

Chapter 1

Programming in Java

What is in This Chapter ?

This first chapter introduces you to programming JAVA applications. It assumes that you are
already familiar with programming and that you have likely taken Python in the previous
course. You will learn here the basics of the JAVA language syntax. In this chapter, we
discuss how to make JAVA applications and the various differences between JAVA
applications and the Python applications that you may be used to writing.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 2 -

 1.1 Object-Oriented Programming and JAVA

Object-oriented programming (OOP) is a way of programming in which your code is organized
into objects that interact with one another to form an application. When doing OOP, the
programmer (i.e., you) spends much time defining (i.e., writing code for) various objects by
specifying the attributes (or data) that make up the object as well as small/simple functional
behaviors that the object will need to respond to (e.g., deposit, withdraw, compute interest, get
age, save data etc...)

There is nothing magical about OOP. Programmers have been coding for years in traditional
top/down structured programming languages. So what is so great about OO-Programming ?
Well, OOP uses 3 main powerful concepts:

Inheritance

• promotes code sharing and re-usability
• intuitive hierarchical code organization

Encapsulation

• provides notion of security for objects
• reduces maintenance headaches
• more robust code

Polymorphism

• simplifies code understanding
• standardizes method naming

We will discuss these concepts later in the course once we are familiar with JAVA.

Through these powerful concepts, object-oriented code is typically:

• easier to understand (relates to real world objects)
• better organized and hence easier to work with
• simpler and smaller in size
• more modular (made up of plug-n’-play re-usable pieces)
• better quality

This leads to:

• high productivity and a shorter delivery cycle
• less manpower required
• reduced costs for maintenance
• more reliable and robust software
• pluggable systems (updated UI’s, less legacy code)

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 3 -

Why Use JAVA ?

JAVA has been a very popular object-oriented programming language for many years (and is
still). Many jobs require knowledge of JAVA, including co-op jobs here at Carleton.

JAVA has become a basis for new technologies such as: Enterprise Java Beans (EJB’s),
Servlets and Java Server Pages (JSPs), etc. In addition, many packages have been added
which extend the language to provide special features:

• Java Media Framework (for video streaming, webcams, MP3 files, etc)

• Java 3D (for 3D graphics)

• Java Advanced Imaging (for image manipulation)

• Java Speech (for dictation systems and speech synthesis)

• Java FX (for graphics, web apps, charts/forms, etc..)

• J2ME (for mobile devices such as cell phones)

• Java Embedded (for embedding java into hardware to create smart devices)

JAVA is continually changing/growing. Each new release fixes bugs and adds features. New
technologies are continually being incorporated into JAVA. Many new packages are available.
Just take a look at the www.oracle.com/technetwork/java/index.html website for the latest
updates.

14.2%

11.0%

5.6%

4.7%

3.8%

3.5%

Top 10 Most Popular Languages
(Tiobe Index Jan 2018)

Java

C

C++

Python

C#

JavaScript

R

PHP

Perl

Ruby

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 4 -

There are many other reasons to use JAVA:

• architecture independence
o ideal for internet applications
o code written once, runs anywhere
o reduces cost $$$

• distributed and multi-threaded
o useful for internet applications
o programs can communicate over network

• dynamic
o code loaded only when needed

• memory managed
o automatic memory allocation / de-allocation
o garbage collector releases memory for unused objects
o simpler code & less debugging

• robust
o strongly typed
o automatic bounds checking
o no “pointers” (you will understand this in when you do C language programming)

The JAVA programming language itself (i.e., the SDK (Software
Development Kit) that you download from Oracle) actually
consists of many program pieces (or object class definitions)
which are organized in groups called packages (i.e., similar to
the concept of libraries in other languages) which we can use in
our own programs.

When programming in JAVA, you will usually use:

• classes from the JAVA class libraries (used as tools)
• classes that you will create yourself
• classes that other people make available to you

Using the JAVA class libraries whenever possible is a good idea since:

• the classes are carefully written and are efficient.
• it would be silly to write code that is already available to you.

We can actually create our own packages as well, but this will not be discussed in this course.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 5 -

How do you get started in JAVA?

