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1
Introduction

5.3 Altruistic preferences

Person 1 is indifferent between (1, 4) and (3, 0), and prefers both of these to (2, 1).

The payoff function u defined by u(x, y) = x + 1
2 y, where x is person 1’s income

and y is person 2’s, represents person 1’s preferences. Any function that is an

increasing function of u also represents her preferences. For example, the functions

k(x + 1
2 y) for any positive number k, and (x + 1

2 y)2, do so.

6.1 Alternative representations of preferences

The function v represents the same preferences as does u (because u(a) < u(b) <

u(c) and v(a) < v(b) < v(c)), but the function w does not represent the same

preferences, because w(a) = w(b) while u(a) < u(b).

1





2
Nash Equilibrium

16.1 Working on a joint project

The game in Figure 3.1 models this situation (as does any other game with the

same players and actions in which the ordering of the payoffs is the same as the

ordering in Figure 3.1).

Work hard Goof off

Work hard 3, 3 0, 2

Goof off 2, 0 1, 1

Figure 3.1 Working on a joint project (alternative version).

17.1 Games equivalent to the Prisoner’s Dilemma

The game in the left panel differs from the Prisoner’s Dilemma in both players’ pref-

erences. Player 1 prefers (Y, X) to (X, X) to (X, Y) to (Y, Y), for example, which

differs from her preference in the Prisoner’s Dilemma, which is (F, Q) to (Q, Q) to

(F, F) to (Q, F), whether we let X = F or X = Q.

The game in the right panel is equivalent to the Prisoner’s Dilemma. If we let

X = Q and Y = F then player 1 prefers (F, Q) to (Q, Q) to (F, F) to (Q, F) and

player 2 prefers (Q, F) to (Q, Q) to (F, F) to (F, Q), as in the Prisoner’s Dilemma.

20.1 Games without conflict

Any two-player game in which each player has two actions and the players have

the same preferences may be represented by a table of the form given in Figure 3.2,

where a, b, c, and d are any numbers.

L R

T a, a b, b

B c, c d, d

Figure 3.2 A strategic game in which conflict is absent.

3



4 Chapter 2. Nash Equilibrium

31.1 Extension of the Stag Hunt

Every profile (e, . . . , e), where e is an integer from 0 to K, is a Nash equilibrium. In

the equilibrium (e, . . . , e), each player’s payoff is e. The profile (e, . . . , e) is a Nash

equilibrium since if player i chooses ei < e then her payoff is 2ei − ei = ei < e, and

if she chooses ei > e then her payoff is 2e − ei < e.

Consider an action profile (e1, . . . , en) in which not all effort levels are the same.

Suppose that ei is the minimum. Consider some player j whose effort level exceeds

ei. Her payoff is 2ei − ej < ei, while if she deviates to the effort level ei her payoff

is 2ei − ei = ei. Thus she can increase her payoff by deviating, so that (e1, . . . , en) is

not a Nash equilibrium.

(This game is studied experimentally by van Huyck, Battalio, and Beil (1990).

See also Ochs (1995, 209–233).)

34.1 Guessing twothirds of the average

If all three players announce the same integer k ≥ 2 then any one of them can devi-

ate to k − 1 and obtain $1 (since her number is now closer to 2
3 of the average than

the other two) rather than $ 1
3 . Thus no such action profile is a Nash equilibrium.

If all three players announce 1, then no player can deviate and increase her payoff;

thus (1, 1, 1) is a Nash equilibrium.

Now consider an action profile in which not all three integers are the same;

denote the highest by k∗.

• Suppose only one player names k∗; denote the other integers named by k1

and k2, with k1 ≥ k2. The average of the three integers is 1
3 (k∗ + k1 + k2),

so that 2
3 of the average is 2

9 (k∗ + k1 + k2). If k1 ≥ 2
9 (k∗ + k1 + k2) then

k∗ is further from 2
3 of the average than is k1, and hence does not win. If

k1 < 2
9 (k∗ + k1 + k2) then the difference between k∗ and 2

3 of the average is

k∗ − 2
9 (k∗ + k1 + k2) = 7

9 k∗ − 2
9 k1 −

2
9 k2, while the difference between k1 and

2
3 of the average is 2

9 (k∗ + k1 + k2) − k1 = 2
9 k∗ − 7

9 k1 + 2
9 k2. The difference

between the former and the latter is 5
9 k∗ + 5

9 k1 −
4
9 k2 > 0, so k1 is closer to 2

3
of the average than is k∗. Hence the player who names k∗ does not win, and

is better off naming k2, in which case she obtains a share of the prize. Thus

no such action profile is a Nash equilibrium.

• Suppose two players name k∗, and the third player names k < k∗. The

average of the three integers is then 1
3 (2k∗ + k), so that 2

3 of the average is
4
9 k∗ + 2

9 k. We have 4
9 k∗ + 2

9 k <
1
2 (k∗ + k) (since 4

9 <
1
2 and 2

9 <
1
2 ), so that the

player who names k is the sole winner. Thus either of the other players can

switch to naming k and obtain a share of the prize rather obtaining nothing.

Thus no such action profile is a Nash equilibrium.

We conclude that there is only one Nash equilibrium of this game, in which all

three players announce the number 1.

(This game is studied experimentally by Nagel (1995).)
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34.3 Choosing a route

A strategic game that models this situation is:

Players The four people.

Actions The set of actions of each person is {X, Y} (the route via X and the route

via Y).

Preferences Each player’s payoff is the negative of her travel time.

In every Nash equilibrium, two people take each route. (In any other case, a

person taking the more popular route is better off switching to the other route.)

For any such action profile, each person’s travel time is either 29.9 or 30 minutes

(depending on the route she takes). If a person taking the route via X switches to

the route via Y her travel time becomes 22 + 12 = 34 minutes; if a person taking

the route via Y switches to the route via X her travel time becomes 12 + 21.8 =
33.8 minutes. For any other allocation of people to routes, at least one person can

decrease her travel time by switching routes. Thus the set of Nash equilibria is the

set of action profiles in which two people take the route via X and two people take

the route via Y.

Now consider the situation after the road from X to Y is built. There is no equi-

librium in which the new road is not used, by the following argument. Because the

only equilibrium before the new road is built has two people taking each route, the

only possibility for an equilibrium in which no one uses the new road is for two

people to take the route A–X–B and two to take A–Y–B, resulting in a total travel

time for each person of either 29.9 or 30 minutes. However, if a person taking A–

X–B switches to the new road at X and then takes Y–B her total travel time becomes

9 + 7 + 12 = 28 minutes.

I claim that in any Nash equilibrium, one person takes A–X–B, two people take

A–X–Y–B, and one person takes A–Y–B. For this assignment, each person’s travel

time is 32 minutes. No person can change her route and decrease her travel time,

by the following argument.

• If the person taking A–X–B switches to A–X–Y–B, her travel time increases to

12 + 9 + 15 = 36 minutes; if she switches to A–Y–B her travel time increases

to 21 + 15 = 36 minutes.

• If one of the people taking A–X–Y–B switches to A–X–B, her travel time in-

creases to 12 + 20.9 = 32.9 minutes; if she switches to A–Y–B her travel time

increases to 21 + 12 = 33 minutes.

• If the person taking A–Y–B switches to A–X–B, her travel time increases

to 15 + 20.9 = 35.9 minutes; if she switches to A–X–Y–B, her travel time

increases to 15 + 9 + 12 = 36 minutes.

For every other allocation of people to routes at least one person can switch

routes and reduce her travel time. For example, if one person takes A–X–B, one
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person takes A–X–Y–B, and two people take A–Y–B, then the travel time of those

taking A–Y–B is 21 + 12 = 33 minutes; if one of them switches to A–X–B then her

travel time falls to 12 + 20.9 = 32.9 minutes. Or if one person takes A–Y–B, one

person takes A–X–Y–B, and two people take A–X–B, then the travel time of those

taking A–X–B is 12 + 20.9 = 32.9 minutes; if one of them switches to A–X–Y–B then

her travel time falls to 12 + 8 + 12 = 32 minutes.

Thus in the equilibrium with the new road every person’s travel time increases,

from either 29.9 or 30 minutes to 32 minutes.

37.1 Finding Nash equilibria using best response functions

a. The Prisoner’s Dilemma and BoS are shown in Figure 6.1; Matching Pennies and

the two-player Stag Hunt are shown in Figure 6.2.

Quiet Fink

Quiet 2 , 2 0 , 3∗

Fink 3∗, 0 1∗, 1∗

Prisoner’s Dilemma

Bach Stravinsky

Bach 2∗, 1∗ 0 , 0

Stravinsky 0 , 0 1∗, 2∗

BoS

Figure 6.1 The best response functions in the Prisoner’s Dilemma (left) and in BoS (right).

Head Tail

Head 1∗,−1 −1 , 1∗

Tail −1 , 1∗ 1∗,−1

Matching Pennies

Stag Hare

Stag 2∗, 2∗ 0 , 1

Hare 1 , 0 1∗, 1∗

Stag Hunt

Figure 6.2 The best response functions in Matching Pennies (left) and the Stag Hunt (right).

b. The best response functions are indicated in Figure 6.3. The Nash equilibria

are (T, C), (M, L), and (B, R).

L C R

T 2 , 2 1∗, 3∗ 0∗, 1

M 3∗, 1∗ 0 , 0 0∗, 0

B 1 , 0∗ 0 , 0∗ 0∗, 0∗

Figure 6.3 The game in Exercise 37.1.

38.1 Constructing best response functions

The analogue of Figure 38.2 in the book is given in Figure 7.1.
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A1

︸ ︷︷ ︸
T M B

A2






L

C

R

Figure 7.1 The players’ best response functions for the game in Exercise 38.1b. Player 1’s best responses
are indicated by circles, and player 2’s by dots. The action pairs for which there is both a circle and a
dot are the Nash equilibria.

38.2 Dividing money

For each amount named by one of the players, the other player’s best responses

are given in the following table.

Other player’s action Sets of best responses

0 {10}
1 {9, 10}
2 {8, 9, 10}
3 {7, 8, 9, 10}
4 {6, 7, 8, 9, 10}
5 {5, 6, 7, 8, 9, 10}
6 {5, 6}
7 {6}
8 {7}
9 {8}

10 {9}

The best response functions are illustrated in Figure 8.1 (circles for player 1,

dots for player 2). From this figure we see that the game has four Nash equilibria:

(5, 5), (5, 6), (6, 5), and (6, 6).

41.1 Strict and nonstrict Nash equilibria

Only the Nash equilibrium (a∗1 , a∗2) is strict. For each of the other equilibria, player

2’s action a2 satisfies a∗∗∗2 ≤ a2 ≤ a∗∗2 , and for each such action player 1 has multi-

ple best responses, so that her payoff is the same for a range of actions, only one of

which is such that (a1, a2) is a Nash equilibrium.
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A1

︸ ︷︷ ︸
0 1 2 3 4 5 6 7 8 9 10

A2





0

1

2

3

4

5

6

7

8

9

10

Figure 8.1 The players’ best response functions for the game in Exercise 38.2.

47.1 Strict equilibria and dominated actions

For player 1, T is weakly dominated by M, and strictly dominated by B. For

player 2, no action is weakly or strictly dominated. The game has a unique Nash

equilibrium, (M, L). This equilibrium is not strict. (When player 2 choose L, B

yields player 1 the same payoff as does M.)

47.2 Nash equilibrium and weakly dominated actions

The only Nash equilibrium of the game in Figure 8.2 is (T, L). The action T is

weakly dominated by M and the action L is weakly dominated by C. (There are of

course many other games that satisfy the conditions.)

L C R

T 1, 1 0, 1 0, 0

M 1, 0 2, 1 1, 2

B 0, 0 1, 1 2, 0

Figure 8.2 A game with a unique Nash equilibrium, in which both players’ equilibrium actions are
weakly dominated. (The unique Nash equilibrium is (T, L).)

50.1 Other Nash equilibria of the game modeling collective decisionmaking

Denote by i the player whose favorite policy is the median favorite policy. The

set of Nash equilibria includes every action profile in which (i) i’s action is her

favorite policy x∗i , (ii) every player whose favorite policy is less than x∗i names a
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policy equal to at most x∗i , and (iii) every player whose favorite policy is greater

than x∗i names a policy equal to at least x∗i .

To show this, first note that the outcome is x∗i , so player i cannot induce a bet-

ter outcome for herself by changing her action. Now, if a player whose favorite

position is less than x∗i changes her action to some x < x∗i , the outcome does not

change; if such a player changes her action to some x > x∗i then the outcome either

remains the same (if some player whose favorite position exceeds x∗i names x∗i ) or

increases, so that the player is not better off. A similar argument applies to a player

whose favorite position is greater than x∗i .

The set of Nash equilibria also includes, for any positive integer k ≤ n, every

action profile in which k players name the median favorite policy x∗i , at most 1
2 (n−

3) players name policies less than x∗i , and at most 1
2 (n − 3) players name policies

greater than x∗i . (In these equilibria, the favorite policy of a player who names a

policy less than x∗i may be greater than x∗i , and vice versa. The conditions on the

numbers of players who name policies less than x∗i and greater than x∗i ensure that

no such player can, by naming instead her favorite policy, move the median policy

closer to her favorite policy.)

Any action profile in which all players name the same, arbitrary, policy is also

a Nash equilibrium; the outcome is the common policy named.

More generally, any profile in which at least three players name the same, ar-

bitrary, policy x, at most (n − 3)/2 players name a policy less than x, and at most

(n − 3)/2 players name a policy greater than x is a Nash equilibrium. (In both

cases, no change in any player’s action has any effect on the outcome.)

51.2 Symmetric strategic games

The games in Exercise 31.2, Example 39.1, and Figure 47.2 (both games) are sym-

metric. The game in Exercise 42.1 is not symmetric. The game in Section 2.8.4 is

symmetric if and only if u1 = u2.

52.2 Equilibrium for pairwise interactions in a single population

The Nash equilibria are (A, A), (A, C), and (C, A). Only the equilibrium (A, A) is

relevant if the game is played between the members of a single population—this

equilibrium is the only symmetric equilibrium.
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Nash Equilibrium: Illustrations

58.1 Cournot’s duopoly game with linear inverse demand and different unit costs

Following the analysis in the text, the best response function of firm 1 is

b1(q2) =

{
1
2 (α − c1 − q2) if q2 ≤ α − c1

0 otherwise

while that of firm 2 is

b2(q1) =

{
1
2 (α − c2 − q1) if q1 ≤ α − c2

0 otherwise.

To find the Nash equilibrium, first plot these two functions. Each function has

the same general form as the best response function of either firm in the case stud-

ied in the text. However, the fact that c1 6= c2 leads to two qualitatively different

cases when we combine the two functions to find a Nash equilibrium. If c1 and c2

do not differ very much then the functions in the analogue of Figure 59.1 intersect

at a pair of outputs that are both positive. If c1 and c2 differ a lot, however, the

functions intersect at a pair of outputs in which q1 = 0.

Precisely, if c1 ≤ 1
2 (α + c2) then the downward-sloping parts of the best re-

sponse functions intersect (as in Figure 59.1), and the game has a unique Nash

equilibrium, given by the solution of the two equations

q1 = 1
2 (α − c1 − q2)

q2 = 1
2 (α − c2 − q1).

This solution is

(q∗1 , q∗2) =
(

1
3 (α − 2c1 + c2), 1

3 (α − 2c2 + c1)
)

.

If c1 >
1
2 (α + c2) then the downward-sloping part of firm 1’s best response

function lies below the downward-sloping part of firm 2’s best response func-

tion (as in Figure 12.1), and the game has a unique Nash equilibrium, (q∗1 , q∗2) =
(0, 1

2 (α − c2)).

In summary, the game always has a unique Nash equilibrium, defined as fol-

lows: 





(
1
3 (α − 2c1 + c2), 1

3 (α − 2c2 + c1)
)

if c1 ≤ 1
2 (α + c2)

(

0, 1
2 (α − c2)

)

if c1 > 1
2 (α + c2).

The output of firm 2 exceeds that of firm 1 in every equilibrium.

11
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0 α−c1
2

α − c2

α−c2
2

α − c1

↑
q2

q1 →

b1(q2)
b2(q1)

(q∗1 , q∗2)

Figure 12.1 The best response functions in Cournot’s duopoly game under the assumptions of Exer-
cise 58.1 when α − c1 <

1
2 (α− c2). The unique Nash equilibrium in this case is (q∗1 , q∗2) = (0, 1

2 (α − c2)).

If c2 decreases then firm 2’s output increases and firm 1’s output either falls, if

c1 ≤ 1
2 (α + c2), or remains equal to 0, if c1 >

1
2 (α + c2). The total output increases

and the price falls.

60.2 Nash equilibrium of Cournot’s duopoly game and the collusive outcome

The firms’ total profit is (q1 + q2)(α − c − q1 − q2), or Q(α − c − Q), where Q de-

notes total output. This function is a quadratic in Q that is zero when Q = 0 and

when Q = α − c, so that its maximizer is Q∗ = 1
2 (α − c).

If each firm produces 1
4 (α − c) then its profit is 1

8 (α − c)2. This profit exceeds

its Nash equilibrium profit of 1
9 (α − c)2.

If one firm produces Q∗/2, the other firm’s best response is bi(Q∗/2) = 1
2 (α −

c − 1
4 (α − c)) = 3

8 (α − c). That is, if one firm produces Q∗/2, the other firm wants

to produce more than Q∗/2.

63.1 Interaction among resourceusers

The game is given as follows.

Players The firms.

Actions Each firm’s set of actions is the set of all nonnegative numbers (repre-

senting the amount of input it uses).

