EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

PROGRAMMING THE MICROCONTROLLER

ASSEMBLY LANGUAGE
Assembly language is of higher level than machine language and hence easier to use.

An assembly language code consists of
a) Program statement lines
b) Comment lines

A program statement is a line that contains 4 fields in the following format:

[<LABEL>] [<OPCODE MNEMONIC>] [<OPERANDS>] [;<comments>]
or
[<LABEL>] [<DIRECTIVE MNEMONIC>] [<OPERANDS>] [;<comments>]

where [] indicates an optional field that may not be always required. The fields are separated by a tab
or space. (Tab is recommended, since it ensures an orderly appearance to your code. For the same
reason, when afield is not used, the tab or blank should still to be used, such that the fields of the same
type stay aligned in same columns.) When writing <LABEL>, <OPCODE MNEMONIC> or <DIRECTIVE
MNEMONIC>, and <OPERANDS>, use upper case characters. When writing <comments>, use lower
case.

The <OPCODE MNEMONICS> correspond to the microcontroller opcodes. These mnemonics are
found in the Motorola MC68HC11 programming reference guide and related literature.

The <DIRECTIVE MNEMONICS> are native to the Assembly language. A list of directives is given in
Table 1. The directives that you will use often are shown in bold.

Table 1 Assembler directives

Name of Assembler directive what it does Alias for
END end program

DB define bytes FCB
DW define words FDB

DS define storage RMB
EQU equate

FCB form constant byte

FCC form constant characters

FDB form double bytes

ORG set origin

RMB reserve memory bytes

#INCLUDE include source file

SINCLUDE include source file #INCLUDE

The <OPERAND> contains a value, an expression, an address, or a label that the opcodes or the
directives need. The operand could be up to 4 bytes long, separated by commas. Some opcodes or
directives do not require operands (inherent mode).

Dr. Victor Giurgiutiu Page 18 1/17/01

EMCH 367

Fundamentals of Microcontrollers

367pck S01.doc

The constants used in the <OPERAND> can be hex, decimal, binary, or octal numbers. Table 2 gives

the assembler symbols used to this purpose.

Table 2 Assembler symbols for constants

Symbol Meaning Example

$<number> hex number $A1

<number> decimal number 20

%<number> binary number %11001010

@<number> octal number @73

‘<string>’, ‘<string> ASCII string ‘A’ or ‘A (the latter does not work with #INCLUDE)

The expressions used in the <OPERAND> can use any of the operators listed in Table 3

Table 3 Assembler symbols for expressions

Symbol Meaning Example
- unary minus -4
& binary AND %11111111&%10000000
! binary OR %11111111!9%10000000
* multiplication 3*$2A
/ division $7E/3
+ addition 1+2
- subtraction 3-1
() parentheses used for grouping 3*(1+2)

Important conventions used in the <OPERAND?> are given in Table 4:

Table 4 Other important conventions

Symbol Meaning Example
immediate mode (IMM) #$A3
; start of comment line and of comment inside LDAA #SFF : Load accA
a program statement
* alternate sign for start of comment line only | * This is a comment
X index X mode (IND,X) LDAA TFLG1,X
Y index X mode (IND,Y) LDAA TFLG2)Y

Dr. Victor Giurgiutiu

Page 19

1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

The <LABEL> is a very powerful concept that can greatly simplify the programmer’s task. The
<LABEL> consists of a string of alphanumeric characters that make up a name somehow meaningful to
the programmer. The placement of the <LABEL> can be in one of the following positions:

a) In the first column and terminates with a tab or blank character
b) In any column and terminates with a colon (:)
There are 3 different usages of the <LABEL>:

1) To assign the name inserted in the <LABEL> to a location in a program. The <LABEL>
will be assigned the address of that location

2) To assign the value of an expression or constant to the name inserted in the <LABEL>
using the EQU (equate) or SET directives.

3) To define the name of a subroutine (macro). Essentially, this is the same as 1), since an
address (the subroutine starting address) is assigned to the label.

When labels are assigned to certain addresses, one can tell the program to go to that address by
referring to the label (case 1 above). Alternatively, one can use the contents of a certain address by
referring to its label, just like when using variables (case 2 above).

A comment is prefixed by semicolon (;).When the assembler detects an semicolon, it knows that the
rest of the line is a comment and does not expect any executable instructions from it. A comment can
be a separate line (comment line) or can be inserted in a program statement. A comment line can be
also prefixed by an asterisk (*). The comments, either in the comment field or as a separate comment
line, are of great benefit to the programmer in debugging, maintaining, or upgrading a program. A
comment should be brief and specific, and not just reiterate its operation. A comment that does not
convey any new information needs not be inserted. When writing a comment, use lower case
characters.

A program written in Assembly language is called source file. Its extension is .ASM. When the source
file is assembled, two files are generated:

a) Obiject file that can be run in the microcontroller. The Motorola object file is in ASCII-HEX
format. Its generic name is “S19 file’. Its extension is .S19

b) List file, extension .LST, that contains the original code in Assembly language and the
corresponding hex codes resulting from the Assembly process. The list file is used by the
programmer to verify and debug his/her coding of the program.

The .ASM files can be opened, viewed, edited and saved in the THRSIM11 application. Alternatively, all
three file types (.ASM, .LST, .S19) can be also processed in a text editor, e.g., the Notepad application.
Examples of .ASM and .LST files follow.

Addressing Modes

Inherent Mode is implied and requires no programming action.
Immediate Mode means that the number contained in the operand will be immediately used.

Direct and Extended Modes use the number contained in the operand to signify an address where the
required information should be retrieved from or deposited to. The Extended mode is automatically
used for addresses greater than FF.

Index Mode is used by adding the operand to the value already existing in the Index X or Y, as
selected. In this case, the operand acts as an offset.

Relative Mode uses the operand as an offset relative to the present Program Counter value.

Dr. Victor Giurgiutiu Page 20 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

MICROCONTROLLER COMMANDS
(Section 6 and Section A of M68HC11 Reference Manual)

The 6811 microcontroller has 145 different commands. These commands can be grouped into several
categories. The categories and the commands in those categories are listed below:
1) Arithmetic operations:
a) Addition:
ABA, ABX, ABY, ADCA, ADCB, ADDA, ADDB, ADDD, INC, INCA, INCB, INS, INX, INY
b) Subtraction:
SBA, SBCA, SBCB, SUBA, SUBB, SUBD, DEC, DECA, DECB, DES, DEX, DEY
c) Multiplication: MUL
d) Division: FDIV, IDIV
2) Logical operations: (note: logical operations are carried out on a bit by bit basis)
a) Standard logical operations: ANDA, ANDB, EORA, EORB, ORAA, ORAB, COM (Boolean
inverse), COMA, COMB

b) Operations that shift the location of the bits in the register:
ASL, ASLA, ASLB, ASLD, ASR, ASRA, ASRB, LSL, LSLA, LSLB, LSLD, LSR, LSRA, LSRB,
LSRD, ROL, ROLA, ROLB, ROR, RORA, RORB

c) Operations that compare two numbers:
BITA, BITB, CBA, CMPA, CMPB, CPD, CPX, CPY

3) Branching commands: BCC, BCS, BEQ, BGE, BGT, BHI, BHS, BLE, BLO, BLS, BLT, BMI, BNE,
BPL, BRA, BRCLR, BRN, BRSET, BSR, BVC, BVS, JMP, JSR, RTS, RTI, WAI

4) Memory/Register Functions
a) Move data into / out of memory: LDAA, LDAB, LDD, LDS, LDX, LDY, STAA, STAB, STD, STS,
STX, STY

b) Change the values in memory/registers: BCLR, BSET, CLC, CLI, CLR, CLRA, CLRB, CLV,
COM, COMA, COMB, NEG, NEGA, NEGB, SEC, SEI, SEV

c) Transfer data from one register to another: TAB, TAP, TBA, TPA, TSX, TSY, TXS, TYS,
XGDX, XGDY

5) Stack Pointer Functions: PSHA, PSHB, PSHX, PSHY, PULA, PULB, PULX, PULY
6) Misc.: NOP, SWI

Note: Boolean inversion commands: COM, COMA, COMB

Dr. Victor Giurgiutiu Page 21 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

SAMPLE PROGRAM IN ASSEMBLY LANGUAGE WITH MCU COMMANDS

PROBLEM STATEMENT
This simple program is an example of addition. It performs the operation:
VARO + VAR1 - SUM
In addition, the program checks if an overflow happened during the addition process, and sets the flag
OVERFL accordingly.
PROGRAM DESCRIPTION

The variables are defined in lower memory starting with $0000, in the order VARO, VAR1, SUM,
OVERFL.

LDAB with zero is used to reset the initial value of the overflow flag (optimistic!).

LDAA is used to load VARO into AccA

ADDA is used to add accA with VAR1. Result of addition stays in accA

BVC is used to branch over the next instruction, i.e. to LABEL1, if no overflow occurred

If an overflow occurred during the addition process, this instruction is reached and COMB is
used to invert accB from $00 to $FF.

Labell: STAA is used to store the result of addition from accA into SUM

STAB is used to store accB ($00 or $FF, depending on the logic just discussed) into the
overflow flag OVERFL

FLOWCHART
ELOWCHART
Initialize variables:
VARO > $0000
VAR1 > $0001
SUM > $0002
OVERFL = $0003

Load $00 into accB as the initial (optimistic)
guess for the overflow status

Load first variable into accA
Add second variable to accA
(result stay in accA)

Brach if overflow bit
is clear

Since overflow bit was not clear, Invert accB |

e

=
Store result of addition from accA into SUM
Store current value of overflow flag from

accB into OVERFL

SWI

Dr. Victor Giurgiutiu Page 22 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

ASSEMBLY (.AsM) CODE

DEMO. ASM

This sinple program adds the contents of

address $0000 (| abeled VARO) to the contents of
address $0001 (I abel ed VARL) and stores the resulting
sum at address $0002 (| abel ed SUM, provided

the addition process happens w thout overf | ow.

