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1 Model

The system for this simulation is the FitzHugh-Nagumo (FHN)model:

V̇ = V −
V 3

3
− W + X

Ẇ = 0.08(V + 0.7 − 0.8W )

driven by the outputX(t) of a Forced Negative Resistance Oscillator (FNRO):

Ẋ = Y

Ẏ = 0.2(1 − X2)Y − X3 + F (t)

itself driven by a base oscillator stimulusF (t):

F (t) = A cos(ωt)

The parameters of this experiment are the amplitudeA and frequencyω of the base oscillator, varied over a range that
was empirically determined to give some interesting variations in the final results:

A ∈ {Ai|16 ≤ Ai ≤ 18}

ω ∈ {ωj|2 ≤ ωj ≤ 5}

This simulation investigates the chaotic behaviour of thissystem over this range by calculating the Largest Lyapunov
Exponent (LLE) for bothV (t) andX(t). As the system formulas are available, Wolf’s algorithm [3]can be used
to determine the LLEs. As a cross-check, a time-series is generated and analyzed for LLEs using Rosenstein’s [1]
algorithm. These algorithms, as well as additional clarifications, are also described in a more accessible manner in
Sprott [2, Ch. 5.6 and 10.4].
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2 Analysis Methods

Since I was writing the analysis code from scratch, in order to provide a cross-check against programming errors and
parameter maladjustment, I implemented two different algorithms to find the LLE: Wolf’s and Rosenstein’s.

2.1 Wolf’s Algorithm

Wolf’s algorithm is straightforward and uses the formulas defining the system. It calculates two trajectories in the
system, each initially separated by a very small intervalR0. The first trajectory is taken as a reference, or ’fiducial’
trajectory, while the second is considered ’perturbed’. Both are iterated together until their separationabs(R1 − R0)
is large enough, at which point an estimate of the LLE can be calculated asλ1 = 1

∆t
log2 abs(R1

R0

). The perturbed
trajectory is then moved back to a separation ofsign(R1)R0 towards the fiducial, and the process repeated. Over time,
a running average ofλ1 will converge towards the actual LLE.

In this analysis, the separation was deemed sufficient at3R0 sincelog2(3) > 1, meaning at least one bit of information
is gained aboutλ1. Given double-precision numbers, Sprott recommendsR0 = 10−10 as sufficiently small yet much
larger than the minimum precision. The algorithm is iterated until the convergence error is less than0.01. Finer
precision was possible, but took an impractical amount of time to compute.

2.2 Rosenstein’s Algorithm

Rosenstein’s algorithm works on recorded time-series, where the system formulas may not be available. It begins by
reconstructing an approximation of the system dynamics by embedding the time-series in a phase space where each
point is a vector of the previousm points in time (its ’embedding dimension’), each separatedby a lag ofj time units.
Although Taken’s theorem states that an embedding dimension of 2D + 1 is required to guarantee to capture all the
dynamics of a system of orderD, it is often sufficient in practise to usem = D. Similarly, although an effective time
lag must be determined experimentally, in most casesj = 1 will suffice.

Given this embedding of the time-series, for each point I findits nearest neighbour (in the Euclidean sense) whose
temporal distance is greater than the mean period of the system, corresponding to the next approximate cycle in the
system’s attractor. This constraint positions the neighbours as a pair of slightly separated initial conditions for different
trajectories. The mean period was calculated as the reciprocal of the mean frequency of the power spectrum of the
time-series, calculated in the usual manner using the FFT.

I can now perform a process similar to Wolf’s algorithm to approximate the LLE: for each point and its nearest
neighbour I calculate the logarithm of their separation, and then average the estimates together. This process is then
repeated one step forward in time for each pair of neighbours, giving another average estimate. The fact that these
estimates are repeatedly averaged over multiple trajectories spread over the entire time-series allows for fast and
accurate results, even in the presence of noise (which is absent in this generated time-series) and a paucity of data
points.

