

Programming guidelines
on transition to IPv6

Tomás P. de Miguel and Eva M. Castro
tmiguel@dit.upm.es

eva@gsyc.escet.urjc.es

Department of Telematic Systems Engineering (DIT)
Technical University of Madrid (UPM)

Systems and Communications Group (GSyC)

Experimental Sciences and Technology Department (ESCET)
Rey Juan Carlos University (URJC)

January 2003, v14

mailto:tmiguel@dit.upm.es
mailto:ecastro@dit.upm.es

Programming Guidelines on Transition to IPv6

Acknowledgements
This research has been supported by LONG (Laboratories Over Next Generation
networks) project, IST-1999-20393.

We would like to thanks Latif Ladid and Jim Bound for their support and encouragement.
Thanks to the people who made suggestions and provided feedback to this document
specially Jordi Palet, which improve the accuracy and presentation of the text.

2 / 2

Programming Guidelines on Transition to IPv6

PROGRAMMING GUIDELINES ON TRANSITION TO IPV6 .. 1

ACKNOWLEDGEMENTS .. 2

FIGURES.. 4

TABLES ... 4

1. INTRODUCTION .. 5

2. TRANSITION TO IPV6 WITHOUT CHANGING APPLICATIONS 6

3. TRANSITION SCENARIOS .. 8

4. PORTING APPLICATIONS .. 11
4.1 ANALYZING EXISTING PROGRAMS ... 11

4.1.1 Application transport module... 12
4.1.2 Other application modules with IP address dependencies..................... 13

4.2 IPV4/IPV6 INTEROPERABILITY .. 17
4.2.1 IPv6/IPv4 clients connecting to an IPv4 server at IPv4-only node........ 17
4.2.2 IPv6/IPv4 clients connecting to an IPv6 server at IPv6-only node........ 18
4.2.3 IPv6/IPv4 clients connecting to an IPv4 server at dual stack node 19
4.2.4 IPv6/IPv4 clients connecting to an IPv6 server at dual stack node 20
4.2.5 IPv4/IPv6 clients connecting to an IPv4-only server and IPv6-only
server at dual stack node. ... 21
4.2.6 Client/server and network type interoperability..................................... 21

4.3 PORTING SOURCE CODE .. 22
4.3.1 Socket Address Structures .. 23
4.3.2 Socket functions .. 24
4.3.3 Required modifications when porting to IPv6.. 25
4.3.4 Address conversion functions ... 28
4.3.5 Resolving names ... 30
4.3.6 Multicasting.. 32

5. GUIDELINES ON DEVELOPING NEW APPLICATIONS... 35

6. CONCLUSIONS .. 37

7. BIBLIOGRAPHY... 40

8. APPENDIX: EXAMPLES OF REAL PORTING PROCESS ... 41
8.1 ORIGINAL DAYTIME VERSION .. 41

8.1.1 IPv4 Daytime server (TCP/UDP)... 41
8.1.2 IPv4 Daytime client (TCP/UDP).. 46

8.2 THE UNICAST DAYTIME PORTED TO IPV6... 50
8.2.1 Daytime server (TCP/UDP) ... 50
8.2.2 Example: Daytime client (TCP/UDP). ... 55

8.3 THE MULTICAST DAYTIME ... 59

3 / 3

Programming Guidelines on Transition to IPv6

Figures

FIGURE 1: APPLICATION INTERFACE TRANSLATORS..6
FIGURE 2: TRANSITION SCENARIOS. ..9
FIGURE 3: APPLICATIONS PROTOCOL INDEPENDENT OF IPV4 OR IPV6. ...13
FIGURE 4: TRANSFER UNIT (TU) SIZE PROBLEM IF NOT PMTU-D IMPLEMENTED.16
FIGURE 5: IPV4/IPV6 CLIENTS CONNECTING TO AN IPV4 SERVER AT IPV4-ONLY NODE.18
FIGURE 6: IPV4/IPV6 CLIENTS CONNECTING TO AN IPV6 SERVER AT IPV6-ONLY NODE.19
FIGURE 7: IPV4/IPV6 CLIENTS CONNECTING TO AN IPV4 SERVER AT DUAL STACK NODE.20
FIGURE 8: IPV4/IPV6 CLIENTS CONNECTING TO AN IPV6 SERVER AT DUAL STACK NODE.20
FIGURE 9: IPV4/IPV6 CLIENTS CONNECTING TO AN IPV4-ONLY SERVER AND IPV6-ONLY SERVER AT DUAL

