
Extracted from:

Programming Phoenix LiveView
Interactive Elixir Web Programming

Without Writing Any JavaScript

This PDF file contains pages extracted from Programming Phoenix LiveView, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Phoenix LiveView
Interactive Elixir Web Programming

Without Writing Any JavaScript

Bruce A. Tate
Sophie DeBenedetto

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-821-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—February 25, 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Add Filters to Make Charts Interactive
So far, we have a beautiful server-side rendered dashboard, but we haven’t
done anything yet that is LiveView specific. In this section, we change that.
We’ll give our users the ability to filter the survey results chart by demograph-
ic, and you’ll see how we can re-use the reducers we wrote earlier to support
this functionality.

In this section, we’ll walk-through building out a “filter by age group” feature,
and leave it up to you to review the code for the “filter by gender” feature.

Filter By Age Group
It’s time to make the component smarter. When it’s done, it will let users filter
the survey results chart by demographic data. Along the way, you’ll get
another chance to implement event handlers on a stateful component. All we
need to do is build a form for various age groups, and then capture a LiveView
event to refresh the survey data with a query.

We’ll support age filters for “all”, “under 18”, “18 to 25”, “25 to 35”, and “over
35”. Here’s what it will look like when we’re done:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

It’s a pretty simple form with a single control. We’ll capture the form change
event to update a query, and the survey will default to the unfiltered “all”
when the page loads. Let’s get started.

Build the Age Group Query Filters
We’ll begin by building a set of query functions that will allow us to trim our
survey results to match the associated age demographic. We’ll need to surface
an API in the boundary code and add a query to satisfy the age requirement
in the core. The result will be consistent, testable, and maintainable code.

Let’s add a few functions to the core in product/query.ex:

interactive_dashboard/pento/lib/pento/catalog/product/query.ex
def join_users(query \\ base()) do

query
|> join(:left, [p, r], u in User, on: r.user_id == u.id)

end

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento/catalog/product/query.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

def join_demographics(query \\ base()) do
query
|> join(:left, [p, r, u, d], d in Demographic, on: d.user_id == u.id)

end

def filter_by_age_group(query \\ base(), filter) do
query
|> apply_age_group_filter(filter)

end

First off, two of the reducers implement join statements. The syntax is a little
confusing, but don’t worry. The lists of variables represent the tables in the
resulting join. In Ecto, it’s customary to use a single letter to refer to associ-
ated tables. Our tables are p for product, r for results of surveys, u for users,
and d for demographics. So the statement join(:left, [p, r, u, d], d in Demographic, on:
d.user_id == u.id) means we’re doing:

• a :left join
• that returns [products, results, users, and demographics]
• where the id on the user is the same as the user_id on the demographic

We also have a reducer to filter by age group. That function relies on the
apply_age_group_filter/2 helper function that matches on the age group. Let’s take
a look at that function now.

interactive_dashboard/pento/lib/pento/catalog/product/query.ex
defp apply_age_group_filter(query, "18 and under") do

birth_year = DateTime.utc_now().year - 18

query
|> where([p, r, u, d], d.year_of_birth >= ^birth_year)

end

defp apply_age_group_filter(query, "18 to 25") do
birth_year_max = DateTime.utc_now().year - 18
birth_year_min = DateTime.utc_now().year - 25

query
|> where(

[p, r, u, d],
d.year_of_birth >= ^birth_year_min and d.year_of_birth <= ^birth_year_max

)
end

defp apply_age_group_filter(query, "25 to 35") do
birth_year_max = DateTime.utc_now().year - 25
birth_year_min = DateTime.utc_now().year - 35

query
|> where(

[p, r, u, d],
d.year_of_birth >= ^birth_year_min and d.year_of_birth <= ^birth_year_max

• Click HERE to purchase this book now. discuss

Add Filters to Make Charts Interactive • 5

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento/catalog/product/query.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

)
end

defp apply_age_group_filter(query, "35 and up") do
birth_year = DateTime.utc_now().year - 35

query
|> where([p, r, u, d], d.year_of_birth <= ^birth_year)

end

defp apply_age_group_filter(query, _filter) do
query

end

Each of the demographic filters specifies an age grouping and does a quick
bit of date math to date-box the demographic to the right time period. Then,
it’s only one more short step to interpolate those dates in an Ecto clause.
Notice that the default query will handle "all" and also any other input the
user might add.