Preferences The payoff of each firm i is

{
xi(1 − (x1 + · · ·+ xn)) if x1 + · · ·+ xn ≤ 1

0 if x1 + · · ·+ xn > 1.
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This game is the same as that in Exercise 61.1 for c = 0 and α = 1. Thus it has a

unique Nash equilibrium, (x1, . . . , xn) = (1/(n + 1), . . . , 1/(n + 1)).

In this Nash equilibrium, each firm’s output is (1/(n + 1))(1 − n/(n + 1)) =
1/(n + 1)2. If xi = 1/(2n) for i = 1, . . . , n then each firm’s output is 1/(4n), which

exceeds 1/(n + 1)2 for n ≥ 2. (We have 1/(4n) − 1/(n + 1)2 = (n − 1)2/(4n(n +
1)2) > 0 for n ≥ 2.)

67.1 Bertrand’s duopoly game with constant unit cost

The pair (c, c) of prices remains a Nash equilibrium; the argument is the same

as before. Further, as before, there is no other Nash equilibrium. The argument

needs only very minor modification. For an arbitrary function D there may exist

no monopoly price pm; in this case, if pi > c, pj > c, pi ≥ pj, and D(pj) = 0 then

firm i can increase its profit by reducing its price slightly below p (for example).

68.1 Bertrand’s oligopoly game

Consider a profile (p1, . . . , pn) of prices in which pi ≥ c for all i and at least two

prices are equal to c. Every firm’s profit is zero. If any firm raises its price its profit

remains zero. If a firm charging more than c lowers its price, but not below c, its

profit also remains zero. If a firm lowers its price below c then its profit is negative.

Thus any such profile is a Nash equilibrium.

To show that no other profile is a Nash equilibrium, we can argue as follows.

• If some price is less than c then the firm charging the lowest price can increase

its profit (to zero) by increasing its price to c.

• If exactly one firm’s price is equal to c then that firm can increase its profit by

raising its price a little (keeping it less than the next highest price).

• If all firms’ prices exceed c then the firm charging the highest price can in-

crease its profit by lowering its price to some price between c and the lowest

price being charged.

68.2 Bertrand’s duopoly game with different unit costs

a. If all consumers buy from firm 1 when both firms charge the price c2, then

(p1, p2) = (c2, c2) is a Nash equilibrium by the following argument. Firm 1’s profit

is positive, while firm 2’s profit is zero (since it serves no customers).

• If firm 1 increases its price, its profit falls to zero.

• If firm 1 reduces its price, say to p, then its profit changes from (c2 − c1)(α −
c2) to (p − c1)(α − p). Since c2 is less than the maximizer of (p − c1)(α − p),

firm 1’s profit falls.
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• If firm 2 increases its price, its profit remains zero.

• If firm 2 decreases its price, its profit becomes negative (since its price is less

than its unit cost).

Under this rule no other pair of prices is a Nash equilibrium, by the following

argument.

• If pi < c1 for i = 1, 2 then the firm with the lower price (or either firm, if the

prices are the same) can increase its profit (to zero) by raising its price above

that of the other firm.

• If p1 > p2 ≥ c2 then firm 2 can increase its profit by raising its price a little.

• If p2 > p1 ≥ c1 then firm 1 can increase its profit by raising its price a little.

• If p2 ≤ p1 and p2 < c2 then firm 2’s profit is negative, so that it can increase

its profit by raising its price.

• If p1 = p2 > c2 then at least one of the firms is not receiving all of the

demand, and that firm can increase its profit by lowering its price a little.

b. Now suppose that the rule for splitting up the customers when the prices are

equal specifies that firm 2 receives some customers when both prices are c2. By the

argument for part a, the only possible Nash equilibrium is (p1, p2) = (c2, c2). (The

argument in part a that every other pair of prices is not a Nash equilibrium does

not use the fact that customers are split equally when (p1, p2) = (c2, c2).) But if

(p1, p2) = (c2, c2) and firm 2 receives some customers, firm 1 can increase its profit

by reducing its price a little and capturing the entire market.

73.1 Electoral competition with asymmetric voters’ preferences

The unique Nash equilibrium remains (m, m); the direct argument is exactly the

same as before. (The dividing line between the supporters of two candidates with

different positions changes. If xi < xj, for example, the dividing line is 1
3 xi + 2

3 xj

rather than 1
2 (xi + xj). The resulting change in the best response functions does

not affect the Nash equilibrium.)

75.3 Electoral competition for more general preferences

a. If x∗ is a Condorcet winner then for any y 6= x∗ a majority of voters prefer

x∗ to y, so y is not a Condorcet winner. Thus there is no more than one

Condorcet winner.

b. Suppose that one of the remaining voters prefers y to z to x, and the other

prefers z to x to y. For each position there is another position preferred by a

majority of voters, so no position is a Condorcet winner.
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c. Now suppose that x∗ is a Condorcet winner. Then the strategic game de-

scribed the exercise has a unique Nash equilibrium in which both candidates

choose x∗. This pair of actions is a Nash equilibrium because if either can-

didate chooses a different position she loses. For any other pair of actions

either one candidate loses, in which case that candidate can deviate to the

position x∗ and at least tie, or the candidates tie at a position different from

x∗, in which case either of them can deviate to x∗ and win.

If there is no Condorcet winner then for every position there is another posi-

tion preferred by a majority of voters. Thus for every pair of distinct positions

the loser can deviate and win, and for every pair of identical positions either

candidate can deviate and win. Thus there is no Nash equilibrium.

76.1 Competition in product characteristics

Suppose there are two firms. If the products are different, then either firm increases

its market share by making its product more similar to that of its rival. Thus in

every possible equilibrium the products are the same. But if x1 = x2 6= m then each

firm’s market share is 50%, while if it changes its product to be closer to m then its

market share rises above 50%. Thus the only possible equilibrium is (x1, x2) =
(m, m). This pair of positions is an equilibrium, since each firm’s market share is

50%, and if either firm changes its product its market share falls below 50%.

Now suppose there are three firms. If all firms’ products are the same, each

obtains one-third of the market. If x1 = x2 = x3 = m then any firm, by changing

its product a little, can obtain close to one-half of the market. If x1 = x2 = x3 6= m

then any firm, by changing its product a little, can obtain more than one-half of the

market. If the firms’ products are not all the same, then at least one of the extreme

products is different from the other two products, and the firm that produces it can

increase its market share by making it more similar to the other products. Thus

when there are three firms there is no Nash equilibrium.

79.1 Direct argument for Nash equilibria of War of Attrition

• If t1 = t2 then either player can increase her payoff by conceding slightly

later (in which case she obtains the object for sure, rather than getting it with

probability 1
2 ).

• If 0 < ti < tj then player i can increase her payoff by conceding at 0.

• If 0 = ti < tj < vi then player i can increase her payoff (from 0 to almost

vi − tj > 0) by conceding slightly after tj.

Thus there is no Nash equilibrium in which t1 = t2, 0 < ti < tj, or 0 = ti <

tj < vi (for i = 1 and j = 2, or i = 2 and j = 1). The remaining possibility is that

0 = ti < tj and tj ≥ vi for i = 1 and j = 2, or i = 2 and j = 1. In this case player i’s
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payoff is 0, while if she concedes later her payoff is negative; player j’s payoff is vj,

her highest possible payoff in the game.

85.1 Secondprice sealedbid auction with two bidders

If player 2’s bid b2 is less than v1 then any bid of b2 or more is a best response of

player 1 (she wins and pays the price b2). If player 2’s bid is equal to v1 then every

bid of player 1 yields her the payoff zero (either she wins and pays v1, or she loses),

so every bid is a best response. If player 2’s bid b2 exceeds v1 then any bid of less

than b2 is a best response of player 1. (If she bids b2 or more she wins, but pays the

price b2 > v1, and hence obtains a negative payoff.) In summary, player 1’s best

response function is

B1(b2) =







{b1: b1 ≥ b2} if b2 < v1

{b1 : b1 ≥ 0} if b2 = v1

{b1: 0 ≤ b1 < b2} if b2 > v1.

By similar arguments, player 2’s best response function is

B2(b1) =







{b2: b2 > b1} if b1 < v2

{b2: b2 ≥ 0} if b1 = v2.

{b2: 0 ≤ b2 ≤ b1} if b1 > v2.

These best response functions are shown in Figure 16.1.

↑
b2

b1 →

v1

v2

v1v2

B1(b2)

0

↑
b2

b1 →

v1

v2

v1v2

B2(b1)

Figure 16.1 The players’ best response functions in a two-player second-price sealed-bid auction (Ex-
ercise 85.1). Player 1’s best response function is in the left panel; player 2’s is in the right panel. (Only
the edges marked by a black line are included.)

Superimposing the best response functions, we see that the set of Nash equi-

libria is the shaded set in Figure 17.1, namely the set of pairs (b1, b2) such that

either

b1 ≤ v2 and b2 ≥ v1

or

b1 ≥ v2, b1 ≥ b2, and b2 ≤ v1.
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↑
b2

b1 →

v1

v1

v2

v20

Figure 17.1 The set of Nash equilibria of a two-player second-price sealed-bid auction (Exercise 85.1).

86.2 Nash equilibrium of firstprice sealedbid auction

The profile (b1, . . . , bn) = (v2, v2, v3, . . . , vn) is a Nash equilibrium by the following

argument.

• If player 1 raises her bid she still wins, but pays a higher price and hence

obtains a lower payoff. If player 1 lowers her bid then she loses, and obtains

the payoff of 0.

• If any other player changes her bid to any price at most equal to v2 the out-

come does not change. If she raises her bid above v2 she wins, but obtains a

negative payoff.

87.1 Firstprice sealedbid auction

A profile of bids in which the two highest bids are not the same is not a Nash

equilibrium because the player naming the highest bid can reduce her bid slightly,

continue to win, and pay a lower price.

By the argument in the text, in any equilibrium player 1 wins the object. Thus

she submits one of the highest bids.

If the highest bid is less than v2, then player 2 can increase her bid to a value

between the highest bid and v2, win, and obtain a positive payoff. Thus in an

equilibrium the highest bid is at least v2.

If the highest bid exceeds v1, player 1’s payoff is negative, and she can in-

crease this payoff by reducing her bid. Thus in an equilibrium the highest bid

is at most v1.

Finally, any profile (b1, . . . , bn) of bids that satisfies the conditions in the exer-

cise is a Nash equilibrium by the following argument.
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• If player 1 increases her bid she continues to win, and reduces her payoff.

If player 1 decreases her bid she loses and obtains the payoff 0, which is at

most her payoff at (b1, . . . , bn).

• If any other player increases her bid she either does not affect the outcome,

or wins and obtains a negative payoff. If any other player decreases her bid

she does not affect the outcome.

89.1 Allpay auctions

Second-price all-pay auction with two bidders: The payoff function of bidder i is

ui(b1, b2) =

{
−bi if bi < bj

vi − bj if bi > bj,

with u1(b, b) = v1 − b and u2(b, b) = −b for all b. This payoff function differs from

that of player i in the War of Attrition only in the payoffs when the bids are equal.

The set of Nash equilibria of the game is the same as that for the War of Attrition:

the set of all pairs (0, b2) where b2 ≥ v1 and (b1, 0) where b1 ≥ v2. (The pair (b, b)
of actions is not a Nash equilibrium for any value of b because player 2 can increase

her payoff by either increasing her bid slightly or by reducing it to 0.)

First-price all-pay auction with two bidders: In any Nash equilibrium the two

highest bids are equal, otherwise the player with the higher bid can increase her

payoff by reducing her bid a little (keeping it larger than the other player’s bid).

But no profile of bids in which the two highest bids are equal is a Nash equilibrium,

because the player with the higher index who submits this bid can increase her

payoff by slightly increasing her bid, so that she wins rather than loses.

90.1 Multiunit auctions

Discriminatory auction To show that the action of bidding vi and wi is not domi-

nant for player i, we need only find actions for the other players and alterna-

tive bids for player i such that player i’s payoff is higher under the alternative

bids than it is under the vi and wi, given the other players’ actions. Suppose

that each of the other players submits two bids of 0. Then if player i submits

one bid between 0 and vi and one bid between 0 and wi she still wins two

units, and pays less than when she bids vi and wi.

Uniform-price auction Suppose that some bidder other than i submits one bid

between wi and vi and one bid of 0, and all the remaining bidders submit

two bids of 0. Then bidder i wins one unit, and pays the price wi. If she

replaces her bid of wi with a bid between 0 and wi then she pays a lower

price, and hence is better off.
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Vickrey auction Suppose that player i bids vi and wi. Consider separately the

cases in which the bids of the players other than i are such that player i wins

0, 1, and 2 units.

Player i wins 0 units: In this case the second highest of the other players’

bids is at least vi, so that if player i changes her bids so that she wins

one or more units, for any unit she wins she pays at least vi. Thus no

change in her bids increases her payoff from its current value of 0 (and

some changes lower her payoff).

Player i wins 1 unit: If player i raises her bid of vi then she still wins one unit

and the price remains the same. If she lowers this bid then either she still

wins and pays the same price, or she does not win any units. If she raises

her bid of wi then either the outcome does not change, or she wins a sec-

ond unit. In the latter case the price she pays is the previously-winning

bid she beat, which is at least wi, so that her payoff either remains zero

or becomes negative.

Player i wins 2 units: Player i’s raising either of her bids has no effect on the

outcome; her lowering a bid either has no effect on the outcome or leads

her to lose rather than to win, leading her to obtain the payoff of zero.

90.3 Internet pricing

The situation may be modeled as a multiunit auction in which k units are available,

and each player attaches a positive value to only one unit and submits a bid for

only one unit. The k highest bids win, and each winner pays the (k + 1)st highest

bid.

By a variant of the argument for a second-price auction, in which “highest of

the other players’ bids” is replaced by “highest rejected bid”, each player’s action

of bidding her value is weakly dominates all her other actions.

96.2 Alternative standards of care under negligence with contributory negligence

First consider the case in which X1 = â1 and X2 ≤ â2. The pair (â1, â2) is a Nash

equilibrium by the following argument.

If a2 = â2 then the victim’s level of care is sufficient (at least X2), so that the

injurer’s payoff is given by (94.1) in the text. Thus the argument that the injurer’s

action â1 is a best response to â2 is exactly the same as the argument for the case

X2 = â2 in the text.

Since X1 is the same as before, the victim’s payoff is the same also, so that by

the argument in the text the victim’s best response to â1 is â2. Thus (â1, â2) is a

Nash equilibrium.

To show that (â1, â2) is the only Nash equilibrium of the game, we study the

players’ best response functions. First consider the injurer’s best response func-

tion. As in the text, we split the analysis into three cases.



20 Chapter 3. Nash Equilibrium: Illustrations

a2 < X2: In this case the injurer does not have to pay any compensation, re-

gardless of her level of care; her payoff is −a1, so that her best response is

a1 = 0.

a2 = X2: In this case the injurer’s best response is â1, as argued when showing

that (â1, â2) is a Nash equilibrium.

a2 > X2: In this case the injurer’s best response is at most â1, since her payoff

is equal to −a1 for larger values of a1.

Thus the injurer’s best response takes a form like that shown in the left panel

of Figure 20.1. (In fact, b1(a2) = â1 for X2 ≤ a2 ≤ â2, but the analysis depends only

on the fact that b1(a2) ≤ â1 for a2 > X2.)

0

â2

X2

â1
a1 →

↑
a2 b1(a2)

0

X2

â1
a1 →

↑
a2

?b2(a1)

Figure 20.1 The players’ best response functions under the rule of negligence with contributory negli-
gence when X1 = â1 and X2 = â2. Left panel: the injurer’s best response function b1. Right panel: the
victim’s best response function b2. (The position of the victim’s best response function for a1 > â1 is
not significant, and is not determined in the solution.)

Now consider the victim’s best response function. The victim’s payoff function

is

u2(a1, a2) =

{
−a2 if a1 < â1 and a2 ≥ X2

−a2 − L(a1, a2) if a1 ≥ â1 or a2 < X2.

As before, for a1 < â1 we have −a2 − L(a1, a2) < −â2 for all a2, so that the victim’s

best response is X2. As in the text, the nature of the victim’s best responses to levels

of care a1 for which a1 > â1 are not significant.

Combining the two best response functions we see that (â1, â2) is the unique

Nash equilibrium of the game.

Now consider the case in which X1 = M and a2 = â2, where M ≥ â1. The

injurer’s payoff is

u1(a1, a2) =

{
−a1 − L(a1, a2) if a1 < M and a2 ≥ â2

−a1 if a1 ≥ M or a2 < â2.

Now, the maximizer of −a1 − L(a1, â2) is â1 (see the argument following (94.1) in

the text), so that if M is large enough then the injurer’s best response to â2 is â1.

As before, if a2 < â2 then the injurer’s best response is 0, and if a2 > â2 then the
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0

â2

â1 M a1 →

↑
a2 b1(a2)

0

â2

â1 M a1 →

↑
a2

?b2(a1)

Figure 21.1 The players’ best response functions under the rule of negligence with contributory negli-
gence when (X1, X2) = (M, â2), with M ≥ â1. Left panel: the injurer’s best response function b1. Right
panel: the victim’s best response function b2. (The position of the victim’s best response function for
a1 > M is not significant, and is not determined in the text.)

injurer’s payoff decreases for a1 > M, so that her best response is less than M. The

injurer’s best response function is shown in the left panel of Figure 21.1.

The victim’s payoff is

u2(a1, a2) =

{
−a2 if a1 < M and a2 ≥ â2

−a2 − L(a1, a2) if a1 ≥ M or a2 < â2.

If a1 ≤ â1 then the victim’s best response is â2 by the same argument as the one in

the text. If a1 is such that â1 < a1 < M then the victim’s best response is at most

â2 (since her payoff is decreasing for larger values of a2). This information about

the victim’s best response function is recorded in the right panel of Figure 21.1; it

is sufficient to deduce that (â1, â2) is the unique Nash equilibrium of the game.





