
EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 18 1/17/01

PROGRAMMING THE MICROCONTROLLER

ASSEMBLY LANGUAGE
Assembly language is of higher level than machine language and hence easier to use.

An assembly language code consists of

a) Program statement lines

b) Comment lines

A program statement is a line that contains 4 fields in the following format:

[<LABEL>] [<OPCODE MNEMONIC>] [<OPERANDS>] [;<comments>]

 or

[<LABEL>] [<DIRECTIVE MNEMONIC>] [<OPERANDS>] [;<comments>]

where [] indicates an optional field that may not be always required. The fields are separated by a tab
or space. (Tab is recommended, since it ensures an orderly appearance to your code. For the same
reason, when a field is not used, the tab or blank should still to be used, such that the fields of the same
type stay aligned in same columns.) When writing <LABEL>, <OPCODE MNEMONIC> or <DIRECTIVE
MNEMONIC>, and <OPERANDS>, use upper case characters. When writing <comments>, use lower
case.

The <OPCODE MNEMONICS> correspond to the microcontroller opcodes. These mnemonics are
found in the Motorola MC68HC11 programming reference guide and related literature.

The <DIRECTIVE MNEMONICS> are native to the Assembly language. A list of directives is given in
Table 1. The directives that you will use often are shown in bold.

Table 1 Assembler directives

Name of Assembler directive what it does Alias for
END end program
DB define bytes FCB
DW define words FDB
DS define storage RMB
EQU equate
FCB form constant byte
FCC form constant characters
FDB form double bytes
ORG set origin
RMB reserve memory bytes
#INCLUDE include source file
$INCLUDE include source file #INCLUDE

The <OPERAND> contains a value, an expression, an address, or a label that the opcodes or the
directives need. The operand could be up to 4 bytes long, separated by commas. Some opcodes or
directives do not require operands (inherent mode).

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 19 1/17/01

The constants used in the <OPERAND> can be hex, decimal, binary, or octal numbers. Table 2 gives
the assembler symbols used to this purpose.

Table 2 Assembler symbols for constants

Symbol Meaning Example

$<number> hex number $A1

<number> decimal number 20

%<number> binary number %11001010

@<number> octal number @73

‘<string>’, ‘<string> ASCII string ‘A’ or ‘A (the latter does not work with #INCLUDE)

The expressions used in the <OPERAND> can use any of the operators listed in Table 3

Table 3 Assembler symbols for expressions

Symbol Meaning Example

- unary minus -4

& binary AND %11111111&%10000000

! binary OR %11111111!%10000000

∗ multiplication 3∗$2A

/ division $7E/3

+ addition 1+2

- subtraction 3-1

() parentheses used for grouping 3∗(1+2)

Important conventions used in the <OPERAND> are given in Table 4:

Table 4 Other important conventions

Symbol Meaning Example

immediate mode (IMM) #$A3

; start of comment line and of comment inside
a program statement LDAA #$FF ; Load accA

* alternate sign for start of comment line only * This is a comment

,X index X mode (IND,X) LDAA TFLG1,X

,Y index X mode (IND,Y) LDAA TFLG2,Y

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 20 1/17/01

The <LABEL> is a very powerful concept that can greatly simplify the programmer’s task. The
<LABEL> consists of a string of alphanumeric characters that make up a name somehow meaningful to
the programmer. The placement of the <LABEL> can be in one of the following positions:

a) In the first column and terminates with a tab or blank character

b) In any column and terminates with a colon (:)

There are 3 different usages of the <LABEL>:

1) To assign the name inserted in the <LABEL> to a location in a program. The <LABEL>
will be assigned the address of that location

2) To assign the value of an expression or constant to the name inserted in the <LABEL>
using the EQU (equate) or SET directives.

3) To define the name of a subroutine (macro). Essentially, this is the same as 1), since an
address (the subroutine starting address) is assigned to the label.

When labels are assigned to certain addresses, one can tell the program to go to that address by
referring to the label (case 1 above). Alternatively, one can use the contents of a certain address by
referring to its label, just like when using variables (case 2 above).

A comment is prefixed by semicolon (;).When the assembler detects an semicolon, it knows that the
rest of the line is a comment and does not expect any executable instructions from it. A comment can
be a separate line (comment line) or can be inserted in a program statement. A comment line can be
also prefixed by an asterisk (∗). The comments, either in the comment field or as a separate comment
line, are of great benefit to the programmer in debugging, maintaining, or upgrading a program. A
comment should be brief and specific, and not just reiterate its operation. A comment that does not
convey any new information needs not be inserted. When writing a comment, use lower case
characters.

A program written in Assembly language is called source file. Its extension is .ASM. When the source
file is assembled, two files are generated:

a) Object file that can be run in the microcontroller. The Motorola object file is in ASCII-HEX
format. Its generic name is “S19 file’. Its extension is .S19

b) List file, extension .LST, that contains the original code in Assembly language and the
corresponding hex codes resulting from the Assembly process. The list file is used by the
programmer to verify and debug his/her coding of the program.

The .ASM files can be opened, viewed, edited and saved in the THRSIM11 application. Alternatively, all
three file types (.ASM, .LST, .S19) can be also processed in a text editor, e.g., the Notepad application.
Examples of .ASM and .LST files follow.

Addressing Modes

Inherent Mode is implied and requires no programming action.

Immediate Mode means that the number contained in the operand will be immediately used.

Direct and Extended Modes use the number contained in the operand to signify an address where the
required information should be retrieved from or deposited to. The Extended mode is automatically
used for addresses greater than FF.

Index Mode is used by adding the operand to the value already existing in the Index X or Y, as
selected. In this case, the operand acts as an offset.

Relative Mode uses the operand as an offset relative to the present Program Counter value.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 21 1/17/01

MICROCONTROLLER COMMANDS
(Section 6 and Section A of M68HC11 Reference Manual)

The 6811 microcontroller has 145 different commands. These commands can be grouped into several
categories. The categories and the commands in those categories are listed below:

1) Arithmetic operations:
a) Addition:

ABA, ABX, ABY, ADCA, ADCB, ADDA, ADDB, ADDD, INC, INCA, INCB, INS, INX, INY

b) Subtraction:
SBA, SBCA, SBCB, SUBA, SUBB, SUBD, DEC, DECA, DECB, DES, DEX, DEY

c) Multiplication: MUL
d) Division: FDIV, IDIV

2) Logical operations: (note: logical operations are carried out on a bit by bit basis)
a) Standard logical operations: ANDA, ANDB, EORA, EORB, ORAA, ORAB, COM (Boolean

inverse), COMA, COMB

b) Operations that shift the location of the bits in the register:
ASL, ASLA, ASLB, ASLD, ASR, ASRA, ASRB, LSL, LSLA, LSLB, LSLD, LSR, LSRA, LSRB,
LSRD, ROL, ROLA, ROLB, ROR, RORA, RORB

c) Operations that compare two numbers:
BITA, BITB, CBA, CMPA, CMPB, CPD, CPX, CPY

3) Branching commands: BCC, BCS, BEQ, BGE, BGT, BHI, BHS, BLE, BLO, BLS, BLT, BMI, BNE,
BPL, BRA, BRCLR, BRN, BRSET, BSR, BVC, BVS, JMP, JSR, RTS, RTI, WAI

4) Memory/Register Functions

a) Move data into / out of memory: LDAA, LDAB, LDD, LDS, LDX, LDY, STAA, STAB, STD, STS,
STX, STY

b) Change the values in memory/registers: BCLR, BSET, CLC, CLI, CLR, CLRA, CLRB, CLV,
COM, COMA, COMB, NEG, NEGA, NEGB, SEC, SEI, SEV

c) Transfer data from one register to another: TAB, TAP, TBA, TPA, TSX, TSY, TXS, TYS,
XGDX, XGDY

5) Stack Pointer Functions: PSHA, PSHB, PSHX, PSHY, PULA, PULB, PULX, PULY
6) Misc.: NOP, SWI

Note: Boolean inversion commands: COM, COMA, COMB

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 22 1/17/01

SAMPLE PROGRAM IN ASSEMBLY LANGUAGE WITH MCU COMMANDS

PROBLEM STATEMENT
This simple program is an example of addition. It performs the operation:

 VAR0 + VAR1 à SUM

In addition, the program checks if an overflow happened during the addition process, and sets the flag
OVERFL accordingly.