If an overflow occurs during the addition process,
the overflow flag OVERFL (stored at address $0003)

is set to $FF; else, it stays $00.

L T I R

* Include definition of variables for MOG68HC11

#| NCLUDE " A\ VAR _DEF. ASM
* Define program vari abl es
ORG DATA
VARO RVB 1 ;reserve 1 byte for VARO
VARL RVB 1 ;reserve 1 byte for VARL
SUM RVB 1 ;reserve 1 byte for sum
OVERFL RMB 1 ;reserve 1 byte for overflow fl ag

* Start main program

ORG PROGRAM

LDAB #00 ;assume no overflow (optimstic!)

LDAA VARO ;load VARO in accunul ator A

ADDA VARL ;add VARL to accumul ator A

BVC LABEL1 ;junmp if no overfl ow
* W have overfl ow

CovB ;Invert accunulator B ($00 to $FF)
LABEL1 STAA SUM ;store result of addition

STAB OVERFL ;store accB into overflow flag

SW ;stop the microcontroller

LiST (.LST) OUTPUT RESULTING AFTER ASSEMBLY

list# address object label opcode operand comments
or
directive

DEMO. | st - generated by MnilDE s ASML2 V1.07b Build 52 [12/29/1999, 16: 30: 49]

1: *12456789012345678901245678901234567 890124567890123456789
2:

3: * DEMO. ASM

4: * This sinple program adds the contents of

5: * address $0000 (Il abel ed VARO) to the contents of

6: * address $0001 (Il abeled VARL) and stores the resulting
7: * sum at address $0002 (| abel ed SUM, provided

8: * the addition process happens without overfl ow

9:

10: * |f an overflow occurs during the addition process,

11: * the overflow flag OVERFL (stored at address $0003)
12: * is set to $FF; else, it stays $00.

13:

Dr. Victor Giurgiutiu Page 23 1/17/01

EMCH 367

14:

1:

2

3: 0000
4: c000
5: fffe
6: 1000
7

8: 0000
9: 0002
10: 0003
11: 0004
12: 0005
13: 0007
14: 0008
15: 0009
16: 000a
17: 000b
18: 000c
19: 0ood
20: 000e
21: 0010
22: 0012
23: 0014
24: 0016
25: 0018
26: 00la
27: 001c
28: 001le
29: 0020
30: 0021
31: 0022
32: 0023
33: 0024
34: 0025
35: 0026
36: 0027
37: 0028
38: 0029
39: 002a
40: 002b
41: 002c
42: 002d
43: 002e
44 002f
45: 0030
46: 0031
47: 0032
48: 0033
49: 0034
50: 0039
51: 003a
52: 003b
53: 003c
54: 003d
55: 003e
56: 003f

Dr. Victor Giurgiutiu

DATA
PROGRAM
RESET
REGBAS

PCORTA
Pl OC

PORTC
PCORTB
PORTCL

PORTD

PORTE
CFORC
CC1IM
CC1D
TCNT
TIC1
TIC2
TIC3
TOC1
TOC2
TOC3
TOCA
TOCS
TCTL1
TCTL2
TiVBK1
TFLGL
TVBK2
TFL&2
PACTL
PACNT
SPCR
SPSR
SPDR
BAUD
SCCR1
SCCR2
SCSR
SCDR
ADCTL

ADR4
CPTI ON
COPRST
PPROG
HPRI O
INNT
TEST1
CONFI G

* Include definition of variables for
* Define variables used by MC68HC11 m crocontroller

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

Fundamentals of Microcontrollers

$0000
$0000
$FFFE
$1000

$00
$02
$03
$04
$05
$07
$08
$09
$0A
$0B
$0C
$0D
$0E
$10
$12
$14
$16
$18
$1A
$1C
$1E
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A
$2B
$2C
$2D
$2E
$2F
$30
$31
$32
$33
$34
$39
$3A
$3B
$3C
$3D
$3E
$3F

;start of data
;start of program
;reset vector
;regi ster base

Page 24

367pck S01.doc

1/17/01

EMCH 367

list#

57:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34

Synbol s:
dat a

| abel 1
overfl
program
sum
var 0

var 1l

address

c000
c002
c004
c006

c008
c009
c00b
c00d

*0000
*c009
*0003

*c00

*0002
*0000
*0001

Dr. Victor Giurgiutiu

Fundamentals of Microcontrollers 367pck S01.doc

object label opcode operand comments
or
directive

*12345678901234567890123456789012345678901234567890123456789

#| NCLUDE " A\ VAR _DEF. ASM
* Define program vari abl es
ORG DATA

VARO RVB 1 ;reserve 1 byte for VARO

VARL RVB 1 ;reserve 1 byte for VARL

SUM RVB 1 ;reserve 1 byte for sum

OVERFL RMB 1 ;reserve 1 byte for overflow fl ag

* Start main program

ORG PROGRAM

c6 00 LDAB #00 ;assume no overflow (optimstic!)
96 00 LDAA VARO ;load VARL in accumul ator A
9b 01 ADDA VARL ;add VAR2 to accunul ator A
28 01 BVC LABEL1 ;junmp if no overfl ow

* W& have overfl ow
53 COvB ;Invert accumul ator B ($00 to $FF)
97 02 LABEL1 STAA SUM ;store result of addition
d7 03 STAB OVERFL ;store accB into overflow flag
3f SW ;stop the microcontroller
0

Page 25 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

THRSIM11
You need to install this software on your PC.

THRSIM11 OPTIONS SETUP

Before you run the simulator first time on a certain PC, set the Options as shown it the following
windows:

e THRSim11

s Edl Zoawh hee Epeciie Labal Hieakpanl Confact - windea Help

Asgzembler options
g afy
1 C:ip_ Do comen 0 et LS Co e sE MCH 30T SpeinglinLsbr LA LSRR P DASH — A e : i bl
2 Cicunment el o IS DD E W CHEETYS p g0 Labe 'L ah P LAE P 104EM ssembler input seembler output
1cy i
4 Do el ko LIS C Wi EMCH 2675 prnliL kst sl &P 1LAGH Default numsral system I Listfile
g:::?.:: v 1% | [Frelide ate] e
g;‘mm H " Hexadecimal [T Expardiciidedities
9 Resslance 419
Ext Akl :
o ™ 519l
% AN LWERE LT YV 0O F % H Wl VE R 0k I Cancel Help
GlLig SOUTH(ARO : ..g’i fin SOUTH(C

Statusbar options I
Simulator options

= Show in Statuzbar

— On opening a 519 file
¥ Fegister &
™ Bemove currently set labels before loading v Register B
[T Feset BBHCTT after lnading ¥ Condition Code Register
¥ Index Fiegister %
¥ Index Reqgister ¥

¥ Stack Pointer
— Reset optiohs v

¥ Look for aLST or MAP file to load new labels

Program Faointer
¥ Mumber of Clock Cycles

ok | cancel | Heb | oK | B Help

Immediately after opening the THRSim11 program, close the Commands window. You will not use in
this course, unless otherwise specified.

Dr. Victor Giurgiutiu Page 26 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

GETTING STARTED WITH PROGRAMMING
Take a formatted empty floppy disk write on the label:
EMCH 367
LASTNAME, Firstname
Email address
Contact telephone #
This way, if you loose the disk, there is a good chance that you might have it recovered.

Download the template.asm file and place it on the floppy disk. This template will always be a good to
start your programming.

Download the file VAR_DEF.ASM and place it in the root of the directory structure on your floppy disk.
(This will allow the programs to find it when executing the instruction #NCLUDE ‘A:VAR_DEF.ASM'.

Download example files from the course website onto this disk. (For safety, make copies into your
folder or PC.)

USING THE TEMPLATE.ASM FILE

An .asm template file is available on the course website. This template has the required instructions to
make your program interface properly with the simulator. When generating a new program, open the
template.asm file, save it under the new name you want to create (remember to save on a secure area,
preferably your floppy disk), and then start typing in your program in the indicated area.

. THRSim11 - [template.asm]) |
‘@ Eile Edit Search Miew Execute Label Breakpoint Connect Window Help

e3[exfviea | po| i (0| 1 Pl B[0¢li s >

* LASTHAME, Firstname
#IHCLUDE "A:\VAR_DEF .ASH"

= Define program variables
ORG DATA

= Start of main program
ORG PROGRAM

START HOP

= Begin typing your code

* End of main program

SHI
ORG $FFFE : reset vector
FDB START ; set to start of progranm

After you type and save your program (save as often as you can, use Ctrl S for productivity), assemble
the program and test run it.

Dr. Victor Giurgiutiu Page 27 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

SCREEN/WINDOW CAPTURE

To capture the image of a window or of the complete screen:

Press Alt + PrintScreen to capture the image of the window that is currently active.
Press PrintScreen to capture the image of the entire screen.
The captured image can be viewed on the clip board.

To paste the captured image into a document:

In the document window, on the Edit menu, click Paste. Alternatively, use Ctrl + V.
Note: In most cases, you will need to capture just the active window, using Alt + PrintScreen.

DEFAULT WINDOWS

Default windows are either (*.LST, *.asm, and CPU registers), or (*.LST, *.asm, Memory list, and CPU
registers), as shown below. In the memory list, standard labels are shown. However, they can be
removed if you use the pull down menu command Label/Remove all.