4
Mixed Strategy Equilibrium

101.1 Variant of Matching Pennies

The analysis is the same as for Matching Pennies. There is a unique steady state, in

which each player chooses each action with probability 1
2 .

106.2 Extensions of BoS with vNM preferences

In the first case, when player 1 is indifferent between going to her less preferred

concert in the company of player 2 and the lottery in which with probability 1
2 she

and player 2 go to different concerts and with probability 1
2 they both go to her

more preferred concert, the Bernoulli payoffs that represent her preferences satisfy

the condition

u1(S, S) = 1
2 u1(S, B) + 1

2 u1(B, B).

If we choose u1(S, B) = 0 and u1(B, B) = 2, then u1(S, S) = 1. Similarly, for

player 2 we can set u2(B, S) = 0, u2(S, S) = 2, and u2(B, B) = 1. Thus the Bernoulli

payoffs in the left panel of Figure 23.1 are consistent with the players’ preferences.

In the second case, when player 1 is indifferent between going to her less pre-

ferred concert in the company of player 2 and the lottery in which with probabil-

ity 3
4 she and player 2 go to different concerts and with probability 1

4 they both go

to her more preferred concert, the Bernoulli payoffs that represent her preferences

satisfy the condition

u1(S, S) = 3
4 u1(S, B) + 1

4 u1(B, B).

If we choose u1(S, B) = 0 and u1(B, B) = 2 (as before), then u1(S, S) = 1
2 . Similarly,

for player 2 we can set u2(B, S) = 0, u2(S, S) = 2, and u2(B, B) = 1
2 . Thus the

Bernoulli payoffs in the right panel of Figure 23.1 are consistent with the players’

preferences.

Bach Stravinsky

Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

Bach Stravinsky

Bach 2, 1
2 0, 0

Stravinsky 0, 0 1
2 , 2

Figure 23.1 The Bernoulli payoffs for two extensions of BoS.

23
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↑
Player 1’s

expected payoff
2

q = 1

1
2

1

q = 1
2

1

q = 0

0 1p →

Figure 24.1 Player 1’s expected payoff as a function of the probability p that she assigns to B in BoS,
when the probability q that player 2 assigns to B is 0, 1

2 , and 1.

110.1 Expected payoffs

For BoS, player 1’s expected payoff is shown in Figure 24.1.

For the game in the right panel of Figure 21.1 in the book, player 1’s expected

payoff is shown in Figure 24.2.

↑
Player 1’s

expected payoff
3

2
q = 1

3
2

q = 1
2

1

q = 0

0 1p →

Figure 24.2 Player 1’s expected payoff as a function of the probability p that she assigns to Refrain in
the game in the right panel of Figure 21.1 in the book, when the probability q that player 2 assigns to
Refrain is 0, 1

2 , and 1.

111.1 Examples of best responses

For BoS: for q = 0 player 1’s unique best response is p = 0 and for q = 1
2 and q = 1

her unique best response is p = 1. For the game in the right panel of Figure 21.1:

for q = 0 player 1’s unique best response is p = 0, for q = 1
2 her set of best

responses is the set of all her mixed strategies (all values of p), and for q = 1 her

unique best response is p = 1.
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114.1 Mixed strategy equilibrium of Hawk–Dove

Denote by ui a payoff function whose expected value represents player i’s prefer-

ences. The conditions in the problem imply that for player 1 we have

u1(Passive, Passive) = 1
2 u1(Aggressive, Aggressive) + 1

2 u1(Aggressive, Passive)

and

u1(Passive, Aggressive) = 2
3 u1(Aggressive, Aggressive) + 1

3 u1(Passive, Passive).

Given u1(Aggressive, Aggressive) = 0 and u1(Passive, Aggressive = 1, we have

u1(Passive, Passive) = 1
2 u1(Aggressive, Passive)

and

1 = 1
3 u1(Passive, Passive),

so that

u1(Passive, Passive) = 3 and u1(Aggressive, Passive) = 6.

Similarly,

u2(Passive, Passive) = 3 and u2(Passive, Aggressive) = 6.

Thus the game is given in the left panel of Figure 25.1. The players’ best re-

sponse functions are shown in the right panel. The game has three mixed strategy

Nash equilibria: ((0, 1), (1, 0)), (( 3
4 , 1

4 ), ( 3
4 , 1

4 )), and ((1, 0), (0, 1)).

Aggressive Passive

Aggressive 0, 0 6, 1

Passive 1, 6 3, 3

0 3
4

1
p →

3
4

1↑
q

B1

B2

Figure 25.1 An extension of Hawk–Dove (left panel) and the players’ best response functions when
randomization is allowed in this game (right panel). The probability that player 1 assigns to Aggressive

is p and the probability that player 2 assigns to Aggressive is q. The disks indicate the Nash equilibria
(two pure, one mixed).
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117.2 Choosing numbers

a. To show that the pair of mixed strategies in the question is a mixed strategy

equilibrium, it suffices to verify the conditions in Proposition 116.2. Thus,

given that each player’s strategy specifies a positive probability for every

action, it suffices to show that each action of each player yields the same

expected payoff. Player 1’s expected payoff to each pure strategy is 1/K,

because with probability 1/K player 2 chooses the same number, and with

probability 1− 1/K player 2 chooses a different number. Similarly, player 2’s

expected payoff to each pure strategy is −1/K, because with probability 1/K

player 1 chooses the same number, and with probability 1 − 1/K player 2

chooses a different number. Thus the pair of strategies is a mixed strategy

Nash equilibrium.

b. Let (p∗, q∗) be a mixed strategy equilibrium, where p∗ and q∗ are vectors,

the jth components of which are the probabilities assigned to the integer j

by each player. Given that player 2 uses the mixed strategy q∗, player 1’s

expected payoff if she chooses the number k is q∗k . Hence if p∗k > 0 then (by

the first condition in Proposition 116.2) we need q∗k ≥ q∗j for all j, so that, in

particular, q∗k > 0 (q∗j cannot be zero for all j!). But player 2’s expected payoff

if she chooses the number k is −p∗k , so given q∗k > 0 we need p∗k ≤ p∗j for all

j (again by the first condition in Proposition 116.2), and, in particular, p∗k ≤
1/K (p∗j cannot exceed 1/K for all j!). We conclude that any probability p∗k
that is positive must be at most 1/K. The only possibility is that p∗k = 1/K

for all k. A similar argument implies that q∗k = 1/K for all k.

120.2 Strictly dominating mixed strategies

Denote the probability that player 1 assigns to T by p and the probability she as-

signs to M by r (so that the probability she assigns to B is 1 − p − r). A mixed

strategy of player 1 strictly dominates T if and only if

p + 4r > 1 and p + 3(1− p − r) > 1,

or if and only if 1 − 4r < p < 1 − 3
2 r. For example, the mixed strategies ( 1

4 , 1
4 , 1

2 )
and (0, 1

3 , 2
3 ) both strictly dominate T.

120.3 Strict domination for mixed strategies

(a) True. Suppose that the mixed strategy α′i assigns positive probability to the

action a′i, which is strictly dominated by the action ai. Then ui(ai, a−i) > ui(a′i, a−i)
for all a−i. Let αi be the mixed strategy that differs from α′i only in the weight that α′i
assigns to a′i is transferred to ai. That is, αi is defined by αi(a′i) = 0, αi(ai) = α′i(a′i)+
α′i(ai), and αi(bi) = α′i(bi) for every other action bi. Then αi strictly dominates α′i:

for any a−i we have U(αi, a−i)− U(α′i, a−i) = α′i(a′i)(u(ai, a−i) − ui(a′i, a−i)) > 0.
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(b) False. Consider a variant of the game in Figure 120.1 in the text in which

player 1’s payoffs to (T, L) and to (T, R) are both 5
2 instead of 1. Then player 1’s

mixed strategy that assigns probability 1
2 to M and probability 1

2 to B is strictly

dominated by T, even though neither M nor B is strictly dominated.

127.1 Equilibrium in the expert diagnosis game

When E = rE′ + (1 − r)I′ the consumer is indifferent between her two actions

when p = 0, so that her best response function has a vertical segment at p = 0.

Referring to Figure 126.1 in the text, we see that the set of mixed strategy Nash

equilibria correspond to p = 0 and π/π′ ≤ q ≤ 1.

130.3 Bargaining

The game is given in Figure 27.1.

0 2 4 6 8 10

0 5, 5 4, 6 3, 7 2, 8 1, 9 0, 10

2 6, 4 5, 5 4, 6 3, 7 2, 8 0, 0

4 7, 3 6, 4 5, 5 4, 6 0, 0 0, 0

6 8, 2 7, 3 6, 4 0, 0 0, 0 0, 0

8 9, 1 8, 2 0, 0 0, 0 0, 0 0, 0

10 10, 0 0, 0 0, 0 0, 0 0, 0 0, 0

Figure 27.1 A bargaining game.

By inspection it has a single symmetric pure strategy Nash equilibrium,

(10, 10).

Now consider situations in which the common mixed strategy assigns positive

probability to two actions. Suppose that player 2 assigns positive probability only

to 0 and 2. Then player 1’s payoff to her action 4 exceeds her payoff to either 0 or

2. Thus there is no symmetric equilibrium in which the actions assigned positive

probability are 0 and 2. By a similar argument we can rule out equilibria in which

the actions assigned positive probability are any pair except 2 and 8, or 4 and 6.

If the actions to which player 2 assigns positive probability are 2 and 8 then

player 1’s expected payoffs to 2 and 8 are the same if the probability player 2 as-

signs to 2 is 2
5 (and the probability she assigns to 8 is 3

5 ). Given these probabilities,

player 1’s expected payoff to her actions 2 and 8 is 16
5 , and her expected payoff to

every other action is less than 16
5 . Thus the pair of mixed strategies in which every

player assigns probability 2
5 to 2 and 3

5 to 8 is a symmetric mixed strategy Nash

equilibrium.

Similarly, the game has a symmetric mixed strategy equilibrium (α∗, α∗) in

which α∗ assigns probability 4
5 to the demand of 4 and probability 1

5 to the demand

of 6.
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In summary, the game has three symmetric mixed strategy Nash equilibria in

which each player’s strategy assigns positive probability to at most two actions:

one in which probability 1 is assigned to 10, one in which probability 2
5 is assigned

to 2 and probability 3
5 is assigned to 8, and one in which probability 4

5 is assigned

to 4 and probability 1
5 is assigned to 6.

132.2 Reporting a crime when the witnesses are heterogeneous

Denote by pi the probability with which each witness with cost ci reports the crime,

for i = 1, 2. For each witness with cost c1 to report with positive probability less

than one, we need

v − c1 = v · Pr{at least one other person calls}

= v
(

1 − (1 − p1)
n1−1(1 − p2)

n2

)

,

or

c1 = v(1 − p1)
n1−1(1 − p2)

n2 . (28.1)

Similarly, for each witness with cost c2 to report with positive probability less than

one, we need

v − c2 = v · Pr{at least one other person calls}

= v
(

1 − (1 − p1)
n1(1 − p2)

n2−1
)

,

or

c2 = v(1 − p1)
n1(1 − p2)

n2−1. (28.2)

Dividing (28.1) by (28.2) we obtain

1 − p2 = c1(1 − p1)/c2.

Substituting this expression for 1 − p2 into (28.1) we get

p1 = 1 −

(
c1

v
·

(
c2

c1

)n2
)1/(n−1)

.

Similarly,

p2 = 1 −

(
c2

v
·

(
c1

c2

)n1
)1/(n−1)

.

For these two numbers to be probabilities, we need each of them to be nonnegative

and at most one, which requires

(

cn2
2

v

)1/(n2−1)

< c1 <

(

vc
n1−1
2

)1/n1
.
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136.1 Best response dynamics in Cournot’s duopoly game

The best response functions of both firms are the same, so if the firms’ outputs are

initially the same, they are the same in every period: qt
1 = qt

2 for every t. For each

period t, we thus have

qt
i = 1

2 (α − c − qt
i).

Given that q1
i = 0 for i = 1, 2, solving this first-order difference equation we have

qt
i = 1

3 (α − c)[1 − (− 1
2 )t−1]

for each period t. When t is large, qt
i is close to 1

3 (α − c), a firm’s equilibrium

output.

In the first few periods, these outputs are 0, 1
2 (α − c), 1

4 (α − c), 3
8 (α − c), 5

16 (α −
c).

139.1 Finding all mixed strategy equilibria of twoplayer games

Left game:

• There is no equilibrium in which each player’s mixed strategy assigns posi-

tive probability to a single action (i.e. there is no pure equilibrium).

• Consider the possibility of an equilibrium in which one player assigns prob-

ability 1 to a single action while the other player assigns positive probability

to both her actions. For neither action of player 1 is player 2’s payoff the same

for both her actions, and for neither action of player 2 is player 1’s payoff the

same for both her actions, so there is no mixed strategy equilibrium of this

type.

• Consider the possibility of a mixed strategy equilibrium in which each player

assigns positive probability to both her actions. Denote by p the probability

player 1 assigns to T and by q the probability player 2 assigns to L. For

player 1’s expected payoff to her two actions to be the same we need

6q = 3q + 6(1 − q),

or q = 2
3 . For player 2’s expected payoff to her two actions to be the same we

need

2(1 − p) = 6p,

or p = 1
4 . We conclude that the game has a unique mixed strategy equilib-

rium, (( 1
4 , 3

4 ), ( 2
3 , 1

3 )).

Right game:

• By inspection, (T, R) and (B, L) are the pure strategy equilibria.
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• Consider the possibility of a mixed strategy equilibrium in which one player

assigns probability 1 to a single action while the other player assigns positive

probability to both her actions.

◦ {T} for player 1, {L, R} for player 2: no equilibrium, because player 2’s

payoffs to (T, L) and (T, R) are not the same.

◦ {B} for player 1, {L, R} for player 2: no equilibrium, because player 2’s

payoffs to (B, L) and (B, R) are not the same.

◦ {T, B} for player 1, {L} for player 2: no equilibrium, because player 1’s

payoffs to (T, L) and (B, L) are not the same.

◦ {T, B} for player 1, {R} for player 2: player 1’s payoffs to (T, R) and

(B, R) are the same, so there is an equilibrium in which player 1 uses T

with probability p if player 2’s expected payoff to R, which is 2p + 1− p,

is at least her expected payoff to L, which is p + 2(1 − p). That is, the

game has equilibria in which player 1’s mixed strategy is (p, 1− p), with

p ≥ 1
2 , and player 2 uses R with probability 1.

• Consider the possibility of an equilibrium in which both players assign posi-

tive probability to both their actions. Denote by q the probability that player 2

assigns to L. For player 1’s expected payoffs to T and B to be the same we

need 0 = 2q, or q = 0, so there is no equilibrium in which both players assign

positive probability to both their actions.

In summary, the mixed strategy equilibria of the game are ((0, 1), (1, 0)) (i.e.

the pure equilibrium (B, L)) and ((p, 1 − p), (0, 1)) for 1
2 ≤ p ≤ 1 (of which one

equilibrium is the pure equilibrium (T, R)).

145.1 Allpay auction with many bidders

Denote the common mixed strategy by F. Look for an equilibrium in which the

largest value of z for which F(z) = 0 is 0 and the smallest value of z for which

F(z) = 1 is z = K.

A player who bids ai wins if and only if the other n − 1 players all bid less than

she does, an event with probability (F(ai))
n−1. Thus, given that the probability

that she ties for the highest bid is zero, her expected payoff is

(K − ai)(F(ai))
n−1 + (−ai)(1 − (F(ai))

n−1).

Given the form of F, for an equilibrium this expected payoff must be constant

for all values of ai with 0 ≤ ai ≤ K. That is, for some value of c we have

K(F(ai))
n−1 − ai = c for all 0 ≤ ai ≤ K.

For F(0) = 0 we need c = 0, so that F(ai) = (ai/K)1/(n−1) is the only candidate

for an equilibrium strategy.
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The function F is a cumulative probability distribution on the interval from 0 to

K because F(0) = 0, F(K) = 1, and F is increasing. Thus F is indeed an equilibrium

strategy.

We conclude that the game has a mixed strategy Nash equilibrium in which

each player randomizes over all her actions according to the probability distribu-

tion F(ai) = (ai/K)1/(n−1); each player’s equilibrium expected payoff is 0.

Each player’s mean bid is K/n.

147.2 Preferences over lotteries

The first piece of information about the decision-maker’s preferences among lot-

teries is consistent with her preferences being represented by the expected value

of a payoff function: set u(a1) = 0, u(a2) equal to any number between 1
2 and 1

4 ,

and u(a3) = 1.

The second piece of information about the decision-maker’s preferences is not

consistent with these preferences being represented by the expected value of a pay-

off function, by the following argument. For consistency with the information

about the decision-maker’s preferences among the four lotteries, we need

0.4u(a1) + 0.6u(a3) > 0.5u(a2) + 0.5u(a3) >

0.3u(a1) + 0.2u(a2) + 0.5u(a3) > 0.45u(a1) + 0.55u(a3).

The first inequality implies u(a2) < 0.8u(a1) + 0.2u(a3) and the last inequality im-

plies u(a2) > 0.75u(a1) + 0.25u(a3). Because u(a1) < u(a3), we have 0.75u(a1) +
0.25u(a3) > 0.8u(a1) + 0.2u(a3), so that the two inequalities are incompatible.