When you download and install the latest JAVA SDK, you will not see any particular
application that you can run which will bring up a window that you can start to make programs
in. That is because the Oracle guys, only supply the JAVA SDK which is simply the compiler
and virtual machine. JAVA programs are just text files, they can be written in any type of text
editor. Using a most rudimentary approach, you can actually open up windows NotePad and
write your program ... then compile it using the windows Command Prompt window. This can
be tedious and annoying since JAVA programs usually require you to write and compile
multiple files.

A better approach is to use an additional piece of application software called an Integrated
Development Environment (IDE). Such applications allow you to:

• write your code with colored/formatted text
• compile and run your code
• browse java documentation
• create user interfaces visually
• and use other java technologies

There are many IDE's that you can use to write JAVA code. Here are a few:

• IntelliJ (Windows, Mac OS X, Linux) - download from www.jetbrains.com/idea

• Eclipse (Windows, Mac OS X, Linux) - download from www.eclipse.org

• JGrasp (Windows, Mac OS X, Linux) - download from www.jgrasp.com

• JCreator LE (Windows) - download from www.jcreator.com

• Dr. Java (Windows, Mac OS X) - download from drjava.sourceforge.net

You may choose whatever you wish. HOWEVER ... YOU MUST hand in exported IntelliJ
projects for ALL of your assignments. So you should install and use IntelliJ for this course.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 6 -

 1.2 Writing Your First JAVA Program

 The process of writing and using a JAVA program is as follows:

1. Writing: define your classes by writing what is called .java files (a.k.a. source code).
2. Compiling: send these .java files to the JAVA compiler, which will produce .class files
3. Running: send one of these .class files to the JAVA interpreter to run your program.

The java compiler:

• prepares your program for running

• produces a .class file containing byte-codes (which is a program that is ready to run).

If there were errors during compiling (i.e., called "compile-time" errors), you must then fix
these problems in your program and then try compiling it again.

The java interpreter (a.k.a. Java Virtual Machine (JVM)):

• is required to run any JAVA program

• reads in .class files (containing byte codes) and translates them into a language that
the computer can understand, possibly storing data values as the program executes.

Just before running a program, JAVA uses a class loader to put the byte codes in the
computer's memory for all the classes that will be used by the program. If the program
produces errors when run (i.e., called "run-time" errors), then you must make changes to the
program and re-compile again.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 7 -

Our First Program

The first step in using any new programming language is to understand how to write a simple
program. By convention, the most common program to begin with is always the "hello world"
program which when run ... should output the words "Hello World" to the computer screen.
We will describe how to do this now. When compared to Python, you will notice that JAVA
requires a little bit of overhead (i.e., extra code) in order to get a program to run.

All of your programs will consist of one or more files called classes. In JAVA, each time you
want to make any program, you need to define a class.

Here is the first program that we will write:

public class HelloWorldProgram {

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Here are a few points of interest in regards to ALL of the programs that you will write in this
course:

• The program must be saved in a file with the same name as the class name (spelled the
same exactly with upper/lower case letters and with a .java file extension). In this
case, the file must be called HelloWorldProgram.java.

• The first line beings with words public class and then is followed by the name of the
program (which must match the file name, except not including the .java extension).
The word public indicates that this will be a "publically visible" class definition that we
can run from anywhere. We will discuss this more later.

• The entire class is defined within the first opening brace { at the end of the first line and

the last closing brace } on the last line.

• The 2nd line (i.e., public static void main(String[] args) {) defines the starting place
for your program and will ALWAYS look exactly as shown. All JAVA programs start
running by calling this main() procedure which takes a String array as an incoming
parameter. This String array represents what are called "command-line-arguments"
which allows you to start the program with various parameters. However, we will not
use these parameters in the course and so we will not discuss it further.

• The 2nd last line will be a closing brace }.