PROGRAM DESCRIPTION

• The variables are defined in lower memory starting with $0000, in the order VAR0, VAR1, SUM,
OVERFL.

• LDAB with zero is used to reset the initial value of the overflow flag (optimistic!).

• LDAA is used to load VAR0 into AccA

• ADDA is used to add accA with VAR1. Result of addition stays in accA

• BVC is used to branch over the next instruction, i.e. to LABEL1, if no overflow occurred

• If an overflow occurred during the addition process, this instruction is reached and COMB is
used to invert accB from $00 to $FF.

• Label1: STAA is used to store the result of addition from accA into SUM

• STAB is used to store accB ($00 or $FF, depending on the logic just discussed) into the
overflow flag OVERFL

FLOWCHART

Initialize variables:
VAR0 à $0000
VAR1 à $0001
SUM à $0002
OVERFL à $0003

Load $00 into accB as the initial (optimistic)
guess for the overflow status

Load first variable into accA
Add second variable to accA
(result stay in accA)

Since overflow bit was not clear, Invert accB

Brach if overflow bit
is clear

Store result of addition from accA into SUM
Store current value of overflow flag from
accB into OVERFL

SWI

Y

N

FLOWCHART

LABEL1

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 23 1/17/01

ASSEMBLY (.ASM) CODE
* DEMO.ASM
* This simple program adds the contents of
* address $0000 (labeled VAR0) to the contents of
* address $0001 (labeled VAR1) and stores the resulting
* sum at address $0002 (labeled SUM), provided
* the addition process happens without overf low.
* If an overflow occurs during the addition process,
* the overflow flag OVERFL (stored at address $0003)
* is set to $FF; else, it stays $00.

* Include definition of variables for MC68HC11
#INCLUDE 'A:\VAR_DEF.ASM'

* Define program variables
 ORG DATA
VAR0 RMB 1 ;reserve 1 byte for VAR0
VAR1 RMB 1 ;reserve 1 byte for VAR1
SUM RMB 1 ;reserve 1 byte for sum
OVERFL RMB 1 ;reserve 1 byte for overflow flag

* Start main program
 ORG PROGRAM
 LDAB #00 ;assume no overflow (optimistic!)
 LDAA VAR0 ;load VAR0 in accumulator A
 ADDA VAR1 ;add VAR1 to accumulator A
 BVC LABEL1 ;jump if no overflow
* We have overflow!
 COMB ;Invert accumulator B ($00 to $FF)
LABEL1 STAA SUM ;store result of addition
 STAB OVERFL ;store accB into overflow flag
 SWI ;stop the microcontroller

LIST (.LST) OUTPUT RESULTING AFTER ASSEMBLY
list# address object label opcode operand comments
 or
 directive

DEMO.lst - generated by MiniIDE's ASM12 V1.07b Build 52 [12/29/1999, 16:30:49]

 1: *12456789012345678901245678901234567890124567890123456789
 2:
 3: * DEMO.ASM
 4: * This simple program adds the contents of
 5: * address $0000 (labeled VAR0) to the contents of
 6: * address $0001 (labeled VAR1) and stores the resulting
 7: * sum at address $0002 (labeled SUM), provided
 8: * the addition process happens without overflow.
 9:
10: * If an overflow occurs during the addition process,
11: * the overflow flag OVERFL (stored at address $0003)
12: * is set to $FF; else, it stays $00.
13:

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 24 1/17/01

14: * Include definition of variables for MC68HC11
 1: * Define variables used by MC68HC11 microcontroller
 2:
 3: 0000 DATA EQU $0000 ;start of data
 4: c000 PROGRAM EQU $C000 ;start of program
 5: fffe RESET EQU $FFFE ;reset vector
 6: 1000 REGBAS EQU $1000 ;register base
 7:
 8: 0000 PORTA EQU $00
 9: 0002 PIOC EQU $02
10: 0003 PORTC EQU $03
11: 0004 PORTB EQU $04
12: 0005 PORTCL EQU $05
13: 0007 DDRC EQU $07
14: 0008 PORTD EQU $08
15: 0009 DDRD EQU $09
16: 000a PORTE EQU $0A
17: 000b CFORC EQU $0B
18: 000c OC1M EQU $0C
19: 000d OC1D EQU $0D
20: 000e TCNT EQU $0E
21: 0010 TIC1 EQU $10
22: 0012 TIC2 EQU $12
23: 0014 TIC3 EQU $14
24: 0016 TOC1 EQU $16
25: 0018 TOC2 EQU $18
26: 001a TOC3 EQU $1A
27: 001c TOC4 EQU $1C
28: 001e TOC5 EQU $1E
29: 0020 TCTL1 EQU $20
30: 0021 TCTL2 EQU $21
31: 0022 TMSK1 EQU $22
32: 0023 TFLG1 EQU $23
33: 0024 TMSK2 EQU $24
34: 0025 TFLG2 EQU $25
35: 0026 PACTL EQU $26
36: 0027 PACNT EQU $27
37: 0028 SPCR EQU $28
38: 0029 SPSR EQU $29
39: 002a SPDR EQU $2A
40: 002b BAUD EQU $2B
41: 002c SCCR1 EQU $2C
42: 002d SCCR2 EQU $2D
43: 002e SCSR EQU $2E
44: 002f SCDR EQU $2F
45: 0030 ADCTL EQU $30
46: 0031 ADR1 EQU $31
47: 0032 ADR2 EQU $32
48: 0033 ADR3 EQU $33
49: 0034 ADR4 EQU $34
50: 0039 OPTION EQU $39
51: 003a COPRST EQU $3A
52: 003b PPROG EQU $3B
53: 003c HPRIO EQU $3C
54: 003d INIT EQU $3D
55: 003e TEST1 EQU $3E
56: 003f CONFIG EQU $3F

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 25 1/17/01

list# address object label opcode operand comments
 or
 directive

57: *12345678901234567890123456789012345678901234567890123456789
15: #INCLUDE 'A:\VAR_DEF.ASM'
16:
17: * Define program variables
18: ORG DATA
19: VAR0 RMB 1 ;reserve 1 byte for VAR0
20: VAR1 RMB 1 ;reserve 1 byte for VAR1
21: SUM RMB 1 ;reserve 1 byte for sum
22: OVERFL RMB 1 ;reserve 1 byte for overflow flag
23:
24: * Start main program
25: ORG PROGRAM
26: c000 c6 00 LDAB #00 ;assume no overflow (optimistic!)
27: c002 96 00 LDAA VAR0 ;load VAR1 in accumulator A
28: c004 9b 01 ADDA VAR1 ;add VAR2 to accumulator A
29: c006 28 01 BVC LABEL1 ;jump if no overflow
30: * We have overflow!
31: c008 53 COMB ;Invert accumulator B ($00 to $FF)
32: c009 97 02 LABEL1 STAA SUM ;store result of addition
33: c00b d7 03 STAB OVERFL ;store accB into overflow flag
34: c00d 3f SWI ;stop the microcontroller

Symbols:
data *0000
label1 *c009
overfl *0003
program *c000
sum *0002
var0 *0000
var1 *0001

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 26 1/17/01

THRSIM11
You need to install this software on your PC.