149.2 Normalized vNM payoff functions

Let a be the best outcome according to her preferences and let a be the worse out-

come. Let η = −u(a)/(u(a) − u(a)) and θ = 1/(u(a) − u(a)) > 0. Lemma 148.1

implies that the function v defined by v(x) = η + θu(x) represents the same

preferences as does u; we have v(a) = 0 and v(a) = 1.
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Extensive Games with Perfect Information:

Theory

163.1 Nash equilibria of extensive games

The strategic form of the game in Exercise 156.2a is given in Figure 33.1.

EG EH FG FH

C 1, 0 1, 0 3, 2 3, 2

D 2, 3 0, 1 2, 3 0, 1

Figure 33.1 The strategic form of the game in Exercise 156.2a.

The Nash equilibria of the game are (C, FG), (C, FH), and (D, EG).

The strategic form of the game in Figure 160.1 is given in Figure 33.2.

E F

CG 1, 2 3, 1

CH 0, 0 3, 1

DG 2, 0 2, 0

DH 2, 0 2, 0

Figure 33.2 The strategic form of the game in Figure 160.1.

The Nash equilibria of the game are (CH, F), (DG, E), and (DH, E).

164.2 Subgames

The subgames of the game in Exercise 156.2c are the whole game and the six games

in Figure 34.1.

168.1 Checking for subgame perfect equilibria

The Nash equilibria (CH, F) and (DH, E) are not subgame perfect equilibria: in the

subgame following the history (C, E), player 1’s strategies CH and DH induce the

strategy H, which is not optimal.

The Nash equilibrium (DG, E) is a subgame perfect equilibrium: (a) it is a

Nash equilibrium, so player 1’s strategy is optimal at the start of the game, given

player 2’s strategy, (b) in the subgame following the history C, player 2’s strategy

E induces the strategy E, which is optimal given player 1’s strategy, and (c) in the

subgame following the history (C, E), player 1’s strategy DG induces the strategy

G, which is optimal.

33
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HB
R

H

0, 0, 0

B

1, 2, 1

E
H

2, 1, 2

B

0, 0, 0

E
HB

E

H

0, 0, 0

B

1, 2, 1

R
H

2, 1, 2

B

0, 0, 0

R

H

0, 0, 0

B

1, 2, 1

E
H

2, 1, 2

B

0, 0, 0

E
H

0, 0, 0

B

1, 2, 1

R
H

2, 1, 2

B

0, 0, 0

R

Figure 34.1 The proper subgames of the game in Exercise 156.2c.

174.1 Sharing heterogeneous objects

Let n = 2 and k = 3, and call the objects a, b, and c. Suppose that the values

person 1 attaches to the objects are 3, 2, and 1 respectively, while the values player 2

attaches are 1, 3, 2. If player 1 chooses a on the first round, then in any subgame

perfect equilibrium player 2 chooses b, leaving player 1 with c on the second round.

If instead player 1 chooses b on the first round, in any subgame perfect equilibrium

player 2 chooses c, leaving player 1 with a on the second round. Thus in every

subgame perfect equilibrium player 1 chooses b on the first round (though she

values a more highly.)

Now I argue that for any preferences of the players, G(2, 3) has a subgame

perfect equilibrium of the type described in the exercise. For any object chosen

by player 1 in round 1, in any subgame perfect equilibrium player 2 chooses her

favorite among the two objects remaining in round 2. Thus player 2 never obtains

the object she least prefers; in any subgame perfect equilibrium, player 1 obtains

that object. Player 1 can ensure she obtains her more preferred object of the two

remaining by choosing that object on the first round. That is, there is a subgame

perfect equilibrium in which on the first round player 1 chooses her more preferred

object out of the set of objects excluding the object player 2 least prefers, and on

the last round she obtains x3. In this equilibrium, player 2 obtains the object less

preferred by player 1 out of the set of objects excluding the object player 2 least

prefers. That is, player 2 obtains x2. (Depending on the players’ preferences, the

game also may have a subgame perfect equilibrium in which player 1 chooses x3

on the first round.)

177.3 Comparing simultaneous and sequential games

a. Denote by (a∗1 , a∗2) a Nash equilibrium of the strategic game in which player

1’s payoff is maximal in the set of Nash equilibria. Because (a∗1 , a∗2) is a Nash

equilibrium, a∗2 is a best response to a∗1 . By assumption, it is the only best
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response to a∗1 . Thus if player 1 chooses a∗1 in the extensive game, player 2

must choose a∗2 in any subgame perfect equilibrium of the extensive game.

That is, by choosing a∗1 , player 1 is assured of a payoff of at least u1(a∗1 , a∗2).

Thus in any subgame perfect equilibrium player 1’s payoff must be at least

u1(a∗1 , a∗2).

b. Suppose that A1 = {T, B}, A2 = {L, R}, and the payoffs are those given

in Figure 35.1. The strategic game has a unique Nash equilibrium, (T, L),

in which player 2’s payoff is 1. The extensive game has a unique subgame

perfect equilibrium, (B, LR) (where the first component of player 2’s strategy

is her action after the history T and the second component is her action after

the history B). In this subgame perfect equilibrium player 2’s payoff is 2.

L R

T 1, 1 3, 0

B 0, 0 2, 2

Figure 35.1 The payoffs for the example in Exercise 177.3b.

c. Suppose that A1 = {T, B}, A2 = {L, R}, and the payoffs are those given in

Figure 35.2. The strategic game has a unique Nash equilibrium, (T, L), in

which player 2’s payoff is 2. A subgame perfect equilibrium of the exten-

sive game is (B, RL) (where the first component of player 2’s strategy is her

action after the history T and the second component is her action after the

history B). In this subgame perfect equilibrium player 1’s payoff is 1. (If you

read Chapter 4, you can find the mixed strategy Nash equilibria of the strate-

gic game; in all these equilibria, as in the pure strategy Nash equilibrium,

player 1’s expected payoff exceeds 1.)

L R

T 2, 2 0, 2

B 1, 1 3, 0

Figure 35.2 The payoffs for the example in Exercise 177.3c.

179.3 Three Men’s Morris, or Mill

Number the squares 1 through 9, starting at the top left, working across each row.

The following strategy of player 1 guarantees she wins, so that the subgame perfect

equilibrium outcome is that she wins. First player 1 chooses the central square (5).

• Suppose player 2 then chooses a corner; take it to be square 1. Then player 1

chooses square 6. Now player 2 must choose square 4 to avoid defeat; player

1 must choose square 7 to avoid defeat; and then player 2 must choose square
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3 to avoid defeat (otherwise player 1 can move from square 6 to square 3

on her next turn). If player 1 now moves from square 6 to square 9, then

whatever player 2 does she can subsequently move her counter from square

5 to square 8 and win.

• Suppose player 2 then chooses a noncorner; take it to be square 2. Then

player 1 chooses square 7. Now player 2 must choose square 3 to avoid

defeat; player 1 must choose square 1 to avoid defeat; and then player 2 must

choose square 4 to avoid defeat (otherwise player 1 can move from square 5

to square 4 on her next turn). If player 1 now moves from square 7 to square

8, then whatever player 2 does she can subsequently move from square 8 to

square 9 and win.
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Illustrations

183.1 Nash equilibria of the ultimatum game

For every amount x there are Nash equilibria in which person 1 offers x. For exam-

ple, for any value of x there is a Nash equilibrium in which person 1’s strategy is

to offer x and person 2’s strategy is to accept x and any offer more favorable, and

reject every other offer. (Given person 2’s strategy, person 1 can do no better than

offer x. Given person 1’s strategy, person 2 should accept x; whether person 2 ac-

cepts or rejects any other offer makes no difference to her payoff, so that rejecting

all less favorable offers is, in particular, optimal.)

183.2 Subgame perfect equilibria of the ultimatum game with indivisible units

In this case each player has finitely many actions, and for both possible subgame

perfect equilibrium strategies of player 2 there is an optimal strategy for player 1.

If player 2 accepts all offers then player 1’s best strategy is to offer 0, as before.

If player 2 accepts all offers except 0 then player 1’s best strategy is to offer one

cent (which player 2 accepts).

Thus the game has two subgame perfect equilibria: one in which player 1 offers

0 and player 2 accepts all offers, and one in which player 1 offers one cent and

player 2 accepts all offers except 0.

186.1 Holdup game

The game is defined as follows.

Players Two people, person 1 and person 2.

Terminal histories The set of all sequences (low, x, Z), where x is a number with

0 ≤ x ≤ cL (the amount of money that person 1 offers to person 2 when the

pie is small), and (high, x, Z), where x is a number with 0 ≤ x ≤ cH (the

amount of money that person 1 offers to person 2 when the pie is large) and

Z is either Y (“yes, I accept”) or N (“no, I reject”).

Player function P(∅) = 2, P(low) = P(high) = 1, and P(low, x) = P(high, x) =
2 for all x.

Preferences Person 1’s preferences are represented by payoffs equal to the

amounts of money she receives, equal to cL − x for any terminal history

(low, x, Y) with 0 ≤ x ≤ cL, equal to cH − x for any terminal history

37
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(high, x, Y) with 0 ≤ x ≤ cH , and equal to 0 for any terminal history

(low, x, N) with 0 ≤ x ≤ cL and for any terminal history (high, x, N) with

0 ≤ x ≤ cH . Person 2’s preferences are represented by payoffs equal to x − L

for the terminal history (low, x, Y), x − H for the terminal history (high, x, Y),

−L for the terminal history (low, x, N), and −H for the terminal history

(high, x, N).

189.1 Stackelberg’s duopoly game with quadratic costs

From Exercise 59.1, the best response function of firm 2 is the function b2 defined

by

b2(q1) =

{
1
4 (α − q1) if q1 ≤ α

0 if q1 > α.

Firm 1’s subgame perfect equilibrium strategy is the value of q1 that maximizes

q1(α − q1 − b2(q1)) − q2
1, or q1(α − q1 −

1
4 (α − q1)) − q2

1, or 1
4 q1(3α − 7q1). The

maximizer is q1 = 3
14 α.

We conclude that the game has a unique subgame perfect equilibrium, in which

firm 1’s strategy is the output 3
14 α and firm 2’s strategy is its best response function

b2.

The outcome of the subgame perfect equilibrium is that firm 1 produces q∗1 =
3

14 α units of output and firm 2 produces q∗2 = b2(
3
14 α) = 11

56 α units. In a Nash

equilibrium of Cournot’s (simultaneous-move) game each firm produces 1
5 α (see

Exercise 59.1). Thus firm 1 produces more in the subgame perfect equilibrium of

the sequential game than it does in the Nash equilibrium of Cournot’s game, and

firm 2 produces less.

196.4 Sequential positioning by three political candidates

The following extensive game models the situation.

Players The candidates.

Terminal histories The set of all sequences (x1, . . . , xn), where xi is either Out or

a position of candidate i (a number) for i = 1, . . . , n.

Player function P(∅) = 1, P(x1) = 2 for all x1, P(x1, x2) = 3 for all (x1, x2), . . . ,

P(x1, . . . , xn−1) = n for all (x1, . . . , xn−1).

Preferences Each candidate’s preferences are represented by a payoff function

that assigns n to every terminal history in which she wins, k to every terminal

history in which she ties for first place with n − k other candidates, for 1 ≤
k ≤ n − 1, 0 to every terminal history in which she stays out, and −1 to

every terminal history in which she loses, where positions attract votes as in

Hotelling’s model of electoral competition (Section 3.3).
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When there are two candidates the analysis of the subgame perfect equilibria

is similar to that in the previous exercise. In every subgame perfect equilibrium

candidate 1’s strategy is m; candidate 2’s strategy chooses m after the history m,

some position between x1 and 2m − x1 after the history x1 for any position x1, and

any position after the history Out.

Now consider the case of three candidates when the voters’ favorite positions

are distributed uniformly from 0 to 1. I claim that every subgame perfect equilib-

rium results in the first candidate’s entering at 1
2 , the second candidate’s staying

out, and the third candidate’s entering at 1
2 .

To show this, first consider the best response of candidate 3 to each possible

pair of actions of candidates 1 and 2. Figure 39.1 illustrates these optimal actions in

every case that candidate 1 enters. (If candidate 1 does not enter then the subgame

is exactly the two-candidate game.)

2
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2
3

1
2

1
3

1
3

In (e.g. at 1
2 )

3 wins

In (e.g. at 1
2 )

3 wins

In (e.g. at z)
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3 wins
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2 ); 3 wins
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3
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0
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1
x1 →

↑
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Figure 39.1 The outcome of a best response of candidate 3 to each pair of actions by candidates 1 and
2. The best response for any point in the gray shaded area (including the black boundaries of this area,
but excluding the other boundaries) is Out. The outcome at each of the four small disks at the outer
corners of the shaded area is that all three candidates tie. The value of z is 1 − 1

2 (x1 + x2).
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Now consider the optimal action of candidate 2, given x1 and the outcome of

candidate 3’s best response, as given in Figure 39.1. In the figure, take a value

of x1 and look at the outcomes as x2 varies; find the value of x2 that induces the

best outcome for candidate 2. For example, for x1 = 0 the only value of x2 for

which candidate 2 does not lose is 2
3 , at which point she ties with the other two

candidates. Thus when candidate 1’s strategy is x1 = 0, candidate 2’s best action,

given candidate 3’s best response, is x2 = 2
3 , which leads to a three-way tie. We

find that the outcome of the optimal value of x2, for each value of x1, is given as

follows.






1, 2, and 3 tie (x2 = 2
3 ) if x1 = 0

2 wins if 0 < x1 <
1
2

1 and 3 tie (2 stays out) if x1 = 1
2

2 wins if 1
2 < x1 < 1

1, 2, and 3 tie (x2 = 1
3 ) if x1 = 1.

Finally, consider candidate 1’s best strategy, given the responses of candidates 2

and 3. If she stays out then candidates 2 and 3 enter at m and tie. If she enters then

the best position at which to do so is x1 = 1
2 , where she ties with candidate 3. (For

every other position she either loses or ties with both of the other candidates.)

We conclude that in every subgame perfect equilibrium the outcome is that

candidate 1 enters at 1
2 , candidate 2 stays out, and candidate 3 enters at 1

2 . (There

are many subgame perfect equilibria, because after many histories candidate 3’s

optimal action is not unique.)

(The case in which there are many potential candidates, is discussed on the

page http://www.economics.utoronto.ca/osborne/research/CONJECT.HTM.)

198.1 The race G1(2, 2)

The consequences of player 1’s actions at the start of the game are as follows.

Take two steps: Player 1 wins.

Take one step: Go to the game G2(1, 2), in which player 2 initially takes two

steps and wins.

Do not move: If player 2 does not move, the game ends. If she takes one step

we go to the game G1(2, 1), in which player 1 takes two steps and wins. If she

takes two steps, she wins. Thus in a subgame perfect equilibrium player 2

takes two steps, and wins.

We conclude that in a subgame perfect equilibrium of G1(2, 2) player 1 initially

takes two steps, and wins.

203.1 A race with a liquidity constraint

In the absence of the constraint, player 1 initially takes one step. Suppose she does

so in the game with the constraint. Consider player 2’s options after player 1’s

move.
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Player 2 takes two steps: Because of the liquidity constraint, player 1 can take

at most one step. If she takes one step, player 2’s optimal action is to take one

step, and win. Thus player 1’s best action is not to move; player 2’s payoff

exceeds 1 (her steps cost 5, and the prize is worth more than 6).

Player 2 moves one step: Again because of the liquidity constraint, player 1

can take at most one step. If she takes one step, player 2 can take two steps

and win, obtaining a payoff of more than 1 (as in the previous case).

Player 2 does not move: Player 1, as before, can take one step on each turn, and

win; player 2’s payoff is 0.

We conclude that after player 1 moves one step, player 2 should take either

one or two steps, and ultimately win; player 1’s payoff is −1. A better option for

player 1 is not to move, in which case player 2 can move one step at a time, and

win; player 1’s payoff is zero.

Thus the subgame perfect equilibrium outcome is that player 1 does not move,

and player 2 takes one step at a time and wins.
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210.2 Extensive game with simultaneous moves

The game is shown in Figure 43.1.

BA

1

C D

C 4, 2 0, 0

D 0, 0 2, 4

E F

E 3, 1 0, 0

F 0, 0 1, 3

Figure 43.1 The game in Exercise 210.2.

The subgame following player 1’s choice of A has two Nash equilibria, (C, C)
and (D, D); the subgame following player 1’s choice of B also has two Nash equi-

libria, (E, E) and (F, F). If the equilibrium reached after player 1 chooses A is

(C, C), then regardless of the equilibrium reached after she chooses (E, E), she

chooses A at the beginning of the game. If the equilibrium reached after player 1

chooses A is (D, D) and the equilibrium reached after she chooses B is (F, F), she

chooses A at the beginning of the game. If the equilibrium reached after player 1

chooses A is (D, D) and the equilibrium reached after she chooses B is (E, E), she

chooses B at the beginning of the game.

Thus the game has four subgame perfect equilibria: (ACE, CE), (ACF, CF),

(ADF, DF), and (BDE, DE) (where the first component of player 1’s strategy is

her choice at the start of the game, the second component is her action after she

chooses A, and the third component is her action after she chooses B, and the first

component of player 2’s strategy is her action after player 1 chooses A at the start

of the game and the second component is her action after player 1 chooses B at the

start of the game).

In the first two equilibria the outcome is that player 1 chooses A and then both

players choose C, in the third equilibrium the outcome is that player 1 chooses A

and then both players choose D, and in the last equilibrium the outcome is that

player 1 chooses B and then both players choose E.

217.1 Electoral competition with strategic voters

I first argue that in any equilibrium each candidate that enters is in the set of win-

ners. If some candidate that enters is not a winner, she can increase her payoff by

deviating to Out.
43
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Now consider the voting subgame in which there are more than two candidates

and not all candidates’ positions are the same. Suppose that the citizens’ votes are

equally divided among the candidates. I argue that this list of citizens’ strategies

is not a Nash equilibrium of the voting subgame.