STACK NODE. ...21

Tables

TABLE 1: SPECIAL ADDRESSES. ...14
TABLE 2: CLIENT SERVER AND NETWORK TYPE COMBINATIONS. ..21
TABLE 3: MACROS FOR TESTING TYPE OF ADDRESSES...32
TABLE 4: MULTICAST SOCKET OPTIONS. ...32
TABLE 5: IPV4 OR IPV6 ACTIVATION..36

4 / 4

Programming Guidelines on Transition to IPv6

1. Introduction
The transition between today’s IPv4 Internet and the future IPv6-based one will be a long
process during which both protocol versions will coexist. Moving from IPv4 to IPv6 is not
straightforward and guidelines to simplify transition between the two versions have to be
standardised. Network transition has been discussed in detail; however applications should
be reviewed to complete the porting process.

Existing applications are written assuming IPv4. Only very recently IPv6 has been taken
into account. Unless most of basic distributed applications are available now; there is too
much work to do yet. The aim of this paper is to provide general recommendations to be
taken into account during the porting process of applications and services to IPv6. This
will allow developers to move smoothly their applications into the new environment.

The document is divided in three parts. The first analyzes in which conditions is possible
the transition to IPv6 without changing applications. This chapter includes
recommendations on how to proceed when source code is not available and explains which
mechanisms can be used.

The second is the main document part. It starts describing IPv6 transition scenarios from
the application point of view. The paper is focused on analyzing existing applications
looking for characteristics, which usually should be reviewed during transition to IPv6. It
includes a brief description of basic socket interface extensions for IPv6, fully described in
RFC2553 [BISE].

The paper concludes providing general recommendations for new IPv6 applications. In the
future all IPv4 networks will be IPv6; however during a long period mixed scenarios with
both IPv4 and IPv6 will be the real environments. Therefore, new applications should be
designed to work only in a pure IPv6 environment, but a design to allow mixed IPv4 and
IPv6 environment is better now.

The document includes some examples of code porting process, used to illustrate the
required changes in the client and server components. Porting guidelines are valid for any
programming language, however for simplicity, application examples are provided only in
C language. All these examples have been tested in a SuSE Linux 7.3 distribution, kernel
version 2.4.10. The LONG Project has revised detailed rules and socket interface
description for other popular programming languages [LD31].

5 / 5

Programming Guidelines on Transition to IPv6

2. Transition to IPv6 without changing applications
Many methodologies have been studied to support transition to IPv6 depending on initial
network architectures. To make IPv6 network available to the user it’s necessary to provide
a great number of IPv6 applications. Although, existing applications are written assuming
IPv4, it isn’t desirable to wait until all necessary applications will be ready to start network
transition.

The simple approach during initial transition stages is to use IPv4 applications over the
new IPv6 network environment. Unfortunately, this is not a simple task. A pure IPv6 node
provides only the IPv6 socket interface but old applications only work over IPv4 socket
interface. Both interfaces are similar, but there are some incompatible differences related
with:

• Name (DNS) and IP addresses management,

• Communication constants and data structures or

• Functions names and parameters

Therefore, the IPv4 stack should be available to continue using IPv4 applications. The
network is IPv6, so to operate with the network the stack which should be used is the IPv6
one. Them dual stack is required.

But dual stack is not enough. If both IPv4 and IPv6 network interfaces are available but
only there are IPv4 applications, IPv6 will not be used. A real IPv6 scenery implies
removing IPv4 network and operating only through IPv6 one. The solution is to provide a
translator from the IPv6 network interface into the IPv4 programming interface required
by applications; see Figure 1.

Figure 1: Application interface translators.

A translator intercepts data flowing between application and the link layer modules and
translates all IPv4 related issues into IPv6 and vice versa. When IPv4 application
communicates with an IPv6 node, the translator changes addresses into IPv6, changes the
call into the new environment and outputs an IPv6 packet. The reception is similar. All

6 / 6

Programming Guidelines on Transition to IPv6

input packets are examined, translated and emitted to the upper layer in the IPv4 format.
Thus it seems as if it was dual stack host with both IPv4 and IPv6 or dual applications.
Translation can be made at three different levels: link, socket or application.

Link translation [BIS] takes place between IP level and network driver modules (the link
layer). At this level the translator intercepts all input and output IP packets. If
correspondent node is IPv4 the packet is emitted without changes. If correspondent node
is an IPv6 one, it is revised and translated into an IPv4 packet. If it is an output packet, the
translator obtains the IPv6 address of the correspondent node and outputs an IPv6 packet.
When the node receives an IPv6 packet, it obtains the correspondent node IPv4 address
(or builds it) and translates the original IPv6 packet into the IPv4 one.