We can use the public functions in our Catalog boundary to further reduce the
products_with_average_ratings query before executing it. Let’s update the signature
of our Catalog.products_with_average_ratings/0 function in catalog.ex to take an
age_group_filter and apply our three reducers, like this:

def products_with_average_ratings(%{
age_group_filter: age_group_filter

}) do
Product.Query.with_average_ratings()
|> Product.Query.join_users()
|> Product.Query.join_demographics()
|> Product.Query.filter_by_age_group(age_group_filter)
|> Repo.all()

end

This code is beautiful in its simplicity. The CRC pipeline creates a base query
for the constructor. Then, the reducers refine the query by joining the base
to users, then to demographics, and finally filtering by age. We send the final
form to the database to fetch results.

The code in the boundary simplifies things a bit by pattern matching instead
of running full validations. If a malicious user attempts to force a value we
don’t support, this server will crash, just as we want it to. We also accept any
kind of filter, but our code will default to unfiltered code if no supported filter
shows up.

Now, we’re ready to consume that code in the component.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

Your Turn: Test Drive the Query
In IEx, run this new query to filter results by age. You will need to create a
map that has the expected age filter. You should see a filtered list show up
when you change between filters. Does your IEx log show the underlying SQL
that’s sent to the database?

Add the Age Group Filter to Component State
With a query filtered by age group in hand, it’s time to weave the results into
the live view. Before we can actually change data on the page, we’ll need a
filter in the socket when we update/2, a form to send the filter event, and the
handlers to take advantage of it. Let’s update our SurveyResultsLive component
to:

• Set an initial age group filter in socket assigns to "all"
• Display a drop-down menu with age group filters in the template
• Respond to form events by calling the updated version of our Catalog.prod-
ucts_with_average_ratings/1 function with the age group filter from socket
assigns

First up, let’s add a new reducer to survey_results_live.ex, called
assign_age_group_filter/1:

defmodule PentoWeb.SurveyResultsLive do
use PentoWeb, :live_component
alias Pento.Catalog

def update(assigns, socket) do
{:ok,
socket
|> assign(assigns)
|> assign_age_group_filter()
|> assign_products_with_average_ratings()
|> assign_dataset()
|> assign_chart()
|> assign_chart_svg()}

end

def assign_age_group_filter(socket) do
socket
|> assign(:age_group_filter, "all")

end

The reducer is getting longer, but no more complex thanks to our code layering
strategy. We can read our initial update/2 function like a storybook. The
reducer adds the default age filter of “all”, and we’re off to the races.

• Click HERE to purchase this book now. discuss

Add Filters to Make Charts Interactive • 7

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

Now, we’ll change assign_products_with_average_ratings/1 function in SurveyResultsLive
to use the new age group filter:

defp assign_products_with_average_ratings(
%{assigns: %{age_group_filter: age_group_filter}} =
socket) do

assign(
socket,
:products_with_average_ratings,
Catalog.products_with_average_ratings(
%{age_group_filter: age_group_filter}

)
)

end

We pick up the new boundary function from Catalog and pass in the filter we
set earlier. While you’re at it, take a quick look at your page to make sure
everything is rendering correctly. We want to make sure everything is working
smoothly before moving on.

Now, we need to build the form controls.

Send Age Group Filter Events
We’re ready to add some event handlers to our component. First, we’ll add
the drop-down menu to the component’s template and default the selected
value to the @age_group_filter assignment to survey_results_live.html.leex, using the
code below:

interactive_dashboard/pento/lib/pento_web/live/survey_results_live.html.leex
<form phx-change="age_group_filter" phx-target="<%= @myself%>">

<label>Filter by age group:</label>
<select name="age_group_filter" id="age_group_filter">

<%= for age_group <-
["all", "18 and under", "18 to 25", "25 to 35", "35 and up"] do %>

<option
value="<%= age_group %>"
<%=if @age_group_filter == age_group, do: "selected" %> >

<%=age_group%>
</option>

<% end %>
</select>

</form>

LiveView works best when we surround individual form helpers with a full
form. We render a drop-down menu in a form. The component is stateful, so
the form tag must have the phx-target attribute set to @myself for the component
to receive events. The form also has the phx-change event.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento_web/live/survey_results_live.html.leex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

To respond to this event, add a handler matching "age_group_filter" to sur-
vey_results_live.ex, like this:

interactive_dashboard/pento/lib/pento_web/live/survey_results_live.ex
def handle_event(

"age_group_filter",
%{"age_group_filter" => age_group_filter},
socket

) do
{:noreply,
socket
|> assign_age_group_filter(age_group_filter)
|> assign_products_with_average_ratings()
|> assign_dataset()
|> assign_chart()
|> assign_chart_svg()}

end

Now you can see the results of our hard work. Our event handler responds
by updating the age group filter in socket assigns and then re-invoking the
rest of our reducer pipeline. The reducer pipeline will operate on the new age
group filter to fetch an updated list of products with average ratings. Then,
the template is re-rendered with this new state. Let’s break this down step
by step.

