-INX UP BY 1 
ADD 1 TO CENT-COUNTER 
GOTO 109.

106.
MOVE FALSE TO VALUE-OK.

107.
MOVETRUETO FINISHED.

109.
EXIT.

Changes in the rules governing the format of the 
value may be implemented by altering the content of the 
state transition table.

Consider the following:
(i) leading spaces are no longer allowed,
(ii) all values must contain a decimal point, however 

there needs be no following cents digits if the field 
contains only dollars and no preceding dollars digits 
if the field contains only cents,

(iii) the field must not be entirely blank.
The state table, altered to reflect these new rules, 

would appear as:

2 3 4 6 6 6
6 3 4 6 6 6
6 3 4 6 6 6
6 5 6 7 7 6
6 5 6 7 7 6

Altering the contents of STATE-TABLE to incor­
porate these new values would effect the desired amend­
ment to the algorithm without any alteration being 
required to the procedural code.
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Example 2
A record in a cataloguing system contains a Part 

Number field of the format a/b/c. The requirements of each 
portion are:

a: numeric, 1 to 3 digits, must not be omitted 
b: numeric, 1 to 4 digits, must not be omitted 
c: either: numeric, 1 to 4 digits 

or: alphabetic, 1 to 4 letters 
but: not alphanumeric, must not be omitted.

The field terminates at the first space or upon ex­

haustion of its 13 permissible characters.
The field is to be checked for validity of format and, 

if valid, assembled in a field of format ABC where:

A: 3 digits, right justified, leading zero fill
B: 4 digits, right justified, leading zero fill
C: 4 characters, left justified, trailing space fill

Excerpts of COBOL coding to process this field are 
shown below, including the state table in comment format 
for documentation purposes.

WORKING-STORAGE SECTION.

01 INPUT-PART-NO.
03 INPUT-CHARACTER PIC X OCCURS 13

INDEXED BY INPUT-INX.
01 OUTPUT-PART-NO.

03 A PIC 9(3)
03 B PIC 9(4).
03 C.

05 C-CHARACTER PIC X OCCURS 4
INDEXED BY C-INX.

01 CONSTRAINTS.
03 INPUT-SIZE PIC 9(2) VALUE 13.
03 A-SIZE PIC 9 VALUE 3.
03 B-SIZE PIC 9 VALUE 4.
03 C-SIZE PIC 9 VALUE 4.
03 DELIMITER PIC X VALUE

01 SWITCHES.
03 FINISHED PIC 9.
03 PART-NO-OK PIC 9.

01 SWITCH-VALUES.
03 TRUE PIC 9 VALUE 1.
03 FALSE PIC 9 VALUE 0.

01 ONE-CHARACTER.
03 ONE-DIGIT PIC 9.

01 CHARACTER-COUNTERS.
03 A-COUNTER PIC 9.
03 B-COUNTER PIC 9.

* STATE TRANSITION TABLE FOR PART NUMBER
* —-- INPUT CHARACTER —
* CURRENT STATE DIGIT SPACE LETTER “/” END OF ELSE
* FIELD
* 1. BEFORE 1ST CHAR. 2 8 8 8 8 8
* 2. DIGITS BEFORE 1ST 2 8 8 3 8 8
* 3. JUST AFTER 1ST 4 8 8 8 8 8
* 4. DIGITS BEFORE 2ND 4 8 8 5 8 8
* 5. JUST AFTER 2nd 6 8 7 8 . 8 8
* 6. DIGITS AFTER 2ND 6 9 8 8 9 8
* 7. LETTERS AFTER 2ND 8 9 7 8 9 8
* 8. ERROR
* 9. FINISHED <NEW STATE >

01 STATE-TABLE.
03 FILLER PIC 9(6) VALUE 288888.
03 FILLER PIC 9 6 VALUE 288388.
03 FILLER PIC 9 6 VALUE 488888.
03 FILLER PIC 9(6) VALUE 488588.
03 FILLER PIC 9 6 VALUE 687888.
03 FILLER PIC 9 6 VALUE 698898.
03 FILLER PIC 9(6 VALUE 897898.

01 STATE-TABLE-AGAIN
REDEFINES STATE-TABLE. 
03 STATE-ROW

05 STATE-COLUMN 
07 NEW-STATE 

01 CURRENT-STATE

OCCURS 7 INDEXED BY ROW-INX. 
OCCURS 6 INDEXED BY COL-INX. 
PIC 9 
PIC 9.
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PROCEDURE DIVISION.

MOVE FALSETO FINISHED.
MOVE TRUE TO PART-NO-OK.
SET INPUT-INX.

C-INX TO 1.
MOVE ZERO TO A A-COUNTER 

B B-COUNTER.
MOVE SPACES TO C.
MOVE 1 TO CURRENT-STATE.
PERFORM 100-FIX-PART-NUMBER

UNTIL FINISHED = TRUE.
IF PART-NO-OK___
ELSE___

100-FIX-PART-NUMBER SECTION.
101.

IF INPUT-INX >INPUT SIZE 
MOVE 5 TO COL-INX 

ELSE
MOVE INPUT-CHARACTER (INPUT-INX) TO ONE-CHARACTER 
SET INPUT-INX UP BY 1 
IF ONE-CHARACTER IS NUMERIC 

MOVE 1 TO COL-INX 
ELSE

IF ONE-CHARACTER = SPACE 
MOVE 2 TO COL-INX 

ELSE
IF ONE-CHARACTER IS ALPHABETIC 

MOVE 3 TO COL-INX 
IF ONE-CHARACTER = DELIMITER 

MOVE 4 TO COL-INX 
ELSE

MOVE 6 TO COL-INX.
MOVE CURRENT-STATE TO ROW-INX.
MOVE NEW-STATE (ROW-INX COL-INX) TO CURRENT-STATE. 
GOTO 110 102-A 110 104-B 110

106-C 106-C 108-ERROR 109-DONE 
DEPENDING ON CURRENT-STATE.

102-A.
IF A-COUNTER IS NOT<A-SIZE 

GO TO 108-ERROR 
ELSE

COMPUTE A = 10 * A + ONE-DIGIT 
ADD 1 TO A-COUNTER 
GOTO 110.

104-B.
IF B-COUNTER IS NOT<B-SIZE 

GOTO 108-ERROR 
ELSE

COMPUTE B = 10 * B + ONE-DIGIT 
ADD 1 TO B-COUNTER 
GOTO 110

106-C.
IF C-INX >C-SIZE 

GOTO 108-ERROR 
ELSE
MOVE ONE CHARACTER TO C-CHARACTER (C-INX) 
SET C-INX UP BY 1 
GOTO 110.

108- ERROR.
MOVE FALSE TO PART-NO-OK.

109- DONE.
MOVE TRUE TO FINISHED.

110.
EXIT

Once again, a number of significant changes to the 
permissible format of the Part Number could be accom­
modated by an alteration of values in the table, e.g.,
(i) permit leading spaces prior to the 1st character,
(ii) permit any, or all, of a, b and c to be omitted, i.e., 

provide for a, a/b, a//c, /b, /b/c, //c.
The state table necessary to provide for these new 

formats would be:

2 1 8 3 9 8 
2 9 8 3 9 8 
4 9 8 5 9 8 
4 9 8 5 9 8 
6 9 7 8 9 8 
6 9 8 8 9 8 
8 9 7 8 9 8
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As in Example 1, the above alteration of the contents 
of STATE-TABLE would effect the necessary changes in 
the algorithm without any alteration to the procedural 
code.

Example 3.
The previous two examples have related to the 

control of an individual program module. The following 
example illustrates the use of a state switching driver to 
control the processing path of an entire program.

The example chosen is a standard sequential father/ 
son master file update where each of the input files may 
exist in one of three possible conditions:

No record currently in buffer State: Vacant
Record read and available to process : Waiting
End-of-file reached : Ended.

The processing algorithm may then be in any of 
nine possible states depending on the respective status of 
the master and transaction files:

Write Master Record to Output File, 
Read Master Record 
If end-of-file State = 8
Else State = 5

If Master Key > Transaction Key,

If

If addition, 
Else
State = 4. 
Master Key : 
If addition,

If Change,

If Deletion,

Write Transaction to Output File 
Report Transaction as an Error.

Transaction Key,
Report Transaction as an Error 
State = 4.
Amend Master Record 
State = 4.
State = 1.

Procedure D:
Write Master Record to Output File. 
Read Master Record.
If end-of-file, State = 6
Else State = 9.

Program Input File States
State

Master T ransition
1 Vacant Vacant
2 Vacant Waiting
3 Vacant Ended
4 Waiting Vacant
5 Waiting Waiting
6 Waiting Ended
7 Ended Vacant
8 Ended Waiting
9 Ended , Ended.

It is presumed that transactions will be either Addit­
ions of new master records, Changes to existing master 
records or Deletions of existing master records.

The skeletal algorithm to drive the program’s execut­
ion would be of the format:

Update:
Set Current State = 1;
Repeat until FINISHED = TRUE:

Depending on Current State, Perform:
1: Procedure A 
2: Procedure B 
3: Procedure B 
4: Procedure A 
5: Procedure C 
6: Procedure D 
7: Procedure A 
8: Procedure E 
9: Set FINISHED = TRUE.

Procedure A:
Read Transaction Record.
If end-of-file State = State +2
Else State = State+1.

Procedure B:
Read Master Record.
If end-of-file State = State +6
Else State = State +3.