So … ignoring the necessary "template" lines, the actual program consists of only one line:
System.out.println("Hello World"); which actually prints out the characters Hello World to
the screen. You may recall that this was a little simpler in Python since you simply did this
print ("Hello World")

So ... to summarize, every java program that you will write will have the following basic format:

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 8 -

public class {

 public static void main(String[] args) {

 ;

 ;

 ;

 }

}

Just remember that YOU get to pick the program name (e.g., MyProgram) which should
ALWAYS start with a capital letter. Also, your code MUST be stored in a file with the same
name (e.g., MyProgram.java). Then, you can add as many lines of code as you would like in
between the inner { } braces. You should ALWAYS line up ALL of your brackets using the
Tab key on the keyboard.

When you run your program, any output from the program will appear in a System console,
which is usually a pane in the IDE's window.

Later in the course, we will create our own windows. For now, however, we will simply use the
System console to display results. This will allow us to focus on understanding what is going
on "behind the scenes" of a windowed application. It is important that we first understand the
principles of Object-Oriented Programming.

 1.3 Python vs. Java

Python code differs from JAVA code in regards to syntax. Provided here is a brief explanation
of a few of the differences (and similarities) between the two languages:

Commenting Code:

Python JAVA

single line comment

""" a multiline comment

 which spans more

 than one line.

"""

// single line comment

/* a multiline comment

 which spans more

 than one line.

*/

Displaying Information to the System Console:

Python
print("The avg is " + avg)

print("All Done")

Java
System.out.println("The avg is " + avg);

System.out.println("All Done");

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 9 -

Math Functions:

Python Java

min(a, b)

max(a, b)

round(a)

pow(a, b)

sqrt(a)

abs(a)

sin(a)

cos(a)

tan(a)

degrees(r)

radians(d)

random.random()

Math.min(a, b)

Math.max(a, b)

Math.round(a)

Math.pow(a, b)

Math.sqrt(a)

Math.abs(a)

Math.sin(a)

Math.cos(a)

Math.tan(a)

Math.toDegrees(r)

Math.toRadians(d)

Math.random()

Variables:

Python Java

hungry = True

days = 15

age = 19

years = 3467

seconds = 1710239

gender = 'M'

amount = 21.3

weight = 165.23

boolean hungry = true;

int days = 15;

byte age = 19;

short years = 3467;

long seconds = 1710239;

char gender = 'M';

float amount = 21.3f;

double weight = 165.23;

Constants:

Python Java

do not make our

own by default

math.pi

final int DAYS = 365;

final float RATE = 4.923f;

Math.PI

Type Conversion:

Python Java

d = 65.237898546

f = float(d)

i = int(f)

g = long(i)

c = chr(i)

double d = 65.237898546;

float f = (float)d;

int i = (int)f;

long g = (long)i;

char c = (char)i;

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 10 -

Arrays:

Python Java

days = zeros(30, Int)

weights = zeros(100, Float)

names = [];

rentals = [];

friends = [];

ages = [34, 12, 45]

weights = [4.5,2.6,1.5]

names = ["Bill", "Jen"]

int[] days = new int[30];

double[] weights = new double[100];

String[] names = new String[3];

Car[] rentals = new Car[500];

Person[] friends = new Person[50];

int[] ages = {34, 12, 45};

double[] weights = {4.5,2.6,1.5};

String[] names = {"Bill", "Jen"};

FOR loops:

Python Java

total = 0

for i in range (1, n):

 total += i

print(total)

int total = 0;

for (int i=1; i<=n; i++) {

 total += i;

}

System.out.println(total);

WHILE loops:

Python Java

speed = 0

x = 0

while x <= width:

 speed = speed + 2

 x = x + speed

int speed = 0;

int x = 0;

while (x <= width) {

 speed = speed + 2;

 x = x + speed;

}

IF statements:

Python Java

if (grade >= 80) and (grade <=100):

 print("Super!")

if grade >= 50:

 print(grade)

 print("Passed!")

else:

 print("Grade too low.")

if ((grade >= 80) && (grade <=100))

 System.out.println("Super!");

if (grade >= 50) {

 System.out.println(grade);

 System.out.println("Passed!");

}

else

 System.out.println("Grade too low.");

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 11 -

Procedures & Functions:

Python Java

def procName(x, c):

 // Write code here

def funcName(h):

 result =

 // Write code here

 return result

void procName(int x, char c) {

 // Write code here

}

double funcName(float h) {

 result =;

 // Write code here

 return result;

}

As the course continues, you will notice other differences between Python and JAVA.
However, the underlying programming concepts remain the same. As we do coding examples
throughout the course, you will get to know the some of the other intricate details of basic
JAVA syntax. Therefore, we will not discuss this any further at this point.