Socket interface translation [BIA] takes place between socket API module and the TCP/IP
module. Now translation is at interface programming level, so translation is simplified
without translating IP packet headers. To communicate with an IPv6 node, the translator
intercepts all IPv4 sockets calls and translates them into IPv6 sockets functions. The
returns from IPv6 calls (packets reception) are translated into the correspondent IPv4
returns. The mechanism is complemented with translations of addresses and names, similar
to the previous one.

Finally, sometimes applications use user level communications library, for example when a
prototype or an interpreted programming language is used. In such a case, it is possible to
introduce the translator at application level. The communications API module remains
unchanged but it is rewritten in order to transform part of the IPv4 connections into IPv6
ones. Translation of names and addresses are also required to provide only IPv4
information to the application when it connects with an IPv6 node.

Unfortunately, there are many applications without a clear modularization or have
addresses dependencies, in such cases application code should be revised to integrate the
application in the new IPv6 environment.

7 / 7

Programming Guidelines on Transition to IPv6

3. Transition scenarios
The most important requirement in IPv6 transition is that existing services should work in
the new environment but also continue to work with IPv4 nodes. The simplest approach to
introduce IPv6 without changing applications is to use dual-stack: supporting IPv4 and
IPv6 simultaneously, maintaining old IPv4 applications and adding new ones to
communicate with IPv6 nodes. This largely increases the complexity of network
administration and maintains the address space scarce resource.

There is a pressure to start up new networks in the new IPv6 environment without IPv4
support. However, there is no a single global IPv6 network on the same scale as the actual
IPv4 and it will take some time to get it. Therefore, new applications should be designed to
work in all environments: single IPv4, single IPv6 or mixed environment connecting IPv6
with IPv4 nodes. That is, dual protocol stack is necessary. However, it does not mean
supporting simultaneously IPv4 and IPv6 routing. It is possible to use IPv6 applications on
IPv4 network and IPv4 applications on IPv6 network.

Therefore, there are many possible scenarios but only some of them will be used in practice
[APPT]. To select the best one it is necessary to know the initial environment. Two
possible environments can be considered: the transition of working IPv4 network and the
setup of new network or service.

For already working networks the better solution is to maintain the IPv4 stack and
introduce IPv6 stack in parallel with the old one; that is to use the dual stack environment
[DSTM]. It is the principal building block during transitioning from IPv4 to IPv6. Dual
stack mechanisms do not, by themselves, solve the IPv4 and IPv6 interworking problems;
other important building block, addresses translation, is required many times. Translation
refers to the direct translation of protocols, including headers and sometimes protocol
payload. Protocol translation often results in features loss. For instance, translation of IPv6
header into an IPv4 header will lead to the loss of the IPv6 flow label. Translation can be
complemented with tunnelling; which is used to bridge compatible networks across
incompatible ones.

After transition period, IPv4 stack and IPv4 applications will be removed and result a pure
IPv6 environment.

The organizations transition from IPv4 to IPv6 follows more or less the same steps. Each
step defines one transition scenario; see Figure 2. The systems manager should provide
applications to work in all of them. We can consider various scenarios in application
porting process using dual-stack:

Start point: Applications have been designed on IPv4 and the network is working with
IPv4 only.

Step I: The network remains unchanged. Some IPv6 applications are available but IPv6
communication is only possible through IPv6 over IPv4 tunnels.

Step II: IPv6 is available at network level unless applications remain unchanged and
only support IPv4. Only IPv6 applications can use the IPv6 network.

Step III: Applications are ready to work simultaneously on IPv4 and IPv6.

Step IV: IPv4 network has been removed. Communication with IPv4 nodes is only
possible with the help of an IPv4 over IPv6 tunnel.

8 / 8

Programming Guidelines on Transition to IPv6

End point: Finally all IPv4 networks and applications use IPv6.

The application porting process takes place between steps II and III. This paper is devoted
to describe how to make such application adaptations. There are two probable scenarios
during the transition. The first is based on maintaining two application versions and the
second with only one dual version.

Figure 2: Transition scenarios.