Procedure C:
If Master Key < Transaction Key,

Procedure E:
If Addition, Write Transaction to Output File 
Else Report Transaction as an Error.
State = 7.

This example is somewhat different from the first 
two in that, whilst not using a state transition table as 
such, it adheres to the principle of regarding a program as 
a state-oriented algorithm and directs control through a 
Current State variable.

RELATIONSHIP WITH OTHER CONTROL TECH­
NIQUES AND OTHER LANGUAGES

It is useful to compare control via a state transition 
table with alternative methods which also aim to provide 
program flexibility. It has been suggested that the use of 
88-level condition names or decision tables may provide 
more readily understandable control mechanisms in 
COBOL.

The limitations of these methods are imposed by 
the number of potential conditions which must be catered 
for. From the above examples it can be seen that the 
number of possible conditions arising from combinations 
of sequences of data is the product of the number of 
states and the number of events which may cause a change 
of state.

Hence, if there was the possibility of five states 
and six events which could change those states, there 
would be potentially 30 conditions to which to assign 
individual names and for which to test if condition names 
were used and 2” possible rules to cope with in a decision 
table.

Although the above illustrations have been given in 
COBOL it should be apparent that, as stated above, the 
technique would be able to be implemented in any langu­
age with the facility to operate on a two-dimensional 
array and a multiple branching technique.
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CONCLUSION
One of the foremost criteria in the design of any 

program is the provision of future flexibility. Flexibility 
is generally easier to achieve via the alteration of data 
constructs rather than alteration of procedural code.

The use of state transition tables provides coding 
which is, in general, more concise than that produced by 
alternative methods of control and more amenable to on­
going maintenance.

BIOGRAPHICAL NOTE
The author is currently Head of the Department of 

Data Processing at Prahran College of Advanced Educ­
ation, Melbourne. Prior to taking up his present position 
he was Deputy Programming Manager for Health Compu­
ting Services and prior to that Senior Lecturer in Infor­
mation Processing at Caulfield institute of Technology.

752 The Australian Computer Journal, Vol. 72, No. 4, November 7980



Computer Aided Design of Printed 
Circuit Board Layouts
G.L. Cock*

A large percentage of equipment manufactured for industrial and home use containing elec­
tronic equipment includes printed circuit boards (PCBs) on which miniature electronic components 
are mounted. Computer aided layout methods have been developed which avoid the laborious and 
time-consuming manual steps that have been necessary to produce these boards and at the same 
time allow the use of more accurate and more reliable production techniques. This paper describes 
a computer program that will automatically route wiring paths for printed circuit boards. Conductor 
path determination is a major step in the production of artwork for PCB manufacture.

Keywords and phrases: Computer aided design, CAD, Printed circuit board.
CR category: 3.24

1. INTRODUCTION
During the past decade the complexity of printed 

circuit boards has been such that manual methods for 
layout have been unable to cope. More and more manu­
facturers have been looking towards Computer Aided 
Design (CAD) where the computer is used as a book­
keeping and drafting tool, or Design Automation (DA) 
where the computer makes decisions such as where to 
place components or how to route wire paths. Computer 
Aided Editing (CAE) is normally used in association with 
Design Automation and permits the designer to visually 
modify a layout. Most attempts to produce wire (or con­
ductor) routing programs have been based on Lee’s Algor­
ithm (Lee, 1961) or some development of it (Dunne, 
1966; Fisk, 1967; Akers, 1967; Whatmough, 1972; Rubin, 
1974; Hoel, 1976). Due to the large number of integrated 
circuit packages used these days the vertical/horizontal 
method of wire routing has proven the most popular 
(Zane and Harrell, 1968; Hightower, 1974; Rosa and 
Lucio, 1979).

The Lee algorithm has some outstanding advantages 
and disadvantages. If a path exists through the maze the 
algorithm will find it. If more than one path exists it 
will find a shortest path. However, because of the exhaust­
ive cellular search techniques the computer storage require­
ments can be great, and computer run times excessive.

In the vertical/horizontal method paths are laid 
down on two planes on a regular grid (usually with 0.05 in. 
spacing); one plane carries mainly horizontal lines and the 
other mainly vertical. Only the co-ordinates of the ends of 
the lines are stored, and this is a great improvement upon 
Lee’s method of storing the contents of every basic cell 
in the maze. The search through this structure, which links 
together associated pieces of information, is quicker than 
Lee’s exhaustive cellular search. The penalty paid for the 
savings in storage and time is that some routes may not be 
completed.

The program described in this paper incorporates 
both methods of path routing, but from the practical
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viewpoint the vertical/horizontal method is the more 
acceptable. The program is called WREPCL — Wiring 
RoutinE for Printed Circuit Layouts.

2. PRACTICAL REQUIREMENTS
Electronics covers a very wide field and some PCBs 

are so specialised that they cannot be laid out by com­
puter aided methods, however the majority of PCBs does 
not fall into this category. Computer methods must satisfy 
the general functions shown by Figure 1.

A PCB may consist of a front and rear layer only 
(termed a “double-sided” board), or it may consist of a 
sandwich of layers (termed a “multi-layer” board). The 
majority of PCBs are “double-sided”.

The component placement stage requires that the 
components be placed on the board in accordance with 
accepted standards and practices. In addition, components 
are normally placed so that wiring lengths are minimized.

Conductors can have various widths. Wide con­
ductors are used to supply power to some components 
and generally occupy predetermined paths on the board. 
The thinner conductors (signal conductors) are generally 
“free routing”, that is, they may be placed in any avail­
able space on the board.

The component placement and conductor routing 
stages are most demanding and time-consuming for human 
beings. If a computer can be used to fully or partially

Conductor
Routing

Drilling Topes

Diagrams

Component

Schematic
Diagrams

Assembly
Drawings

Parts
Lists

Figure 1. Layout functions.
*The author is with the Advanced Engineering Laboratory, Defence Research Centre, Salisbury, South Australia. Manuscript received 27 March 
1980, and revised 23 June 1980.
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WREPCL.

Board Component Circuit Path Manufacture
Details Placement Description Routing Files

Figure 2. WREPCL phases.

automate these stages then considerable time will be 
saved. The layout designer carries out the interesting layout 
design steps and leaves the mundane repetitious steps to 
be performed by the computer.

3. PROGRAM REQUIREMENTS
To aid practical acceptance a computer program to 

aid PCB layout design must allow for manual interaction. 
Design Automation, which generally completes 95 to 
100 per cent of the required conductor routing, requires 
manual interaction for the post-routing stage so that 
remaining unconnected paths can be completed. Computer 
Aided Design allows for manual interaction during the 
whole layout and routing process.

A basic program must carry out path routing and 
provide output for a photo-plotter (which produces the 
artwork) and drilling data for the PCB manufacturing 
process. A program may incorporate facilities to carry 
out other functions shown in Figure 1. WREPCL is a 
Design Automation program incorporating manual inter­
active component placement, manual and automatic 
path routing, Computer Aided Editing, off-line photo­
plotting and drilling data output.

4. PROGRAM STRUCTURE
Figure 2 depicts the WREPCL program phases. The 

routines have been written in Fortran IV. The first three 
steps involve the input of board details, component place­
ment and circuit description, and convert information to 
a form (known as the DATA file) suitable for reading by 
the path routing phase. The majority of the routines in 
the program is associated with the path routing phase.

When using the vertical/horizontal method, in the 
path routing phase, a path does often exist, but it is too 
devious for the search methods to find it. Failures can in 
this case be corrected easily and quickly during the Editing 
phase. The line segment data structure can be modified by 
adding or deleting line segments. The Editing phase also 
permits the addition of other information such as “text”.

The contents of the data structure (known as the 
LAYOUT file) are processed by routines to create files in 
a format suitable for reading by artwork production equip­
ment and numerically controlled drilling machinery.

5. PATH ROUTING ALGORITHMS
Prior to entering the actual path routing procedures 

the program establishes an order of wiring priority (e.g., 
power wiring must precede signal wiring). Those con­
ductor paths that have been determined manually are 
assigned directly to the line segment data structure.
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Figure 3. Flowchart of the algorithms.

The first step in the vertical/horizontal algorithm is 
to break each of the nodes (electrically common con­
ductors) into a number of sections, each section forming a 
connection between a pair of points. A minimum tree 
algorithm is used to ensure that the connections have 
the minimum length of wiring, regardless of the order in 
which they were specified. The order in which the routes 
are completed is of vital importance if there is to be any 
chance of completing the board wiring. A high priority is 
allocated to those connections which have little choice of

The Australian Computer Journal, Voi. 12, No, 4, November 1980



Computer Aided Design of PCB Layouts

DATA
File

LAYOUT
File

Interactive 
Graphic Display

Digitizer

Photo-plotter

Hard-copy
Unit

Hard-copy
Plotter

Line
Printer

Numerically 
Controlled Drill

VDU
Terminal

Peripheral
Computer

System

Mainframe

Computer

WREPCL u

Figure 4. WREPCL operation facilities.

path, that is, the shortest connections are made first.
During the determination of paths in the vertical/ 

horizontal algorithm eight attempts are made to connect 
two points, four in each direction. With each attempt the 
initial starting direction is altered. A retries option permits 
deeper search attempts to be made in order to complete 
connections that were not made on the first pass.