THRSIM11 OPTIONS SETUP
Before you run the simulator first time on a certain PC, set the Options as shown it the following
windows:

Immediately after opening the THRSim11 program, close the Commands window. You will not use in
this course, unless otherwise specified.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 27 1/17/01

GETTING STARTED WITH PROGRAMMING
Take a formatted empty floppy disk write on the label:

 EMCH 367

 LASTNAME, Firstname

 Email address

 Contact telephone #

This way, if you loose the disk, there is a good chance that you might have it recovered.

Download the template.asm file and place it on the floppy disk. This template will always be a good to
start your programming.

Download the file VAR_DEF.ASM and place it in the root of the directory structure on your floppy disk.
(This will allow the programs to find it when executing the instruction #INCLUDE ‘A:VAR_DEF.ASM’.

Download example files from the course website onto this disk. (For safety, make copies into your
folder or PC.)

USING THE TEMPLATE.ASM FILE
An .asm template file is available on the course website. This template has the required instructions to
make your program interface properly with the simulator. When generating a new program, open the
template.asm file, save it under the new name you want to create (remember to save on a secure area,
preferably your floppy disk), and then start typing in your program in the indicated area.

After you type and save your program (save as often as you can, use Ctrl S for productivity), assemble
the program and test run it.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 28 1/17/01

SCREEN/WINDOW CAPTURE

To capture the image of a window or of the complete screen:

• Press Alt + PrintScreen to capture the image of the window that is currently active.

• Press PrintScreen to capture the image of the entire screen.

The captured image can be viewed on the clip board.

To paste the captured image into a document:

• In the document window, on the Edit menu, click Paste. Alternatively, use Ctrl + V.

Note: In most cases, you will need to capture just the active window, using Alt + PrintScreen.

DEFAULT WINDOWS
Default windows are either (*.LST, *.asm, and CPU registers), or (*.LST, *.asm, Memory list, and CPU
registers), as shown below. In the memory list, standard labels are shown. However, they can be
removed if you use the pull down menu command Label/Remove all.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 29 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 30 1/17/01

MINIIDE EMULATOR
MiniIDE is an integrated development environment running under Windows 95/98/Me/NT/2000. It was
developed by MGTEK in Germany. It is a tool for developers of embedded software who write software
in assembler for Motorola's 68HC11 and 68HC12 microcontroller. MiniIDE incorporates an editor and a
serial communication terminal. A command-line cross assembler, which is seamlessly integrated in the
IDE, is also included.

�

�

�

With MiniIDE, user can edit compile and download program to microcontroller, then debug program
interactively. As shown above, a user can edit ASM program in editor window 1; then compile the
program, if there are syntax errors, warning messages will be shown in output window 2; at last,
download the program and interact with the microcontroller in terminal window 3 to debug and run the
program.

In this course, MiniIDE is used to download codes into the MCU Evaluation Board (EVB). In this
context, it acts as a terminal program.

You do not need to install this software on your PC.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 31 1/17/01

PROGRAMMING FLOW CHART
The programming flow chart is shown in the figure below. First, the source code is written in Assembly
language on the THRSim11 simulator. The simulator assembles the .asm code and generates a list file
(*.LST). The simulator is then used to step through the program and debug it until it performs the
intended functionality. All this can be done remotely, in the computer room, or on a personal computer.
Once the program has been debugged, it can be taken on a floppy disk to the EMCH 367 lab (A 235).
The MCU evaluation board (EVB) hardware is accessed through the MiniIDE emulator software
installed on the lab computers. MiniIDE reads the .asm file from your floppy disk and transforms it into
machine language executable code (*.S19). This code is downloaded to the MCU. After downloading
the code into the MCU, you can make the MCU run your code using the MiniIDE interface screens. The
MiniIDE also generates a list file (.LST) that can be used during debugging.

THRSim11
Software

MiniIDE
Software

MCU
EVB

Hardware

Executable code
MACHINE LANGUAGE

*.S19

Source code
 ASSEMBLY LANGUAGE

*.asm

List file
*.LST

List file
*.LST

Figure 1 Flowchart of typical programming steps used in the EMCH 367 course.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 32 1/17/01

Figure 2 Flowchart of typical programming steps in a generic programming environment.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 33 1/17/01

BINARY AND HEX NUMBERS
Note: To quickly grasp the use of binary and hex arithmetic, use your binary/hex pocket calculator and
the website http://homepage.ntlworld.com/interactive/BinaryAddition.html

The binary number system is a base-2 numbering system. In binary representation, any value is
represented using a combination of 1's and 0's. For example: 1410 = 11102 in binary. The subscript 10
on the first number indicates that the number 14 is represented in the decimal (base 10) system. The
subscript 2 on the second number indicates that 1110 is represented in the binary (base 2) system.

The binary representation is also called "digital". "Digit" also means finger, and you can imagine a
numbering representation in which you use your 8 digits to for number containing 1's and 0's. The
ability to represent numbers in terms of 1's and 0's is important because it is the easiest most
unambiguous way to represent and communicate information. In a computer, a 1 is represented by a
"high" voltage (5V) and a 0 by a "low" voltage (~0V). The binary system is the backbone of all digital
computers and other high-tech applications.

THE BINARY SYSTEM
To understand how the binary system works, let's first examine how the conventional base-10 system
works. The base-10, or decimal, system constructs numbers using increasing powers of 10. For
example, the number 13510 is constructed using 3 powers of 10: 100, 101, and 102. These numbers
correspond to 1,10, and 100. The number 13510 is constructed as:
1 x 100 + 3 x 10 + 5 x 1 or 1 x 102+ 3 x 101 + 5 x 100

The equivalent of number 13510 in base two is 100001112. This is constructed as:

1 x 128+ 0 x 64 + 0 x 32 + 0 x 16 + 0 x 8 + 1 x 4 + 1 x 2 + 1 x 1

or

1 x 27 + 0 x 26 + 0 x 25 + 0 x 24 + 0 x 23+ 1 x 22 + 1 x 21 + 1 x 20

It can be seen that the only significant difference between the two systems is the base number.

Each one or zero in the binary representation is called a "bit". A collection of eight bits is called a "byte"
and, in a somewhat humorous note, a collection of four bits is called a "nibble". The bit associated with
the highest power of two is called the Most Significant Bit (MSB); the bit associated with the lowest
power of two is the Least Significant Bit (LSB).