=8l =l
0 Dl gperch ey Expcd Lbel ook Gt e [l
] i |)] o] R TN
= & ameieeast ﬂﬂiM =i0] x| TR — SETE
= LrsTHEME, Firstrape | T
= Btart of mais pregres ETFCLUDE TR LR BEF . REHT Ll
ORE FERORE - B fhdog
= Define program warisbles X fneec
= Hegin Lyping yoer cede ORE DETR T iTdar
TP EEIFF
FL icone
® Start of maim program EHER LT
ORG PESGREM
ITART HOF
® Regin typdng yowr cede
= Epdl of maln progean
joiEn af
R SFFFE 5 resel eecho
iFFFe cl 0@ FIE START seD Th sTar
= End oF main progran
NI
Ll SFFFE 3 resst wechbor
FDB STERT ; =eb to stsrt of progra
al = ||
| TR [el i) e DA e [PR e | [ihadoe -

Dr. Victor Giurgiutiu Page 28 1/17/01

EMCH 367 Fundamentals of

Db Gt Jemch yen [aooks (ebel prealpomnt Cgrrect Wrdeve Helo

Microcontrollers

367pck S01.doc

=Bl =l

Sl b] ()) o] v) SER Tl

T ool
=

= Etart of mals pragres

ORE PEAOR=

= Begin typing yowr code

= Endl of maln progean

joom aF Wl
aRE SFFFE 3 resel eector
FFFe cR 0@ FIE START § set Te sTarl ofF progran

LEE

LITCIE T
EEE
SFF
anin S6F
B0lc SFF

IITITIIIITITIIIITIIIIIIIIIIIIIIIIII
-
=
R

* LASTHAME . Firstnaae
3 [HCLWDE “HEVURE_DEF .Afe’

& Befine progran uasianies
= BATa

= Skart ofF nadn program
=0 FROSHAM
START Hap

= Begin typisy wour cose

= End of mais prograe
W

L
Fob

sel el
T [0 start of program

“
L
£3

r.mﬂ

o L1ve nsan

Dr. Victor Giurgiutiu

Page 29

1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

MINIIDE EMULATOR

MinilDE is an integrated development environment running under Windows 95/98/Me/NT/2000. It was
developed by MGTEK in Germany. It is a tool for developers of embedded software who write software
in assembler for Motorola's 68HC11 and 68HC12 microcontroller. MinilDE incorporates an editor and a
serial communication terminal. A command-line cross assembler, which is seamlessly integrated in the
IDE, is also included.

—— MimlIDE - [Untitled?.azm]

|A] File Edit “iew Buld Temminal Windaw Help - =] x|

[DEE|& |2 =e|RmE ||k || ek x

#INCLUDE 'A: -VAE DEF ASH' ;I

#[=fine program wariables
ORG DATA

*#*Start of main program
ORiG PROGEAM

START HOP

*Begin tvping wvour code

*End of main program
SWI

ﬂéSHll, 6EAHC11l Cros=s Assembler V1 .10 Build 17
AlTntitled? asm: 25 lines. 0 warnings, 0 errors. 0.015 seconds
Tool returned code: 0 9
x|
ki
Ready \Ln 5. Col 1 | NUM | 4

With MinilDE, user can edit compile and download program to microcontroller, then debug program
interactively. As shown above, a user can edit ASM program in editor window 1; then compile the
program, if there are syntax errors, warning messages will be shown in output window 2; at last,
download the program and interact with the microcontroller in terminal window 3 to debug and run the
program.

In this course, MinilDE is used to download codes into the MCU Evaluation Board (EVB). In this
context, it acts as a terminal program.

You do not need to install this software on your PC.

Dr. Victor Giurgiutiu Page 30 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

PROGRAMMING FLOW CHART

The programming flow chart is shown in the figure below. First, the source code is written in Assembly
language on the THRSim11 simulator. The simulator assembles the .asm code and generates a list file
(*.LST). The simulator is then used to step through the program and debug it until it performs the
intended functionality. All this can be done remotely, in the computer room, or on a personal computer.
Once the program has been debugged, it can be taken on a floppy disk to the EMCH 367 lab (A 235).
The MCU evaluation board (EVB) hardware is accessed through the MinilDE emulator software
installed on the lab computers. MinilIDE reads the .asm file from your floppy disk and transforms it into
machine language executable code (*.S19). This code is downloaded to the MCU. After downloading
the code into the MCU, you can make the MCU run your code using the MinilDE interface screens. The
MinilDE also generates a list file (.LST) that can be used during debugging.

Source code . .
ASSEMBLY LANGUAGE | ——» THRSIim11 ., List file
* asm Software * LST
MinilDE — List file
Software LST

Executable code
MACHINE LANGUAGE
*S19

A

MCU
EVB
Hardware

Figure 1 Flowchart of typical programming steps used in the EMCH 367 course.

Dr. Victor Giurgiutiu Page 31 1/17/01

EMCH 367 Fundamentals of Microcontrollers

Editor

Source-Program I

Assambler

Object—code file
{Object Module) -

. Backup Fite |
Assembiy Listing]

‘Assembly ~~.Yes

Y

Errors

-| Other Object-code
Fites

Linker

Library Files

L/ Exscutable
Module

Link

Link-map File

i

{Load Module)

Errors

-Logd Program
into Target System

Y

Debug and Test -

Y

Figure 2 Flowchart of typical programming steps in a generic programming environment.

Dr. Victor Giurgiutiu

Page 32

367pck S01.doc

1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

BINARY AND HEX NUMBERS

Note: To quickly grasp the use of binary and hex arithmetic, use your binary/hex pocket calculator and
the website http://homepage.ntlworld.com/interactive/BinaryAddition.html

The binary number system is a base-2 numbering system. In binary representation, any value is
represented using a combination of 1's and 0's. For example: 1415 = 1110, in binary. The subscript 10

on the first number indicates that the number 14 is represented in the decimal (base 10) system. The
subscript 2 on the second number indicates that 1110 is represented in the binary (base 2) system.

The binary representation is also called "digital". "Digit" also means finger, and you can imagine a
numbering representation in which you use your 8 digits to for number containing 1's and 0's. The
ability to represent numbers in terms of 1's and 0O's is important because it is the easiest most
unambiguous way to represent and communicate information. In a computer, a 1 is represented by a
"high" voltage (5V) and a 0 by a "low" voltage (~0V). The binary system is the backbone of all digital
computers and other high-tech applications.

THE BINARY SYSTEM

To understand how the binary system works, let's first examine how the conventional base-10 system
works. The base-10, or decimal, system constructs numbers using increasing powers of 10. For
example, the number 1354 is constructed using 3 powers of 10: 10°, 10*, and 10% These numbers

correspond to 1,10, and 100. The number 135, is constructed as:
1x100+3x10+5x1 or 1 x 102+ 3 x 101 + 5 x 100

The equivalent of number 135, in base two is 10000111,. This is constructed as:

1x128+0x64+0x32+0x16+0x8+1x4+1x2+1x1

or

1x27+0x26+0x2°9+0x24+0x23+1x22+1x21 +1x20
It can be seen that the only significant difference between the two systems is the base number.

Each one or zero in the binary representation is called a "bit". A collection of eight bits is called a "byte"
and, in a somewhat humorous note, a collection of four bits is called a "nibble". The bit associated with
the highest power of two is called the Most Significant Bit (MSB); the bit associated with the lowest
power of two is the Least Significant Bit (LSB).

z bit

itpobpbpohif byte (1 byte = 8 bits)

100 Hex number (nibble) (1 nibble = 4 bits)
1 002100001 2 nibbles = 1 byte

Dr. Victor Giurgiutiu Page 33 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

DECIMAL TO BINARY CONVERSION:

Because most people are more comfortable using, and thinking in, the decimal system, it is important to
know how to convert from the decimal to the binary system. This is most easily achieved through a
series of divisions by two and by tracking the resulting remainders. Let's consider out example of
13210:

132 +2 = 66 Remainder O

66 +2= 33 Remainder O

33+2= 16 Remainder 1 132,, = 10000100

16 +2 = 8 Remainder 0 / AN
8+2=14 Remainder O MSB LSB
4+2=2 Remainder O

2+2=1 Remainder O

1+2=0 Remainder 1

The remainder 1 resulting from the last division is the MSB, while the first remainder is the LSB of the
conversion. From this example we see that the decimal number 132 is equal to the binary number
10000100.

The conversion from binary to decimal is done in the same manner as the first example, by adding
together power of two values of the non-zero bits.

HEXADECIMAL (HEX) NUMBERS

As one might have already surmised, binary numbers quickly become long and hard to remember. For
this reason, it is more convenient to convert the binary values into hexadecimal numbers (hex).
Hexadecimal numbers are base 16 numbers. This requires six additional characters to represent the
values 10, 11, 12, 13, 14, and 15. These values will be represented by the letters A, B, C, D, E, and F.
The counting order in hex is: 0, 1, 2, 3,4,5,6,7, 8,9, A, B, C, D, E, F. The reason hex notations are
use is that it allows for a one to one correspondence between the 16-bit binary nibble and a single
hexadecimal value. If the binary number is broken down into nibbles, and each nibble is replaced with
the corresponding hexadecimal number, the conversion is complete. Consider 13215. The binary

number is 10000100. It can be broken down into two separate nibbles: 1000 and 0100. Convert each
nibble into the corresponding hex value (8 and 4, respectively), and the hex equivalent of 1321 is

8416. This is much more convenient to remember. For example, the hex number A23ES3 is easily
converted t0 10100010001111100011 in binary without using any difficult calculations.

To convert decimal to hex numbers it is easiest to convert the decimal number to binary and then
convert the binary to hex. In addition to these methods, there is a conversion chart in the back of the
Programming Reference Guide for the conversion from decimal to hex.

Dr. Victor Giurgiutiu Page 34 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

BINARY ARITHMETIC
The rules for addition of binary numbers are straightforward:
0+0=0,0+1=1,and1+1=0withacarryofl,ie. 1+1=10,.