For either the citizen whose favorite position is 0 or the citizen whose favorite

position is 1 (or both), at least two candidates’ positions are better than the position

of the candidate furthest from the citizen’s favorite position. Denote a citizen for

whom this condition holds by i. (The claim that citizen i exists is immediate if the

candidates occupy at least three distinct positions, or they occupy two distinct po-

sitions and at least two candidates occupy each position. If the candidates occupy

only two positions and one position is occupied by a single candidate, then take

the citizen whose favorite position is 0 if the lone candidate’s position exceeds the

other candidates’ position; otherwise take the citizen whose favorite position is 1.)

Now, given that each candidate obtains the same number of votes, if citizen i

switches her vote to one of the candidates whose position is better for her than

that of the candidate whose position is furthest from her favorite position, then

this candidate wins outright. (If citizen i originally votes for one of these superior

candidates, she can switch her vote to the other superior candidate; if she originally

votes for neither of the superior candidates, she can switch her vote to either one

of them.) Citizen i’s payoff increases when she thus switches her vote, so that the

list of citizens’ strategies is not a Nash equilibrium of the voting subgame.

We conclude that in every Nash equilibrium of every voting subgame in which

there are more than two candidates and not all candidates’ positions are the same

at least one candidate loses. Because no candidate loses in a subgame perfect equi-

librium (by the first argument in the proof), in any subgame perfect equilibrium

either only two candidates enter, or all candidates’ positions are the same.

If only two candidates enter, then by the argument in the text for the case n = 2,

each candidate’s position is m (the median of the citizens’ favorite positions).

Now suppose that more than two candidates enter, and their common position

is not equal to m. If a candidate deviates to m then in the resulting voting subgame

only two positions are occupied, so that for every citizen, any strategy that is not

weakly dominated votes for a candidate at the position closest to her favorite po-

sition. Thus a candidate who deviates to m wins outright. We conclude that in

any subgame perfect equilibrium in which more than two candidates enter, they

all choose the position m.

220.1 Top cycle set

a. The top cycle set is the set {x, y, z} of all three alternatives because x beats y

beats z beats x.

b. The top cycle set is the set {w, x, y, z} of all four alternatives. As in the

previous case, x beats y beats z beats x; also y beats w.



Chapter 7. Extensive Games with Perfect Information: Extensions and Discussion 45

224.1 Exit from a declining industry

Period t1 is the largest value of t for which Pt(k1) ≥ c, or 60− t ≥ 10. Thus t1 = 50.

Similarly, t2 = 70.

If both firms are active in period t1, then firm 2’s profit in this period is −ck2 =
−10(20) = −200. (Note that the price is zero, because k1 + k2 > 50.) Its profit in

any period t in which it is alone in the market is (100− t− c− k2)k2 = (70− t)(20).

Thus its profit from period t1 + 1 through period t2 is

(19 + 18 + . . . + 1)(20) = 3800.

Hence firm 2’s loss in period t1 when both firms are active is (much) less than the

sum of its profits in periods t1 + 1 through t2 when it alone is active.

227.1 Variant of ultimatum game with equityconscious players

The game is defined as follows.

Players The two people.

Terminal histories The set of sequences (x, β2, Z), where x is a number with 0 ≤
x ≤ c (the amount of money that person 1 offers to person 2), β2 is 0 or 1 (the

value of β2 selected by chance), and Z is either Y (“yes, I accept”) or N (“no,

I reject”).

Player function P(∅) = 1, P(x) = c for all x, and P(x, β2) = 2 for all x and all

β2.

Chance probabilities For every history x, chance chooses 0 with probability p

and 1 with probability 1 − p.

Preferences Each person’s preferences are represented by the expected value of

a payoff equal to the amount of money she receives. For any terminal history

(x, β2, Y) person 1 receives c − x and person 2 receives x; for any terminal

history (x, β2, N) each person receives 0.

Given the result from Exercise 183.4 stated in the question, an offer x of player 1

is accepted with probability either 0 or p if x = 0, is accepted with probability p if

0 < x < 1
3 , is accepted with probability either p or 1 if x = 1

3 , and is accepted with

probability 1 if x >
1
3 . By an argument like that for the original ultimatum game,

in any equilibrium in which player 1 makes an offer of 0, player 2 certainly accepts

the offer if β2 = 0, and in any equilibrium in which player 1 makes an offer of 1
3 ,

player 2 certainly accepts the offer if β2 = 1. Thus player 1’s expected payoff to

making the offer x is
{

p(1− x) if 0 ≤ x <
1
3

1 − x if 1
3 ≤ x < 1.
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The maximizer of this function is x = 1
3 if p <

2
3 and x = 0 if p >

2
3 ; if p = 2

3 then

both offers are optimal. (If you do not see that the maximizer takes this form, plot

the expected payoff as a function of x.)

We conclude that if p 6= 2
3 , the subgame perfect equilibria of the game are given

as follows.

p <
2
3 Player 1 offers 1

3 . After a history in which β2 = 0, player 2 accepts an

offer x with x > 0 and either accepts or rejects the offer 0. After a history in

which β2 = 1, player 2 accepts an offer x with x ≥ 1
3 and rejects an offer x

with x < 1
3 .

p >
2
3 Player 1 offers 0. After a history in which β2 = 0, player 2 accepts all offers.

After a history in which β2 = 1, player 2 accepts an offer x with x >
1
3 , rejects

an offer x with x <
1
3 , and either accepts or rejects the offer 1

3 .

If p = 2
3 , both these strategy pairs are subgame perfect equilibria.

We see that if p >
2
3 then in a subgame perfect equilibrium player 1’s offers are

rejected by every player 2 with for whom β2 = 1 (that is, with probability 1 − p).

230.1 Nash equilibria when players may make mistakes

The players’ best response functions are indicated in Figure 46.1. We see that the

game has two Nash equilibria, (A, A, A) and (B, A, A).

A B

A 1∗, 1∗, 1∗ 0, 0, 1∗

B 1∗, 1∗, 1∗ 1∗, 0, 1∗

A

A B

A 0, 1∗, 0 1∗, 0, 0

B 1∗, 1∗, 0 0, 0, 0

B

Figure 46.1 The player’s best response functions in the game in Exercise 230.1.

The action A is not weakly dominated for any player. For player 1, A is better

than B if players 2 and 3 both choose B; for players 2 and 3, A is better than B for

all actions of the other players.

If players 2 and 3 choose A in the modified game, player 1’s expected payoffs

to A and B are

A: (1 − p2)(1− p3) + p1 p2(1 − p3) + p1(1 − p2)p3 + (1 − p1)p2p3

B: (1 − p2)(1 − p3) + (1 − p1)p2(1 − p3) + (1 − p1)(1 − p2)p3 + p1 p2 p3.

The difference between the expected payoff to B and the expected payoff to A is

(1 − 2p1)[p2 + p3 − 3p2 p3].

If 0 < pi <
1
2 for i = 1, 2, 3, this difference is positive, so that (A, A, A) is not a

Nash equilibrium of the modified game.
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233.1 Nash equilibria of the chainstore game

Any terminal history in which the event in each period is either Out or (In, A) is

the outcome of a Nash equilibrium. In any period in which challenger chooses

Out, the strategy of the chain-store specifies that it choose F in the event that the

challenger chooses In.
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Coalitional Games and the Core

245.1 Threeplayer majority game

Let (x1, x2, x3) be an action of the grand coalition. Every coalition consisting of two

players can obtain one unit of output, so for (x1, x2, x3) to be in the core we need

x1 + x2 ≥ 1

x1 + x3 ≥ 1

x2 + x3 ≥ 1

x1 + x2 + x3 = 1.

Adding the first three conditions we conclude that

2x1 + 2x2 + 2x3 ≥ 3,

or x1 + x2 + x3 ≥ 3
2 , contradicting the last condition. Thus no action of the grand

coalition satisfies all the conditions, so that the core of the game is empty.

248.1 Core of landowner–worker game

Let aN be an action of the grand coalition in which the output received by each

worker is at most f (n) − f (n − 1). No coalition consisting solely of workers can

obtain any output, so no such coalition can improve upon aN . Let S be a coalition

of the landowner and k − 1 workers. The total output received by the members of

S in aN is at least

f (n) − (n − k)( f (n)− f (n − 1))

(because the total output is f (n), and every other worker receives at most f (n) −
f (n − 1)). Now, the output that S can obtain is f (k), so for S to improve upon aN

we need

f (k) > f (n) − (n − k)( f (n)− f (n − 1)),

which contradicts the inequality given in the exercise.

249.1 Unionized workers in landowner–worker game

The following game models the situation.

Players The landowner and the workers.

49
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Actions The set of actions of the grand coalition is the set of all allocations of

the output f (n). Every other coalition has a single action, which yields the

output 0.

Preferences Each player’s preferences are represented by the amount of output

she obtains.

The core of this game consists of every allocation of the output f (n) among

the players. The grand coalition cannot improve upon any allocation x because

for every other allocation x′ there is at least one player whose payoff is lower in

x′ than it is in x. No other coalition can improve upon any allocation because no

other coalition can obtain any output.

249.2 Landowner–worker game with increasing marginal products

We need to show that no coalition can improve upon the action aN of the grand

coalition in which every player receives the output f (n)/n. No coalition of work-

ers can obtain any output, so we need to consider only coalitions containing the

landowner. Consider a coalition consisting of the landowner and k workers, which

can obtain f (k + 1) units of output by itself. Under aN this coalition obtains the

output (k + 1) f (n)/n, and we have f (k + 1)/(k + 1) < f (n)/n because k < n.

Thus no coalition can improve upon aN .

254.1 Range of prices in horse market

The equality of the number of owners who sell their horses and the number of

nonowners who buy horses implies that the common trading price p∗

• is not less than σk∗ , otherwise at most k∗ − 1 owners’ valuations would be

less than p∗ and at least k∗ nonowners’ valuations would be greater than p∗,

so that the number of buyers would exceed the number of sellers

• is not less than βk∗+1, otherwise at most k∗ owners’ valuations would be less

than p∗ and at least k∗ + 1 nonowners’ valuations would be greater than p∗,

so that the number of buyers would exceed the number of sellers

• is not greater than βk∗ , otherwise at least k∗ owners’ valuations would be less

than p∗ and at most k∗ − 1 nonowners’ valuations would be greater than p∗,

so that the number of sellers would exceed the number of buyers

• is not greater than σk∗+1, otherwise at least k∗ + 1 owners’ valuations would

be less than p∗ and at most k∗ nonowners’ valuations would be greater than

p∗, so that the number of sellers would exceed the number of buyers.

That is, p∗ ≥ max{σk∗ , βk∗+1} and p∗ ≤ min{βk∗ , σk∗+1}.
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258.1 House assignment with identical preferences

Because the players rank the houses in the same way, we can refer to the “best

house”, the “second best house”, and so on. In any assignment in the core, the

player who owns the best house is assigned this house (because she has the option

of keeping it). Among the remaining players, the one who owns the second best

house must be assigned this house (again, because she has the option of keeping

it). Continuing to argue in the same way, we see that there is a single assignment

in the core, in which every player is assigned the house she owns initially.

261.1 Median voter theorem

Denote the median favorite position by m. If x < m then every player whose fa-

vorite position is m or greater—a majority of the players—prefers m to x. Similarly,

if x > m then every player whose favorite position is m or less—a majority of the

players—prefers m to x.

267.2 Empty core in roommate problem

Notice that ℓ is at the bottom of each of the other players’ preferences. Suppose

that she is matched with i. Then j and k are matched, and {i, k} can improve upon

the matching. Similarly, if ℓ is matched with j then {i, j} can improve upon the

matching, and if ℓ is matched with k then {j, k} can improve upon the matching.

Thus the core is empty (ℓ has to be matched with someone!).
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276.1 Equilibria of a variant of BoS with imperfect information

If player 1 chooses S then type 1 of player 2 chooses S and type 2 chooses B. But

if the two types of player 2 make these choices then player 1 is better off choosing

B (which yields her an expected payoff of 1) than choosing S (which yields her an

expected payoff of 1
2 ). Thus there is no Nash equilibrium in which player 1 chooses

S.

Now consider the mixed strategy Nash equilibria. If both types of player 2 use

a pure strategy then player 1’s two actions yield her different payoffs. Thus there

is no equilibrium in which both types of player 2 use pure strategies and player 1

randomizes.

Now consider an equilibrium in which type 1 of player 2 randomizes. Denote

by p the probability that player 1’s mixed strategy assigns to B. In order for type 1

of player 2 to obtain the same expected payoff to B and S we need p = 2
3 . For this

value of p the best action of type 2 of player 2 is S. Denote by q the probability that

type 1 of player 2 assigns to B. Given these strategies for the two types of player 2,

player 1’s expected payoff if she chooses B is

1
2 · 2q = q

and her expected payoff if she chooses S is

1
2 · (1 − q) + 1

2 · 1 = 1 − 1
2 q.

These expected payoffs are equal if and only if q = 2
3 . Thus the game has a mixed

strategy equilibrium in which the mixed strategy of player 1 is ( 2
3 , 1

3 ), that of type 1

of player 2 is ( 2
3 , 1

3 ), and that of type 2 of player 2 is (0, 1) (that is, type 2 of player 2

uses the pure strategy that assigns probability 1 to S).

Similarly the game has a mixed strategy equilibrium in which the strategy of

player 1 is ( 1
3 , 2

3 ), that of type 1 of player 2 is (0, 1), and that of type 2 of player 2 is

( 2
3 , 1

3 ).

For no mixed strategy of player 1 are both types of player 2 indifferent between

their two actions, so there is no equilibrium in which both types randomize.

277.1 Expected payoffs in a variant of BoS with imperfect information

The expected payoffs are given in Figure 54.1.

53
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(B, B) (B, S) (S, B) (S, S)

B 0 1 1 2

S 1 1
2

1
2 0

Type n1 of player 1

(B, B) (B, S) (S, B) (S, S)

B 1 2
3

1
3 0

S 0 2
3

4
3 2

Type y2 of player 2

(B, B) (B, S) (S, B) (S, S)

B 0 1
3

2
3 1

S 2 4
3

2
3 0

Type n2 of player 2

Figure 54.1 The expected payoffs of type n1 of player 1 and types y2 and n2 of player 2 in Example 276.2.

282.2 An exchange game

The following Bayesian game models the situation.

Players The two individuals.

States The set of all pairs (s1, s2), where si is the number on player i’s ticket

(an integer from 1 to m).

Actions The set of actions of each player is {Exchange, Don’t exchange}.

Signals The signal function of each player i is defined by τi(s1, s2) = si (each

player observes her own ticket, but not that of the other player)

Beliefs Type si of player i assigns the probability Prj(sj) to the state (s1, s2),

where j is the other player and Prj(sj) is the probability with which player j

receives a ticket with the prize sj on it.

Payoffs Player i’s Bernoulli payoff function is given by ui((X, Y), ω) = ωj if

X = Y = Exchange and ui((X, Y), ω) = ωi otherwise.

Let Mi be the highest type of player i that chooses Exchange. If Mi > 1 then

type 1 of player j optimally chooses Exchange: by exchanging her ticket, she cannot

obtain a smaller prize, and may receive a bigger one. Thus if Mi ≥ Mj and Mi > 1,

type Mi of player i optimally chooses Don’t exchange, because the expected value of

the prizes of the types of player j that choose Exchange is less than Mi. Thus in any

possible Nash equilibrium Mi = Mj = 1: the only prizes that may be exchanged

are the smallest.
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287.1 Cournot’s duopoly game with imperfect information

We have

b1(qL, qH) =

{
1
2 (α − c − (θqL + (1 − θ)qH)) if θqL + (1 − θ)qH ≤ α − c

0 otherwise.

The best response function of each type of player 2 is similar:

bI(q1) =

{
1
2 (α − cI − q1) if q1 ≤ α − cI

0 otherwise

for I = L, H.

The three equations that define a Nash equilibrium are

q∗1 = b1(q∗L, q∗H), q∗L = bL(q∗1), and q∗H = bH(q∗1).

Solving these equations under the assumption that they have a solution in which

all three outputs are positive, we obtain

q∗1 = 1
3 (α − 2c + θcL + (1 − θ)cH)

q∗L = 1
3 (α − 2cL + c)− 1

6 (1 − θ)(cH − cL)

q∗H = 1
3 (α − 2cH + c) + 1

6 θ(cH − cL)

If both firms know that the unit costs of the two firms are c1 and c2 then in

a Nash equilibrium the output of firm i is 1
3 (α − 2ci + cj) (see Exercise 58.1). In

the case of imperfect information considered here, firm 2’s output is less than
1
3 (α − 2cL + c) if its cost is cL and is greater than 1

3 (α − 2cH + c) if its cost is cH .

Intuitively, the reason is as follows. If firm 1 knew that firm 2’s cost were high

then it would produce a relatively large output; if it knew this cost were low then

it would produce a relatively small output. Given that it does not know whether

the cost is high or low it produces a moderate output, less than it would if it knew

firm 2’s cost were high. Thus if firm 2’s cost is in fact high, firm 2 benefits from

firm 1’s lack of knowledge and optimally produces more than it would if firm 1

knew its cost.

288.1 Cournot’s duopoly game with imperfect information

The best response b0(qL, qH) of type 0 of firm 1 is the solution of

max
q0

[θ(P(q0 + qL) − c)q0 + (1 − θ)(P(q0 + qH)− c)q0].

The best response bℓ(qL, qH) of type ℓ of firm 1 is the solution of

max
qℓ

(P(qℓ + qL)− c)qℓ
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and the best response bh(qL, qH) of type h of firm 1 is the solution of

max
qh

(P(qh + qH) − c)qh.