An optimization routine optimizes paths in order to 
reduce the number of interconnections between the two 
sides (layers) of the board and hence simplify the manu­
facturing requirements. The resultant board may contain 
vertical and horizontal conductors on both sides of the 
board provided of course that no paths cross.

When using the modified Lee algorithm interconnect­
ions are first attempted in an order that depends on the 
order in which the wiring data is submitted. For any one 
node multiple target points are available for interconnect­
ions. If previously fitted branches block the way, some 
earlier branches are removed and an attempt is made to 
fit the branches in another order before deferring one or 
more to subsequent layers (if the board is a multi-layer 
board). The modified Lee algorithm assigns the path 
between two points to one layer only.

The path routing procedure terminates after all 
paths have been completed or when the remaining inter­
connections are too difficult for the search methods to 
find in a reasonable time (CPU time). It is more economical 
to place the few uncompleted paths manually during an 
editing stage.

Although the vertical/horizontal method and Lee’s 
algorithm may, in general, be applied individually to 
multi-layer boards, WREPCL has been designed to use the 
vertical/horizontal method for the first two layers and the 
Lee algorithm for any subsequent layers. This is due to 
the fact that a minimum amount of software change was 
required to combine the use of the routing algorithms in 
this way.

6. OPERATION
The WREPCL program interacts with an operator 

who responds to a series of questions from the computer 
by inserting design details. Prior to running the program
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Figure 5. Artwork for board layers.

the layout designer should establish the positions of the 
components on graph paper and show the desired pos­
itions of the power wiring. This helps to streamline the 
layout operation when using the interactive graphic display 
terminal or digitizing tablet.

A components library is provided since components 
with the same number and position of pins occur extens­
ively. Component types are easily placed by merely indic­
ating position on the board and library reference.

Following manual placement of the power wiring 
(and other desired pre-placed wiring) a list of the desired 
signal interconnections (nodes) between components is 
entered into the computer and data verification carried 
out. The interconnections are then submitted to the auto­
matic path routing procedure. Following routing the 
operator is informed of the interconnections that could 
not be placed (normally less than five per cent). A hard­
copy plot is obtained at this stage so that the layout de­
signer can study the result for correctness and for avail­
able space in which to route paths not placed by the 
routing algorithm. The path routing phase reads the DATA 
file and creates a LAYOUT file.

The board layers are then displayed on an inter-
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Figure 6. Artwork for overlay.

active graphic display terminal. Unplaced interconnections 
are inserted together with other necessary information 
required for board identification and manufacture. A 
component assembly diagram (Overlay) is produced by 
WREPCL and it may also be displayed and modified. The 
Editing phase updates or modifies the LAYOUT file. A 
hard-copy plot is obtained from the LAYOUT file in 
order for the layout designer to check for completeness 
and correctness of paths entered during the Editing phase.

On completion of the layout the operator creates 
the “manufacture” files used by the post-processing peri­
pheral computer system.

7. CAPABILITIES
The WREPCL program provides the following major 

characteristics:
1. Layouts for PCBs up to a size of 380 mm square.
2. Choice of layout grid spacing, namely, 2.54 mm 

(0.1 in), 1.27 mm (0.05in) or 0.64 mm (0.025in).
3. Three sizes of conductor widths.
4. Five pad (land) sizes for component mounting.
5. Incorporates a components library.
6. Optional interactive insertion of components, con­

ductors and text.
7. Provision for future inclusion of automatic com­

ponent placement and schematic diagram generation. 
Figures 5 and 6 show the artwork produced for a

board designed with the aid of WREPCL. Figure 7 shows a 
completed board. CPU time for automatic path routing 
was 15 seconds using an IBM 370/3033 computer. In 
general, artwork generation time is halved when using 
the computer aided design system.

Although WREPCL can lay out paths for multi­
layer boards, a multi-layer board has not yet been manu­
factured.

8. CONCLUSIONS
The Design Automation process combined with 

Computer Aided Editing can be a practical aid to designing 
PCBs if the results can be obtained readily and econo­
mically — that means:
1. Easy access to a computer facility (and interactive 

graphics).

■It -J'

Figure 7. Completed board.

2. Fast turn-around times, and
3. Low processing costs.
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Letters to the Editor
The Australian Computer Journal welcomes Letters 

to the Editor for publication, either to comment on the 
contents of recent issues, or to discuss topics In computing 
likely to be of interest to the Journal’s readers. Letters 
are not refereed. However, the Editor reserves the right to 
make changes of a stylistic nature to any letters published, 
or to return letters for modification should they contain 
anything regarded as unsuitable for publication.

MAY EDITORIAL CRITICISED
I should like to make a few comments on your 

editorial in the May 1980 issue of the Journal. Whilst I 
found the first part of the editorial very enlightening, as a 
“desk-chained program-progressor” I found the latter part 
rather obnoxious and insulting to the computer pract­
itioner. It is a shame that the views you express are all 
too typical of those prevailing in the Australian computer 
science academic community. Your contention that all 
worthwhile research originates from universities is, I feel, 
extremely tenuous. As far as I am aware, most of the more 
important developments in computer science have had 
their birth in private research laboratories around the 
world, rather than in computer science departments of 
universities. I would seriously question just how much 
university-originated research is really incorporated into 
“tomorrow’s computing systems”. Even in Australia I 
am personally aware of one large company which has 
carried out quite extensive research as well as the develop­
ment of products which were not yet known on the world 
market. Naturally, due to the highly competitive nature 
of the industry, such work is very seldom publicised. 
Perhaps this can excuse the arrogance of academics in 
believing that they are the source of all enlightenment in 
the computing community.

In order to overcome such misconceptions I believe 
there should be a much closer co-operation between indus­
try and universities in Australia and would suggest that 
this would be a field in which the ACS should become 
active.

Greg Ward, MA CS, 
A EG-Teiefunken, 

Darmstadt, West Germany
Editor’s Remarks:

Although the Editorial under criticism was written 
by my predecessor, and indeed I do not share all its senti­
ments, I must rise to its defence. The Editorial did not 
claim that academics are the only ones who do research. 
Rather, the Editorial stated that the value of research has 
not been given adequate appreciation by most practitioners, 
a situation which is unfortunately all too true.

COMMENT ON TAB ARTICLE
I refer to the essay, “Computer Applications in the 

Totalizator Industry in Australia” (Vol. 12, No. 3, August, 
1980) from Dr D.L. Overheu. These notes of Dr Overheu 
contain a number of errors of fact and omission relating to 
the computing activities of the Totalizator Agency Board of 
NSW.

This Board ordered a dual 360/44 with 10, 2314 
disks from IBM Australia in 1969 and the system com­
menced on-line operations, as scheduled, in August, 1971.
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Two 2311 disks were installed, on lease, for a brief period 
in 1970, pending delivery of the 2314 type. The first non­
metropolitan or country branches, in the Hunter Region, 
to achieve on-line selling cutover in 1977, not 1973 as 
stated in the Journal.

Maintenance of terminals, mini-computers, multi­
plexers and associated equipment was commenced by our 
own staff in 1976, however, mainframe maintenance is 
still carried out by the supplier. Thus, it is not accurate 
to state that there was “total supplier dependence at 
NSW/TAB” in 1977. This Board took delivery of 370/ 
135s in 1975/76 not 370/138s as stated. The IBM Series 1 
mini-computers are being used for a Master Collator and 
Display system but they were never envisaged for use in 
dividend calculation.

It is understood that IBM determined to vacate the 
totalizator terminal field after this Board decided upon 
the A.W.A. MRT-2 mark sense reader as IBM was a tenderer 
for the contract. It may not be generally known that the 
MRT-2 was developed by A.W.A. to the specification of 
this Board. We have never made “studies ... of the Alpha 
language”; however, it is referenced within a quotation in 
a paper prepared by our staff in 1978.

A.J. Windross, MACS, 
Automation and Research Manager 

NSW TAB

AUTHORS REPLY:
Mr Windross’s concern for accuracy is appreciated. 

However, it should be pointed out that gaining factual 
information about TAB computer developments is 
extremely difficult1. My article makes extensive use of 
several informed sources. Apart from typographical errors 
we must therefore assume that these sources have some­
times been in error.

I would emphasise that the article was about general 
trends that seem to be occurring in the industry and the 
difficulty of satisfying some of its needs. These trends 
have been towards some form of distributive processing, 
often with mini-computers, self-operated cash sale 
terminals for off-course, but not generally for on-course, 
and towards the use of higher level programming languages 
rather than assembly language for system development.

On the particular question of the MRT-2 terminal I 
have no doubt that had IBM wished to do so they could 
have gone into a redevelopment of their mark-sense term­
inal and a competitive marketing situation. My inform­
ation by personal communication is that AWA spent some 
time talking with all TABs before deciding on the MRT-2 
development. This company has considerable experience 
of its own in totalizator systems and their requirements.

1. However the following further reference has surfaced.
VICKRESS, Frank, ‘An approach to design and specification 
of a real time on-line Data collection and processing system’. 
Proceedings of Fourth Australian Computer Conference, 
Adelaide, SA, August 11-15, 1969, VI, p. 43.

D.L. Overheu, 
Canberra CAE, 

Board Member, ACT/TAB
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Infotech State of the Art Report, Micro-Computer Software.

Infotech International Ltd., 1979. £.130.
Vol. 1, Analysis and Bibliography. 223 pp; Vol. 2, Invited
papers. 282 pp.