For example:
1001010010 + 1010010100 +
0100110001 0100010010
1110000011 0001010001

1111110111

NEGATIVE NUMBERS IN THE COMPUTER (2's COMPLEMENT NUMBERS)

Until now, we have discussed only positive numbers. These numbers were called "unsigned 8-bit
integers”. In an 8-bit byte, we can represent a set of 256 positive numbers in the range 00-255;,.
However, in many operations it is necessary to also have negative numbers. For this purpose, we
introduce "signed 8-bit integers". Since we are limited to 8-bit representation, we remain also limited to
a total of 256 numbers. However, half of them will be negative (-128,4 through -1,5) and half will be
positive (019 through 128,,).

The representation of signed (positive and negative) numbers in the computer is done through the so-
called 8-bit 2's complement representation. In this representation, the 8™ bit indicates the sign of the
number (0 =+, 1 =-).

The signed binary numbers must conform to the obvious laws of signed arithmetic. For example, in
signed decimal arithmetic, -310 + 310 = 010. When performing signed binary arithmetic, the same
cancellation law must be verified. This is assured when constructing the 2's complement negative
binary numbers through the following rule:

To find the negative of a number in 8-bit 2's complement representation, simply subtract the
number from zero, i.e. -X = 0 - X using 8-bit binary arithmetic.

Example 1: Use the above rule to represent in 8-bit 2's complement the number -3,

Solution: Subtract the 8-bit binary representation of 3, from the 8-bit binary representation of 04
using 8-bit arithmetic (8-bit arithmetic implies that you can liberally take from, or carry into the 9™ bit,
since only the first 8 bits count!).

BINARY DECIMAL
00000000 - 010 -
00000011 310
11111101 -310

Note that, in this operation, a 1 was liberally borrowed from the 9" pit and used in the subtraction!

Dr. Victor Giurgiutiu Page 35 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Verification = We have establish that -3,0 = 11111101,. Verify that -3;0 + 310 = 040 using 8-bit
arithmetic.

BINARY DECIMAL
11111101 - -310 -
00000011 310
00000000 010

Note that, in this operation, a carry of 1 was liberally lost in the 9" bit!

Example 2: Given the binary number 00110101, find it's 2's complement.
Solution: Subtract the number from 00000000, i.e.

BINARY HEX DECIMAL
00000000 - 00 - O1o -
01110101 75 10640
10001011 8B -1060

Verification: 01110101 + 10001011 = (1)00000000. Since the 9" bit is irrelevant, the answer is
actually 00000000, as expected

The rule outlined above can be applied to both binary and hex numbers.

Example 3: Given the hex number 6A, find its 8-bit 2's complement.
Solution: Subtract the number from 00,5 using 8-bit arithmetic:

HEX DECIMAL
00 - 010 -
6A 10640

96 -1064,

Verification: 6A;s + 9655 = (1)00. Since the gt binary bit is irrelevant, the answer is actually 0044, as
expected

Example 4: 11001010, = CAis = 202;.

Dr. Victor Giurgiutiu Page 36 1/17/01

EMCH 367

NUMERICAL CONVERSION CHART FOR UNSIGNED 8-BIT BINARY INTEGERS

Dr. Victor Giurgiutiu

Fundamentals of Microcontrollers

Decimal 4-bit binary Hex
(base 10) (base 2) (base
16)
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
Page 37

367pck S01.doc

1/17/01

EMCH 367

NUMERICAL CONVERSION CHART FOR 2'S COMPLEMENT SIGNED 8-BIT BINARY INTEGERS

Fundamentals of Microcontrollers

Decimal 8-bit 2's complement Hex
signed binary
+127 01111111 7F
+16 0001 0000 10
+15 0000 1111 OF
+14 0000 1110 OE
+13 0000 1101 oD
+12 0000 1100 oC
+11 0000 1011 0B
+10 0000 1010 0A
+9 0000 1001 09
+8 0000 1000 08
+7 0000 0111 07
+6 0000 0110 06
+5 0000 0101 05
+4 0000 0100 04
+3 0000 0011 03
+2 0000 0010 02
+1 0000 0001 01
0 0000 0000 00
-1 11111111 FF
-2 1111 1110 FE
-3 1111 1101 FD
-4 1111 1100 FC
-5 1111 1011 FB
-6 1111 1010 FA
-7 1111 1001 F9
-8 1111 1000 F8
-9 1111 0111 F7
-10 1111 0110 F6
-11 1111 0101 F5
-12 1111 0100 F4
-13 1111 0011 F3
-14 1111 0010 F2
-15 1111 0001 F1
-16 1111 0000 FO
-128 1000 0000 80
Dr. Victor Giurgiutiu Page 38

367pck S01.doc

1/17/01

EMCH 367

Fundamentals of Microcontrollers

LOGIC GATES AND BOOLEAN ALGEBRA

LOGIC GATES
Circuit IC # Symbol Boolean Function
Buffer 7407 A 4} X X=A
NOT —
7404 | A % So—X =
(Inverter) X=A
A
AND 7408 ol x X = AB
A
OR 7432 | LT ox X =A+B
NAND 7400 A =
S x X =AB
A
NOR 7402 | L) oo x X = A+B
Exclusive OR A X = AD_+/_ADB
7486 >—X -
XOR B =AAB
A X =AB+AB
Comparator BDX A-B
Dr. Victor Giurgiutiu Page 39

367pck S01.doc

1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

Inverting gate AND gate
Vv +5V
ninNainlinls N
od o ESREN|
1 7404] 7408
3 9 > T [
uuuuuu. EREREEEEER

7404: Hex Inverting Gates :

7408: Quad 2-Input AND Gates

OR gate XOR gate
(1M m (1M mm
=N T
| 7432] 7486
U OO T L L LJEIZT‘J
72327 Ouad 2-Input OR Gates - 7486: Quad 2-Input Exclusive-OR Gafes -

Dr. Victor Giurgiutiu Page 40 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

BOOLEAN ALGEBRA

In formulating mathematical expressions for logic circuits, it is important to have knowledge of Boolean
algebra, which defines the rules for expressing and simplifying binary logic statements. The basic
Boolean laws and identities are listed below. A bar over a symbol indicates the Boolean operation
NOT, which corresponds to inversion of a signal.

Fundamental Laws

OR AND NOT
A+0=A AX0=0
A+1=1 Ax=A (1)
A+ A=A AxA=A A=A (double inversion)
A+A=1 AXA=0

Commutative Laws

A+B=B+A)
AxB = BxA
Associative Laws
(A+B)+C = A+(B+C) (3)

(AxB)>C = AYB>C)
Distributive Laws

4
A+(B>xC)=(A+B){A+C) @

Other Useful Identities
A+(AB)=A (5)
A{A+B)=A (6)
A+(AB)=A+B (7)
(A+B){A+B)=A ®)
(A+B){A+C)=A+(BxC) 9)
A+B+(AB)=A+B (10)
(AB)+(B>C) +(BxC)=(AxB) +C (12)
(AB)+(AC) +(BxC) =(AB) +(BxC) (12)

DeMorgan’s Laws are also useful in rearranging of simplifying longer Boolean expressions or in
converting between AND and OR gates:

A+B+C+..= AXBXCX.. (13)

AXB>C %..= A+B+C+... (14)
If we invert both sides of these equations and apply the double NOT law fro Equation (1) we can write
DeMorgan’s Laws in the following form:

>CX.. (15)
AXBXCx.= A+B+C+... (16)

Dr. Victor Giurgiutiu Page 41 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

This page is left intentionally blank

Dr. Victor Giurgiutiu Page 42 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

CONDITION CODE REGISTER (CCR)

S X H I N z \Y C
S = Stop bit
Allows user to turn the microcontroller stop function on or off.
X = XIRQ mask
Used to disable interrupts from the XIRQ.
H = Half carry bit

Indicates a carry from bit 3 during addition. Only updated by ABA, ADD, and ADC. It is
used by the DAA in BCD operations (setting a hexadecimal number to decimal).

I = Interrupt mask

Global interrupt mask. Allow user to turn on/off interrupts.
N = Negative bit

Set to 1 when the result of an operation is 1 in the MSB.

Set to 0 when the result of an operation is 0 in the MSB.
4 = Zero bit

Set to 1 when the result of an operation is 001 g.
Set to 0 when the result of an operation is anything other than 004 g.

Vv = oVerflow bit
Set to 1 when a 2's complement overflow has occurred due to a specific operation.

7E16 + 0416 = 8216’ 100000102

Note: The 1 in the MSB indicates that an overflow occurred. The addition yielded a
number larger than 7F41g, which is the maximum positive value that a 2'S compliment
number is allowed.

C = Carry bit

Set to 1 when a carry or borrow has occurred in the MSB. In addition operations, it is set
if there was a carry from MSB. In subtractions, it is set if a number with a larger absolute
value is subtracted from a number with a smaller absolute value. It is also used in
multiplication and division.

Dr. Victor Giurgiutiu Page 43 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

BUFFALO COMMANDS

The monitor BUFFALO program is the resident firmware for the EVB, which provides a self-contained
operating environment. It interacts with the user through predefined commands. The BUFFALO
command line format is as follows:

><command>[<parameters>](RETURN)

where:
> EVB monitor prompt.
<command> Command mnemonic.
<parameters> Expression or address.
(RETURN) RETURN keyboard key

l1\I)O-'II-'IrE1§.command line format is defined using special characters that have the following syntactical
meanings:
<> Enclose syntactical variable
[Enclose optional fields
[1-- Enclose optional fields repeated

These characters are NOT entered by user, but are for definition purpose only.

2) Fields are separated by any number or space, comma, or tab characters.

3) All input numbers are interpreted as hexadecimal.