The best response bL(q0, qℓ, qh) of type L of firm 2 is the solution of

max
qL

[(1 − π)(P(q0 + qL) − cL)qL + π(P(qℓ + qL)− cL)qL]

and the best response bH(q0, qℓ, qh) of type H of firm 2 is the solution of

max
qH

[(1 − π)(P(q0 + qH) − cH)qH + π(P(qh + qH) − cH)qH ].

A Nash equilibrium is a profile (q∗0 , q∗
ℓ
, q∗h, q∗L, q∗H) for which q∗0 , q∗

ℓ
, and q∗h are

best responses to q∗L and q∗H , and q∗L and q∗H are best responses to q∗0 , q∗
ℓ
, and q∗h .

When P(Q) = α − Q for Q ≤ α and P(Q) = 0 for Q > α we find, after some

exciting algebra, that

q∗0 =
1

3
(α − 2c + cH − θ (cH − cL))

q∗ℓ =
1

3

(

α − 2c + cL +
(1 − θ)(1 − π)(cH − cL)

4 − π

)

q∗h =
1

3

(

α − 2c + cH −
θ(1 − π)(cH − cL)

4 − π

)

q∗L =
1

3

(

α − 2cL + c −
2(1 − θ)(1 − π)(cH − cL)

4 − π

)

q∗H =
1

3

(

α − 2cH + c +
2θ(1 − π)(cH − cL)

4 − π

)

.

When π = 0 we have

q∗0 =
1

3
(α − 2c + cH − θ (cH − cL))

q∗
ℓ

=
1

3

(

α − 2c + cL +
(1 − θ)(cH − cL)

4

)

q∗h =
1

3

(

α − 2c + cH −
θ(cH − cL)

4

)

q∗L =
1

3

(

α − 2cL + c −
(1 − θ)(cH − cL)

2

)

q∗H =
1

3

(

α − 2cH + c +
θ(cH − cL)

2

)

,

so that q∗0 is equal to the equilibrium output of firm 1 in Exercise 287.1, and q∗L
and q∗H are the same as the equilibrium outputs of the two types of firm 2 in that

exercise.
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When π = 1 we have

q∗0 =
1

3
(α − 2c + cH − θ (cH − cL))

q∗
ℓ

=
1

3
(α − 2c + cL)

q∗h =
1

3
(α − 2c + cH)

q∗L =
1

3
(α − 2cL + c)

q∗H =
1

3
(α − 2cH + c) ,

so that q∗
ℓ

and q∗L are the same as the equilibrium outputs when there is perfect

information and the costs are c and cL (see Exercise 58.1), and q∗h and q∗H are the

same as the equilibrium outputs when there is perfect information and the costs

are c and cH .

Now, for an arbitrary value of π we have

q∗L =
1

3

(

α − 2cL + c −
2(1 − θ)(1 − π)(cH − cL)

4 − π

)

q∗H =
1

3

(

α − 2cH + c +
2θ(1 − π)(cH − cL)

4 − π

)

.

To show that for 0 < π < 1 the values of these variables lie between their values

when π = 0 and when π = 1, we need to show that

0 ≤
2(1− θ)(1 − π)(cH − cL)

4 − π
≤

(1 − θ)(cL − cH)

2

and

0 ≤
2θ(1 − π)(cH − cL)

4 − π
≤

θ(cL − cH)

2
.

These inequalities follow from cH ≥ cL, θ ≥ 0, and 0 ≤ π ≤ 1.

290.1 Nash equilibria of game of contributing to a public good

Any type vj of any player j with vj < c obtains a negative payoff if she contributes

and 0 if she does not. Thus she optimally does not contribute.

Any type vi ≥ c of player i obtains the payoff vi − c ≥ 0 if she contributes, and

the payoff 0 if she does not, so she optimally contributes.

Any type vj ≥ c of any player j 6= i obtains the payoff vj − c if she contributes,

and the payoff (1 − F(c))vj if she does not. (If she does not contribute, the prob-

ability that player i does so is 1 − F(c), the probability that player i’s valuation

is at least c.) Thus she optimally does not contribute if (1 − F(c))vj ≥ vj − c, or

F(c) ≤ c/vj. This condition must hold for all types of every player j 6= i, so we

need F(c) ≤ c/v for the strategy profile to be a Nash equilibrium.
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294.1 Weak domination in secondprice sealedbid action

Fix player i, and choose a bid for every type of every other player. Player i, who

does not know the other players’ types, is uncertain of the highest bid of the other

players. Denote by b this highest bid. Consider a bid bi of type vi of player i for

which bi < vi. The dependence of the payoff of type vi of player i on b is shown in

Figure 58.1.

i’s bid

Highest of other players’ bids

b < bi
bi = b

(m-way tie)
bi < b < vi b ≥ vi

bi < vi vi − b (vi − b)/m 0 0

vi vi − b vi − b vi − b 0

Figure 58.1 Player i’s payoffs to her bids bi < vi and vi in a second-price sealed-bid auction as a
function of the highest of the other player’s bids, denoted b.

Player i’s expected payoffs to the bids bi and vi are weighted averages of the

payoffs in the columns; each value of b gets the same weight when calculating the

expected payoff to bi as it does when calculating the expected payoff to vi. The

payoffs in the two rows are the same except when bi ≤ b < vi, in which case vi

yields a payoff higher than does bi. Thus the expected payoff to vi is at least as high

as the expected payoff to bi, and is greater than the expected payoff to bi unless the

other players’ bids lead this range of values of b to get probability 0.

Now consider a bid bi of type vi of player i for which bi > vi. The dependence

of the payoff of type vi of player i on b is shown in Figure 58.2.

i’s bid

Highest of other players’ bids

b ≤ vi vi < b < bi
bi = b

(m-way tie)
b > bi

vi vi − b 0 0 0

bi > vi vi − b vi − b (vi − b)/m 0

Figure 58.2 Player i’s payoffs to her bids vi and bi > vi in a second-price sealed-bid auction as a
function of the highest of the other player’s bids, denoted b.

As before, player i’s expected payoffs to the bids bi and vi are weighted av-

erages of the payoffs in the columns; each value of b gets the same weight when

calculating the expected payoff to vi as it does when calculating the expected pay-

off to bi. The payoffs in the two rows are the same except when vi < b ≤ bi, in

which case vi yields a payoff higher than does bi. (Note that vi − b < 0 for b in this

range.) Thus the expected payoff to vi is at least as high as the expected payoff to

bi, and is greater than the expected payoff to bi unless the other players’ bids lead

this range of values of b to get probability 0.

We conclude that for type vi of player i, every bid bi 6= vi is weakly dominated

by the bid vi.
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299.1 Asymmetric Nash equilibria of secondprice sealedbid common value auctions

Suppose that each type t2 of player 2 bids (1 + 1/λ)t2 and that type t1 of player 1

bids b1. Then by the calculations in the text, with α = 1 and γ = 1/λ,

• a bid of b1 by player 1 wins with probability b1/(1 + 1/λ)

• the expected value of player 2’s bid, given that it is less than b1, is 1
2 b1

• the expected value of signals that yield a bid of less than b1 is 1
2 b1/(1 + 1/λ)

(because of the uniformity of the distribution of t2).

Thus player 1’s expected payoff if she bids b1 is

(t1 + 1
2 b1/(1 + 1/λ) − 1

2 b1) ·
b1

1 + 1/λ
,

or
λ

2(1 + λ)2
· (2(1 + λ)t1 − b1)b1.

This function is maximized at b1 = (1 + λ)t1. That is, if each type t2 of player 2

bids (1 + 1/λ)t2, any type t1 of player 1 optimally bids (1 + λ)t1. Symmetrically,

if each type t1 of player 1 bids (1 + λ)t1, any type t2 of player 2 optimally bids

(1 + 1/λ)t2. Hence the game has the claimed Nash equilibrium.

299.2 Firstprice sealedbid auction with common valuations

Suppose that each type t2 of player 2 bids 1
2 (α + γ)t2 and type t1 of player 1 bids

b1. To determine the expected payoff of type t1 of player 1, we need to find the

probability with which she wins, and the expected value of player 2’s signal if

player 1 wins. (The price she pays is her bid, b1.)

Probability of player 1’s winning: Given that player 2’s bidding function is
1
2 (α + γ)t2, player 1’s bid of b1 wins only if b1 ≥ 1

2 (α + γ)t2, or if t2 ≤ 2b1/(α + γ).

Now, t2 is distributed uniformly from 0 to 1, so the probability that it is at most

2b1/(α + γ) is 2b1/(α + γ). Thus a bid of b1 by player 1 wins with probabil-

ity 2b1/(α + γ).

Expected value of player 2’s signal if player 1 wins: Player 2’s bid, given her

signal t2, is 1
2 (α + γ)t2, so that the expected value of signals that yield a bid of less

than b1 is b1/(α + γ) (because of the uniformity of the distribution of t2).

Thus player 1’s expected payoff if she bids b1 is

2(αt1 + γb1/(α + γ)− b1) ·
b1

α + γ
,

or
2α

(α + γ)2
((α + γ)t1 − b1)b1.
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This function is maximized at b1 = 1
2 (α + γ)t1. That is, if each type t2 of player 2

bids 1
2 (α + γ)t2, any type t1 of player 1 optimally bids 1

2 (α + γ)t1. Hence, as

claimed, the game has a Nash equilibrium in which each type ti of player i bids
1
2 (α + γ)ti.

309.2 Properties of the bidding function in a firstprice sealedbid auction

We have

β∗′(v) = 1 −
(F(v))n−1(F(v))n−1 − (n − 1)(F(v))n−2F′(v)

∫ v
v (F(x))n−1 dx

(F(v))2n−2

= 1 −
(F(v))n − (n − 1)F′(v)

∫ v
v (F(x))n−1 dx

(F(v))n

=
(n − 1)F′(v)

∫ v
v (F(x))n−1 dx

(F(v))n

> 0 if v > v

because F′(v) > 0 (F is increasing). (The first line uses the quotient rule for deriva-

tives and the fact that the derivative of
∫ v

f (x)dx with respect to v is f (v) for any

function f .)

If v > v then the integral in (309.1) is positive, so that β∗(v) < v. If v = v

then both the numerator and denominator of the quotient in (309.1) are zero, so

we may use L’Hôpital’s rule to find the value of the quotient as v → v. Taking the

derivatives of the numerator and denominator we obtain

(F(v))n−1

(n − 1)(F(v))n−2F′(v)
=

F(v)

(n − 1)F′(v)
,

the numerator of which is zero and the denominator of which is positive. Thus the

quotient in (309.1) is zero, and hence β∗(v) = v.

309.3 Example of Nash equilibrium in a firstprice auction

From (309.1) we have

β∗(v) = v −

∫ v
0 xn−1 dx

vn−1

= v −

∫ v
0 xn−1 dx

vn−1

= v − v/n = (n − 1)v/n.
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Extensive Games with Imperfect Information

316.1 Variant of card game

An extensive game that models the game is shown in Figure 61.1.

HL ( 1
4 )

HH ( 1
4 )

Chance

LL ( 1
4 )

LH ( 1
4 )

1 1

Raise
See

0, 0

Raise
See

−1, 1

Meet

0, 0

Pass

1,−1

Meet

−1 − k, 1 + k

Pass

1,−1

2

Raise

See
1,−1

Raise

See
0, 0

Meet

1 + k,−1 − k

Pass

1,−1

Meet

0, 0

Pass

1,−1

2

Figure 61.1 An extensive game that models the situation in Exercise 316.1.

318.2 Strategies in variants of card game and entry game

Card game: Each player has two information sets, and has two actions at each

information set. Thus each player has four strategies: SS, SR, RS, and RR for

player 1 (where S stands for See and R for Raise, the first letter of each strategy is

player 1’s action if her card is High, and the second letter if her action is her card is

Low), and PP, PM, MP, and MM for player 2 (where P stands for Pass and M for

Meet).

Entry game: The challenger has a single information set (the empty history) and

has three actions after this history, so it has three strategies—Ready, Unready, and

Out. The incumbent also has a single information set, at which two actions are

available, so it has two strategies—Acquiesce and Fight.

61



62 Chapter 10. Extensive Games with Imperfect Information

331.2 Weak sequential equilibrium and Nash equilibrium in subgames

Consider the assessment in which the Challenger’s strategy is (Out, R), the In-

cumbent’s strategy is F, and the Incumbent’s belief assigns probability 1 to the

history (In, U) at her information set. Each player’s strategy is sequentially ratio-

nal. The Incumbent’s belief satisfies the condition of weak consistency because her

information set is not reached when the Challenger follows her strategy. Thus the

assessment is a weak sequential equilibrium.

The players’ actions in the subgame following the history In do not constitute a

Nash equilibrium of the subgame because the Incumbent’s action F is not optimal

when the Challenger chooses R. (The Incumbent’s action F is optimal given her

belief that the history is (In, U), as it is in the weak sequential equilibrium. In a

Nash equilibrium she acts as if she has a belief that coincides with the Challenger’s

action in the subgame.)

340.1 Pooling equilibria of game in which expenditure signals quality

We know that in the second period the high-quality firm charges the price H and

the low-quality firm charges any nonnegative price, and the consumer buys the

good from a high-quality firm, does not buy the good from a low-quality firm that

charges a positive price, and may or may not buy from a low-quality firm that

charges a price of 0.

Consider an assessment in which each type of firm chooses (p∗, E∗) in the first

period, the consumer believes the firm is high-quality with probability π if it ob-

serves (p∗, E∗) and low quality if it observes any other (price, expenditure) pair,

and buys the good if and only if it observes (p∗, E∗).

The payoff of a high-quality firm under this assessment is p∗ + H − E∗ − 2cH,

that of a low-quality firm is p∗ − E∗, and that of the consumer is π(H − p∗) + (1 −
π)(−p∗) = πH − p∗.

This assessment is consistent—the only first-period action of the firm observed

in equilibrium is (p∗, E∗), and after observing this pair the consumer believes,

correctly, that the firm is high-quality with probability π.

Under what conditions is the assessment sequentially rational?

Firm If the firm chooses a (price, expenditure) pair different from (p∗, E∗) then

the consumer does not buy the good, and the firm’s profit is 0. Thus for the

assessment to be an equilibrium we need p∗ + H − E∗ − 2cH ≥ 0 (for the

high-quality firm) and p∗ − E∗ ≥ 0 (for the low-quality firm).

Consumer If the consumer does not buy the good after observing (p∗, E∗) then its

payoff is 0, so for the assessment to be an equilibrium we need πH − p∗ ≥ 0.

In summary, the assessment is a weak sequential equilibrium if and only if

max{E∗, E∗ − H + 2cH} ≤ p∗ ≤ πH.
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346.1 Comparing the receiver’s expected payoff in two equilibria

The receiver’s payoff as a function of the state t in each equilibrium is shown in

Figure 63.1. The area above the black curve is smaller than the area above the gray

curve: if you shift the black curve 1
2 t1 to the left and move the section from 0 to 1

2 t1

to the interval from 1 − 1
2 t1 to 1 then the area above the black curve is a subset of

the area above the gray curve.

0 1
2 t1 t1

1
2

1
2 (t1 + 1) t → 1

−( 1
2 − t)2

−( 1
2 t1 − t)2 −( 1

2 (t1 + 1) − t)2

Figure 63.1 The gray curve gives the receiver’s payoff in each state in the equilibrium in which no
information is transferred. The black curve gives her payoff in each state in the two-report equilibrium.

350.1 Variant of model with piecewise linear payoff functions

The equilibria of the variant are exactly the same as the equilibria of the original

model.
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Strictly Competitive Games and

Maxminimization

363.1 Maxminimizers in a bargaining game

If a player demands any amount x up to $5 then her payoff is x regardless of the

other player’s action. If she demands $6 then she may get as little as $5 (if the

other player demands $5 or $6). If she demands x ≥ $7 then she may get as little

as $(11 − x) (if the other player demands x − 1). For each amount that a player

demands, the smallest amount that you may get is given in Figure 65.1. We see

that each player’s maxminimizing pure strategies are $5 and $6 (for both of which

the worst possible outcome is that the player receives $5).

Amount demanded 0 1 2 3 4 5 6 7 8 9 10

Smallest amount obtained 0 1 2 3 4 5 5 4 3 2 1

Figure 65.1 The lowest payoffs that a player receives in the game in Exercise 38.2 for each of her
possible actions, as the other player’s action varies.

363.3 Finding a maxminimizer

The analog of Figure 364.1 in the text is Figure 65.2. From this figure we see that the

maxminimizer for player 2 is the strategy that assigns probability 2
5 to L. Player 2’s

maxminimized payoff is − 1
5 .

↑
payoff of

player 2
0

− 1
5

1

−1

1

1

−2

q →

2
5

T B

Figure 65.2 The expected payoff of player 2 in the game in Figure 363.1 for each of player 1’s actions,
as a function of the probability q that player 2 assigns to L.

65
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366.2 Determining strictly competitiveness

Game in Exercise 365.1: Strictly competitive in pure strategies (because player 1’s

ranking of the four outcomes is the reverse of player 2’s ranking). Not strictly

competitive in mixed strategies (there exist no values of π and θ > 0 such that

−u1(a) = π + θu2(a) for every outcome a; or, alternatively, player 1 is indifferent

between (B, L) and the lottery that yields (T, L) with probability 1
2 and (T, R) with

probability 1
2 , whereas player 2 is not indifferent between these two outcomes).

Game in Figure 367.1: Strictly competitive both in pure and in mixed strate-

gies. (Player 2’s preferences are represented by the expected value of the Bernoulli

payoff function −u1 because −u1(a) = − 1
2 + 1

2 u2(a) for every pure outcome a.)