We can forget old IPv4 applications and maintain them only to communicate with IPv4
nodes during transition period. The transition methodology consists in developing a
complete set of applications designed to work only over IPv6 transport layer. The main
advantage is to be ready with new applications after transition period. To finish IPv6
transition it is necessary only to removed IPv4 applications and dual stack network.
However, the selection of suitable applications during transition period it’s a user
responsibility. When tests, configuration or management of applications are considered, the
application selection is not a problem because their users normally have technical
knowledge. However, with most of end-user applications, the user hasn’t enough
knowledge or doesn’t want to know, which is the proper application version that should be
used in each connection. Moreover, during transition period it will be necessary to provide
data servers working both IPv4 and IPv6 to accept connections not only from new but also
from old nodes.

The second transition scenario looks for changing existing applications, not developing
new ones. The porting process takes the original IPv4 application, review source code and
produces a new version adapted to work over both IPv4 and IPv6 environments. The
porting process is a little bit more complex than IPv6 only support, but the result is more
flexible to be used during transition period. Transition period will be probably a long
period during which there will be islands, not only IPv6 but also IPv4, interested for users

9 / 9

Programming Guidelines on Transition to IPv6

in the new environments. This is because during a long period most of data servers will be
maintained in the IPv4 only environment.

However, for new network or services an only IPv6 stack environment is better. It is not
sense to define an IPv4 network so dual stack is not allowed. However, during transition
period native IPv6 networks will need to maintain connectivity with applications, which
can only be reached through IPv4. In such cases, one standard network transition
mechanism should be provided [NAT-PT] [SIIT] [6to4]. Depending on the application,
sometimes it is possible to use special dual-stack edge servers at the IPv4 and IPv6 border
as application level proxies, removing the need for network-level transition.

10 / 10

Programming Guidelines on Transition to IPv6

4. Porting applications
Unless there are many proposed solutions to accelerate transition from IPv4 to IPv6,
ultimately, applications should be modified to simplify protocol stacks configurations and
support all IPv4 and IPv6 communication types.

Most existing applications are written assuming IPv4. In general, most of them can be
converted without too much effort. Many changes could be done automatically and there
are some scripts to do it. However, there are applications, which make special use of IPv4
or include advanced features, such as multicasting, raw sockets or other IP options. In such
cases, an exhaustive code revision should be done.

Besides, there are applications that are not only affected by modification of function calls
but also by the logic behind their usage. Such code is the hardest to deal with and cannot
be automatically ported. This code can be misleading if developers do not consider the
logic of the program during the porting process.

Dual stack allows applications to use both types of addresses, IPv4 and IPv6. Developers
will only need to port their IPv4 applications to the new IPv6 API, considering that
applications could communicate using both protocol versions, depending on the
destination node.

In the general case, porting an existing application to IPv6 requires to examine the
following issues in the application source code:

• Network information storage: data structures.

• Resolution and conversion address functions.

• Communication API functions and pre-defined constants.

Many applications use IP addresses to store references to remote nodes. This is not
recommended because IPv6 lets addresses change over time (this technique is named
renumbering). Applications should use stable identifiers for other nodes, for instance, host
names. If applications store IP addresses they should redo the mapping from host names
to IP addresses in order to solve inconsistencies.

Client applications should be prepared to connect to multi-homed severs, nodes that have
more than one IP address. Hence, when a communication channel to a multi-homed server
fails, client applications should try another IP address in the multi-homed server list of IP
addresses until they find one that is working.

Applications using URLs should change definitions in RFC2732 which specifies square
brackets to delimit IPv6 addresses: http://[IPv6Address]/index.html

4.1 Analyzing existing programs
Once the IPv6 network is deployed, applications must be designed to work over it.
Existing applications cannot use IPv6 without previous modifications. Hence, from the
applications point of view, the IPv6 deployment requires changes in the existing
applications and new communication design concepts to be included for the new ones.

When porting IPv4 applications to IPv6, there are different degrees to carry out this task. If
applications only use basic communications facilities, developers only have to identify the

11 / 11

Programming Guidelines on Transition to IPv6

application communication module and change some functions in order to use the new
IPv6 API. However, if IPv6 advanced facilities should be considered, such as quality of
service or mobility, a redesign of some parts of the application must be done. In this last
case, the porting process requires a complete knowledge of the application architecture and
this process is similar to the design of a new application over IPv6.

Providing basic IPv6 communication facilities to an existing application is an easy task if
the application architecture is well designed, with isolated functional modules, so that the
transport module could be easily identified. In the other hand, if the application has not
isolated modules, adaptation to the new API will require many changes in different parts of
source code, making difficult the reusability and the maintenance.