4) All input commands can be entered either upper or lower case lettering.

5) A maximum of 35 characters may be entered on a command line.

6) Command line errors may be corrected by backspacing or by aborting the command (CRTL-
X/Delete).

7) After acommand has been entered, pressing (RETURN) a 2™ time will repeat the command.

Some of the frequently used BUFFALO commands are listed alphabetically in Table 1.

COMMAND DESCRIPTION

ASM [<address>] Assembler/disassembler

BF <address1> <address2> <data> Block fill memory with data

CALL [<address>] Execute subroutine

G [<address>] Execute program

HELP Display monitor commands

MD [<address1> [<address2>]] Memory Display

MM [<address>] Memory Modify

MOVE <address1> <address2> :
L Move memory to new location

[<destination>]

RM [p,y,X,a,b,c,s] Register modify

T [<n>] Trace $1~$ff instructions

Next few pages are detailed description and examples for each command.

Dr. Victor Giurgiutiu Page 44 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

ASM

Assembler/Disasse
mbler

ASM [<address>]

where: <address> is the starting address for the assembler operation.

Assembler operation defaults to internal RAM if no address is given. Each source line is converted into the
proper machine language code and is stored in memory overwriting previous data on a line-by-line basis at the
time of entry.

The syntax rules for the assembler are as follows:
(a.) All numerical values are assumed to be hexadecimal.
(b.) Operands must be separated by one or more space or tab characters.

Addressing modes are designated as follows:

(a.) Immediate addressing is designated by pre-ceding the address with a # sign.

(b.) Indexed addressing is designated by a comma. The comma must be preceded a one byte relative offset
and followed by an X or Y designating which index register to use (e.g., LDAA 00,X).

(c.) Direct and extended addressing is specified by the length of the address operand (1 or 2 digits specifies
direct, 3 or 4 digits specifies extended). Extended addressing can be forced by padding the address
operand with leading zeros.

(d.) Relative offsets for branch instructions are computed by the assembler. Therefore the valid operand for
any branch instruction is the branch-if-true address, not the relative offset.

Assembler/disassembler subcommands are as follows.

/ Assemble the current line and then disassemble the same address location.
A Assemble the current line and then disassemble the previous sequential address
location.

(RETURN) Assemble the current line and then disassemble the next opcode address.
(CTRL) -J Assemble the current line. If there isn't a new line to assemble, then disassemble
the next sequential address location. Otherwise, disassemble the next opcode

address.

(CTRL) -A Exit the assembler mode of operation.

EXAMPLE DESCRIPTION
>ASM C000
Q000 STOP $FFFF
>L DAA #55 | mredi at e node addressing, requires #
86 55 bef ore operand.
Q002 STOP $FFFF
>STAA CO Di rect node addressi ng.
97 Q0
Q004 STCOP $FFFF I ndex node, if offset = 0 (,X wll not
>LDS 0, X be accept ed.
AE 00
Q006 STOP $FFFF
>BRA C500 Branch out of range nmessage.

Branch out of range
Q006 STOP $FFFF

Branch of fsets cal cul ated automatically,

>BRA Q030 address required as conditional branch
20 28 oper and.

Q008 STOP $FFFF

>(CTRL) A Assenbl er operation term nated.
EXAMPLE DESCRIPTION

Dr. Victor Giurgiutiu

Page 45 1/17/01

EMCH 367

>ASM C000
C000 CLR $0800
>LDY #C200

18 CE C2 00
C004 TEST
>LDX #C400

CE ¢4 00
C007 TEST
>LDAA 102E

B6 10 2E
CO0A TEST
>LDAA O, X

A6 00
C00C TEST
>STAA 102F

B7 10 2F
COOF | NX
>LDAA 102E

B6 10 2E
C012 TEST
>ANDA #80

84 80
C014 TEST
>BEQ COOF

27 F9
C016 BI TB $80F6
>LDAA 102E

B6 10 2E
C019 BVS $C01B
>ANDA #20

84 20
C01B STX $00FF
>BEQ C016

27 F9
C010 STX $4065
>LDAA 102F

B6 10 2F
C020 STAA $00,Y
>STAA 0, Y

18 A7 00
C023 STX $00FF
> NX

08
C024 TEST
>| NY

18 08
C026 ASRB
>CPX #C41F

8C &4 1F
C029 ASLD
>BEQ CO2E

27 03
C02B STX SOOFF
>JMP CO0C

7E C0 OC
C02E MUL
>BRA CO2E

20 FE
C030 I LLOP
>(CTRL) A

BF

Dr. Victor Giurgiutiu

Fundamentals of Microcontrollers 367pck S01.doc

Ent er assenbl er/ di sassenbl er npde.

First byte where data is stored.
I MM node

Point to data to be fetched.
I MM node

Clear RDRF bit if set.
EXT node

Get filrst data byte.
I NX nmode

Store data in SCI data register.
EXT node

Read SClI status register.
EXT node

Send data byte.
I MM node

VWait for enpty transmit data register.
REL node

Read SClI status register.
EXT node

Extract RDRF bit fram status register.
I MM node

Branch true = SCI RDR not full.
Branch fal se = SCL RDR full.
REL node

Read data from SCI RDR.

EXT node

Store data byte.
I NY node

Increnent fetch pointer.
I NH node

I ncrenment storage pointer.
I NH node

Done sendi ng data?
I MM node

No, get next data byte.
EXT node

Yes, stop here.
REL node

Exit assenbl er/di ssenbl er node.

Page 46 1/17/01

EMCH 367

Block Fill

Fundamentals of Microcontrollers 367pck S01.doc

BF <address1> <address2> <data>

where:
<address1>
<address2>
<data>

EXAMPLE

>BF C000 C030 FF

>BF C000 C000 O

CALL

Execute
Subroutine

CALL [<address>]

Lower limit for fill operation.
Upper limit for fill operation.
Fill pattern hexadecimal value.

DESCRIPTION

Fill each byte of nmenory from CO00O
t hrough C030 with data pattern FF.

Set | ocation CO00 to O.

where: <address> is the starting address where user program subroutine execution begins.

EXAMPLE

>CALL C000

DESCRIPTION

Execut e program subrouti ne.

P- COOO Y- DEFE X- FAFF A-44 B-FE Displays status of registers at time

C- DO 5- 004A

G(GO)

Execute
Program

G [<address>]

RTS encount er ed (except P
regi ster contents).

where: <address> is the starting address where user program execution begins.

EXAMPLE

>G G000

DESCRIPTION

Execut e program subrouti ne.

P- COOO Y- DEFE X- FAFF A-44 B-FE Displays status of registers at time

C- DO 5- 004A

HELP

Help Screen

Dr. Victor Giurgiutiu

RTS encount er ed (except P
regi ster contents).

Page 47

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

HELP
Display monitor commands

MD

Memory Display
MD [<address1> <address2>]
Display a block of user memory beginning at address 1 and continuing to address 2.
EXAMPLE

>VD C000 COOF

C000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

MM

Memory Modify
MM [<address>]

Examine/Modify contents in user memory at specified address in an interactive manner

EXAMPLE DESCRIPTION

>WM C700 Di splay menory | ocation C700.

C700 44 66(RETURN) Change data at C700

>MM C000 Exami ne | ocation $C000.

C000 55 80 C2 00 CE ¢4 Exam ne next location(s) using (SPACE BAR).
MOVE
Block Move

MOVE <addresd> <address?>) [<dest>]

where: <address1> Memory starting address.
<address2> Memory ending address.
[<dest>] Destination starting address (optional).

Copy/move memory to new memory location. If the destination is not specified, the block of data residing from
addressl to address?2 will be moved up one byte.

EXAMPLE DESCRIPTION

>MOVE EO00 E7FF C0O00 Move data from |l ocations $E000- $E7FF to
| ocati ons $CO0D- $C7FF.

>MOVE CO00 COFF Move data from |l ocations $C000- $COFF to

| ocati ons $C001- $C100.

Dr. Victor Giurgiutiu Page 48 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

RM

Register Modify
RM [p,y,x,a,b,c,9

The RM command is used to modify the MCU program counter (P), Y index (Y), X index (X), A accumulator (A), B
accumulator (B), Condition Code Register (C), and stack pointer (S) register contents.

EXAMPLE DESCRIPTION
>RM Di splay P register contents.
P- Q007 Y-7982 X-FFOO A-44 B-70 C-Q0 S-0054
P- G007 Q020 Modi fy P register contents.
>RM X Di splay X register contents.
P- Q007 Y-7982 X-FFOO A-44 B-70 C-Q0 S-0054
X- FFOO €020 Modi fy X register contents.
T
Trace
T[<n>]

Where: <n> is the number ($1~$FF) of instructions to execute.
Monitor program execution on an instruction-by-instruction basis. Execution starts at the current program counter
(PC).

EXAMPLE DESCRIPTION

>T Single trace

Op- 86

P- COOZ Y- EFE X- FFFF A— 44 B- OO C— OO S- 0048 Reg| St er Cont ent S af t er
execution.

>T2 Multiple trace (2)

Op- B7

P- Q005 Y- DEFE X- FFFF A-44 B-00 C-00 S-004B

O-01

P- G006 Y- DEFE X- FFFF A-44 B-00 C-00 S-004B

Dr. Victor Giurgiutiu Page 49 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

DEBUGGING TIPS

MICROCONTROLLER PROBLEMS

Is the processor plugged into the PC serial port?

Is the processor plugged into the power supply?

Is the power supply turned on?

Is the serial port plugged into the correct connector?

HARDWARE PROBLEMS

Does the component have power? - Check all voltages

Are the chips oriented correctly - notch in the correct direction?

Do the chips straddle the gap in the center of the board?

Make sure all chips have power (not just input & output lines).

Verify the direction of diodes and electrolytic capacitors.