Infotech is a UK-based organisation which regularly pub­
lishes reports on topics in computing which are judged to be of 
current interest. These two volumes are about microcomputer 
software and follow the standard Infotech format in which a 
number of experts are invited to submit papers, 15 of which make 
up Volume 2. An editor, in this case R. Dowsing of the University 
of East Anglia, then takes extracts from these and other appropri­
ate papers and rearranges them together with a commentary to form 
a comparative analysis of the subject which then forms Volume 1.

This publication is a qualified success. The invited papers in 
Volume 2 seem at first to be somewhat unco-ordinated. Some 
(e.g., ‘A Simple Microprocessor Task Monitor’, by D.M. England) 
describe simple techniques which have been in use for decades on 
larger systems, whereas others (e.g., ‘A Guide to Communicating 
Sequential Processes’, by S.S. Kuo, M.H. Linch and S. Saadat) 
describe theoretical work which has not yet been fully imple­
mented on any sized system. One paper, ‘Microprogram Assemblers 
for Bit-Slice Microprocessors’, by V.M. Powers and J.H. Hernandez 
is a comprehensive survey of available products in a particular 
area, whereas another paper, 'Forth Programming Language for 
Real-Time Mini and Microcomputer Applications’, by E. Rather 
is a detailed description of a particular proprietary product. ‘Micro­
computing — The Software Dimension’ by P. Hazan is a spec­
ulative paper about how microcomputers may develop, whereas 
‘Totally Portable DP Software’ by C. Hawkins describes practical 
experience gained with a portable COBOL-based system. However, 
on reflection, it seems that these papers may accurately reflect the 
current state of confusion over microprocessor software. On the 
one hand, it can be argued that microcomputer software ought 
not to be considered a subject in its own right, as the same prin­
ciples should apply as on larger systems; on the other hand, those 
struggling to implement applications on limited hardware with 
inadequate aids know that, for the moment anyway, microcom­
puter software is different.

Unfortunately, the diversity of the invited papers makes the 
comparative analysis in Volume 1 rather unsatisfactory; there is 
just not enough common ground between the papers to make a 
point-by-point comparison of items useful, in spite of the fact that 
liberal use has also been made of excerpts from other volumes in 
the Infotech series. Volume 1 does, however, contain a useful 
bibliography of some 111 papers.

To conclude, if you are looking for comprehensive coverage 
of the subject, full of ‘how to do it’ hints, then these volumes 
would be a disappointment. If however you can use an up-to-date 
collection of well written and thoroughly readable papers which 
explore a number of interesting areas in microcomputer software, 
then this somewhat expensive publication can be recommended.

David Rowe, 
Monash University

Microprocessor Applications: International Survey of Practice
and Experience. Infotech International Ltd., 1979. 359 pp.
£49.50.

The major part of this publication is precisely what its title 
suggests: a collection of 20 papers describing a broad spread of 
microprocessor applications. This volume is not in the standard 
‘Infotech State of the Art Report’ format in that it consists of 
only one volume and does not have the usual comparative analysis. 
This is possibly because there is not enough common ground bet­
ween the applications described in the papers to make a com­
parative analysis useful. Instead the volume opens with a 42-page 
editorial introduction titled ‘Basics’ which is largely devoted to the 
hardware technology of microprocessors. This is curious as it does 
little to illuminate the papers where the emphasis is on applic­
ations, with the microprocessors themselves barely rating a mention.

The 20 invited papers have been carefully chosen to illus­
trate a range of applications in which the microprocessors are 
used as replacements for dedicated logic, rather than as small- 
scale general-purpose computers. There are three groups of papers: 
the first describe applications-.in which the microprocessors are 
used for monitoring and data collection, e.g., in a nuclear reactor,
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for meteorological conditions and for human lung measurements. 
The second group of papers describe applications where the micro­
processors are used to control some device, e.g., an autoclave used 
in pharmaceutical manufacture, a turbo-jet engine and a hospital 
drip-feed unit. The final group of papers describe rather more 
complex uses of microprocessors in a number of areas, e.g., med­
ical, telecommunications and broadcasting fields. The emphasis 
in most of the papers is on the nature of the problems which led to 
the adoption of microprocessors in each case and the advantages 
gained in doing so; in most papers there is less emphasis on the 
details of the implementation. All of the papers are well written 
and are quite readable.

A refreshing feature of the papers is their truly international 
flavour; there are papers from Brazil, Eire, France, Holland, Italy, 
Japan, UK and USA. It seems that microprocessor applications is 
one of the few areas in computing which avoids the usual American 
domination.

The volume also contains a bibliography of 87 references 
and an eight-page glossary of technical terms.

To conclude, this is not a reference book on how to use 
microprocessors, but it is a useful introduction to the range of 
applications in which microprocessors may be used to advantage. 
It is regrettable that the price is so high as similar information is 
available in a range of other publications.

David Rowe, 
Monash University

E.E. Swartzlander (1979), Computer Arithmetic, Dowden, Hutch­
inson and Ross (distributed by Academic Press). 378 pp.
$45.00.

This book is Volume 21 in the Benchmark Series in Elec­
trical Engineering and Computer Science. It contains 43 papers on 
digital arithmetic as implemented in digital computers. These have 
been carefully selected by the Editor from papers published over a 
30-year period, and are considered as “benchmark” papers in the 
field of Computer Arithmetic. The papers are reproduced in full, 
and are presented in seven parts with the following headings: 
1: Overview, II: Addition and Subtraction, III: Multiplication, 
IV: Division, V: Logarithms, VI: Elementary Functions and VII: 
Floating-Point Arithmetic. The papers in each part are preceded 
by the Editor’s comments. These provide an introduction to the 
historical development of the subject matter, a summary of each 
paper’s contribution to this development and a list of other im­
portant and related papers not reproduced in this book. The book’s 
bibliography contains over 250 references.

The Benchmark Series serve three major purposes: firstly to 
provide a practical point of entry into an area of research, secondly 
to provide a convenient means of study of areas related to the 
reader’s principal interests, and thirdly to provide a compact col­
lection of the major works on which the reader’s present research 
activities and interests are based. This volume on Computer Arith­
metic clearly serves these purposes. In these times of very rapid 
technological advances in which more and more applications are 
based on digital techniques (including digital arithmetic), this 
book will undoubtedly be of immense value. Teachers in tertiary 
educational establishments will find this book to be not only an 
excellent reference but also a book on which an advanced course 
in Electrical Engineering or Computer Science can be based. De­
signers of digital systems will find this book most useful. It is an 
excellent book which should enhance the value of all public and 
private collections.

D.G. Wong, 
University of Sydney

G.V. Rao (1978), Microprocessors and Microcomputer Systems,
Van Nostrand Reinhold. $24.50.

It feels somewhat strange to review a book in 1980 first 
published in 1978 and prepared and written in 1977 or earlier. 
Therein lies the problem with any book in this constantly chang­
ing area of advanced technology. As such, it does not, or could 
not, cover the new world of 16 bit “chips” such as the Intel 8086, 
Zilog 8000 or Motorola 68000. In another way, however, this 
superbly produced book is of value even if you may expect to 
see it in a “remainder sale”.

The book consists of some 14 chapters and as is unusual 
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for this type of book it covers very well the fundamental physics 
of large scale integration and chip fabrication. At all points in the 
book liberal use is made of detailed diagrams and tables, with 
some form of illustration on almost every page.

Chapters 1 to 3 cover the basic electronics of solid state 
devices although at times the coverage may be sketchy. There are 
some problems at times where two different concepts or prin­
ciples are introduced together in these early chapters. For example, 
in the section (3.7) related to electron-beam addressable memory 
the concepts of electron-beam mask fabrication, lithographic 
techniques and ion-implantation are also introduced in a section 
that is only nine lines long. In this sense the background of the 
book comes to the fore, i.e., it was created from a set of lecture 
notes. Chapters 4 to 6 cover memory and peripheral topics, but 
once again the date of the book is notable as the Intel MCS-85 
chip set is covered in a whole section. Chapter 7 is a list of micro­
processors available at the time and each gets a small summary 
paragraph. In most cases this works well but the coverage of "bit- 
slice” technology, via the AMD-2900 series, suffers by being covered 
in less than two pages. For software-oriented readers, Chapter 8 
provides a sketchy and somewhat disoriented introduction to the 
software available on microprocessors. However, the description 
of PASCAL as a language capable of describing data and pro­
cedures in "pidgin English” is rather unusual as are many other 
descriptions of hardware and software elements in the book. Chap­
ter 9 is occupied by a rather pointless reference chart on available 
microprocessors at the time. Chapter 10 does contain a valuable 
set of diagrams on basic digital logic. The remaining chapters cover 
display units, reliability and application.

The short “fly leaf” description of the book claims that 
the book has been designed to facilitate communication between 
a number of groups including hardware and software people, mark­
eting and training groups, “students, faculty and laymen as this 
science enters every facet of the home and industry”. About the 
only thing I can agree with here is the last phrase in relation to the 
so-called “microcomputer revolution”. The book is too fragmented 
and sketchy for any really serious use and unfortunately it has 
dated badly because of its extensive use of comparative tables. 
The most rewarding section of the book is really its first few chap­
ters on the basic physics and electronics of advanced LSI tech­
nology. Providing one can ignore such excesses in style as a des­
cription of nuclear fusion as a provider of "superenergy” a perusal 
of the arguments in these chapters is worthwhile.