 1.4 Getting User Input

In addition to outputting information to the console window, JAVA has the capability to get
input from the user. Unfortunately, things are a little "messier/uglier" when getting input. To
get user input, we will make use of a class called Scanner which is available in the java.util
package (more on packages later). To do this, we will create a new Scanner object for input
from the System console. Here is the line of code that gets a line of text from the user:

new Scanner(System.in).nextLine();

This line of code will wait for the user (i.e., you) to enter some text characters using the
keyboard. It actually waits until you press the Enter key. Then, it returns to you the
characters that you typed (not including the Enter key). You can then do something with the
characters, such as print them out.

Here is a simple program that asks users for their name and then says hello to them:

import java.util.Scanner; // More on this later

public class GreetingProgram {

 public static void main(String[] args) {

 Scanner keyboard = new Scanner(System.in);

 System.out.println("What is your name ?");

 System.out.println("Hello, " + keyboard.nextLine());

 }

}

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 12 -

Notice the output from this program if the letters Mark are entered by the user (Note that the
blue text (i.e., 2nd line) was entered by the user and was not printed out by the program):

What is your name ?
Mark
Hello, Mark

As you can see, the Scanner portion of the code gets the input from the user and then
combines the entered characters by preceding it with the "Hello, " string before printing to the
console on the second line.

Interestingly, we can also read in integer numbers from the keyboard as well by using the
nextInt() function instead of nextLine(). For example, consider this calculator program

that finds the average of three numbers entered by the user:

import java.util.Scanner; // More on this later

public class CalculatorProgram {

 public static void main(String[] args) {

 int sum;

 Scanner keyboard = new Scanner(System.in);

 System.out.println("Enter three numbers:");

 sum = keyboard.nextInt() + keyboard.nextInt() + keyboard.nextInt();

 System.out.println("The average of these numbers is " + (sum/3.0));

 }

}

Here is the output when the CalculatorProgram runs with the numbers 34, 89 and 17 entered:

Enter three numbers:

34

89

17

The average of these numbers is 46.666666666666664

There is much more we can learn about the Scanner class. It allows for quite a bit of
flexibility in reading input. In place of nextInt(), we could have used any one of the following
functions to obtain the specific kind of data value that we would like to get from the user:

nextShort(), nextLong(), nextByte(), nextFloat(), nextDouble(),

nextBoolean()

We will discuss the various data values in Chapter 2 of these notes. But for now,
Int/Short/Long/Byte return whole numbers, Float/Double return decimal numbers and Boolean
returns a true/false value.

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 13 -

Notice that there is no nextChar() function available. If you wanted to read a single character
from the keyboard (but don't forget that we still need to also press the Enter key), you could
use the following: nextLine().charAt(0). We will look more into this later when we discuss
String functions. It is important to use the correct function to get user input. For example, if
we were to enter 10, 20 into our program above, followed by some "junk" characters ... an
error will occur telling us that there was a problem with the input as follows:

java.util.InputMismatchException

 ...

 at java.util.Scanner.nextInt(Unknown Source)

 at CalculatorProgram.main(CalculatorProgram.java:11)

 ...

This is JAVA's way of telling us that something bad just happened. It is called an Exception.
We will discuss more about this later. For now, assume that valid integers are entered.

Example:

Let us write a program that displays the following menu.

Luigi's Pizza

 S(SML) M(MED) L(LRG)

1. Cheese 5.00 7.50 10.00

2. Pepperoni 5.75 8.63 11.50

3. Combination 6.50 9.75 13.00

4. Vegetarian 7.25 10.88 14.50
5. Meat Lovers 8.00 12.00 16.00

The program should then prompt the user for the type of pizza he/she wants to order (i.e., 1 to
5) and then the size of pizza 'S', 'M' or 'L'. Then the program should display the cost of the
pizza with 13% tax added.

