Terms		Definitions 2 Dimensional shapes (2D) square, rectangle, triangle, circle, pentagon, hexagon, heptagon, octagon, nonagon, decagon, parallelogram, rhombus, kite, quadrilateral, trapezium.	
3 Dimensional objects (3D)			3D objects have three dimensions. The flat surfaces (faces) of many 3D objects are made up of 2D shapes e.g. cube, cuboid, sphere, cylinder, prism. 3D objects can be stacked or rolled and items can be put inside some 3D objects. They can also be combined to make models.

[^0]| Arc | Part of the circumference of a circle or part of any curve. | |
| :--- | :--- | :--- |
| Circle | A 2-dimensional round shape with no corners or straight
 edges.
 Made by drawing a curve that is always the same distance
 from a centre.
 Circle calculations are interrelated. Given any one of
 radius, diameter, circumference or area all the others
 can be calculated. | |
| Circumference | | The distance all the way around a circle.
 Circumference can be measured using the formula;
 $2 \times \pi \times r$ or $\pi \times d$ |

2 | Numeracy and mathematics glossary

| Composite shape
 or composite
 figure | | A figure (or shape) that can be divided into more than one
 of the basic figures/shapes. For example, figure ABCD is a
 composite figure as it consists of two basic figures - a
 rectangle and triangle as shown here. |
| :--- | :--- | :--- | :--- |
| Congruent
 triangles | | Pairs or groups of triangles are congruent when they have
 exactly the same three sides and exactly the same three
 angles. The equal sides and angles may not be in the
 same position (if there is a turn or a flip). |
| Cross section of a
 shape | | A cross section is the shape made by cutting straight
 across an object. |
| Cube | | A 3D object made up of 6 square faces, 8 vertices and 12
 edges. All edges and faces are equal.
 It is also a prism because it has the same cross-section
 along a length. It is a square prism. All angles are 90. |

[^1]

4 | Numeracy and mathematics glossary

Properties of 2D shapes and 3D objects

Decagon	Any 2D shape with 10 sides.	
Diameter		A straight line which passes through the centre of a circle.
Equilateral triangle		

5 | Numeracy and mathematics glossary

Properties of 2D shapes and 3D objects

Heptagon		Any 2D shape with 7 sides.
Hexagon		Any 2D shape with 6 sides.
Isosceles triangle		Has two equal sides and two opposite equal angles.
Kite		Has two pairs of equal sides next to each other. Has no parallel lines. One pair of diagonally opposite angles is equal. Only one diagonal is bisected by the other. The diagonals cross at 90°.

6 | Numeracy and mathematics glossary

Properties of 2D shapes and 3D objects

| Nets | | The 2D pattern that creates a 3D object when folded
 together. This is a net of a cube. |
| :--- | :--- | :--- | :--- |
| Nonagon | | Any 2D shape with 9 sides. |
| Octagon | | |

7 | Numeracy and mathematics glossary

Parallelogram	Has two pairs of opposite equal sides. Opposite sides are parallel to each other and opposite angles are equal. The diagonals bisect each other.	
Pentagon		Any 2D shape with 5 sides.
Perimeter		The distance all the way around the edge of a 2 l To shape. of all the sides.
Pi (3.14...)	The ratio of a circle's circumference to its diameter. Equal to 3.14159265358979323846... (the digits go on infinitely without repeating). Pi is often rounded to 2 decimal places to 3.14.	

8 | Numeracy and mathematics glossary

Properties of 2D shapes and 3D objects

Polygons		Shapes with many straight sides. There are regular and irregular polygons. Regular polygons have equal angles and sides of equal length. Irregular polygons have sides of different lengths.
Polyhedron		Any 3D object with flat faces.
Prism		Any 3D object with two identical ends and faces where the triangular prism, there are two triangular faces and three rectangular faces. The face of any cross section of this shape when cut would always give you a triangle which gives it its name.
Quadrilateral		Any 2D shape with four sides. The distance from the centre of a circle to any point on its
Radius		And

[^2]$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Representation of } \\ \text { 2D shapes and 3D } \\ \text { objects }\end{array} & & \begin{array}{l}\text { Using sketches, isometric paper (graph paper) or computer } \\ \text { packages to draw 3D objects on a 2D plane. }\end{array} \\ \hline \text { Rhombus } & & \begin{array}{l}\text { Has four equal sides. Opposite sides are parallel to each } \\ \text { other and opposite angles are equal. } \\ \text { Diagonally opposite angles are equal. The diagonals bisect } \\ \text { each other at } 90^{\circ} \text {. }\end{array} \\ \text { OBBC Bitesize } \\ \text { OBBC Bitesize }\end{array}\right\}$
$\left.\left.\begin{array}{|l|l|l|}\hline \text { Sphere } & \begin{array}{l}\text { A 3D object shaped like a ball with no straight edges or } \\ \text { vertices. } \\ \text { Every point on the surface is the same distance from the } \\ \text { centre. }\end{array} \\ \hline \text { Square } & & \begin{array}{l}\text { A 2D shape with } 4 \text { equal sides and } 4 \text { corners. } \\ \text { All sides are of equal length. All angles are equal }\left(90^{\circ}\right) . \\ \text { Opposite sides are parallel. } \\ \text { The diagonals of a square of bisect each other at } 90^{\circ} .\end{array} \\ \text { diagonals are equal in length. }\end{array}\right] . \begin{array}{l}\text { A 2D shape which has one pair of parallel sides of different } \\ \text { lengths and a pair of opposite sides of equal length. }\end{array}\right\}$

11 | Numeracy and mathematics glossary

[^0]: 1 | Numeracy and mathematics glossary

[^1]: 3 | Numeracy and mathematics glossary

[^2]: 9 | Numeracy and mathematics glossary