1

1 0 0 0 0 1 1 1

1 0 0 1

1 0 0 1 0 0 0 1 2 nibbles = 1 byte

byte (1 byte = 8 bits)

bit

Hex number (nibble) (1 nibble = 4 bits)

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 34 1/17/01

DECIMAL TO BINARY CONVERSION:
Because most people are more comfortable using, and thinking in, the decimal system, it is important to
know how to convert from the decimal to the binary system. This is most easily achieved through a
series of divisions by two and by tracking the resulting remainders. Let's consider out example of
13210:

 132 ÷2 = 66 Remainder 0

 66 ÷ 2 = 33 Remainder 0

 33 ÷2 = 16 Remainder 1 13210 = 10000100

 16 ÷2 = 8 Remainder 0

 8 ÷2 = 4 Remainder 0 MSB LSB

 4 ÷2 = 2 Remainder 0

 2 ÷2 = 1 Remainder 0

 1 ÷2 = 0 Remainder 1

The remainder 1 resulting from the last division is the MSB, while the first remainder is the LSB of the
conversion. From this example we see that the decimal number 132 is equal to the binary number
10000100.

The conversion from binary to decimal is done in the same manner as the first example, by adding
together power of two values of the non-zero bits.

HEXADECIMAL (HEX) NUMBERS
As one might have already surmised, binary numbers quickly become long and hard to remember. For
this reason, it is more convenient to convert the binary values into hexadecimal numbers (hex).
Hexadecimal numbers are base 16 numbers. This requires six additional characters to represent the
values 10, 11, 12, 13, 14, and 15. These values will be represented by the letters A, B, C, D, E, and F.
The counting order in hex is: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. The reason hex notations are
use is that it allows for a one to one correspondence between the 16-bit binary nibble and a single
hexadecimal value. If the binary number is broken down into nibbles, and each nibble is replaced with
the corresponding hexadecimal number, the conversion is complete. Consider 13210. The binary
number is 10000100. It can be broken down into two separate nibbles: 1000 and 0100. Convert each
nibble into the corresponding hex value (8 and 4, respectively), and the hex equivalent of 13210 is
8416. This is much more convenient to remember. For example, the hex number A23E3 is easily
converted to 10100010001111100011 in binary without using any difficult calculations.

To convert decimal to hex numbers it is easiest to convert the decimal number to binary and then
convert the binary to hex. In addition to these methods, there is a conversion chart in the back of the
Programming Reference Guide for the conversion from decimal to hex.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 35 1/17/01

BINARY ARITHMETIC
The rules for addition of binary numbers are straightforward:

0 + 0 = 0, 0 + 1 = 1, and 1 + 1 = 0 with a carry of 1, i.e. 1 + 1 = 102.

For example:

 1001010010 +

 0100110001

 1110000011

 1010010100 +

 0100010010

 0001010001

 1111110111

NEGATIVE NUMBERS IN THE COMPUTER (2’S COMPLEMENT NUMBERS)
Until now, we have discussed only positive numbers. These numbers were called "unsigned 8-bit
integers". In an 8-bit byte, we can represent a set of 256 positive numbers in the range 010-25510.
However, in many operations it is necessary to also have negative numbers. For this purpose, we
introduce "signed 8-bit integers". Since we are limited to 8-bit representation, we remain also limited to
a total of 256 numbers. However, half of them will be negative (-12810 through -110) and half will be
positive (010 through 12810).

The representation of signed (positive and negative) numbers in the computer is done through the so-
called 8-bit 2's complement representation. In this representation, the 8th bit indicates the sign of the
number (0 = +, 1 = -).

The signed binary numbers must conform to the obvious laws of signed arithmetic. For example, in
signed decimal arithmetic, -310 + 310 = 010. When performing signed binary arithmetic, the same
cancellation law must be verified. This is assured when constructing the 2's complement negative
binary numbers through the following rule:

To find the negative of a number in 8-bit 2's complement representation, simply subtract the
number from zero, i.e. -X = 0 - X using 8-bit binary arithmetic.

Example 1: Use the above rule to represent in 8-bit 2's complement the number -310

Solution: Subtract the 8-bit binary representation of 310 from the 8-bit binary representation of 010
using 8-bit arithmetic (8-bit arithmetic implies that you can liberally take from, or carry into the 9th bit,
since only the first 8 bits count!).

 BINARY DECIMAL

 00000000 - 010 -

 00000011 310

 11111101 -310

Note that, in this operation, a 1 was liberally borrowed from the 9th bit and used in the subtraction!

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 36 1/17/01

Verification We have establish that -310 = 111111012. Verify that -310 + 310 = 010 using 8-bit
arithmetic.

 BINARY DECIMAL

 11111101 - -310 -

 00000011 310

 00000000 010

Note that, in this operation, a carry of 1 was liberally lost in the 9th bit!

Example 2: Given the binary number 00110101, find it's 2's complement.

Solution: Subtract the number from 00000000, i.e.

 BINARY HEX DECIMAL

 00000000 - 00 - 010 -

 01110101 75 10610

 10001011 8B -10610

Verification: 01110101 + 10001011 = (1)00000000. Since the 9th bit is irrelevant, the answer is
actually 00000000, as expected

The rule outlined above can be applied to both binary and hex numbers.

Example 3: Given the hex number 6A, find its 8-bit 2's complement.

Solution: Subtract the number from 0016 using 8-bit arithmetic:

 HEX DECIMAL

 00 - 010 -

 6A 10610

 96 -10610

Verification: 6A16 + 9616 = (1)00. Since the 9th binary bit is irrelevant, the answer is actually 0016, as
expected

Example 4: 110010102 à CA16 à 20210.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 37 1/17/01

NUMERICAL CONVERSION CHART FOR UNSIGNED 8-BIT BINARY INTEGERS

Decimal
(base 10)

4-bit binary
(base 2)

Hex
(base

16)
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 38 1/17/01

NUMERICAL CONVERSION CHART FOR 2'S COMPLEMENT SIGNED 8-BIT BINARY INTEGERS

Decimal 8-bit 2's complement
signed binary

Hex

+127 0111 1111 7F
… … …

+16 0001 0000 10
+15 0000 1111 0F
+14 0000 1110 0E
+13 0000 1101 0D
+12 0000 1100 0C
+11 0000 1011 0B
+10 0000 1010 0A

+9 0000 1001 09
+8 0000 1000 08
+7 0000 0111 07
+6 0000 0110 06
+5 0000 0101 05
+4 0000 0100 04
+3 0000 0011 03
+2 0000 0010 02
+1 0000 0001 01

0 0000 0000 00
-1 1111 1111 FF
-2 1111 1110 FE
-3 1111 1101 FD
-4 1111 1100 FC
-5 1111 1011 FB
-6 1111 1010 FA
-7 1111 1001 F9
-8 1111 1000 F8
-9 1111 0111 F7

-10 1111 0110 F6
-11 1111 0101 F5
-12 1111 0100 F4
-13 1111 0011 F3
-14 1111 0010 F2
-15 1111 0001 F1
-16 1111 0000 F0
… … …

-128 1000 0000 80

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 39 1/17/01

LOGIC GATES AND BOOLEAN ALGEBRA

LOGIC GATES

Circuit IC # Symbol Boolean Function

Buffer 7407 A X X A=

NOT

(Inverter)
7404 A X

X A=

AND 7408 B
A X

X A B= g

OR 7432
A

B
X

X A B= +

NAND 7400 A
B X

X A B= g

NOR 7402 B

A
X

X A B= +

Exclusive OR

XOR
7486

A

B
X

X A B A B

A B
= +
= ⊕

g g

Comparator
B

A
X

X A B A B
A B

= +
=

g g

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 40 1/17/01

Inverting gate

AND gate

OR gate

XOR gate

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 41 1/17/01

BOOLEAN ALGEBRA
In formulating mathematical expressions for logic circuits, it is important to have knowledge of Boolean
algebra, which defines the rules for expressing and simplifying binary logic statements. The basic
Boolean laws and identities are listed below. A bar over a symbol indicates the Boolean operation
NOT, which corresponds to inversion of a signal.