To begin, we need to define a class to represent the program and display the menu:

public class LuigisPizzaProgram {

 public static void main(String[] args) {

 System.out.println("Luigi's Pizza ");

 System.out.println("---");

 System.out.println(" S(SML) M(MED) L(LRG)");

 System.out.println("1. Cheese 5.00 7.50 10.00 ");

 System.out.println("2. Pepperoni 5.75 8.63 11.50 ");

 System.out.println("3. Combination 6.50 9.75 13.00 ");

 System.out.println("4. Vegetarian 7.25 10.88 14.50 ");

 System.out.println("5. Meat Lovers 8.00 12.00 16.00 ");

 }

}

We can then get the user input and store it into variables. We just need to add these lines
(making sure to put import java.util.Scanner; at the top of the program):

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 14 -

Scanner keyboard = new Scanner(System.in);

System.out.println("What kind of pizza do you want (1-5) ?");

int kind = keyboard.nextInt();

System.out.println("What size of pizza do you want (S, M, L) ?");

char size = keyboard.next().charAt(0);

Annoying detail: Note that next() is used instead of nextLine(). That is because the previous call to nextInt() does not read
the leftover newline character. A call to nextLine() therefore, would read it and return an empty String which does not have a
character in it. Using next() will read just one token/value … not a whole sentence though. So it works in this case.
Otherwise, we would have to call keyboard.nextLine() after keyboard.nextInt() to read that leftover newline character.

Now that we have the kind and size, we can compute the total cost. Notice that the cost of a
small pizza increases by $0.75 as the kind of pizza increases. Also, you may notice that the
cost of a medium is 1.5 x the cost of a small and the cost of a large is 2 x a small. So we can
compute the cost of any pizza based on its kind and size by using a single mathematical
formula. Can you figure out the formula ?

A small pizza would cost: smallCost = $4.25 + (kind x $0.75)
A medium pizza would cost: mediumCost = smallCost * 1.5
A large pizza would cost: largeCost = smallCost * 2

Can you write the code now ?

float cost = 4.25f + (kind * 0.75f);

if (size == 'M')

 cost *= 1.5f;

else if (size == 'L')

 cost *= 2;

And of course, we can then compute and display the cost before and after taxes. Here is the
completed program:

import java.util.Scanner;

public class LuigisPizzaProgram {

 public static void main(String[] args) {

 System.out.println("Luigi's Pizza ");

 System.out.println("---");

 System.out.println(" S(SML) M(MED) L(LRG)");

 System.out.println("1. Cheese 5.00 7.50 10.00 ");

 System.out.println("2. Pepperoni 5.75 8.63 11.50 ");

 System.out.println("3. Combination 6.50 9.75 13.00 ");

 System.out.println("4. Vegetarian 7.25 10.88 14.50 ");

 System.out.println("5. Meat Lovers 8.00 12.00 16.00 ");

 Scanner keyboard = new Scanner(System.in);

 System.out.println("What kind of pizza do you want (1-5) ?");

 int kind = keyboard.nextInt();

 System.out.println("What size of pizza do you want (S, M, L) ?");

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 15 -

 char size = keyboard.next().charAt(0);

 float cost = 4.25f + (kind * 0.75f);

 if (size == 'M')

 cost *= 1.5f;

 else if (size == 'L')

 cost *= 2;

 System.out.println("The cost of the pizza is: $" + cost);

 System.out.println("The price with tax is: $" + cost*1.13);

 }

}

The above program displays the price of the pizza quite poorly. For example, here is the
output of we wanted a Large Cheese pizza:

The cost of the pizza is: $5.0

The price with tax is: $5.6499999999999995

It would be nice to display money values with proper formatting (i.e., always with 2 decimal
places). The next section will cover this.