Verify the power at intermediate locations - use 5 or 0 volts from the supply instead of chip input to
check various conditions.

Verify that the PC ports are giving the expected output signals.

Verify chip and transistor pins with the pin diagrams.

Are there any "open" lines, no voltage connection instead of zero volts?
Verify resistor codes and capacitor values.

SOFTWARE PROBLEMS

Is the correct program currently in memory?

Is the correct starting location being used (G ???7?).

Verify the program with ASM.

Use trace (T) to step through and verify branches, jumps and data.

Compare memory locations with expected information after the program stops.
Insert SWI at a key location to allow verification of branch, memory and accumulator values.
Do branches and jumps have the correct offsets?

Have RET and RTI commands been reversed somewhere?

For serial communications, has TE or RE been set?

For serial communications, has TDRE or RDRF been reset?

For parallel port C, has 1007 been set for input or output?

Has the interrupt mask been cleared (CLI)?

Has the stack pointer changed substantially?

Use the BUFFALO commands to do step-by-step (Trace, T) and Break-Point (BR) execution of the
program. Press F1 for details of the BUFFALO commands.

Dr. Victor Giurgiutiu Page 50 1/17/01

EMCH 367

REGISTERS INFORMATION

$K0¢
#1001

4002
$i003
#i004
$5005
3006
%007
003
$i009

$00A,
#0208
%i00C
$O0D
e
HOOF

sigie

$ic11

012 -

013

$i014

%015

NG

7

$01E

$i01g

$01A

L]

§i01C

4010

$O1E -

$01F

Fundamentals of Microcontrollers

REGISTER AND CONTROL
BIT SUMMARY

2 S R S B NN TN
[1 [[T T 7 |
["starl star [owom[snDs] o T Pis | €Ga | e |
o] - (-] -~ T -Two]
ol =1-] -7 - -] -Tms]
o] - T -1 -1 -T-1=-7180]
[[T 7T T 7T T™]
ol - [-T-T-[- lws]
T[] - [-]-7-Tav]
C [Tes[-T] -T-[®e)]
ol - T - T -T-T -7 -Tws)
| Fec1] #oc2 | Foca [roca [Facs | [|]
[ocimr]ccime[ocims ocime]ocima] [| 1
[(oc107] ocio8]ocips jocia[ocipa] [I]
sl =T - [-] T-[<-Tes]
Gl -1 - T-T-T[-1-[®5]
B®[- [- [~ T -] -] -[=]
ol =T - [~ T - T-T-Tew]
(6] = [= [= [- T =] -[&i]
(@7 - [-~ - [= [-]~ T®i]
[Bem] = 1= -1~ [-1 -Tws]
o] = = (- [= [- [=Je&]
B[- 1= - T-[-1-[ms]
= - - T=-T-T-Twv]
EE[= T=- =T -1 -T-Tso]
T B N U M B T
el =] - 1-1-[-]_-]%]
(7l =T-1- -1 [-[&3]
jﬂiﬂsl-l—l-‘[*l—J—[BitBI
ol -T1-T-1- T-T-Tes]
el === [- [-T Tws]
Coo - T= T- - {- T -]
! 3 4 3 z T Bio

Dr. Victor Giurgiutiu

PORTA
RAeserved
-PIOC
‘PORTC
PFORTE
POATCL
Reaarved
DDAC
POATD
oDRD
PORTE
CFORC
QC1M
Qctp

TCNT

TICY

TIC2

TIC3

TOCH

Toc2

TOC3

TOC4

TOCs

Page 51

367pck S

REGISTER AND-CONTROL
BIT ASSIGNMENTS

at? & 5 4 3 2 ' Bito
%020 [GM2| Oz [OMI T 03 [OM4 | GL4 T OWB [Ot6 | TCTu

sio2t [| [ecGie EDG1a[EnG2B]EDG2A] EDGIBIEDGIA] ToTL2

w022 [ocn | oca [con Joce Joes [wn [e [e | tmsk

sioza [ocie | oczr [ocsr | ocsr [ocsk | ieir [icor | icar | TRLa

sinz [ToI [AT [Paovi] pan I | T'Pr1 | PRO | Tmska

sigzs [ToF | RTIF!PAOVF[FAIFI [i [] Tre2

%026 [DDAAT PAEN [PAMDC[PEDGE [[RTR1 [ATRO-| PaCTL

siozr (87| — [~ T - T -1 -1 — [enao] pacnt
sioze [spiE [spe [owam|[msTR [croL | crra] sPat [sPao | secr
sizs [sPiF Jweold [mooF | i i i | “sPsR
siooa [Be7] —] - 1 - — [-] - |ero | spor
sicze | TCLR | ['scp1 [scee [acks | scaz] scr1 [scan | “sauo

siczc [mg | T8 | [- jwaxel | { | sccmt

siozp [T [ToE | A [we [1€

e | mwu | sak | -sceez

soze [Tore] 7¢ JRORF[oLE [on [ne [rE [| scsa

woze [8e7] - [- [= [=T -] - Jaito } scon
sio3n [CoF | fscan ML co Tec [ce | ca | aoccr
so fen7] - [~ [- [- [-] - e | aom
sioa2 [ew7] - [— | — [-] - | - |Bad | aom2
sy ez | - [-= [= 1T - =T - Teuo | aoss
sos [en7] = [- [- [- | - | ~ [Bto] aons
saas [1 T [[1 []] nesen
s [[[T]] T T] nesene
sor [[f J] []] Resere
sos |] T T 1 "1 T]} reens

w0z [aceu] csel [roe Jouy | ems { Icry | cro | oerion
sioma [Bz] — [- | = [- 1 -] = [ero | coeas

[8vTE | AOW [eRasE |EELAT jePaM | PPROG

sio3s [opo [even |

$09C [BOOTISMOD] MDA | IRV _[PsELd | PseL2 |PsELy [PSELD | HPRIO

5020 [RAMZ [RAMZ | RAM1 |RAMO [REGD | REG2 | REGI [REGO | INIT

sioze [Tior | [occr [cavp Joisa | rom [rcoe |Tean | TESTH

wozF || | !

Bit 7 [

Inosecivocoriromon] ezon | conFig
33 T R0

01.doc

1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

PARALLEL PORTS
(Section 7 of the M6BHC11 Reference Manual)

Parallel communication is communication that occurs simultaneously on many lines -- thus the word,
parallel. 1t is used most often when the communicating devices are local to one another. For the
MC6811, there are two parallel ports to which the user has direct access: Port B and Port C. Since
MC6811 is an 8-bit microcontroller, each of these parallel ports has 8 bits. That is, each of the parallel
ports has eight separate wires coming out of the microcontroller, one wire for each bit of data.

The two parallel ports are configured differently. Parallel Port B is restricted to output- only applications.
Parallel Port C can be used for either input or output. Moreover, in Parallel Port C, not all bits have to
be the same type of communication. For example, the first four bits of Parallel Port C (PCO - PC3) can
be set to read input, while the last four bits of Parallel Port C (PC4 - PC7) can be set to send output
information.

To use these parallel ports, a program must load and store specific numbers to special memory
locations. These memory locations are referred to as control registers. There are three different control
registers, which are related to Parallel Port operation, one related to Parallel Port B, and two related to
Parallel Port C.

As Parallel Port B is output only, there is only one thing, which needs to be specified: the output data.
This will be a signal of either 5V or OV for each line in the Parallel Port. A O corresponds to 0V; a 1
corresponds to 5V. To send desired data out Parallel Port B, store the two-digit hexadecimal humber

corresponding to the eight bits of data that you wish to output into memory location $1004. This one
action specifies the output voltage on the eight separate output lines.

For Parallel Port C, two aspects of parallel communication must be specified. These are the data
direction for each pin (whether a pin is input or output) and the actual data for each pin. The data
direction for each pin is specified by storing a two-digit hexadecimal number corresponding to the data

direction of each individual pin into memory location $1007. A0 corresponds to input; a 1 corresponds

to output. The specific data for Parallel Port C is in memory location $1003. If the pin is output, then the
value in that bit location indicates the voltage currently sent out that pin. The behavior of Parallel Port C
in output is the same as Parallel Port B. Changing the value of the bit changes the value of the output
voltage. If the pin is input, the value in that bit location indicates the voltage currently being measured
on that pin. Writing to an input pin has no effect.

DO NOT SEND AN INPUT SIGNAL INTO A PIN SPECIFIED FOR OUTPUT!!l' THAT WILL FRY THE
CHIp!!

Dr. Victor Giurgiutiu Page 52 1/17/01

EMCH 367

Fundamentals of Microcontrollers

THRSIM11 SIMULATION OF PARALLEL COMMUNICATION

367pck S01.doc

The specific windows that need to be open during the THRSIim11 simulation of parallel communication

are:

Port registers

Port B pins

Port C pins
. THRSim11 -10O] x|
File Edit 3Search “iew Execute Label Breakpoint Conmect Syindow Help
:—._f_Purl: registers ;Iglil %Purt B pins ;[Qlil %Pnrt I:p‘i_j'_!;i'_;:: ;Iglil
PORTA, M %1888 $68 Pin PBA %08 Pin PCH %08
PORTE, M %1884 $68 Pin PB1 %8 Pin PC1 %8
PORTC, M %1883 $68 Pin PB2 %8 Pin PC2 %0 I
PORTCL, M $1885 5088 Pin PB3 %8 Pin PC3 %8 [
PIDC, H $1882 503 Pin PB4 %8 Pin PC4 %8
PORTD, M $1888 561 Pin PBS %8 Pin PC5 %8
PORTE, M $108a 508 Pin PB6 %08 Pin PC6 %08
DDRC, H $1887 {08 Pin PB7 %8 Pin PC7 %8
DDRD, H %1889 $o8

Dr. Victor Giurgiutiu

Page 53

1/17/01

EMCH 367

THE THRSIM1110 Box

Fundamentals of Microcontrollers

367pck S01.doc

The THRSIim11 10 box is use, among others, to perform the simulation of Port B and Port C functions.