Fundamental Laws
OR AND NOT
0A A+ = 0 0A⋅ =
1 1A + = 1A A⋅ = (1)

A A A+ = A A A⋅ = A A= (double inversion)
1A A+ = 0A A⋅ =

Commutative Laws
 A B B A+ = + (2)
 A B B A⋅ = ⋅

Associative Laws
 () ()A B C A B C+ + = + + (3)
 () ()A B C A B C⋅ ⋅ = ⋅ ⋅

Distributive Laws
 (4)
 () () ()A B C A B A C+ ⋅ = + ⋅ +

Other Useful Identities
 ()A A B A+ ⋅ = (5)
 ()A A B A⋅ + = (6)

 ()A A B A B+ ⋅ = + (7)

 () ()A B A B A+ ⋅ + = (8)

 () () ()A B A C A B C+ ⋅ + = + ⋅ (9)

 ()A B A B A B+ + ⋅ = + (10)

 () () () ()A B B C B C A B C⋅ + ⋅ + ⋅ = ⋅ + (11)

 () () () () ()A B A C B C A B B C⋅ + ⋅ + ⋅ = ⋅ + ⋅ (12)

DeMorgan’s Laws are also useful in rearranging of simplifying longer Boolean expressions or in
converting between AND and OR gates:

A B C A B C+ + + = ⋅ ⋅ ⋅ (13)
A B C A B C⋅ ⋅ ⋅ = + + + (14)
If we invert both sides of these equations and apply the double NOT law fro Equation (1) we can write
DeMorgan’s Laws in the following form:

A B C A B C+ + + = ⋅ ⋅ ⋅ (15)
A B C A B C⋅ ⋅ ⋅ = + + + (16)

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 42 1/17/01

This page is left intentionally blank

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 43 1/17/01

CONDITION CODE REGISTER (CCR)

S X H I N Z V C

S = Stop bit

 Allows user to turn the microcontroller stop function on or off.

X = XIRQ mask

 Used to disable interrupts from the XIRQ.

H = Half carry bit

 Indicates a carry from bit 3 during addition. Only updated by ABA, ADD, and ADC. It is
used by the DAA in BCD operations (setting a hexadecimal number to decimal).

I = Interrupt mask

 Global interrupt mask. Allow user to turn on/off interrupts.

N = Negative bit

 Set to 1 when the result of an operation is 1 in the MSB.

 Set to 0 when the result of an operation is 0 in the MSB.

Z = Zero bit

 Set to 1 when the result of an operation is 0016.

 Set to 0 when the result of an operation is anything other than 0016.

 V = oVerflow bit

 Set to 1 when a 2's complement overflow has occurred due to a specific operation.

 7E16 + 0416 = 8216, 100000102

 Note: The 1 in the MSB indicates that an overflow occurred. The addition yielded a
number larger than 7F16, which is the maximum positive value that a 2'S compliment
number is allowed.

C = Carry bit

 Set to 1 when a carry or borrow has occurred in the MSB. In addition operations, it is set
if there was a carry from MSB. In subtractions, it is set if a number with a larger absolute
value is subtracted from a number with a smaller absolute value. It is also used in
multiplication and division.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 44 1/17/01

BUFFALO COMMANDS
The monitor BUFFALO program is the resident firmware for the EVB, which provides a self-contained
operating environment. It interacts with the user through predefined commands. The BUFFALO
command line format is as follows:

><command>[<parameters>](RETURN)

where:
> EVB monitor prompt.
<command> Command mnemonic.
<parameters> Expression or address.
(RETURN) RETURN keyboard key

NOTES:
1) The command line format is defined using special characters that have the following syntactical

meanings:

 < > Enclose syntactical variable

 [] Enclose optional fields

 []… Enclose optional fields repeated

These characters are NOT entered by user, but are for definition purpose only.

2) Fields are separated by any number or space, comma, or tab characters.
3) All input numbers are interpreted as hexadecimal.
4) All input commands can be entered either upper or lower case lettering.
5) A maximum of 35 characters may be entered on a command line.
6) Command line errors may be corrected by backspacing or by aborting the command (CRTL-

X/Delete).
7) After a command has been entered, pressing (RETURN) a 2nd time will repeat the command.

Some of the frequently used BUFFALO commands are listed alphabetically in Table 1.
COMMAND DESCRIPTION
ASM [<address>] Assembler/disassembler
BF <address1> <address2> <data> Block fill memory with data
CALL [<address>] Execute subroutine
G [<address>] Execute program
HELP Display monitor commands
MD [<address1> [<address2>]] Memory Display
MM [<address>] Memory Modify
MOVE <address1> <address2>
[<destination>] Move memory to new location

RM [p,y,x,a,b,c,s] Register modify
T [<n>] Trace $1~$ff instructions

Next few pages are detailed description and examples for each command.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 45 1/17/01

ASM
Assembler/Disasse
mbler

ASM [<address>]

 where: <address> is the starting address for the assembler operation.
Assembler operation defaults to internal RAM if no address is given. Each source line is converted into the
proper machine language code and is stored in memory overwriting previous data on a line-by-line basis at the
time of entry.

The syntax rules for the assembler are as follows:
(a.) All numerical values are assumed to be hexadecimal.
(b.) Operands must be separated by one or more space or tab characters.

Addressing modes are designated as follows:
(a.) Immediate addressing is designated by pre-ceding the address with a # sign.
(b.) Indexed addressing is designated by a comma. The comma must be preceded a one byte relative offset

and followed by an X or Y designating which index register to use (e.g., LDAA 00,X).
(c.) Direct and extended addressing is specified by the length of the address operand (1 or 2 digits specifies

direct, 3 or 4 digits specifies extended). Extended addressing can be forced by padding the address
operand with leading zeros.

(d.) Relative offsets for branch instructions are computed by the assembler. Therefore the valid operand for
any branch instruction is the branch-if-true address, not the relative offset.

Assembler/disassembler subcommands are as follows.

/ Assemble the current line and then disassemble the same address location.
^

Assemble the current line and then disassemble the previous sequential address
location.

(RETURN) Assemble the current line and then disassemble the next opcode address.
(CTRL)-J Assemble the current line. If there isn't a new line to assemble, then disassemble

the next sequential address location. Otherwise, disassemble the next opcode
address.

(CTRL)-A Exit the assembler mode of operation.