 1.5 Formatting Text

Consider the following similar program which asks the user for the price of a product, then
displays the cost with taxes included, then asks for the payment amount and finally prints out
the change that would be returned:

import java.util.Scanner;

public class ChangeCalculatorProgram {

 public static void main(String[] args) {

 // Declare the variables that we will be using

 double price, total, payment, change;

 // Get the price from the user

 System.out.println("Enter product price:");

 price = new Scanner(System.in).nextFloat();

 // Compute and display the total with 13% tax

 total = price * 1.13;

 System.out.println("Total cost:$" + total);

 // Ask for the payment amount

 System.out.println("Enter payment amount:");

 payment = new Scanner(System.in).nextFloat();

 // Compute and display the resulting change

 change = payment - total;

 System.out.println("Change:$" + change);

 }

}

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 16 -

Here is the output from running this program with a price of $35.99 and payment of $50:

Enter product price:

35.99

Total cost:$40.66870172505378

Enter payment amount:

50

Change:$9.33129827494622

Notice all of the decimal places. This is not pretty. Even worse …if you were to run the
program and enter a price of 8.85 and payment of 10, the output would be as follows:

Enter product price:

8.85

Total cost:$10.0005003888607

Enter payment amount:

10

Change:$-5.003888607006957E-4

The E-4 indicates that the decimal place should be moved 4 units to the left…so the resulting
change is actually -$0.0005003888607006957. While the above answers are correct, it would
be nice to display the numbers properly as numbers with 2 decimal places.

JAVA’s String class has a nice function called format() which will allow us to format a String in
almost any way that we want to. Consider (from our code above) replacing the change output
line to:

System.out.println("Change:$" + String.format("%,1.2f", change));

The String.format() always returns a String object with a format that we get to specify. In our
example, this String will represent the formatted change which is then printed out. Notice
that the function allows us to pass-in two parameters (i.e., two pieces of information separated

by a comma , character).

The first parameter is itself a String object that specifies how we want to format the resulting
String. The second parameter is the value that we want to format (usually a variable name).
Pay careful attention to the brackets. Clearly, change is the variable we want to format.

Notice the format string "%,1.2f". These characters have special meaning to JAVA. The %

character indicates that there will be a parameter after the format String (i.e., the change

variable). The 1.2f indicates to JAVA that we want it to display the change as a floating point

number which takes at least 1 character when displayed (including the decimal) and exactly 2

digits after the decimal. The , character indicates that we would like it to automatically display

commas in the money amount when necessary (e.g., $1,500,320.28).

We would apply this formatting to the total amount as well:

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 17 -

import java.util.Scanner;

public class ChangeCalculatorProgram2 {

 public static void main(String[] args) {

 double price, total, payment, change;

 System.out.println("Enter product price:");

 price = new Scanner(System.in).nextFloat();

 total = price * 1.13;

 System.out.println("Total cost:$" + String.format("%,1.2f", total));

 System.out.println("Enter payment amount:");

 payment = new Scanner(System.in).nextFloat();

 change = payment - total;

 System.out.println("Change:$" + String.format("%,1.2f", change));

 }

}

Here is the resulting output for both test cases:

Enter product price:

35.99

Total cost:$40.67

Enter payment amount:

50

Change:$9.33

Enter product price:

8.85

Total cost:$10.00

Enter payment amount:

10

Change:$-0.00

It is a bit weird to see a value of -0.00, but that is a result of the calculation. Can you think of a
way to adjust the change calculation of payment - total so that it eliminates the - sign ? Try it.

The String.format() can also be used to align text as well. For example, suppose that we
wanted our program to display a receipt instead of just the change. How could we display a
receipt in this format:

 Product Price 35.99

 Tax 4.68

 Subtotal 40.67

Amount Tendered 50.00

=========================

 Change Due 9.33

If you notice, the largest line of text is the “Amount Tendered” line which requires 15
characters. After that, the remaining spaces and money value take up 10 characters. We
can therefore see that each line of the receipt takes up 25 characters. We can then use the
following format string to print out a line of text:

System.out.println(String.format("%15s%10.2f", aString, aFloat));