First, we update socket assigns :age_group_filter with the new age group filter
from the event. We do this by implementing a new version of our
assign_age_group_filter/2 function.

interactive_dashboard/pento/lib/pento_web/live/survey_results_live.ex
def assign_age_group_filter(socket, age_group_filter) do

assign(socket, :age_group_filter, age_group_filter)
end

Then, we update socket assigns :products_with_average_ratings, setting it to a re-
fetched set of products. We do this by once again invoking our assign_prod-
ucts_with_average_ratings reducer, this time it will operate on the updated
:age_group_filter from socket assigns.

Lastly, we update socket assigns :dataset with a new Dataset constructed with
our updated products with average ratings data. Subsequently, :chart, and
:chart_svg are also updated in socket assigns using the new dataset. All
together, this will cause the component to re-render the chart SVG with the
updated data from socket assigns.

Now, if we visit /admin-dashboard and select an age group filter from the drop
down menu, we should see the chart render again with appropriately filtered
data:

• Click HERE to purchase this book now. discuss

Add Filters to Make Charts Interactive • 9

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento_web/live/survey_results_live.ex
http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento_web/live/survey_results_live.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

Phew! That’s a lot of powerful capability packed into just a few lines of code.
Just as we promised, our neat reducer functions proved to be highly reusable.
By breaking out individual reducer functions to handle specific pieces of state,
we’ve ensured that we can construct and re-construct pipelines to manage
even complex live view state.

This code should account for an important edge case before we move on.
There might not be any survey results. Let’s select a demographic with no
associated product ratings. If we do this, we’ll see the LiveView crash with
the following error in the server logs:

[error] GenServer #PID<0.3270.0> terminating
**(FunctionClauseError) ...

(elixir 1.10.3) lib/map_set.ex:119: MapSet.new_from_list(nil, [nil: []])
(elixir 1.10.3) lib/map_set.ex:95: MapSet.new/1
(contex 0.3.0) lib/chart/mapping.ex:180: Contex.Mapping.missing_columns/2

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

...
(contex 0.3.0) lib/chart/mapping.ex:139: Contex.Mapping.validate_mappings/3
(contex 0.3.0) lib/chart/mapping.ex:57: Contex.Mapping.new/3
(contex 0.3.0) lib/chart/barchart.ex:73: Contex.BarChart.new/2

As you can see, we can’t initialize a Contex bar chart with an empty dataset.
There are a few ways we could solve this problem. Let’s solve it like this. If
we get an empty results set back from our Catalog.products_with_average_ratings/1
query, then we should query for and return a list of product tuples where the
first element is the product name and the second element is 0. This will allow
us to render our chart with a list of products displayed on the x-axis and no
values populated on the y-axis.

Assuming we have the following query:

interactive_dashboard/pento/lib/pento/catalog/product/query.ex
def with_zero_ratings(query \\ base()) do

query
|> select([p], {p.name, 0})

end

And context function:

interactive_dashboard/pento/lib/pento/catalog.ex
def products_with_zero_ratings do

Product.Query.with_zero_ratings()
|> Repo.all()

end

We can update our LiveView to implement the necessary logic:

defp assign_products_with_average_ratings(
%{assigns: %{age_group_filter: age_group_filter}} =
socket

) do
assign(

socket,
:products_with_average_ratings,
get_products_with_average_ratings(%{age_group_filter: age_group_filter})

)
end

defp get_products_with_average_ratings(filter) do
case Catalog.products_with_average_ratings(filter) do

[] ->
Catalog.products_with_zero_ratings()

products ->
products

end
end

• Click HERE to purchase this book now. discuss

Add Filters to Make Charts Interactive • 11

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento/catalog/product/query.ex
http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento/catalog.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

Now, if we select an age group filter for which there are no results, we should
see a nicely formatted empty chart:

Nice! With a few extra lines of code, we get exactly what we’re looking for. We
have a beautifully interactive dashboard for just a few lines of code beyond
the static version. All that remains is to make this code more beautiful.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