W.J. Caelli,
Electronic Research Associates, Queanbeyan, NSW 

iCL Technical Journal, Volume 1, Issue 2, May 1979

Well, they’ve done it again! In my review of the first issue 
of this new journal, I expressed my pleasure at seeing a technical 
journal that was addressed not only to academic people like the 
reviewer, but also to the profession at large. My pleasure is rein­
forced by this second issue.

It contains six papers of tremendous variety. The first, 
Computers in support of agriculture in developing countries by 
G.P. Tottle, gives an interesting insight into the problems experi­
enced by developing countries. His conclusion that computers can 
be used in these areas seems well justified, even though it is quite 
contrary to conventional wisdom. The paper which interested me 
most was the second, Software and algorithms for the Distributed- 
Array Process by R.W. Gostick. The DAP was briefly described in 
the first issue, and this paper fills out many of the details. As well 
as describing the DAP, the author presents the solution as four 
classical problems: matrix multiplication, searching an array, traver­
sing a graph and sorting. Although the description of the algorithms 
is a little weak, perhaps due to space considerations, the programs 
themselves are quite clear and illustrate the DAP very nicely. As an 
educator, I was delighted to see that the algorithms needed for 
these problems underline the importance of teaching general prin­
ciples in algorithm design, as well as the currently best techniques. 
System performance is always an important consideration and the 
next two papers, Hardware monitoring on the 2900 range by 
A.J. Boswell and M.W. Brogan, and Network models of system 
performance by C.M. Berners-Lee, address the topic. The first 
gives a clear description of the TESDATA 1187 monitor, and 
examples of its use. The second describes a class of models called 
FAST (which means Football Analagy of System Throughput). 
This paper is the only one in the journal which will place excessive 
demands on the general reader. The fifth paper, Advanced tech­
nology in printing: the laser printer by A.J. Keen, describes, as its 
title suggests, ICL’s LPS-14 laser printing system. As one con­
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demned to a 300 I pm printer, I found the description of a 10,000 
Ipm printer quite fascinating. The final paper, The next frontier: 
three essays on job control is by David Barron, the only author 
not on ICL’s staff. We are accustomed to entertaining papers by 
this author — and we are not disappointed here. Perhaps the best 
way to illustrate both the style and the content is to give two 
quotations.

“ 'Man is born free but is everywhere in chains’, said Rous­
seau. A recent candidate in a computer-science degree exam­
ination put it more succinctly: ‘The function of the soft­
ware is to prevent people using the hardware’.”

“They (operating system designers) should not build into 
the operating system a preconceived idea of how it is going 
to be used, least of all if (as is most common) they have 
never been users themselves.”

All round, another very impressive issue.
J.S. Rohl,

University of Western Australia

Bauer, F.L. and Broy, M. (eds) (1979), Program Construction. 
Lecture Notes in Computer Science 69, Springer-Verlag. 
651 pp. $US29.70.

The volume presents material from an International Summer 
School under four headings which categories the main topics and 
indicate their formal nature.
I The Thinking Programmer: Interplay between Invention 

and Formal Techniques.
II Program Verification: Proofs, Programs and their Develop­

ment — The Axiomatic Approach.
III Program Development by Transformation: From Specific­

ation to Implementation — The Formal Approach.
IV Special Language Considerations and Formal Tools: Langu­

ages as Tools — Interactive Program Construction.
On first reading, sections II and III were found to be the 

most informative and contained surveys of the two main approaches 
to program construction. Some of the papers can be read with 
few prerequisites but to get the most benefit from the volume an 
appreciation of the notation of mathematical logic, including 
lambda calculus, McCarthy (1963), and of structured program­
ming, Dijkstra (1976), is recommended. Good references are pro­
vided with most papers.

Section II develops the rules for verifying the correctness 
of a program which are commonly associated with the term 
“structured programming”. It follows with an account of the pro­
gramming language Euclid which was evolved from Pascal and 
which incorporates these proof-rules. The section ends with the 
applications of the method to the development of examples in 
concurrent programming.

Section III, of 257 pages, introduces a second method of 
developing correct programs based on transformation rules for 
converting a piece of program to another form whilst preserving 
its semantic meaning.

This can be used to express language constructs in terms of 
more elementary ones for which correctness is readily established. 
The method is of importance in the formal study of semantics 
and the implementation of programming languages. The articles 
provide a survey of transformation methods with simple examples 
in a coherent form which offers a good starting point for study.

Sections I and IV contain some general articles but mainly 
provide additional material to expand II and III respectively.

By presenting the two techniques outlined above, the work 
gives a valuable perspective of current (1978) activity and will 
repay serious study by students of advanced programming. In 
particular it should encourage the use of verification in structured 
programs and secondly makes material on transformation methods 
more accessible.

REFERENCES
DIJKSTRA, E.W. (1976), "A Discipline of Programming", Prentice 

Hall, Englewood Cliffs, N.J.
MCCARTHY, J. (1963), "A Basis for a Mathematical Theory of 

Computation”, in P. Braffort, D. Hirschberg (eds), Computer 
Programming and Formal Systems, North-Holland Publish­
ing Co., Amsterdam.

D.P. Hodgson,
Western Australian Institute of Technology
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Deutsh, D.R. (1979), Modelling and Measurement Techniques for
Evaluation of Design Alternatives in the Implementation of
Database Management Software, National Bureau of Stand­
ards, Washington, D.C. 231 pp. $7.70.

This text is a published Ph.D. thesis and, in consequence, 
cannot be classified as light reading for the data processing pro­
fessional interested in evaluating database software. Its market is 
to be found mainly in universities and CAEs with computing de­
partments engaged in database research. The author describes a 
methodology which may be followed in database management 
systems (DBMS) design in order to arrive at a product which is 
both performance and cost efficient. A simulation modelling sys­
tem, called the set processor performance model (SPPM), is des­
cribed using SPPM, it is possible to design a DBMS and evaluate its 
potential performance characteristics without actually construct­
ing it.

SPPM consists of over 200 Fortran modules that run on a 
PDP-10 under the TOPSIO operating system. The author claims 
that SPPM could be implemented on any similar system with a 
Fortran compiler. Several pages of the text are devoted to defining 
what many of the modules do, which I found rather tedious. How­
ever, for a research student involved in DBMS simulation these 
would be important. I was rather disappointed at the author’s 
failure to apply his method in making a comparison of existing 
commercial DBMS systems. With this criticism in mind, I consider 
chapter 8 to be the most interesting part of the book, with its 
discussion of model evaluation. Also discussed in the chapter are 
methods for validating the performance of a simulation program.

Overall the text would make a solid starting point for a 
research student wishing to undertake a DBMS project. Over 170 
references are cited in the bibliography. Also, the thesis does pro­
vide strong evidence that simulation is a powerful tool that the 
data processing profession can employ to evaluate potential sys­
tems, whether or not they are databases.

D.J. Hubbard, 
Bendigo College of Advanced Education

Boyer, R.S. and Moore, J.S. (1979), A Computational Logic, ACM
Monograph Series. Academic Press, New York, 397 pp.
$41.30.

This latest volume in the excellent ACM Monograph Series 
summarises many years work by the authors into the discovery of 
techniques for performing proofs by induction. In particular, they 
describe heuristic techniques for proving properties of recursively 
defined functions over inductively defined objects. Since examples 
of inductively defined objects include integers, sequences, lists, 
trees, expressions and formulas, the techniques described are im­
mediately applicable to proving properties of programs which 
operate on such objects. More generally, the techniques are applic­
able to any proofs by mathematical induction.

Although the authors carefully define the logical system 
they use, the main contribution of their book is the description of 
the heuristics they use in proofs, and their techniques for using 
previously proved theorems as lemmas. All their techniques are 
illustrated through a well-chosen set of examples and have been 
implemented in a large Lisp program capable of proving all the 
theorems described in the book.

Examples of such theorems include:

(IMPLIES (PLISTP X)
(EQUAL (REVERSE (REVERSE X) ) X) )

and
(EQUAL (FLATTEN (SWAPTREE A) )

(REVERSE(FLATTEN A)))

where PLISTP, REVERSE, FLATTEN and SWAPTREE are all 
recursively defined functions over lists or trees. The climax of the 
book is the description of the proofs of four complex examples: 
the correctness of a theorem prover for propositional logic, the 
correctness of a simple optimizing compiler for arithmetic express­
ions, the correctness of a fast string matching algorithm (written in 
an imperative programming language), and the unique factoriz­
ation theorem (any positive integer can be represented as the 
product of a finite sequence of primes, and any two finite seq­
uences of primes with the same product are permutations of one 
another).

The main heuristics used by the authors to prove a given 
formula are the following:
— Simplify the formula by applying axioms, “rewrite” lemmas

and function definitions.
— Replace “destructive” functions (e.g., CAR) by “construct­

ive” functions (e.g., CONS).
— Use equalities and then throw them away.
— Generalize the formula by introducing variables for terms 

that have “played their role”.
— Eliminate irrelevant terms from the formula.
— Use induction to split the formula into two or more simpler 

formulas to be proved.
Each of these heuristics is applied in turn. If any heuristic 

succeeds in changing its input (without proving it), the whole pro­
cess is repeated on each of the output formulas. The process term­
inates when there are no formulas still to be proved (success) or 
when a formula is recognizably not a theorem or fails to be changed 
by this process (failure).