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 18 -

Here, the %15s indicates that we want to display a string which we want to take up exactly 15
characters. The %10.2f then indicates that we want to display a float value with 2 decimal
places that takes up exactly 10 characters in total (including the decimal character). Notice
that we then pass in two parameters: which must be a String and a float value in that order
(these would likely be some variables from our program). We can then adjust our program to
use this new String format as follows …

import java.util.Scanner;

public class ChangeCalculatorProgram3 {

 public static void main(String[] args) {

 double price, tax, total, payment, change;

 System.out.println("Enter product price:");

 price = new Scanner(System.in).nextFloat();

 System.out.println("Enter payment amount:");

 payment = new Scanner(System.in).nextFloat();

 tax = price * 0.13;

 total = price + tax;

 change = payment - total;

 System.out.println(String.format("%15s%10.2f","Product Price", price));

 System.out.println(String.format("%15s%10.2f","Tax", tax));

 System.out.println("-------------------------");

 System.out.println(String.format("%15s%10.2f","Subtotal", total));

 System.out.println(String.format("%15s%10.2f","Amount Tendered", payment));

 System.out.println("=========================");

 System.out.println(String.format("%15s%10.2f","Change Due", change));

 }

}

The result is the correct formatting that we wanted. Realize though that in the above code, we
could have also left out the formatting for the 15 character strings by manually entering the
necessary spaces:

System.out.println(String.format(" Product Price%10.2f", price));

System.out.println(String.format(" Tax%10.2f", tax));

System.out.println("-------------------------");

System.out.println(String.format(" Subtotal%10.2f", total));

System.out.println(String.format("Amount Tendered%10.2f", payment));

System.out.println("=========================");

System.out.println(String.format(" Change Due%10.2f", change));

However, the String.format function provides
much more flexibility. For example, if we used
%-15S instead of %15s, we would get a left
justified result (due to the -) and capitalized
letters (due to the capital S) as follows:

PRODUCT PRICE 34.99

TAX 4.55

SUBTOTAL 39.54

AMOUNT TENDERED 50.00

=========================

CHANGE DUE 10.46

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 19 -

There are many more format options that you can experiment with. Just make sure that you
supply the required number of parameters. That is, you need as many parameters as you
have % signs in your format string.

For example, the following code will produce a MissingFormatArgumentException since one of the
arguments (i.e., values) is missing (i.e., 4 % signs in the format string, but only 3 supplied
values:

System.out.println(String.format("$%.2f + $%.2f + $%.2f = $%.2f", x, y, z));

Also, you should be careful not to miss-match types, otherwise an error may occur (i.e.,
IllegalFormatConversionException).

The next page shows a table of a few other format types that you may wish to use in the
future. You are not responsible for knowing or memorizing anything in that table ... it is just for
your own personal use.

Hopefully, you now feel confident enough to writing simple one-file JAVA programs to interact
with the user, perform some computations and solve some relatively simple problems. It
would be a VERY good idea to see if you can convert some of your simpler Python programs
into JAVA.

Supplemental Information (Other String.format Flags)

There are a few other format types that may be used in the format string:

Type Description of What it Displays Example Output

%d a general integer 4096

%x an integer in lowercase hexadecimal ff

%X an integer in uppercase hexadecimal FF

%o an integer in octal 377

%f a floating point number with a fixed number of spaces 83.43

%e an exponential floating point number 7.869877e-03

%g a general floating point number with a fixed number of significant digits 0.008

%s a string as given "Hello"

%S a string in uppercase "HELLO"

%n a platform-independent line end <CR><LF>

%b a boolean in lowercase true

%B a boolean in uppercase FALSE

COMP1406 - Chapter 1 - Programming in JAVA Winter 2018

 - 20 -

There are also various format flags that can be added after the % sign:

Format Flag Description of What It Does Example Output
- numbers are to be left justified 2378.348 followed by

any necessary spaces

0 leading zeros should be shown 000244.87

+ plus sign should be shown if positive number +67.34

(enclose number in round brackets if negative (439.67)

, show decimal group separators 2,347,892.99

There are many options for specifying various formats including the formatting of Dates and Times, but
they will not be discussed any further here. Please look at the java documentation.