EXAMPLE DESCRIPTION
>ASM C000
C000 STOP $FFFF
>LDAA #55
86 55
C002 STOP $FFFF
>STAA C0
 97 C0
C004 STOP $FFFF
>LDS 0,X
 AE 00
C006 STOP $FFFF
>BRA C500

Immediate mode addressing, requires #
before operand.

Direct mode addressing.

Index mode, if offset = 0 (,X) will not
be accepted.

Branch out of range message.

Branch out of range
C006 STOP $FFFF
>BRA C030
20 28
C008 STOP $FFFF
>(CTRL)A

Branch offsets calculated automatically,
address required as conditional branch
operand.

Assembler operation terminated.

EXAMPLE DESCRIPTION

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 46 1/17/01

>ASM C000
C000 CLR $0800
>LDY #C200
 18 CE C2 00
C004 TEST
>LDX #C400
 CE C4 00
C007 TEST
>LDAA 102E
 B6 10 2E
C00A TEST
>LDAA 0,X
 A6 00
C00C TEST
>STAA 102F
 B7 10 2F
C00F INX
>LDAA 102E
 B6 10 2E
C012 TEST
>ANDA #80
 84 80
C014 TEST
>BEQ C00F
 27 F9
C016 BITB $80F6
>LDAA 102E
 B6 10 2E
C019 BVS $C01B
>ANDA #20
 84 20
C01B STX $00FF
>BEQ C016
 27 F9
C010 STX $4065
>LDAA 102F
 B6 10 2F
C020 STAA $00,Y
>STAA 0,Y
 18 A7 00
C023 STX $00FF
>INX
 08
C024 TEST
>INY
 18 08
C026 ASRB
>CPX #C41F
 8C C4 1F
C029 ASLD
>BEQ C02E
 27 03
C02B STX SOOFF
>JMP C00C
 7E C0 0C
C02E MUL
>BRA C02E
 20 FE
C030 ILLOP
>(CTRL)A

Enter assembler/disassembler mode.

First byte where data is stored.
IMM mode

Point to data to be fetched.
IMM mode

Clear RDRF bit if set.
EXT mode

Get f1rst data byte.
INX mode

Store data in SCI data register.
EXT mode

Read SCI status register.
EXT mode

Send data byte.
IMM mode

Wait for empty transmit data register.
REL mode

Read SCI status register.
EXT mode

Extract RDRF bit fram status register.
IMM mode

Branch true = SCI RDR not fu11.
Branch false = SCL RDR fu11.
REL mode
Read data from SCI RDR.
EXT mode

Store data byte.
INY mode

Increment fetch pointer.
INH mode

Increment storage pointer.
INH mode

Done sending data?
IMM mode

No, get next data byte.
EXT mode

Yes, stop here.
REL mode

Exit assembler/dissembler mode.

BF

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 47 1/17/01

Block Fill

BF <address1> <address2> <data>

where:

<address1> Lower limit for fill operation.
<address2> Upper limit for fill operation.
<data> Fill pattern hexadecimal value.

EXAMPLE DESCRIPTION

>BF C000 C030 FF

Fill each byte of memory from C000
through C030 with data pattern FF.

>BF C000 C000 0

Set location C000 to 0.

CALL
Execute
Subroutine

CALL [<address>]

where: <address> is the starting address where user program subroutine execution begins.

EXAMPLE DESCRIPTION

>CALL C000

Execute program subroutine.

P-COOO Y-DEFE X-F4FF A-44 B-FE
C-DO 5-004A

Displays status of registers at time
RTS encountered (except P
register contents).

G(GO)
Execute
Program

G [<address>]

where: <address> is the starting address where user program execution begins.

EXAMPLE DESCRIPTION

>G C000

Execute program subroutine.

P-COOO Y-DEFE X-F4FF A-44 B-FE
C-DO 5-004A

Displays status of registers at time
RTS encountered (except P
register contents).

HELP
Help Screen

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 48 1/17/01

HELP
Display monitor commands

MD
Memory Display

MD [<address1> <address2>]

Display a block of user memory beginning at address 1 and continuing to address 2.

EXAMPLE

>MD C000 C00F

C000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

MM
Memory Modify

MM [<address>]

Examine/Modify contents in user memory at specified address in an interactive manner

EXAMPLE DESCRIPTION
>MM C700 Display memory location C700.
C700 44 66(RETURN) Change data at C700
>MM C000
C000 55 80 C2 00 CE C4

Examine location $C000.
Examine next 1ocation(s) using (SPACE BAR).

MOVE
Block Move

MOVE <addressl> <address2>) [<dest>]

where: <address1> Memory starting address.
 <address2> Memory ending address.
 [<dest>] Destination starting address (optional).

Copy/move memory to new memory location. If the destination is not specified, the block of data residing from
addressl to address2 will be moved up one byte.

EXAMPLE DESCRIPTION
>MOVE E000 E7FF C000 Move data from locations $E000-$E7FF to

locations $C00D-$C7FF.
>MOVE C000 C0FF Move data from locations $C000-$C0FF to

locations $C001-$C100.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 49 1/17/01

RM
Register Modify

RM [p,y,x,a,b,c,s]

The RM command is used to modify the MCU program counter (P), Y index (Y), X index (X), A accumulator (A), B
accumulator (B), Condition Code Register (C), and stack pointer (S) register contents.

EXAMPLE DESCRIPTION
>RM
P-C007 Y-7982 X-FF00 A-44 B-70 C-C0 S-0054
P-C007 C020

Display P register contents.

Modify P register contents.

>RM X
P-C007 Y-7982 X-FF00 A-44 B-70 C-C0 S-0054
X-FFOO C020

Display X register contents.

Modify X register contents.

T
Trace

T[<n>]

Where: <n> is the number ($1~$FF) of instructions to execute.
Monitor program execution on an instruction-by-instruction basis. Execution starts at the current program counter
(PC).

EXAMPLE DESCRIPTION
>T
Op-86
P-C002 Y-DEFE X-FFFF A-44 B-00 C-00 S-0048

Single trace

Register contents after
execution.

>T2
Op-B7
P-C005 Y-DEFE X-FFFF A-44 B-00 C-00 S-004B
Op-01
P-C006 Y-DEFE X-FFFF A-44 B-00 C-00 S-004B

Multiple trace (2)

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 50 1/17/01

DEBUGGING TIPS

MICROCONTROLLER PROBLEMS

• Is the processor plugged into the PC serial port?
• Is the processor plugged into the power supply?
• Is the power supply turned on?
• Is the serial port plugged into the correct connector?

HARDWARE PROBLEMS

• Does the component have power? - Check all voltages
• Are the chips oriented correctly - notch in the correct direction?
• Do the chips straddle the gap in the center of the board?
• Make sure all chips have power (not just input & output lines).
• Verify the direction of diodes and electrolytic capacitors.
• Verify the power at intermediate locations - use 5 or 0 volts from the supply instead of chip input to

check various conditions.
• Verify that the PC ports are giving the expected output signals.
• Verify chip and transistor pins with the pin diagrams.
• Are there any "open" lines, no voltage connection instead of zero volts?
• Verify resistor codes and capacitor values.