Port B, which is only an output port, is simulated as the eight LED’s PBO, PB1, ... , PB7. When a logical

1 signal is sent to a Port B pin, PBX, the corresponding LED lights up (becomes red).

Port C pins (PCO, PC1, ..., PC7) can be selected as either input or output using the DDRC register bits
in your program. When selected as input (DDRCx =0, x=0, 1, ..., 7), the switches are used to send
signals into the MCU along the PCx line. When selected as output (DDRCX = 1), the switches flip up

and down according to the value on that PCx line. (up = 1, down = 0)

2 THRSIim11 Help i

File Edit Bookmark Options Help

Eontentsl Index | Back | FErint I €< I

» |

The THRSim11 10 box.

% THRSim11 10 box ==
PET PBG PBES PB4 PBZ PBZ FB1 PEO
Sy § @] Hello World!?
STRA PCYPCGEPCSPC4PC3IPCZPCIPCO
STRA PD5 PO4 PDZ POZ PD1 POO
@O0 O0

This box contains:

Switches connected ta the BBHC11 pins on PCO-FCY.

LED's connected to the BBHC11 pins on PEO-PET.

LED's connected to the BBHC11 pins on PO0-FD&.

STRA switch + LED connected to the BBHC 11 pin STROBE A

4 x 20 rows LCD display. (When controlling this display use the 'simlcd.inc' include file in yaur
arogram.)

A switch can be togaled by clicking an it with the mause ar by typing 0 to 7 for PCO to PCY or A far
STRA.

The switches are normally used when port © is configured as input port (DORCx = 0). When port
C iz configured as output port (DDRCx = 1) the switches represent the value written to port C.
Real switches will not follow this hehavior but will cause a short circuit -).

Dr. Victor Giurgiutiu Page 54

1/17/01

EMC

H 367

ASCII AND BCD CODES

prp—

CIFE-TF)
Quy
RO
BN
Ajoo
O g
s 110
AR N
1000
(Qol
1910
1ot
1 a0
1101
113

1

ASoi » C&A«Ef}/b(#‘@

Fundamentals of Microcontrollers

(7 5)
. HSD L5D
ASCll CHARACTER SET (7-Bit Code)]I[—J—_LLE_]
[')‘f‘s W) Last o0 [yl oo | 1ot [11o | ot
ig.
LS 0 1 2 3 4 5 6 7
Dig. .
0 NUL DLE SP 0 @ P ' p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 Cc S c s
4 EQOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E u e u
6 ACK SYN & 6 F v f v
7 BEL ETB ’ 7 G w g w
8 BS CAN { 8 H X h X
9 HT EM) g i Y i ¥
A LF sSuB » : J Z i z
B vT ESC + ; K [k {
C FF FS . < L \ i |
D CR GS - = M 1 m }
E 510) RS . > N AN n ~
F Sl uUs / ? 0 - o DEL
s
—L (_;1
(443)
Decimal 8s 4s 2s 1s
. : Decimal 9
‘ [}
0 o o o o BCD 1001 0001
1 0 0 0 1 Decimal-to-BCD conversion
2 0 0 1 0
3 0 0 1 1
4 0 1 0 4] BCD 0111 0010
l
3 0 1 0 1 Decimal 7
6 0 1 1 0 BCD-t¢-decimal conversion
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
Page 55

Dr. Victor Giurgiutiu

367pck S01.doc

1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

SERIAL COMMUNICATIONS
(Section 9 of the M68BHC11 Reference Manual)

Serial communications are used when one bit is sent at a time. All the data is transferred on one line;
the bits are transferred sequentially, making serial communication much slower than parallel
communication. The data is specified by holding each bit at a certain voltage for a certain period of
time. The data is usually sent in character format using the 7-bit ASCIl (American Standard Code for
Information Interchange) code. It specifies a 7 bit binary code for commonly used characters. To put the
7-bit ASCII into an 8-bit byte, one fills the 8" pit with 0.

The data byte being sent is bracketed by two bits, the start bit (OV) and the stop bit (5V). An idle line
has a voltage of 5V. Each data byte is prefixed by a OV start bit. The data bits are then sent from the
least significant bit to the most significant bit. At the end, a 5V stop bit is added. All bits are held for the
same amount of time. The time is specified by the BAUD rate (bits/sec).

MC6811 has the capacity to receive and transmit data through the serial communication interface. The
selection of receive and/or transmit modes is done by setting to 1 the RE and TE bits in the Serial
Communication Control Register #2 (SCCR2) (memory location $102D, bits 2 and 3). Simultaneous
selection of both receive and transmit modes is permitted, since MC6811 has separate lines for
reception and transmission (RxD and TxD through port D pins PDO and PD1, respectively).

In the receive mode, the Receive-Data-Register-Full (RDRF) indicates when serial communications
data has been received (RDRF=1). RDRF is bit 5 of the Serial Communication Status Register (SCSR)
at memory location $102E. When serial communications data is received, it gets placed in the Serial-
Communication-Data-Register (SCDR) (memory location $102F). As a user, you would normally check
RDRF until found equal to 1, then load the data from SCDR into an accumulator. This sequence of
reading RDRF=1 and loading data from SCDR will trigger the clearing of RDRF (i.e., will make
RDRF=0). For this reason, it is called "clearing sequence”. In this way, MC6811 becomes ready for the
reception of the next serial communication data.

Transmission of data from MC6811 also uses the Serial-Communication-Data-Register (SCDR). Before
placing new data in SCDR for transmission, one must first make sure that SCDR is empty, i.e., it has
finished transmitting previous data. This verification is done by checking the value of Transmit Data
Register Empty (TDRE) bit (memory location $102E, bit 7). If TDRE = 0, then MC6811 is still
transmitting data through the serial communication interface. If TDRE = 1, then transmission has
finished, and the data register is empty and ready to receive new data for transmission. When data is
stored into SCDR for transmission, MC6811 automatically adds the start and stop bits to the data,
sends the data out through the serial communication interface, and, after transmission is complete,
makes TDRE=1. The clearing sequence for TDRE consists in reading TDRE=1 followed by storing of
data into SCDR. Subsequently, MC6811 starts serial communication transmission of the data placed in
SCDR.

Interrogating the value of specific bits in SCSR (RDRF, TDRE, etc.) can be done in a number of ways.
One way could be to AND the contents of SCSR with the appropriate mask and use a BEQ instruction
to loop back if the result is zero (i.e., if the interrogated bit is not yet set). For RDRF (bit 5), the mask is
#20. For TDRE (bit 7), the mask is #80. However, there are also other ways of branching in correlation
with the status of specific bits (e.g., instructions BRCLR, BRSET, etc.). Feel free to experiment!

Serial communication is critical to the operation of modern computers. This is how keyboards
communicate with the computer, and how you will control your programs during labs and project.

NOTE: Please, see Section 9 of the M68HC11 Reference Manual for more detailed information on
serial communication.

Dr. Victor Giurgiutiu Page 56 1/17/01

EMCH 367 Fundamentals of Microcontrollers

THRSIM11 SIMULATION OF SERIAL COMMUNICATION

367pck S01.doc

The specific windows that need to be open during the THRSim11 simulation of serial communication

are:
Serial registers

Serial transmitter

Serial receiver

4. THRSIM11 =10] x|

File Edit Search YWew Execute Label Breakpoint
Connect Window Help

& Serial registers [B]
SPCR, M 51828 584
SPSR, M 51820 508
SPDR, M 5182a 588
BAUD, H $182b $00
SCCR1, WM $182c 500
SCCRZ2, W $182d $00
SCSR, H $102e $co
SCDR, W $102F $o8

©? Serial transmitter O] =|
Settingz Send Stop |
=
hd|
£l 2
| 9600 | Mone | 1 Start, 8 Data, 1 Stop
¥ cepial receiver =10 x|
Settings I LClear | Reszet |
=
fhd|
Kl o
|EIBEIEI | Mone |'I Start, 8 Data, 1 Stop

Dr. Victor Giurgiutiu

Page 57

1/17/01

EMCH 367 Fundamentals of Microcontrollers

THE THRSIM11 SERIAL TRANSMITTER

367pck S01.doc

The THRSIm11 serial transmitter simulates the PC keyboard in the lab. It sends characters to the MCU.
During simulation, with your program running, type a character in the transmitter and press the Send

button. The MCU should receive it and react according to your instructions.
-l

File Edit Bookmark Options Help
Enntentsl Index | Back | Frirt | <1 | 3 |

The serial transmitter.

Settings | Send | Stop |
=

Type the text you want to transmit in
this window

and press

the Send button.

7| o
9600 |None [1 Start, 8 Data, 1 Stop

This hox contains the serial transmitter. The box is cannected to the RxD pin of the simulated
BEHC11. So the generated serial signal is send to the GBHC 11 microcontroller. You have to write
and run a program that uses the BBHC 11 serial controller to receive a serial signal from the serial
transmitter. You can type in the characters you want to send to the BBHC 11 microcantroller.
Printable characters can bhe normally typed. Non printable characters must be typed as <ddd=
where ddd is the ASCI value of the non printable character to send.

There are three buttons in this baox.

Settings Setting baud rate, parity, etc. ou probably want to match the setting of the
transmitter with the settings you use in your program that is receiving the data. But
you can create a mismatch to simulate what will happen in this error situation. (You
probably create a parity andfor framing error.) The current settings are displayed in
the status bar at the bottom of the serial transmit window. These settings are saved
in the thrsim11_options td initialization file so if you exit the simulatar and run it again
later these settings are preserved.