Each of these heuristics is carefully described in one or 
more chapters. In each case the explanation is exemplary: first 
some simple examples to motivate and informally describe the 
heuristic, then a precise description of the heuristic, and finally a 
more complex application of it. The first theorem presented above 
is used as a running example in these descriptions.

Generally, the presentation and style of the book is excel­
lent. The authors write clearly and simply, motivating all their 
descriptions with well-chosen examples. That parts of the book are 
still difficult to understand is a consequence of the complexity 
of the subject matter. One interesting aspect of the book is that 
some sections consist entirely of the output of the authors’ 
theorem-proving program which describes its proof attempt in 
perfectly clear, understandable English (refuting a common crit­
icism that proofs of program properties are always unreadable).

An appendix contains a complete list of function definitions 
accepted by the system and theorems proved by it. An excellent 
bibliography and index complete the book. In reading the book 
fairly carefully, I detected one misprint. A minor quibble is the 
authors’ perpetuation of the Lisp tradition of using CAR and CDR 
as selectors whatever the abstract data type being considered.

Despite the value of the heuristics presented, and the success 
of the authors’ theorem-proving program, it is clear that much 
research remains to be done in this field. The following weak­
nesses in the system presented stand out:
— The necessity for some “bridging” lemmas in the more 

complex proofs. These lemmas do not actually state useful 
facts in their own right, but direct the theorem prover’s 
course of action. Such lemmas require too much understand­
ing of the theorem prover by the person using the system.

— The necessity in one proof to define some functions un­
naturally (e.g., using [ID X] where ID is the identity funct­
ion) so that the induction heuristic will choose the “right” 
induction scheme.

— The inability to generalize constants when required.
— The necessity to state how theorems should subsequently 

be used as lemmas.
These are all difficult problems to overcome and I look 

forward to seeing the authors’ subsequent attempts to solve them.
In summary, “A Computational Logic” is an excellent des­

cription of the techniques the authors have developed for per­
forming inductive proofs in a variety of domains automatically. 
Readers with no previous experience in automatic theorem proving 
would find this book a good starting point. Anyone remotely inter­
ested in mechanical program verification or the mechanization of 
mathematical proofs in general should read it, and people seriously 
interested in these topics will want to have their own copy. Every 
computer science and mathematics library should certainly have 
one. I recommend it.

R.W. Topor, 
Monash University

Maynard, J., Computer Programming Made Simple, W.H. Allen, 
London. 2nd ed. 1980. 350 pp. £2.50.

To my mind Computer Programming Made Simple is not a 
simple book. The author states that it will be of interest to students 
at schools and further education establishments but I believe the 
average school student would find it generally unappealing. They 
would not be inspired to read any further than the front cover. It 
is a thick text book with small type, few diagrams, and several 
out-of-date photographs. In fact, this is a library book or teacher 
reference. I have looked at so many books that make similar claims. 
They are usually written by tertiary level authors for a tertiary 
level market but attempt to sell to a wider market by stating on 
the cover that the book would be of interest to schools, too. How-
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ever, these two target audiences are not compatible. Although 
the concepts are clearly explained, the very presentation of the 
book excludes it from the school market. It would need to be 
more visually stimulating to attract the average student’s attention.

To be critical on a second point, the book is a second edition 
of a 1972 publication. The publisher claims that the book is com­
pletely updated and has an additional 50 pages on microprocessors, 
home computers, and the BASIC programming language. In reality 
this statement means that two short chapters on micros and BASIC 
have been tacked onto the end of the book and two photographs of 
micros inserted into the photograph section. The section on micros 
is extremely brief and although it carefully and precisely provides 
an understanding of the jargon of micro-computing, it goes into 
too many technical details for a book whose title is Computer 
Programming Made Simple. The section on BASIC is also brief 
and refers to a fairly “mickey mouse” version of the language.

For an updated edition, comments like:
"Punched cards and punched paper tape represent between 

them something over 95 per cent of the input media currently in 
use in commercial computer installations". (p. 15)

"Keyboards cannot be considered for inputting a large
quantity of data". (p. 15)

"A typical dish pack can hold about 30 million characters 
of information". (p. 25)
and on multiprogramming:

"The number of programs involved . . . would typically be 
three for a medium-sized computer and up to about 16 for a large
computer. .. " (p. 45)
would seem to be incorrect.

On the good side, the book does have an understandable 
introduction to general computing concepts and definitions of 
computer terms in part 1 (60 pages) before it starts into its main 
objective, computer programming, which consists of an extensive 
introduction to COBOL (150 pages, the major part of the book) 
plus short sections on FORTRAN and BASIC. There are review 
questions at the back of the book, along with an index and glossary.

In summary, Computer Programming Made Simple is a 
fairly thorough reference text, extensive in terms of the ground it 
covers, but slightly out of date and not totally suited to the average 
school student or to the general public as stated in its publicity.

John Read and Sandra Wills, 
Elizabeth Computer Centre, 

Education Department of Tasmania

Tucker, A.B., Text Processing - Algorithms, Languages and Applic­
ations, Academic Press, 1979. 171 pp. $23.

This is a useful little book that kills two birds with one 
stone. Its avowed purpose is to introduce computer text process­
ing. Useful as this may be, I rather think that the book will be 
more valuable in another context: to introduce computers to an 
audience which is neither mathematically nor commercially orient­
ed, using text processing tasks as illustrating examples. So if you 
are looking for a textbook for an introductory programming course 
for typists, librarians or politicians, give this one a try. It would 
be far more suitable than alternative books of more conventional 
orientations.

The first chapter provides a brief introduction to text pro­
cessing and computer hardware/software. Although very short, the 
part on computers does manage to get the idea across quite effect­
ively. Chapter 2 gives a reasonably complete discussion of the 
basic features of PL/1. While the mathematical capabilities of the 
languages are necessarily omitted, all the control structures, includ- 
subroutines, are introduced and explained in an elementary but 
clear fashion, together with, of course, the text manipulation 
features of PL/1. With some augmentation by the teacher this 
would do very well as an introduction to PL/1. Chapter 3, on 
SNOBOL, is not quite as good, and requires greater effort on the 
part of the reader. To take two examples, the list of pattern match­
ing function descriptions on page 91 is a bit obscure, and the 
deferment of examples to a later section rather leaves the reader 
up in the air. On pages 96-97 the same symbol S is used to mean 
three different things all within short space of each other, and it 
would have been helpful if the author had spaced the examples of 
page 96 apart and separated out the two definitions of P and PUNC 
from the pattern matching statements — it took me some time to 
work out that the definitions are not part of the pattern match. 
However, a good teacher would no doubt be alert enough to point 
these problems out in class to save the students’ confusion.

Chapter 4 provides brief descriptions of the packages KWIC, 
FUMULUS, and SCRIPT, and the IBM text editor CMS. The first
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two are for bibliographical processing, the third for text prepar­
ation, and the last is general purpose, which could form the basis 
of an introduction to on-line computer use for students not 
specially interested in the previous three packages. Chapter 5 
reviews the available literature on common programming languages 
(the word PASCAL appears three times!), packages, and current 
research, and refers to a total of 87 books and articles on various 
aspects of the subject.

Each chapter has an extensive list of exercises, and selected 
answers are provided. There are also three appendices on ASCII/ 
EBCDIC codes, tape and disk I/O, and a short glossary of 18 text 
processing terms. Lastly there is an index, unfortunately too sparse 
for looking up language constructs. Indeed the whole book could 
use a bit of expansion. The book has been carefully produced, 
and very carefully proof read. It is, to repeat, a useful little book.

C.K. Yuen

Rozenberg, G., and Salomaa, A., The Mathematical Theory of L
Systems, Academic Press, New York, 1980. 352 pp. $38.

An L system (named after Aristid Lindenmayer, of the 
Theoretical Biology Group at Utrecht), is a rewriting system, of 
the general type that we associate with the name of Post, but 
with each symbol in the generated string rewritten at each discrete 
time interval, whereas the usual Post productions used in formal 
language theory rewrite only a single symbol at a time. This prop­
erty of parallel rewriting is shared by cellular automata, but the 
individual cells in cellular automata merely change state, whereas 
a symbol in an L system may expand into several symbols, anal­
ogous to the multiplication of cells. L systems have a practical 
interest as models of aspects of the development of organisms, or 
portions of organisms.

The book under review is by two major researchers in L 
systems. Grzegorz Rozenberg was a pioneer in the study of L 
systems, and Arto Salomaa has produced important results in 
several areas of automata theory and formal language theory, 
including L systems. As one might expect from two such experi­
enced researchers and authors, this book is both well-written and 
authoritative. It belongs in every library which pretends to cover 
theoretical computer science or mathematical biology.

Having given the book some well deserved praise, I must 
now point out that it is not a book by which the average inter­
ested reader would be advised to venture into the field for the first 
time. Its subject is indeed the mathematical theory of L systems, 
and only the slightest motivation is provided. An earlier book by 
Rozenberg, in collaboration with Gabor Herman, called Develop­
mental Systems and Languages is still the best place to start (with 
the introduction contributed to that volume by Lindenmayer 
especially worthwhile reading).

L systems today are divided into a bewildering number of 
variations, the most mathematically tractable of which are design­
ated by number-letter strings ending in “OL”. The “O” merely 
means that each symbol is rewritten without reference to adjacent 
symbols (context freeness, in the formal language sense). The L, of 
course, designates the parallel rewriting mentioned above.