370.2 Maxminimizing in BoS

Player 1’s maxminimizer is ( 1
3 , 2

3 ) while player 2’s is ( 2
3 , 1

3 ). Clearly neither pure

equilibrium strategy of either player guarantees her equilibrium payoff. In the

mixed strategy equilibrium, player 1’s expected payoff is 2
3 . But if, for example,

player 2 choose S instead of her equilibrium strategy, then player 1’s expected

payoff is 1
3 . Similarly for player 2.

372.2 Equilibrium in strictly competitive game

The claim is false. In the strictly competitive game in Figure 66.1 the action pair

(T, L) is a Nash equilibrium, so that player 1’s unique equilibrium payoff in the

game is 0. But (B, R), which also yields player 1 a payoff of 0, is not a Nash

equilibrium.

L R

T 0, 0 1,−1

B −1, 1 0, 0

Figure 66.1 The game in Exercise 372.2.

372.4 O’Neill’s game

a. Denote the probability with which player 1 chooses each of her actions 1,

2, and 3, by p, and the probability with which player 2 chooses each of

these actions by q. Then all four of player 1’s actions yield the same ex-

pected payoff if and only if 4q − 1 = 1 − 6q, or q = 1
5 , and similarly all

four of player 2’s actions yield the same expected payoff if and only if p = 1
5 .

Thus (( 1
5 , 1

5 , 1
5 , 2

5 ), ( 1
5 , 1

5 , 1
5 , 2

5 )) is a Nash equilibrium of the game. The players’

payoffs in this equilibrium are (− 1
5 , 1

5 ).
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b. Let (p1, p2, p3, p4) be an equilibrium strategy of player 1. In order that it

guarantee her the payoff of − 1
5 , we need

−p1 + p2 + p3 − p4 ≥ − 1
5

p1 − p2 + p3 − p4 ≥ − 1
5

p1 + p2 − p3 − p4 ≥ − 1
5

−p1 − p2 − p3 + p4 ≥ − 1
5 .

Adding these four inequalities, we deduce that p4 ≤ 2
5 . Adding each pair of

the first three inequalities, we deduce that p1 ≤ 1
5 , p2 ≤ 1

5 , and p3 ≤ 1
5 . We

have p1 + p2 + p3 + p4 = 1, so we deduce that (p1, p2, p3, p4) = ( 1
5 , 1

5 , 1
5 , 2

5 ).

A similar analysis of the conditions for player 2’s strategy to guarantee her

the payoff of 1
5 leads to the conclusion that (q1, q2, q3, q4) = ( 1

5 , 1
5 , 1

5 , 2
5 ).
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Rationalizability

379.2 Best responses to beliefs

Consider a two-player game in which player 1’s payoffs are given in Figure 69.1.

The action B of player 1 is a best response to the belief that assigns probability 1
2 to

both L and R, but is not a best response to any belief that assigns probability 1 to

either action.

L R

T 3 0

M 0 3

B 2 2

Figure 69.1 The action B is a best response to a belief that assigns probability 1
2 to L and to R, but is not

a best response to any belief that assigns probability 1 to either L or R.

384.1 Mixed strategy equilibria of game in Figure 384.1

The game has no equilibrium in which player 2 assigns positive probability only

to L and C, because if she does so then only M and B are possible best responses

for player 1, but if player 1 assigns positive probability only to these actions then

L is not optimal for player 2.

Similarly, the game has no equilibrium in which player 2 assigns positive prob-

ability only to C and R, because if she does so then only T and M are possible best

responses for player 1, but if player 1 assigns positive probability only to these

actions then R is not optimal for player 2.

Now assume that player 2 assigns positive probability only to L and R. There

are no probabilities for L and R under which player 1 is indifferent between all

three of her actions, so player 1 must assign positive probability to at most two

actions. If these two actions are T and M then player 2 prefers L to R, while if

the two actions are M and B then player 2 prefers R to L. The only possibility

is thus that the two actions are T and B. In this case we need player 2 to assign

probability 1
2 to L and R (in order that player 1 be indifferent between T and B);

but then M is better for player 1. Thus there is no equilibrium in which player 2

assigns positive probability only to L and R.

Finally, if player 2 assigns positive probability to all three of her actions then

player 1’s mixed strategy must be such that each of these three actions yields the

69
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same payoff. A calculation shows that there is no mixed strategy of player 1 with

this property.

We conclude that the game has no mixed strategy equilibrium in which either

player assigns positive probability to more than one action.

387.2 Finding rationalizable actions

I claim that the action R of player 2 is strictly dominated. Consider a mixed strat-

egy of player 2 that assigns probability p to L and probability 1 − p to C. Such a

mixed strategy strictly dominates R if p + 4(1− p) > 3 and 8p + 2(1− p) > 3, or if
1
6 < p < 1

3 . Now eliminate R from the game. In the reduced game, B is dominated

by T. In the game obtained by eliminating B, L is dominated by C. Thus the only

rationalizable action of player 1 is T and the only rationalizable action of player 2

is C.

387.5 Hotelling’s model of electoral competition

The positions 0 and ℓ are strictly dominated by the position m:

• if her opponent chooses m, a player who chooses m ties whereas a player

who chooses 0 loses

• if her opponent chooses 0 or ℓ, a player who chooses m wins whereas a player

who chooses 0 or ℓ either loses or ties

• if her opponent chooses any other position, a player who chooses m wins

whereas a player who chooses 0 or ℓ loses.

In the game obtained by eliminating the two positions 0 and ℓ, the positions 1

and ℓ− 1 are similarly strictly dominated. Continuing in the same way, we are left

with the position m.

388.2 Cournot’s duopoly game

From Figure 58.1 we see that firm 1’s payoff to any output greater than 1
2 (α − c)

is less than its payoff to the output 1
2 (α − c) for any output q2 of firm 2. Thus any

output greater than 1
2 (α− c) is strictly dominated by the output 1

2 (α− c) for firm 1;

the same argument applies to firm 2.

Now eliminate all outputs greater than 1
2 (α − c) for each firm. The maximizer

of firm 1’s payoff function for q2 = 1
2 (α − c) is 1

4 (α − c), so from Figure 58.1 we see

that firm 1’s payoff to any output less than 1
4 (α − c) is less than its payoff to the

output 1
4 (α − c) for any output q2 ≤ 1

2 (α − c) of firm 2. Thus any output less than
1
4 (α − c) is strictly dominated by the output 1

4 (α − c) for firm 1; the same argument

applies to firm 2.



Chapter 12. Rationalizability 71

Now eliminate all outputs less than 1
4 (α − c) for each firm. Then by another

similar argument, any output greater than 3
8 (α − c) is strictly dominated by 3

8 (α −
c). Continuing in this way, we see from Figure 59.1 that in a finite number of

rounds (given the finite number of possible outputs for each firm) we reach the

Nash equilibrium output 1
3 (α − c).

391.1 Example of dominancesolvable game

The Nash equilibria of the game are (T, L), any ((0, 0, 1), (0, q, 1− q)) with 0 ≤ q ≤
1, and any ((0, p, 1− p), (0, 0, 1)) with 0 ≤ p ≤ 1.

The game is dominance solvable, because T and L are the only weakly domi-

nated actions, and when they are eliminated the only weakly dominated actions

are M and C, leaving (B, R), with payoffs (0, 0).

If T is eliminated, then L and C, no remaining action is weakly dominated;

(M, R) and (B, R) both remain.

391.2 Dividing money

In the first round every action ai ≤ 5 of each player i is weakly dominated by 6.

No other action is weakly dominated, because 100 is a strict best response to 0 and

every other action ai ≥ 6 is a strict best response to ai + 1. In the second round,

10 is weakly dominated by 6 for each player, and each other remaining action ai of

player i is a strict best response to a1 + 1, so no other action is weakly dominated.

Similarly, in the third round, 9 is weakly dominated by 6, and no other action is

weakly dominated. In the fourth and fifth rounds 8 and 7 are eliminated, leaving

the single action pair (6, 6), with payoffs (5, 5).

392.2 Strictly competitive extensive games with perfect information

Every finite extensive game with perfect information has a (pure strategy) sub-

game perfect equilibrium (Proposition 173.1). This equilibrium is a pure strategy

Nash equilibrium of the strategic form of the game. Because the game has only

two possible outcomes, one of the players prefers the Nash equilibrium outcome

to the other possible outcome. By Proposition 368.1, this player’s equilibrium strat-

egy guarantees her equilibrium payoff, so this strategy weakly dominates all her

nonequilibrium strategies. After all dominated strategies are eliminated, every

remaining pair of strategies generates the same outcome.
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400.1 Evolutionary stability and weak domination

The ESS a∗ does not necessarily weakly dominate every other action in the game.

For example, in the game in Figure 395.1 of the text, X is an ESS but does not

weakly dominate Y.

No action can weakly dominate an ESS. To see why, let a∗ be an ESS and let

b be another action. Because a∗ is an ESS, (a∗, a∗) is a Nash equilibrium, so that

u(b, a∗) ≤ u(a∗, a∗). Now, if u(b, a∗) < u(a∗, a∗), certainly b does not weakly dom-

inate a∗, so suppose that u(b, a∗) = u(a∗, a∗). Then by the second condition for an

ESS we have u(b, b) < u(a∗, b). We conclude that b does not weakly dominate a∗.

405.1 Hawk–Dove–Retaliator

First suppose that v ≥ c. In this case the game has two pure symmetric Nash

equilibria, (A, A) and (R, R). However, A is not an ESS, because R is a best re-

sponse to A and u(R, R) > u(A, R). The action pair (R, R) is a strict equilibrium,

so R is an ESS. Now consider the possibility that the game has a mixed strategy

equilibrium (α, α). If α assigns positive probability to either P or R (or both) then

R yields a payoff higher than does P, so only A and R may be assigned positive

probability in a mixed strategy equilibrium. But if a strategy α assigns positive

probability to A and R and probability 0 to P, then R yields a payoff higher than

does A against an opponent who uses α. Thus the game has no symmetric mixed

strategy equilibrium in this case.

Now suppose that v < c. Then the only symmetric pure strategy equilibrium is

(R, R). This equilibrium is strict, so that R is an ESS. Now consider the possibility

that the game has a mixed strategy equilibrium (α, α). If α assigns probability 0 to

A then R yields a payoff higher than does P against an opponent who uses α; if

α assigns probability 0 to P then R yields a payoff higher than does A against an

opponent who uses α. Thus in any mixed strategy equilibrium (α, α), the strategy α

must assign positive probability to both A and P. If α assigns probability 0 to R

then we need α = (v/c, 1 − v/c) (the calculation is the same as for Hawk–Dove).

Because R yields a lower payoff against this strategy than do A and P, and the

strategy is an ESS in Hawk–Dove, it is an ESS in the present game. The remaining

possibility is that the game has a mixed strategy equilibrium (α, α) in which α

assigns positive probability to all three actions. If so, then the expected payoff to

this strategy is less than 1
2 v, because the pure strategy P yields an expected payoff
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less than 1
2 v against any such strategy. But then U(R, R) = 1

2 v > U(α, R), violating

the second condition in the definition of an ESS.

In summary:

• If v ≥ c then R is the unique ESS of the game.

• If v < c then both R and the mixed strategy that assigns probability v/c to A

and 1 − v/c to P are ESSs.

405.3 Bargaining

The game is given in Figure 27.1.

The pure strategy of demanding 10 is not an ESS because 2 is a best response to

10 and u(2, 2) > u(10, 2).

Now let α be the mixed strategy that assigns probability 2
5 to 2 and 3

5 to 8. Each

player’s payoff at the strategy pair (α, α) is 16
5 . Thus the only actions a that are best

responses to α are 2 and 8, so that the only mixed strategies that are best responses

to α assign positive probability only to the actions 2 and 8. Let β be the mixed

strategy that assigns probability p to 2 and probability 1 − p to 8. We have

U(β, β) = 5p(2− p)

and

U(α, β) = 6p + 4
5 .

We find that U(α, β)− U(β, β) = 5(p − 2
5 )2, which is positive if p 6= 2

5 . Hence α is

an ESS.

Finally let α be the mixed strategy that assigns probability 4
5 to 4 and 1

5 to 6.

Each player’s payoff at the strategy pair (α, α) is 24
5 . Thus the only actions a that

are best responses to α are 4 and 6, so that the only mixed strategies that are best

responses assign positive probability only to the actions 4 and 6. Let β be the mixed

strategy that assigns probability p to 4 and probability 1 − p to 6. We have

U(β, β) = 5p(2− p)

and

U(α∗, β) = 2p + 16
5 .

We find that U(α, β)−U(β, β) = 5(p− 4
5 )2, which is positive if p 6= 4

5 . Hence α∗ is

an ESS.

408.1 Equilibria of C and of G

First suppose that (α1, α2) is a mixed strategy Nash equilibrium of C. Then for all

mixed strategies β1 of player 1 and all mixed strategies β2 of player 2 we have

U1(α1, α2) ≥ U1(β1, α2) and U2(α1, α2) ≥ U2(α1, β2).
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Thus

u((α1, α2), (α1, α2)) = 1
2 U1(α1, α2) + 1

2 U2(α1, α2)

≥ 1
2 U1(β1, α2) + 1

2 U2(α1, β2)

= u((β1, β2), (α1, α2)),

so that ((α1, α2), (α1, α2)) is a Nash equilibrium of G. If (α1, α2) is a strict Nash

equilibrium of C then the inequalities are strict, and ((α1, α2), (α1, α2)) is a strict

Nash equilibrium of G.

Now assume that ((α1, α2), (α1, α2)) is a Nash equilibrium of G. Then

u((α1, α2), (α1, α2)) ≥ u((β1, β2), (α1, α2)),

or
1
2 U1(α1, α2) + 1

2 U2(α1, α2) ≥
1
2 U1(β1, α2) + 1

2 U2(α1, β2),

for all conditional strategies (β1, β2). Taking β2 = α2 we see that α1 is a best re-

sponse to α2 in C, and taking β1 = α1 we see that α2 is a best response to α1 in C.

Thus (α1, α2) is a Nash equilibrium of G.

414.1 A coordination game between siblings

The game with payoff function v is shown in Figure 75.1. If x < 2 then (Y, Y) is

a strict Nash equilibrium of the games, so Y is an evolutionarily stable action in

the game between siblings. If x > 2 then the only Nash equilibrium of the game is

(X, X), and this equilibrium is strict. Thus the range of values of x for which the

only evolutionarily stable action is X is x > 2.

X Y

X x, x 1
2 x, 1

2

Y 1
2 , 1

2 x 1, 1

v

Figure 75.1 The game with payoff function v derived from the game in Exercise 414.1.

414.2 Assortative mating

Under assortative mating, all siblings take the same action, so the analysis is the

same as that for asexual reproduction. (A difficulty with the assumption of assor-

tative mating is that a rare mutant will have to go to great lengths to find a mate

that is also a mutant.)
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416.1 Darwin’s theory of the sex ratio

A normal organism produces pn male offspring and (1 − p)n female offspring

(ignoring the small probability that the partner of a normal organism is a mutant).

Thus it has pn · ((1 − p)/p)n + (1 − p)n · n = 2(1− p)n2 grandchildren.

A mutant has 1
2 n male offspring and 1

2 n female offspring, and hence 1
2 n · ((1 −

p)/p)n + 1
2 n · n = 1

2 n2/p grandchildren.

Thus the difference between the number of grandchildren produced by mutant

and normal organisms is

1
2 n2/p − 2(1 − p)n2 = n2

(
1

2p

)

(1 − 2p)2,

which is positive if p 6= 1
2 . (The point is that if p >

1
2 then the fraction of a mutant’s

offspring that are males is higher than the fraction of a normal organism’s offspring

that are males, and males each bear more offspring than females. Similarly, if p <
1
2

then the fraction of a mutant’s offspring that are females is higher than the fraction

of a normal organism’s offspring that are females, and females each bear more

offspring than males.)

Thus any mutant with p 6= 1
2 invades the population; only p = 1

2 is evolution-

arily stable.
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423.1 Equivalence of payoff functions

Suppose that a person’s preferences are represented by the discounted sum of pay-

offs with payoff function u and discount factor δ. Then if the two sequences of

outcomes (x1, x2, . . .) and (y1, y2, . . .) are indifferent, we have

∞

∑
t=0

δt−1u(xt) =
∞

∑
t=0

δt−1u(yt).

Now let v(x) = α + βu(x) for all x, with β > 0. Then

∞

∑
t=0

δt−1v(xt) =
∞

∑
t=0

δt−1[α + βu(xt)] =
∞

∑
t=0

δt−1α + β
∞

∑
t=0

δt−1u(xt)

and similarly

∞

∑
t=0

δt−1v(yt) =
∞

∑
t=0

δt−1[α + βu(yt)] =
∞

∑
t=0

δt−1α + β
∞

∑
t=0

δt−1u(yt),

so that
∞

∑
t=0

δt−1v(xt) =
∞

∑
t=0

δt−1v(yt).

Thus the person’s preferences are represented also by the discounted sum of pay-

offs with payoff function v and discount factor δ.

426.1 Subgame perfect equilibrium of finitely repeated Prisoner’s Dilemma

Use backward induction. In the last period, the action C is strictly dominated for

each player, so each player chooses D, regardless of history. Now consider pe-

riod T − 1. Each player’s action in this period affects only the outcome in this

period—it has no effect on the outcome in period T, which is (D, D). Thus in

choosing her action in period T − 1, a player considers only her payoff in that pe-

riod. As in period T, her action D strictly dominates her action C, so that in any

subgame perfect equilibrium she chooses D. A similar argument applies to all pre-

vious periods, leading to the conclusion that in every subgame perfect equilibrium

each player chooses D in every period, regardless of history.
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P0: C -
(·, D)

P1: C -
all

outcomes

D: D

Figure 78.1 The strategy in Exercise 428.1a.