These estimates over time can be then fit to a line using least-squares, whose slope is the calculated LLE. Only the
first few points are useful since as the distance in time increases, it is likelier that neighbours will begin re-converging,
and thus the slope falls towards zero. In this analysis, the first 5 points were found to give a meaningful fit. If a
least-squares fit could not be found, then the slope was assumed to be zero.
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3 Results

In order to check the output of each algorithm, I first displaythem alongside each other, along with the variations in
the system parameters.

3.1 Raw Output: Wolf

Figures 1 and 2 show the LLEs, calculated by Wolf’s algorithm, of the FitzHugh-Nagumo (FHN) model (V (t)) and
the Forced Negative Resistance Oscillator (FNRO) (X(t)) over the combined ranges of amplitude (A) and frequency
(ω) of the base oscillator, both varied in intervals of0.1.

Finer resolution was not practical as the calculation of each LLE took approximately 28 seconds, for a total of almost
5 hours for 600 data points. The cause was due to the poor convergence behaviour of the algorithm, and that my
implementation attempted to calculate the LLE of all four values in the system (V (t), W (t), X(t), Y (t)), which ended
up being unnecessary effort.

Overall, the change in amplitude has no effect on the LLEs of the system as it is always high enough to cause the
FNRO to dominate the FHN system. A more interesting choice ofamplitude might have been closer to1, where
the effect of stimulus to the FHN system begins to cause action potentials, and thus possibly some additional chaotic
behaviour.

Conversely, the effect of varying the frequency was significant and repeatable. The effect is made more visible in
Figure 2.

3.2 Raw Output: Rosenstein

Figured 3, 4, and 5 show the same juxtaposed parameter variations and LLEs as before, but calculated using Rosen-
stein’s algorithm applied to a pre-generated sequence of 1000 data points over a time span of 0 to 100 in steps of
0.1.

Given the much greater efficiency of this algorithm, each LLEtook only about 2 seconds to compute, and thus a finer
resolution of0.01 was possible in the variation of the parameters. This precision also allowed for a more detailed look
in Figure 5.

As hoped, the output of Rosenstein’s algorithm agrees with that of Wolf’s algorithm, although with much more preci-
sion and speed. Both show the same general rise and fall in theLLE as the frequency varies, and neither are affected
by the change in amplitude.
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Figure 1: Wolf’s Algorithm: Raw Output
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Figure 2: Wolf’s Algorithm: Raw Output (Zoomed)
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Figure 3: Rosenstein’s Algorithm: Raw Output
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Figure 4: Rosenstein’s Algorithm: Raw Output (Zoomed)
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Figure 5: Rosenstein’s Algorithm: Raw Output (Zoomed Further)
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3.3 Relationship of LLEs

To further verify the relationship suggested by the previous figures between the LLEs of the FNRO and FHN models
as the parameters change, Figures 6 and 7 show a scatter plot of the LLEs of the FHN model (V (t)) as a function of
the LLEs of the driving FNRO (X(t)), with the base oscillator frequency (ω) as the colour of each point. The change
in amplitude had no effect and is ignored.

Even with the coarse resolution afforded by Wolf’s algorithm, is it clear that the relationship between the LLEs is
proportional, if not exact. One can see that the LLEs are lower with a lower frequency (blue and cyan), jump higher
somewhere between a frequency of 3 and 4 (yellow and orange),and then decrease along a shallower slope as the
frequency increases from 4 to 5 (red).

These relationships are much more clear when using Rosenstein’s algorithm, in Figure 7. The much greater precision
and quantity of results clearly show the progression of the LLEs as the frequency increases: first in the middle (blue)
and decreasing together until some point above 3 (cyan), then increasing again with a very sudden jump between 3
and 4 (green). Afterwards, the LLEs of the FNRO remain relatively steady while those of the FHN jump up (yellow).
They then both decrease together along a shallower line (orange and red). These relationships match those first hinted
at in Figures 3, 4, and 5.
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Figure 6: Wolf’s Algorithm: Relationship of LLEs
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Figure 7: Wolf’s Algorithm: Relationship of LLEs
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