SOFTWARE PROBLEMS

• Is the correct program currently in memory?
• Is the correct starting location being used (G ????).
• Verify the program with ASM.
• Use trace (T) to step through and verify branches, jumps and data.
• Compare memory locations with expected information after the program stops.
• Insert SWI at a key location to allow verification of branch, memory and accumulator values.
• Do branches and jumps have the correct offsets?
• Have RET and RTI commands been reversed somewhere?
• For serial communications, has TE or RE been set?
• For serial communications, has TDRE or RDRF been reset?
• For parallel port C, has 1007 been set for input or output?
• Has the interrupt mask been cleared (CLI)?
• Has the stack pointer changed substantially?

Use the BUFFALO commands to do step-by-step (Trace, T) and Break-Point (BR) execution of the
program. Press F1 for details of the BUFFALO commands.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 51 1/17/01

REGISTERS INFORMATION

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 52 1/17/01

PARALLEL PORTS
(Section 7 of the M68HC11 Reference Manual)

Parallel communication is communication that occurs simultaneously on many lines -- thus the word,
parallel. It is used most often when the communicating devices are local to one another. For the
MC6811, there are two parallel ports to which the user has direct access: Port B and Port C. Since
MC6811 is an 8-bit microcontroller, each of these parallel ports has 8 bits. That is, each of the parallel
ports has eight separate wires coming out of the microcontroller, one wire for each bit of data.

The two parallel ports are configured differently. Parallel Port B is restricted to output- only applications.
Parallel Port C can be used for either input or output. Moreover, in Parallel Port C, not all bits have to
be the same type of communication. For example, the first four bits of Parallel Port C (PC0 - PC3) can
be set to read input, while the last four bits of Parallel Port C (PC4 - PC7) can be set to send output
information.

To use these parallel ports, a program must load and store specific numbers to special memory
locations. These memory locations are referred to as control registers. There are three different control
registers, which are related to Parallel Port operation, one related to Parallel Port B, and two related to
Parallel Port C.

As Parallel Port B is output only, there is only one thing, which needs to be specified: the output data.
This will be a signal of either 5V or 0V for each line in the Parallel Port. A 0 corresponds to 0V; a 1
corresponds to 5V. To send desired data out Parallel Port B, store the two-digit hexadecimal number
corresponding to the eight bits of data that you wish to output into memory location $1004. This one
action specifies the output voltage on the eight separate output lines.

For Parallel Port C, two aspects of parallel communication must be specified. These are the data
direction for each pin (whether a pin is input or output) and the actual data for each pin. The data
direction for each pin is specified by storing a two-digit hexadecimal number corresponding to the data
direction of each individual pin into memory location $1007. A 0 corresponds to input; a 1 corresponds
to output. The specific data for Parallel Port C is in memory location $1003. If the pin is output, then the
value in that bit location indicates the voltage currently sent out that pin. The behavior of Parallel Port C
in output is the same as Parallel Port B. Changing the value of the bit changes the value of the output
voltage. If the pin is input, the value in that bit location indicates the voltage currently being measured
on that pin. Writing to an input pin has no effect.

DO NOT SEND AN INPUT SIGNAL INTO A PIN SPECIFIED FOR OUTPUT!!! THAT WILL FRY THE
CHIP!!!

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 53 1/17/01

THRSIM11 SIMULATION OF PARALLEL COMMUNICATION
The specific windows that need to be open during the THRSim11 simulation of parallel communication
are:

• Port registers

• Port B pins

• Port C pins

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 54 1/17/01

THE THRSIM11IO BOX
The THRSim11 IO box is use, among others, to perform the simulation of Port B and Port C functions.

Port B, which is only an output port, is simulated as the eight LED’s PB0, PB1, … , PB7. When a logical
1 signal is sent to a Port B pin, PBx, the corresponding LED lights up (becomes red).

Port C pins (PC0, PC1, … , PC7) can be selected as either input or output using the DDRC register bits
in your program. When selected as input (DDRCx = 0, x = 0, 1, … , 7), the switches are used to send
signals into the MCU along the PCx line. When selected as output (DDRCX = 1), the switches flip up
and down according to the value on that PCx line. (up = 1, down = 0)

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 55 1/17/01

ASCII AND BCD CODES

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 56 1/17/01

SERIAL COMMUNICATIONS
(Section 9 of the M68HC11 Reference Manual)

Serial communications are used when one bit is sent at a time. All the data is transferred on one line;
the bits are transferred sequentially, making serial communication much slower than parallel
communication. The data is specified by holding each bit at a certain voltage for a certain period of
time. The data is usually sent in character format using the 7-bit ASCII (American Standard Code for
Information Interchange) code. It specifies a 7 bit binary code for commonly used characters. To put the
7-bit ASCII into an 8-bit byte, one fills the 8th bit with 0.

The data byte being sent is bracketed by two bits, the start bit (0V) and the stop bit (5V). An idle line
has a voltage of 5V. Each data byte is prefixed by a 0V start bit. The data bits are then sent from the
least significant bit to the most significant bit. At the end, a 5V stop bit is added. All bits are held for the
same amount of time. The time is specified by the BAUD rate (bits/sec).

MC6811 has the capacity to receive and transmit data through the serial communication interface. The
selection of receive and/or transmit modes is done by setting to 1 the RE and TE bits in the Serial
Communication Control Register #2 (SCCR2) (memory location $102D, bits 2 and 3). Simultaneous
selection of both receive and transmit modes is permitted, since MC6811 has separate lines for
reception and transmission (RxD and TxD through port D pins PD0 and PD1, respectively).

 In the receive mode, the Receive-Data-Register-Full (RDRF) indicates when serial communications
data has been received (RDRF=1). RDRF is bit 5 of the Serial Communication Status Register (SCSR)
at memory location $102E. When serial communications data is received, it gets placed in the Serial-
Communication-Data-Register (SCDR) (memory location $102F). As a user, you would normally check
RDRF until found equal to 1, then load the data from SCDR into an accumulator. This sequence of
reading RDRF=1 and loading data from SCDR will trigger the clearing of RDRF (i.e., will make
RDRF=0). For this reason, it is called "clearing sequence". In this way, MC6811 becomes ready for the
reception of the next serial communication data.

Transmission of data from MC6811 also uses the Serial-Communication-Data-Register (SCDR). Before
placing new data in SCDR for transmission, one must first make sure that SCDR is empty, i.e., it has
finished transmitting previous data. This verification is done by checking the value of Transmit Data
Register Empty (TDRE) bit (memory location $102E, bit 7). If TDRE = 0, then MC6811 is still
transmitting data through the serial communication interface. If TDRE = 1, then transmission has
finished, and the data register is empty and ready to receive new data for transmission. When data is
stored into SCDR for transmission, MC6811 automatically adds the start and stop bits to the data,
sends the data out through the serial communication interface, and, after transmission is complete,
makes TDRE=1. The clearing sequence for TDRE consists in reading TDRE=1 followed by storing of
data into SCDR. Subsequently, MC6811 starts serial communication transmission of the data placed in
SCDR.

Interrogating the value of specific bits in SCSR (RDRF, TDRE, etc.) can be done in a number of ways.
One way could be to AND the contents of SCSR with the appropriate mask and use a BEQ instruction
to loop back if the result is zero (i.e., if the interrogated bit is not yet set). For RDRF (bit 5), the mask is
#20. For TDRE (bit 7), the mask is #80. However, there are also other ways of branching in correlation
with the status of specific bits (e.g., instructions BRCLR, BRSET, etc.). Feel free to experiment!