428.1 Strategies in an infinitely repeated Prisoner’s Dilemma

a. The strategy is shown in Figure 78.1.

b. The strategy is shown in Figure 78.2.

P0: C -
(·, D)

P1: C -
(·, D)

D: D

Figure 78.2 The strategy in Exercise 428.1b.

c. The strategy is shown in Figure 78.3.

C : C D: D-
(D, C) or (C, D)

?
� �

(C, C) or (D, D)

Figure 78.3 The strategy in Exercise 428.1c.

439.1 Finitely repeated Prisoner’s Dilemma with switching cost

a. Consider deviations by player 1, given that player 2 adheres to her strategy,

in the subgames following histories that end in each of the four outcomes of

the game.

(C, C): If player 1 adheres to her strategy, her payoff is 3 in every period. If

she deviates in the first period of the subgame, but otherwise follows

her strategy, her payoff is 4 − ǫ in the first period of the subgame, and

2 in every subsequent period. Given ǫ > 1, player 1’s deviation is not

profitable, even if it occurs in the last period of the game.

(D, C) or (D, D): If player 1 adheres to her strategy, her payoff is 2 in ev-

ery period. If she deviates in the first period of the subgame, but oth-

erwise follows her strategy, her payoff is −ǫ in the first period of the

subgame, 2 − ǫ in the next period, and 2 subsequently. Thus adhering

to her strategy is optimal for player 1.

(C, D): If player 1 adheres to her strategy, her payoff is 2 − ǫ in the first pe-

riod of the subgame, and 2 subsequently. If she deviates in the first

period of the subgame, but otherwise follows her strategy, her payoff
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is 0 in the first period of the subgame, 2 − ǫ in the next period, and 2

subsequently. Given ǫ < 2, player 1’s deviation is not optimal even if it

occurs in the last period of the game.

b. Given ǫ > 2, a player does not gain from deviating from (C, C) in the next-

to-last or last periods, even if she is not punished, and does not optimally

punish such a deviation by her opponent. Consider the strategy that chooses

C at the start of the game and after any history that ends with (C, C), chooses

D after any other history that has length at most T − 2, and chooses the action

it chose in period T − 1 after any history of length T − 1 (where T is the length

of the game). I claim that the strategy pair in which both players use this

strategy is a subgame perfect equilibrium. Consider deviations by player 1,

given that player 2 adheres to her strategy, in the subgames following the

various possible histories.

History ending in (C, C), length ≤ T − 3: If player 1 adheres to her strategy,

her payoff is 3 in every period of the subgame. If she deviates in the first

period of the subgame, but otherwise follows her strategy, her payoff

is 4 − ǫ in the first period of the subgame, and 2 in every subsequent

period (her opponent switches to D). Given ǫ > 1, player 1’s deviation

is not profitable.

History ending in (C, C), length ≥ T − 2: If player 1 adheres to her strategy,

her payoff is 3 in each period of the subgame. If she deviates to D in the

first period of the subgame, her payoff is 4− ǫ in that period, and 4 sub-

sequently (her deviation is not punished). The length of the subgame is

at most 2, so given ǫ > 2, her deviation is not profitable.

History ending in (D, C) or (D, D): If player 1 adheres to her strategy, her

payoff is 2 in every period. If she deviates in the first period of the

subgame, but otherwise follows her strategy, her payoff is −ǫ in the

first period of the subgame, 2− ǫ in the next period, and 2 subsequently.

Thus adhering to her strategy is optimal for player 1.

History ending in (C, D), length ≤ T − 2: If player 1 adheres to her strategy,

her payoff is 2− ǫ in the first period of the subgame (she switches to D),

and 2 subsequently. If she deviates in the first period of the subgame,

but otherwise follows her strategy, her payoff is 0 in the first period of

the subgame, 2 − ǫ in the next period, and 2 subsequently.

History ending in (C, D), length T − 1: If player 1 adheres to her strategy,

her payoff is 0 in period T (the outcome is (C, D)). If she deviates to

D, her payoff is 2 − ǫ in period T. Given ǫ > 2, adhering to her strategy

is thus optimal.
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442.1 Deviations from grim trigger strategy

• If player 1 adheres to the strategy, she subsequently chooses D (because

player 2 chose D in the first period). Player 2 chooses C in the first period

of the subgame (player 1 chose C in the first period of the game), and then

chooses D (because player 1 chooses D in the first period of the subgame).

Thus the sequence of outcomes in the subgame is ((D, C), (D, D), (D, D), . . .),

yielding player 1 a discounted average payoff in the subgame of

(1 − δ)(3 + δ + δ2 + δ3 + · · ·) = (1 − δ)

(

3 +
δ

1 − δ

)

= 3 − 2δ.

• If player 1 refrains from punishing player 2 for her lapse, and simply chooses

C in every subsequent period, then the outcome in period 2 and subsequently

is (C, C), so that the sequence of outcomes in the subgame yields player 1 a

discounted average payoff of 2.

If δ > 1
2 then 2 > 3 − 2δ, so that player 1 prefers to ignore player 2’s deviation

rather than to adhere to her strategy and punish player 2 by choosing D. (Note

that the theory does not consider the possibility that player 1 takes player 2’s play

of D as a signal that she is using a strategy different from the grim trigger strategy.)

443.2 Different punishment lengths in subgame perfect equilibrium

Yes, an infinitely repeated Prisoner’s Dilemma has such subgame perfect equilibria.

As for the modified grim trigger strategy, each player’s strategy has to switch to

D not only if the other player chooses D but also if the player herself chooses

D. The only subtlety is that the number of periods for which a player chooses

D after a history in which not all the outcomes were (C, C) must depend on the

identity of the player who first deviated. If, for example, player 1 punishes for

two periods while player 2 punishes for three periods, then the outcome (C, D)
induces player 1 to choose D for two periods (to punish player 2 for her deviation)

while the outcome (D, C) induces her to choose D for three periods (while she is

being punished by player 2). The strategy of each player in this case is shown

in Figure 81.1. Viewed as a strategy of player 1, the top part of the figure entails

punishment of player 2 and the bottom part entails player 1’s reaction to her own

deviation. Similarly, viewed as a strategy of player 2, the bottom part of the figure

entails punishment of player 1 and the top part entails player 2’s reaction to her

own deviation.

To find the values of δ for which the strategy pair in which each player uses

the strategy in Figure 81.1 is a subgame perfect equilibrium, consider the result of

each player’s deviating at the start of a subgame.

First consider player 1. If she deviates when both players are in state P0, she

induces the outcome (D, C) followed by three periods of (D, D), and then (C, C)
subsequently. This outcome path is worse for her than (C, C) in every period if
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P0: C �����*(·, D) P1: D -
all

outcomes

P2: D
?

� �
all outcomes

HHHHHj(D, ·) P′
1: D -

all
outcomes

P′
2: D -

all
outcomes

P′
3: D

6


 	all outcomes

Figure 81.1 A strategy in an infinitely repeated Prisoner’s Dilemma that punishes deviations for two
periods and reacts to punishment by choosing D for three periods.

and only if δ3 − 2δ + 1 ≤ 0, or if and only if δ is at least around 0.62 (as we found in

Section 14.7.2). If she deviates when both players are in one of the other states then

she is worse off in the period of her deviation and her deviation does not affect the

subsequent outcomes. Thus player 1 cannot profitably deviate in the first period

of any subgame if δ is at least around 0.62.

The same argument applies to player 2, except that a deviation when both play-

ers are in state P0 induces (C, D) followed by three, rather than two periods of

(D, D). This outcome path is worse for player 2 than (C, C) in every period if and

only if δ4 − 2δ + 1 ≤ 0, or if and only if δ is at least around 0.55 (as we found in

Section 14.7.2).

We conclude that the strategy pair in which each player uses the strategy in

Figure 81.1 is a subgame perfect equilibrium if and only if δ3 − 2δ + 1 ≤ 0, or if

and only if δ is at least around 0.62.

445.1 Titfortat as a subgame perfect equilibrium

Suppose that player 2 adheres to tit-for-tat. Consider player 1’s behavior in sub-

games following histories that end in each of the following outcomes.

(C, C) If player 1 adheres to tit-for-tat the outcome is (C, C) in every period, so

that her discounted average payoff in the subgame is x. If she chooses D

in the first period of the subgame, then adheres to tit-for-tat, the outcome

alternates between (D, C) and (C, D), and her discounted average payoff is

y/(1 + δ). Thus we need x ≥ y/(1 + δ), or δ ≥ (y − x)/x, for a one-period

deviation from tit-for-tat not to be profitable for player 1.

(C, D) If player 1 adheres to tit-for-tat the outcome alternates between (D, C) and

(C, D), so that her discounted average payoff is y/(1 + δ). If she deviates to

C in the first period of the subgame, then adheres to tit-for-tat, the outcome is

(C, C) in every period, and her discounted average payoff is x. Thus we need

y/(1 + δ) ≥ x, or δ ≤ (y − x)/x, for a one-period deviation from tit-for-tat

not to be profitable for player 1.
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(D, C) If player 1 adheres to tit-for-tat the outcome alternates between (C, D) and

(D, C), so that her discounted average payoff is δy/(1 + δ). If she deviates to

D in the first period of the subgame, then adheres to tit-for-tat, the outcome

is (D, D) in every period, and her discounted average payoff is 1. Thus we

need δy/(1 + δ) ≥ 1, or δ ≥ 1/(y − 1), for a one-period deviation from

tit-for-tat not to be profitable for player 1.

(D, D) If player 1 adheres to tit-for-tat the outcome is (D, D) in every period, so

that her discounted average payoff is 1. If she deviates to C in the first period

of the subgame, then adheres to tit-for-tat, the outcome alternates between

(C, D) and (D, C), and her discounted average payoff is δy/(1 + δ). Thus

we need 1 ≥ δy/(1 + δ), or δ ≤ 1/(y − 1), for a one-period deviation from

tit-for-tat not to be profitable for player 1.

The same arguments apply to deviations by player 2, so we conclude that

(tit-for-tat, tit-for-tat) is a subgame perfect equilibrium if and only if δ = (y − x)/x

and δ = 1/(y − 1), or y − x = 1 and δ = 1/x.
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454.3 Repeated Bertrand duopoly

a. Suppose that firm i uses the strategy si. If the other firm, j, uses sj, then its

discounted average payoff is

(1 − δ)
(

1
2 π(pm) + 1

2 δπ(pm) + · · ·
)

= 1
2 π(pm).

If, on the other hand, firm j deviates to a price p then the closer this price

is to pm, the higher is j’s profit, because the punishment does not depend

on p. Thus by choosing p close enough to pm the firm can obtain a profit as

close as it wishes to π(pm) in the period of its deviation. Its profit during

its punishment in the following k periods is zero. Once its punishment is

complete, it can either revert to pm or deviate once again. If it can profit

from deviating initially then it can profit by deviating once its punishment is

complete, so its maximal profit from deviating is

(1 − δ)
(

π(pm) + δk+1π(pm) + δ2k+2π(pm) + · · ·
)

=
(1 − δ)π(pm)

1 − δk+1
.

Thus for (s1, s2) to be a Nash equilibrium we need

1 − δ

1 − δk+1
≤ 1

2 ,

or

δk+1 − 2δ + 1 ≤ 0.

(This condition is the same as the one we found for a pair of k-period pun-

ishment strategies to be a Nash equilibrium in the Prisoner’s Dilemma (Sec-

tion 14.7.2).)

b. Suppose that firm i uses the strategy si. If the other firm does so then its

discounted average payoff is 1
2 π(pm), as in part a. If the other firm deviates

to some price p with c < p < pm in the first period, and maintains this price

subsequently, then it obtains π(p) in the first period and shares π(p) in each

subsequent period, so that its discounted average payoff is

(1 − δ)
(

π(p) + 1
2 δπ(p) + 1

2 δ2π(p) + · · ·
)

= 1
2 (2 − δ)π(p).

If p is close to pm then π(p) is close to π(pm) (because π is continuous). In

fact, for any δ < 1 we have 2 − δ > 1, so that we can find p < pm such that

(2 − δ)π(p) > π(pm). Hence the strategy pair is not a Nash equilibrium of

the infinitely repeated game for any value of δ.
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459.2 Detection lags

a. The best deviations involve prices slightly less than p∗. Such a deviation by

firm i yields a discounted average payoff close to

(1 − δ)
(

π(p∗) + δπ(p∗) + · · ·+ δki−1π(p∗)
)

= (1 − δki)π(p∗),

whereas compliance with the strategy yields the discounted average payoff
1
2 π(p∗). Thus the strategy pair is a subgame perfect equilibrium for any

value of p∗ if δk1 ≥ 1
2 and δk2 ≥ 1

2 , and is not a subgame perfect equilibrium

for any value of p∗ if δk1 < 1
2 or δk2 < 1

2 . That is, the most profitable price for

which the strategy pair is a subgame perfect equilibrium is pm if δk1 ≥ 1
2 and

δk2 ≥ 1
2 and is c if δk1 <

1
2 or δk2 <

1
2 .

b. Denote by k∗i the critical value of ki found in part a. (That is, δk∗i ≥ 1
2 and

δk∗i +1 < 1
2 .)

If ki > k∗i then no change in kj affects the outcome of the price-setting sub-

game, so j’s best action at the start of the game is θ, in which case i’s best ac-

tion is the same. Thus in one subgame perfect equilibrium both firms choose

θ at the start of the game, and c regardless of history in the rest of the game.

If ki ≤ k∗i then j’s best action is k∗j if the cost of choosing k∗j is at most 1
2 π(pm).

Thus if the cost of choosing k∗i is at most 1
2 π(pm) for each firm then the game

has another subgame perfect equilibrium, in which each firm i chooses k∗i at

the start of the game and the strategy si in the price-setting subgame.

A promise by firm i to beat another firm’s price is an inducement for con-

sumers to inform firm i of deviations by other firms, and thus reduce its

detection time. To this extent, such a promise tends to promote collusion.
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468.1 Twoperiod bargaining with constant cost of delay

In the second period, player 1 accepts any proposal that gives a positive amount

of the pie. Thus in any subgame perfect equilibrium player 2 proposes (0, 1) in

period 2, which player 1 accepts, obtaining the payoff −c1.

Now consider the first period. Given the second period outcome of any sub-

game perfect equilibrium, player 2 accepts any proposal that gives her more than

1− c2 and rejects any proposal that gives her less than 1− c2. Thus in any subgame

perfect equilibrium player 1 proposes (c2, 1 − c2), which player 2 accepts.

In summary, the game has a unique subgame perfect equilibrium, in which

• player 1 proposes (c2, 1− c2) in period 1, and accepts all proposals in period 2

• player 2 accepts a proposal in period 1 if and only if it gives her at least 1− c2,

and proposes (0, 1) in period 2 after any history.

The outcome of the equilibrium is that the proposal (c2, 1− c2) is made by player 1

and immediately accepted by player 2.

468.2 Threeperiod bargaining with constant cost of delay

The subgame following a rejection by player 2 in period 1 is a two-period game in

which player 2 makes the first proposal. Thus by the result of Exercise 468.1, the

subgame has a unique subgame perfect equilibrium, in which player 2 proposes

(1 − c1, c1), which player 1 immediately accepts.

Now consider the first period.

• If c1 ≥ c2, player 2 rejects any offer of less than c1 − c2 (which she obtains if

she rejects an offer), and accepts any offer of more than c1 − c2. Thus in an

equilibrium player 1 offers her c1 − c2, which she accepts.

• If c1 < c2, player 2 accepts all offers, so that player 1 proposes (1, 0), which

player 2 accepts.

In summary, the game has a unique subgame perfect equilibrium, in which

• player 1 proposes (1 − (c1 − c2), c1 − c2) if c1 ≥ c2 and (1, 0) otherwise in

period 1, accepts any proposal that gives her at least 1 − c1 in period 2, and

proposes (1, 0) in period 3
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• player 2 accepts any proposal that gives her at least c1 − c2 if c1 ≥ c2 and

accepts all proposals otherwise in period 1, proposes (1 − c1, c1) in period 2,

and accepts all proposals in period 3.



17
Appendix: Mathematics

497.1 Maximizer of quadratic function

We can write the function as −x(x − α). Thus r1 = 0 and r2 = α, and hence the

maximizer is α/2.

499.3 Sums of sequences

In the first case set r = δ2 to transform the sum into 1 + r + r2 + · · ·, which is equal

to 1/(1 − r) = 1/(1 − δ2).

In the second case split the sum into (1 + δ2 + δ4 + · · ·) + (2δ + 2δ3 + 2δ5 + · · ·);

the first part is equal to 1/(1 − δ2) and the second part is equal to 2δ(1 + δ2 + δ4 +
· · ·), or 2δ/(1 − δ2). Thus the complete sum is

1 + 2δ

1 − δ2
.

504.2 Bayes’ law

Your posterior probability of carrying X given that you test positive is

Pr(positive test|X) Pr(X)

Pr(positive test|X) Pr(X) + Pr(positive test|¬X) Pr(¬X)

where ¬X means “not X”. This probability is equal to 0.9p/(0.9p + 0.2(1 − p)) =
0.9p/(0.2 + 0.7p), which is increasing in p (i.e. a smaller value of p gives a smaller

value of the probability). If p = 0.001 then the probability is approximately 0.004.

(That is, if 1 in 1,000 people carry the gene then if you test positive on a test that

is 90% accurate for people who carry the gene and 80% accurate for people who

do not carry the gene, then you should assign probability 0.004 to your carrying

the gene.) If the test is 99% accurate in both cases then the posterior probability is

(0.99 · 0.001)/[0.99 · 0.001 + 0.01 · 0.999] ≈ 0.09.
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