Starting with a formal language in the usual (Chomsky) 
sense, one can proceed to a “pure grammar”, in which the non­
terminal symbols are eliminated. A pure grammar to generate 
{a+} would consist of a “start set" {a} and a single production 
rule a •* aa. Notice that this is a deterministic system, in that there 
is only one production rule that can be applied. If an ordinary 
context free grammar is deterministic, it generates only a finite 
set of strings, but this is not true for pure grammars. Now let us 
consider the parallel rewriting interpretation: at each instant of 
time, each a in the string is rewritten as two a’s The result at time 
n + 1 a’s, so we say the grammar generates {anl n > 0} . Interest­
ingly, this language cannot be generated by any pure grammar, 
which gives us an example of the power of parallel rewrit­
ing systems.

The system described above for generating\a I n > 0/is an 
example of a DOL system (the D standing for “deterministic”). 
Since it has no erasing productions, it is called “productive” and 
thus is a PDOL system. If it were productive but not deterministic, 
it would be a POL system. One can reintroduce the idea of non­
terminals and get what is called an EOL system. One can also 
generalise by allowing in the grammar one or more sets of re­
writing rules that can operate on the string, but with rules from 
only one set operating on a given string at a given time. These 
systems are called TOL (the T standing for “table”) systems. If 
the rewriting rules are deterministic within each set, then the 
systems are DTOL. A TOL with nonterminal symbols is an ETOL.
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And so it goes on.
The relationship between the various families of languages 

generated by the systems mentioned are, incidentally, as shown 
in Fig. 1.

ETOL

POL DOL

PDOL
Figure 1

(The lines downward in the diagram indicate inclusion of the lower 
family in the upper one). There are many other families mentioned 
in the book, and their profusion tends to be a little confusing. My 
main reason for preferring the presentation of Herman and Rozen­
berg is that this vast array of systems is much easier to sort out 
when presented with at least some biological motivation. (This 
holds true even for the non-biologist, since the motivations are 
easy to understand).

There are a number of interesting mathematical results in 
L system theory, however irrespective of motivation. The decide- 
ability of the DOL equivalence problem (discussed in Chapter III) 
is such a result. The material on complexity considerations in 
Chapter VI is interesting and leads to a number of open problems.

The discussion of multi-dimensional L systems (also in Chapter VI) 
is good mental exercise.

L.H. Reeker, 
University of Queensland

Kahn, P.M. ed., Computational Probability Academic Press, 1980.
340 pp. $21.

The book is not a cohesive discussion of “Computational 
Probability”, but the Proceedings of an Actuarial Research 
Conference held on Computational Probability at Brown Univer­
sity in 1975. Except that they relate to the topic of computa­
tional probability, the chapters contained therein are unstructured. 
Like the proceedings of other such conferences, this is both its 
strength and weakness. For the informed reader, it gives a 
broad spectrum view of the subject matter without necessarily 
saying something new. For the student, it contains the infor­
mation he requires but not necessarily in a form which can be 
easily assimilated.

Some of the papers address specific aspects of acturial 
research (e.g. APL for Actuaries; Reversionary Annuities as 
Applied to the Evaluation of Law Amendment Factors; Non- 
life Business and Inflation; Simulation of a Multirisk Collective 
Model), while others in comparison address quite theoretical 
questions (e.g. Computational Problems Related to the Galton- 
Watson Process; Central Limit Analogues for Markov Population 
Processes; Backward Population Projection by a Generalized 
Inverse). A few are rather pragmatic (e.g. Some Ideas in 
Computational Probability; Experimental Computation) with the 
odd one having only a tangential association with Computational 
Probability (e.g. Symbolic Information Processing, Numerical 
Fourier Inversion).

It is certainly not the type of book to which a computer 
professional or scientist would turn for information about 
algorithm aspects of computational probability. It does however 
represent for such an audience an illustration of the range of 
sophistication over when theoretical topics, such as probability, 
can range computationally.

R.S. Anderssen 
Division of Mathematics and Statistics, 

CSIRO, Canberra
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apply to large scale computer usage have been applied to 
user protective packages for micro-users. The packages 
include application programs and independently available 
subroutines. All documentation is scope oriented.

The released programs include a linear equation sol­
ving package, based on the LINPACK project (SIAM 1979), 
the ANSI/77 elementary function set in single and double 
precision form, and a random number generation, simula­
tion, and testing package. The 32 elementary function 
codes (sin, log, . . .) include a separate power (a to the 
power b) function. The accuracy and scope of the elemen­
tary functions embedded in the delivered Fortrans has been 
extended.

The linear equations packages, which solve up to 50 
by 50 systems, operate on the IBM Series/1 and Radio 
Shack Model II micro-computer. The elementary func­
tions and random number packages have been certified on 
the Model II. Release in given environments is followed by 
movement to other processors.

The software is produced by a consortium of 
computer scientists, numerical mathematicians, and statis­
ticians which has set the development of robust, tutorial

“Verbatim will provide full technical and engineering' 
backup for the locally produced products,” he said.

“We expect to increase our market share in Australia 
significantly in the current financial year with excess 
production being shipped overseas.

“Data and word processing applications have been 
expanding in recent years at more than 30 per cent a-year, 
and the market for flexible disks in Australia has been 
growing even faster,” he said.

COMPUTER NETWORK FOR AUSTRALIAN 
PAPER MANUFACTURER

Nine computers are to be supplied to Associated Pulp 
and Paper Mills (APPM) in Melbourne by Britain’s Inter­
national Computers Limited (ICL) under a $18 million 
contract.

The computers — eight ‘ME29’ and one Model ‘2956’ 
— will be installed during the next two years in APPM’s 
head office in Melbourne, and in the company’s four paper 
mills in New South Wales, Victoria and Tasmania. They will 
be linked together to form a distributed data processing 
network using the advanced facilities of ICL’s information 
processing architecture system. This will also provide the 
enhanced capabilities necessary for the development and 
operation of a comprehensive manufacturing system for 
use in the paper mills and extensions to existing adminis­
tration systems.

ICL will also provide supporting services and soft­
ware under the contract.

RPG II ENHANCEMENTS OFFERED BY 
DATA GENERAL

Data General Australia Pty Ltd has announced 
several significant enhancements to its AOS and AOS/VS 
RPG II programming languages.

The enhancements are designed to improve overall 
program development and maintenance capabilities, as 
well as to optimise RPG programs for high-speed 
execution.

AOS RPG II operates under Data General’s Advan­
ced Operating System and executes on any ECLIPSE 
data system with 512KB memory. AOS/VS RPG II 
operates under the recently-announced AOS/VS operating
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system and executes on 32-bit ECLIPSE computers.
Both AOS and AOS/VS RPG II include an interface 

to Data General’s INFOS and INFOS II file management 
systems, allowing users to create and maintain large data 
bases in an on-line, multi-terminal environment.

AOS and AOS/VS RPG II languages include two 
compilers — the Data General RPG Interactive Compiler 
(DG/RIC) and Data General RPG Optimising Compiler 
(DG/ROC).

DG/RIC runs interactively using an interpreter under 
AOS or AOS/VS, and provides interactive debugging, for­
matted dump facilities, and dynamic paging for large 
programs.

DG/ROC generates optimised machine-level code for 
the production of fast-executing versions of RPG 
programs.
software as its task, so as to make recent research advances 
in computer science availble to micro-computer users.

C. Abaci can be contacted at 101 Dixie Trail, PO Box 
5715, Raleigh, N.C. USA.

DIGITAL ANNOUNCES 124-MEGABYTE, 
WINCHESTER-TECHNOLOGY DISK UNIT

£8532

VsS'-i;.

Simultaneously with its parent company, Digital 
Equipment in Australia and New Zealand announced in late 
October, its first Winchester-type disk drive, designed for 
VAX computer systems.

Called the RM80, the new 124-megabyte unit uses 
state-of-the-art microprocessor control to achieve high per­
formance and reliability with a low cost per megabyte for 
program and data storage.

The RM80, designed and manufactured at Digital’s 
Colorado Springs facility, in the US is the company’s first 
disk product to employ Winchester technology, in which 
read/write heads, platters, and spindle are constructed as a 
sealed assembly, and which allows the heads to rest on 
special “landing zones” when power is removed. The design 
affords improved reliability because of the absence of con­
tamination associated with removal and replacement of 
disk packs and cartridges. The sealed assembly also permits 
more precise operating tolerances to allow higher data 
recording densities.

The RM80 is intended for use with MASSBUS 
equipped VAS-11/780 and VAX-11/750 systems. The 
RM80 is obtainable either as a part of VAX-11/780 and
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VAX-11/750 packaged systems or as separate add-on units 
for currently installed systems. The disk subsystem (drive 
and controller) is priced at approximately $34,000. Add-on 
drives are priced at just over $22,000. Deliveries are sched­
uled to begin in the first half of next year.

The new product attains an average seek time of 
25msec and an average access time (seek plus latency) of 
33msec. Data transfer rate is 1.2 megabytes per second. 
The head/disk assembly (HDA) contains four platters with 
seven data recording surfaces, one surface for servo infor­
mation, and two read/write heads per data surface. The 
HDA also incorporates a low-inertia rotary actuator.

The RM80 is available with single or optional dual 
port access. A mixture of up to eight RM80 and other disk 
products such as the RM03 and RM05 can operate on a 
sigle MASSBUS controller.

An integral microprocessor controls all major drive 
functions including servo adjustment and diagnostic 
procedures. Microdiagnostics are used to verify drive 
functions upon startup and to isolate faults to the field- 
replaceable unit level, thereby minimising repair times.