Serial communication is critical to the operation of modern computers. This is how keyboards
communicate with the computer, and how you will control your programs during labs and project.

NOTE: Please, see Section 9 of the M68HC11 Reference Manual for more detailed information on
serial communication.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 57 1/17/01

THRSIM11 SIMULATION OF SERIAL COMMUNICATION
The specific windows that need to be open during the THRSim11 simulation of serial communication
are:

• Serial registers

• Serial transmitter

• Serial receiver

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 58 1/17/01

THE THRSIM11 SERIAL TRANSMITTER
The THRSim11 serial transmitter simulates the PC keyboard in the lab. It sends characters to the MCU.
During simulation, with your program running, type a character in the transmitter and press the Send
button. The MCU should receive it and react according to your instructions.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 59 1/17/01

THE THRSIM11SERIAL RECEIVER
The THRSim11 serial receiver acts like the PC monitor in the lab. It receives signals sent by the MCU.
With your program running, and the serial receiver window open, you should see a character displayed
in the receiver window every time the MCU transmits a character while executing your program.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 60 1/17/01

TIMER FUNCTIONS
(Section 10 of the M68HC11 Reference Manual)

Timer functions allow the microcontroller to determine "time" by counting the number of machine cycles
between events. The timer is based on the Timer Counter register (TCNT, $100E - $100F). The timer
counter register increments once every machine cycle. Once the timer counter register reaches #FFFF,
the next machine cycle causes the register to "overflow" (go from #FFFF to #0000). To let the user
know that this has happened, the microcontroller sets a flag, TOF, the Timer Overflow Flag (bit 7 of
$1025). 1 implies that there has been a timer overflow; 0 implies that there has not been a timer
overflow. To use TOF as a counting tool, you must clear TOF. Here, clearing TOF is obtain by writing a
1 to it (unusual, but true for all timer flags: see Section 10.2.4 on page 10-14 in the Reference Manual).
When clearing a flag, it is important that you do not interfere with the other bits in the register!

The timer is also linked to external lines, allowing the microcontroller to record the value of the timer
counter when an input voltage changes. These functions are called input capture functions. They detect
a signal transition. At the time that the signal transition is detected, the input capture function
automatically records the value in the timer counter in a separate memory location and sets a flag,
ICxF, to let the user know that there has been an input capture. Value 1 implies that there has been an
input capture; 0 implies that there has not. Each flag is cleared by writing a 1 to the flag in the control
registers. The type of signal transition that causes an input capture is determined by the edge bits,
EDGxB and EDGxA. Because these two bits act together, there are four different modes for each input
capture: disabled; low-to-high detection; high-to-low detection; and both low-to-high and high-to-low
detection. MC6811 has three individual input captures. All act in the same way, with separate memory
locations, EDG bits, and ICF's.

Another timer function is the output compare function. When the value in the timer counter register
reaches the value in the output compare register, the microcontroller sends a signal out on the selected
pin. In essence, the microcontroller schedules when to send the signal out. There are four commonly
used output compares on the MC6811. They are OC2, OC3, OC4, and OC5. As the timer is a two byte
register, each of the output compare registers is a two-byte register. To set a value for output compare,
simply store the two-byte number to the output compare registers. Once the timer counter reaches the
value in a timer output-compare register, an OCxF (output compare flag) is set to let the user know that
an output compare has occurred. 1 indicates that output compare has occurred; 0 indicates that output
compare has not occurred. To clear an output compare flag, write a 1 to OCxF. The signal sent out of
the microcontroller on output compare is controlled by two bits acting together, the OMx and OLx bits.
The four available options are: (i) disabled; (ii) send out 0V; (iii) send out 5V; and (iv) toggle the output
voltage. Each of the timer output-compare functions has output compare registers, OM and OL bits,
and output compare flags in the control registers.

The timer counts and measures events in terms of machine cycles. In Lab 3, you measure the clock
speed of the microcontroller. In essence, you calculate a conversion factor between machine cycles
and real time. Using the timer functions of the microcontroller and the conversion factor that you derive,
you can use the microcontroller for data acquisition involving time measurement.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 61 1/17/01

THRSIM11 SIMULATION OF TIMER FUNCTIONS
The specific windows that need to be open during the THRSim11 timer functions simulation are:

• Timer registers

• Port A pins

• Number of Clock cycles

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 62 1/17/01

ANALOG-TO-DIGITAL CONVERSION
(Section 12 of the M68HC11 Reference Manual)

An analog-to-digital converter (A/D) takes an analog voltage, such as those produced by many
electronic measuring devices, and converts it to a digital value. MC6811 has an 8-bit analog-to-digital
converter. The range of measurement is from 0V to 5V. This allows the microcontroller to interface with
such devices as potentiometers, cermets, thermocouples, LVDT's, etc. MC6811 has many different
ways that analog-to-digital conversions can be made, as there are 8 separate lines (or channels) that
the A/D can utilize. All of the options are controlled by one control register, ADCTL, in $1030. The
results of the A/D conversions are stored in four separate memory locations, $1031, $1032, $1033, and
$1034 -- ADR1, ADR2, ADR3, and ADR4, respectively.

There are two different modes that MC6811 can use to take data. These are determined by the value of
SCAN, bit 5 in $1030. If SCAN = 1, then the microcontroller continuously scans for data along the A/D
lines. Every time a new measurement is made, the data is stored in the appropriate memory location. If
SCAN = 0, then four conversions are made, one on each specified line. The results of these four
conversions are stored in the specified memory locations. As soon as all four conversions are
completed, the A/D stops making conversions.

The lines specified to take data are determined by bits CD - CA, bits 3 - 0 in $1030. The meanings of
these bits are specified by MULT, bit 4 in $1030. If MULT = 0, then four consecutive conversions are
performed on the same data line. The results of the conversions are stored in ADR1 - ADR4. CD - CA
specify the single line for all four conversions. Table 12 - 1 shows the values of CD - CA for each input
line. If MULT = 1, then one conversion is made on each of four separate lines. The results are stored in
ADR1 - ADR4. Only CD and CC have any effect in determining which four lines take the data. The four
lines and the location of the A/D data are shown in Table 12 - 1.

To start the A/D conversions, write the value to $1030 that configures SCAN, MULT, CD, CC, CB, and
CA for the desired data acquisition. This action automatically clears the Conversion Complete Flag,
CCF in ADCTL (bit 7 of $1030). CCF is set when four A/D conversions are completed. If SCAN = 1,
CCF is set after the first four conversions are completed and remains set until a subsequent write to
ADCTL ($1030). There is no interrupt for CCF. As such, polling operations must be used to monitor
CCF. Once the microcontroller has completed the conversions, CCF is set. The data in ADR1 - ADR4
represents valid conversion values. It takes 128 machine cycles to make four eight-bit conversions. At 2
MHz, this is an impressive data acquisition rate.

There are many types of A/D conversion techniques. MC6811 uses a successive approximation
technique. Some other types of A/Ds are the counter, integrative and flash A/Ds.

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Dr. Victor Giurgiutiu Page 63 1/17/01

THRSIM11 SIMULATION OF ANALOG TO DIGITAL CONVERSION
The specific windows that need to be open during the THRSim11 simulation of analog to digital
conversion are:

• AD converter registers

• Sliders E port