Send The zelected text in the edit window will he send to the BBHC11 microcontroller. If
vou didn't select a part of the text the entire contents of the windoe is automatically
selected and send. (Mote: the simulator must be running to perform this task.)

Stop This button ends the transmission of data to the microcontraller.

Dr. Victor Giurgiutiu Page 58

1/17/01

EMCH 367

Fundamentals of Microcontrollers

THE THRSIM11SERIAL RECEIVER

The THRSim11 serial receiver acts like the PC monitor in the lab. It receives signals sent by the MCU.
With your program running, and the serial receiver window open, you should see a character displayed
in the receiver window every time the MCU transmits a character while executing your program.

i

File Edit Bookmark Options Help

Qontentsl Index | Back I FErrint I 4 I b I

The serial receiver.

Settings

Clear

Reset

¥¥ S erial receiver M=l E1
Sgttingsl Clear | Reset | | |

Received text
Will be
displayed

in this
window.|

0 i

9600 |None |1 Start, 8 Data, 1 Stop

This box contains the serial receiver. The box is connected to the PO1 = TxD pin of the simulated
BBHC11. So the serial signals send by the BBHC 11 microcontroller are displayed in this box. You
have to write and run a program that uses the BBHC11 serial controller to send a serial signal to the
serial receiver. Printable characters are normally displayed. Mon printable characters are displayed
as <ddd= where ddd is the ASCIl value of the received non printakle character.

There are three command buttons.

Setting baud rate, parity, etc. ou probahly want to match the setting of the receiver
with the settings vou use in your program which is sending the data. But you can
create a mismatch to simulate what will happen in this error situation. (You probably
create a parity andfar framing error.) The current settings are displayed in the status
har at the hottorn of the serial receive window. These settings are saved in the
thrsim11_options t<t intialization file so if you exit the simulator and run it again later
these settings are preserved.

Clears all received characters currently displayed. This doesn't reset the receiver.

Resets the receiver. Parity and/or framing errors will be removed.

The two gray sguares at the tap of the serial receiver windaw display the framing and parity errors.
To clear these communication error flags press the reset button.

Dr. Victor Giurgiutiu Page 59

367pck S01.doc

1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

TIMER FUNCTIONS
(Section 10 of the M68HC11 Reference Manual)

Timer functions allow the microcontroller to determine "time" by counting the number of machine cycles
between events. The timer is based on the Timer Counter register (TCNT, $100E - $100F). The timer
counter register increments once every machine cycle. Once the timer counter register reaches #EFFF,

the next machine cycle causes the register to "overflow" (go from #EFFF to #OOOO). To let the user
know that this has happened, the microcontroller sets a flag, TOF, the Timer Overflow Flag (bit 7 of

$1025). 1 implies that there has been a timer overflow; O implies that there has not been a timer
overflow. To use TOF as a counting tool, you must clear TOF. Here, clearing TOF is obtain by writing a
1 toit (unusual, but true for all timer flags: see Section 10.2.4 on page 10-14 in the Reference Manual).
When clearing a flag, it is important that you do not interfere with the other bits in the register!

The timer is also linked to external lines, allowing the microcontroller to record the value of the timer
counter when an input voltage changes. These functions are called input capture functions. They detect
a signal transition. At the time that the signal transition is detected, the input capture function
automatically records the value in the timer counter in a separate memory location and sets a flag,
ICXF, to let the user know that there has been an input capture. Value 1 implies that there has been an
input capture; 0 implies that there has not. Each flag is cleared by writing a 1 to the flag in the control
registers. The type of signal transition that causes an input capture is determined by the edge bits,
EDGxB and EDGXA. Because these two bits act together, there are four different modes for each input
capture: disabled; low-to-high detection; high-to-low detection; and both low-to-high and high-to-low
detection. MC6811 has three individual input captures. All act in the same way, with separate memory
locations, EDG bits, and ICF's.

Another timer function is the output compare function. When the value in the timer counter register
reaches the value in the output compare register, the microcontroller sends a signal out on the selected
pin. In essence, the microcontroller schedules when to send the signal out. There are four commonly
used output compares on the MC6811. They are OC2, OC3, OC4, and OC5. As the timer is a two byte
register, each of the output compare registers is a two-byte register. To set a value for output compare,
simply store the two-byte number to the output compare registers. Once the timer counter reaches the
value in a timer output-compare register, an OCxF (output compare flag) is set to let the user know that
an output compare has occurred. 1 indicates that output compare has occurred; 0 indicates that output
compare has not occurred. To clear an output compare flag, write a 1 to OCxF. The signal sent out of
the microcontroller on output compare is controlled by two bits acting together, the OMx and OLx bits.
The four available options are: (i) disabled; (ii) send out OV; (iii) send out 5V; and (iv) toggle the output
voltage. Each of the timer output-compare functions has output compare registers, OM and OL bits,
and output compare flags in the control registers.

The timer counts and measures events in terms of machine cycles. In Lab 3, you measure the clock
speed of the microcontroller. In essence, you calculate a conversion factor between machine cycles
and real time. Using the timer functions of the microcontroller and the conversion factor that you derive,
you can use the microcontroller for data acquisition involving time measurement.

Dr. Victor Giurgiutiu Page 60 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

THRSIM11 SIMULATION OF TIMER FUNCTIONS
The specific windows that need to be open during the THRSIim11 timer functions simulation are:
Timer registers

Port A pins

Number of Clock cycles

4 THRSIM11 o] .3
File Edit Search Wiew Execute Label EBreakpoink
Connect ‘Window Help

iﬁfTimer registers ;IEIEI
TCHT SFEFFF
TIC1 ${0000
TIC2 $0080
TICS $0088 A
TOC SFFEFF
TOC2 SFEFF
TOCS SFEFF
TOCY SFEFFF
TOCS SFFFF
TCTL1, M $1828 500
TCTLZ, H 31821 $00
THSK1, H 31822 $00
M
H
M

TFLG1, W $1823 $o00
THSK2, H $1024 $00
TFLGE2, W $1825 $08

LI N i

=101 x|
Pin PAB/SICE %A
Pin PA1/IC2Z %A
Pin PA2/IC1 %A
Pin PA3/OCS %A
Pin PA4/OCYH %A
Pin PAS/0C3 %A
Pin PAG/OCZ %8
Pin PA7/0C1 %8

i;ffnumher of Clock c

rcles =101 %]

number of Clock cycles @

P

Dr. Victor Giurgiutiu Page 61 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

ANALOG-TO-DIGITAL CONVERSION
(Section 12 of the M68HC11 Reference Manual)

An analog-to-digital converter (A/D) takes an analog voltage, such as those produced by many
electronic measuring devices, and converts it to a digital value. MC6811 has an 8-bit analog-to-digital
converter. The range of measurement is from OV to 5V. This allows the microcontroller to interface with
such devices as potentiometers, cermets, thermocouples, LVDT's, etc. MC6811 has many different
ways that analog-to-digital conversions can be made, as there are 8 separate lines (or channels) that

the A/D can utilize. All of the options are controlled by one control register, ADCTL, in $1030. The
results of the A/D conversions are stored in four separate memory locations, $1031, $1032, $1033, and
$1034 -- ADR1, ADR2, ADR3, and ADRA4, respectively.

There are two different modes that MC6811 can use to take data. These are determined by the value of

SCAN, bit 5in $1030. If SCAN = 1, then the microcontroller continuously scans for data along the A/D
lines. Every time a new measurement is made, the data is stored in the appropriate memory location. If
SCAN = 0, then four conversions are made, one on each specified line. The results of these four
conversions are stored in the specified memory locations. As soon as all four conversions are
completed, the A/D stops making conversions.

The lines specified to take data are determined by bits CD - CA, bits 3-0in $1030. The meanings of

these bits are specified by MULT, bit 4 in $1030. If MULT = 0, then four consecutive conversions are
performed on the same data line. The results of the conversions are stored in ADR1 - ADR4. CD - CA
specify the single line for all four conversions. Table 12 - 1 shows the values of CD - CA for each input
line. If MULT = 1, then one conversion is made on each of four separate lines. The results are stored in
ADRL1 - ADR4. Only CD and CC have any effect in determining which four lines take the data. The four
lines and the location of the A/D data are shown in Table 12 - 1.

To start the A/D conversions, write the value to $1030 that configures SCAN, MULT, CD, CC, CB, and
CA for the desired data acquisition. This action automatically clears the Conversion Complete Flag,

CCF in ADCTL (bit 7 of $1030). CCF is set when four A/D conversions are completed. If SCAN =1,
CCEF is set after the first four conversions are completed and remains set until a subsequent write to

ADCTL ($1030). There is no interrupt for CCF. As such, polling operations must be used to monitor
CCF. Once the microcontroller has completed the conversions, CCF is set. The data in ADR1 - ADR4
represents valid conversion values. It takes 128 machine cycles to make four eight-bit conversions. At 2
MHz, this is an impressive data acquisition rate.

There are many types of A/D conversion techniques. MC6811 uses a successive approximation
technique. Some other types of A/Ds are the counter, integrative and flash A/Ds.

Dr. Victor Giurgiutiu Page 62 1/17/01

EMCH 367 Fundamentals of Microcontrollers 367pck S01.doc

THRSIM11 SIMULATION OF ANALOG TO DIGITAL CONVERSION

The specific windows that need to be open during the THRSIim11 simulation of analog to digital
conversion are:

AD converter registers

Sliders E port

 THRSIm11

ADCTL, H 31030 500
ADR1, H $1831 3500
ADR2, M $1832 300
ADR3, M $1833 300
ADR4, M $1034 %00

1t IEII.il:.Iers IE purt.

Dr. Victor Giurgiutiu Page 63 1/17/01