The new device can be characterised as a midrange 
disk product incorporating significant enhancements in 
data integrity, performance, and economy.

The RM80 processes almost twice the storage 
capacity of Digital’s RM03 disk system for about the 
same price and a lower monthly maintenance charge. 
The RM80’s average seek time, too, is exceptional for a 
product of its price and capacity.

The new unit offers high data integrity — improved 
reliability and lower error rates - through microprocessor 
control.

The self-diagnostic capability, Digital’s first in a disk 
product, eliminates the need for auxiliary test boxes or 
tools. Furthermore, there are no requirements for 
scheduled preventive maintenance.

The RM80 is designed to operate under normal office 
conditions of temperature and humidity.

PHILIPS ANNOUNCE MAG CARD 
WORDPROCESSOR CONVERSION

Philips has announced a conversion facility to allow 
users of IBM magnetic card equipment to upgrade to its 
P5002 word processing system.

The magnetic card converter can take the data from 
up to 128 magnetic cards and with minor editing, trans­
fer that data onto one flexible disk.

Mr Barrie Hepworth of Philips Data Systems division 
said that research undertaken for Philips into word proces­
sor buying trends plus estimates of the installed base of 
IBM magnetic card equipment suggested the conversion 
facility would offer an easy upgrade to the benefits of a 
word processing system which offered a visual display 
facility and flexible disks.

“It is estimated there are more than 3000 IBM 
magnetic card machines installed in Australia. Our research 
also indicates that users of this equipment, who are already 
convinced of the benefits of word processing, will be well 
disposed to moving into the more flexible disk format.”

Mr Hepworth said that not only was the magnetic 
card limited in terms of adding to, updating and modifying 
multi-page documents but it presented physical difficulties 
in terms of filing.

“In turn searching documents, without a visual 
display is difficult,” he said.

iv

The flexible disk word processor means many more 
documents can be stored on a single disk, updating and 
text manipulation is easy and searching and retrieval is 
made simple with a full size video screen. Philips is also 
hiring out the conversion facility.

PLOT 50 EASY GRAPHING AIDS 
ENGINEERING ANALYSIS

The next Tektronix Plot Easy Graphing software 
allows engineers to create presentation quality graphics 
to report experimental or analytical data.

Tektronix designed Plot 50 Easy Graphing for users 
with little previous graphing experience. The program 
responds to simple command verbs to enter data and to 
generate graphics on Tektronix 4050 Series Graphic 
Computing Systems.

Plot 50 Easy Graphing is the second in a series of 
software products with Standard File Formats, allowing 
several programs to share the same data. Data generated by, 
or data entered into, one software product can be 
accessed by another product in the series.

Easy Graphing generates high-quality, fully labeled 
graphics to aid comparison, interpretation, and illustration 
of numerical data. The program includes line graphics to 
illustrate trends, pie charts to show proportion relation­
ships between parts of a whole, bar graphs to dramatise 
comparisons of quantities and scatter plots to analyse data 
points. Command files permit repetitive graphs to be drawn 
by adding only updated data.

Easy Graphing is a BASIC language version of Tek­
tronix Plot 10 Easy Graphing, which is recognised as the 
industry standard in graphics software. It has five major 
components, including a four-phase tutorial program to 
review graphing concepts for first time users. The Easy 
Graph program is a question-and-answer session to help 
users generate graphs without knowledge of the Easy 
Graphing command language. Help Files are available for 
any Easy Graphing command, and utility programs are 
included to copy, list, edit, and duplicate Plot 50 Easy 
Graphing files.

LARGEST DISK COMPANY TO 
MANUFACTURE IN AUSTRALIA

The largest manufacturer of flexible (floppy) disks in 
the world, Verbatim Corporation of the United States, will 
open a manufacturing facility in Australia this year.

Verbatim Corporation which has its headquarters in 
California, offers a complete line of removable, mini- 
magnetic media for data storage (diskettes, mini-disks, data 
tape cartridges and digital cassettes) marketed under the 
Verbatim trade name, as well as a full line for original 
equipment manufacturers.

The new facility will be at 52-54 River Street, South
Yarra.

Mr Brian Johnstone, newly appointed General 
Manager of Verbatim Australia Pty Ltd, said that produc­
tion of eight inch flexible disks would start before the end 
of October, while five and a quarter inch mini-disks would 
be manufactured in the first quarter of next year.

“The Australian made disks will feature our new 
‘Datalife’ technology,” he said.

He said that Verbatim branded flexible disks have 
been available in Australia for six years through Magnetic 
Media Services Pty Ltd, who will also distribute the locally 
produced products.
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The World's First NonStop DBMS
Tandem NonStop™ ENCOMPASS
ENCOMPASS is the only DBMS with 
the benefit of running on a NonStop 
system. It’s also the only high perform­
ance, relational data base management 
system designed from scratch to provide 
unmatched data integrity in high vol­
ume on-line transaction processing 
environments.

We made

relational
fast.
A true data base operating system is 
the foundation with much of the retrieval 
techniques designed right in. And the 
structure of data on disc is optimized 
to minimize head movement. Memory 
cache retains most frequently used 
items in a buffer. In fact, any information 
in a file that filled a 300M byte disc 
drive could still be retrieved with an 
average of one seek. Combined with 
Tandem’s optional mirrored volumes, it 
all adds up to tremendous speed and 
throughput with all the benefits of 
relational structuring.

PROCESSOR A PROCESSOR B

DISC 1 DISC 2

Mirrored volumes automatically main­
tain identical copies; write operations 
occur simultaneously, read operations 
performed using drive with head 
closest to data.

Networking made easy.
Each individual system can be expanded 
to sixteen processors, with additions of 
memory, terminals, discs, and there will 
be no loss whatsoever on the original 
investment—hardware or software.

The relational nature of ENCOMPASS, 
along with our networking software, 
EXPAND, allows a single data base to 
be distributed over multiple systems. 
Easily and safely. Up to 255 systems, 
each with as many as sixteen processors 
and thousands of terminals, each with 
unobstructed access to the data base 
distributed throughout the network.

Automatic Terminal Management.
Terminal management has been the 
classic nightmare of on-line data base 
systems. No more. ENCOMPASS auto­
matically handles complete support for 
the Tandem 6520 Multi Page Display, 
Tandem 6510, and IBM 3270 connected 
by a variety of communication lines 
including Asynchronous, Byte Syn­
chronous, Multipoint, Point to Point,
X25 and SDLC.
Screen formatting, data validation, 
screen sequencing and data mapping, 
plus sequencing and control of multiple 
terminals; these are all handled for the 
application programmer automatically 
and at a fraction of the cost in develop­
ment time and dollars.

Backout and recovery 
over a distributed data base.

Consistency of the data base is essential. 
Multiple files must be capable of being 
updated simultaneously, even if located 
across distributed nodes. If for any 
reason a transaction cannot be 100% 
completed, this is the one system in the 
world which can un-do it completely. 
Automatically.
The system will recover each piece of 
the transaction from everywhere in the 
distributed data base. Without cost­
killing overhead. A major breakthrough 
in a network, DBMS. No one else even 
comes close.

NonStop™ availability 
in Hardware and Software.

Because of its unique architecture, the 
system will keep on running without 
interruption, without loss or duplication 
of a transaction-in-process even if a 
failure occurs in any processor, I/O 
channel, disc or disc controller.

Tandem NonStop™architecture provides 
not only this redundancy in hardware, 
but the software to take advantage of it, 
utilizing all available resources.
The NonStop™ system ensures that 
every update is completed to the data 
base. And with ENCOMPASS DBMS, 
NonStop™ operation is automatically 
built into all of your programs.

On-line’s as easy 
to program as batch.

One key theme behind the performance 
and reliability of our NonStop™ DBMS, 
ENCOMPASS, is the ease of use for 
programmers, systems designers and 
users.
It’s easy to extend the data base, to 
expand the system to a network, to 
manipulate the data. And it’s easy to add 
new resources, new hardware, new 
software, new files. It’s easy to provide 
controls and security. Easy to work with. 
Easy to repair. And above all, easy to 
learn.
You don’t need to learn a whole new 
language with the ENCOMPASS sys­
tem: OPEN, READ, WRITE are the 
verbs you’ve been using all along. 
Industry standard COBOL, FORTRAN, 
MUMPS and our own transaction- 
oriented language TAL provide simple 
interaction between programs and 
data base.

The All-ENCOMPASSing DBMS.
And there’s still more. In addition to all 
this, there’s a whole host of other features 
that the ENCOMPASS data base man­
agement system will provide. To name 
just a few:
• on-line data base backup
• transparent access to distributed 
data base

■ efficient query-report generation
• dynamic and automatic adjustment to 
varying transaction loads

All that remains for the user is:
• simple batch type application modules.

What could be simpler?

NonStop™
Systems

TANDEM COMPUTERS
DISTRIBUTED IN 
AUSTRALIA BY:

MANAGEMENT INFORMATION SYSTEMS PTY. LTD.
3 Bowen Crescent, 22 Atchison Street, S.G. 1.0 Building,
Melbourne, Vic, 3004 St. Leonards, N S W. 2065 Cnr. Turbot & Albert Sts,
Telephone (03) 267 4133 Telephone (02) 438 4566 Brisbane, Queensland 4000

Telephone (07) 229 3830
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