The application transport module is charged of implementing the communication paradigm
selected by the application and must be adapted to the new IPv6 communication API.
Usually, the communication API makes visible to the application the version of protocol it
is using, since address data structures are completely different. Besides, other facilities such
as conversion functions between hostnames and IP addresses are different in the new IPv6
environment too.

Besides, there could be other modules or application parts different from transport module,
which can include dependencies on the IP addresses, and they must be reviewed:

• IP address parsers.

• Use of special addresses.

• Local IP address selection.

• Application Data Unit (ADU) fragmentation.

• Register systems based on IP addresses.

In the following subsections, some modifications to be made in the transport module and
in other modules, which include dependencies on the IP addresses, are studied.

4.1.1 Application transport module
When porting to IPv6, the first module to be reviewed is the one related to the
management of the remote communication channels, named transport module. This
module will surely contain dependencies on the IP version used by the application.

The application transport module establishes communication channels required by a
specific application when transmitting data to remote sites. This module makes applications
network independent, providing a generic communication module to allow applications
exchange information between remote participants.

Changes in the application transport module are required since the kernel communication
API has been changed to support IPv6. The module must be changed to use the new
address structures and functions to create IPv6 communications.

During the gradual transition phases from IPv4 to IPv6, the same application will work
over IPv4 and IPv6 networks. Hence, portability is one of the main features of applications,
which should work in both environments. One of the best ways to make applications
independent of the protocol used (IPv4 or IPv6) is to design a generic communication
library, which hides protocol dependencies and lets the application transport module be
simpler. The use of the library allows reusability and easy maintenance of the

12 / 12

Programming Guidelines on Transition to IPv6

communication channel abstraction. Applications can forget about communication
problems, since the library charges on behalf of them, see Figure 3.

Figure 3: Applications protocol independent of IPv4 or IPv6.

A generic communication library allows applications to be independent of the lower level
protocol, and provides a common communication interface to every application.
Applications should be able to access to different communication protocols from the
generic library API functions: TCP, UDP, IP, multicast, etc., independently of the IP
version.

4.1.2 Other application modules with IP address dependencies
The application transport module is directly related to the communication establishment
and the information transmission. However, there could be other application modules,
which have IP address dependencies, so they are IP version dependant. In the next
subsections these other dependencies are analysed.

4.1.2.1 IP address parsers
Many applications require an IP address as an argument to establish a new connection to
this address, for example using the client/server model the client needs to know the IP
address or the hostname where the server is running.

The use of Fully Qualified Domain Name (FQDN) instead of IP address is preferable
since nodes can change their addresses and this process should be transparent to
applications. Applications can store and use FQDN, delegating the resolution of the IP
addresses to the name resolution system, which will return the associated IP address at the
moment of the query.

From applications point of view, the name resolution is a system-independent process.
Applications call functions in a system library, known as the resolver, which is linked into

13 / 13

Programming Guidelines on Transition to IPv6

the application when the application is built. Developers should change the use of the IPv4
resolution functions by the new IPv6 ones, or by the protocol-independent ones if they
exist.

Typically applications do not require knowing the version of the IP version they are using,
hence applications only should try to establish communications using each address
returned by resolver until it works. However, applications could have a different behaviour
when using IPv4, IPv6, IPv4-compatible-IPv6 or IPv4-mapped, etc. addresses.

There could be scenarios where the use of IP addresses is required and applications utilise a
parser to analyse addresses. In these cases, IP address parsers must be modified in order to
include the new IPv6 string address format.

IPv4 addresses are represented using dotted quad format, each decimal integer represents a
one octet of the 4 octet address, value between 0 and 255; for instance 138.4.4.161. The
written length of the IPv4 address string varies between 7 and 15 bytes. IPv6 addresses are
represented using hexadecimal notation which can be abbreviated, requiring between 3 and
39 bytes; for instance 2001:720:1500:1::a100. So, IPv4 uses dot (“.”) to separate octets and
IPv6 uses colon (“:”) to separate each pair of octets. Application address parser code
should be reviewed to be in conformance with the IPv6 address representation.

There could be an ambiguity with the colon character. Colon character is used in the IPv6
addresses as a separator between each pair of address octets and it is used in the IPv4
networks as a separator between the address and the service port number. Applications can
use the same format as the literal IPv6 addresses in URLs, enclosing the IPv6 address
within square brackets, to solve the ambiguity. The RFC 2373 describes literal IPv6
addresses in URLs, for instance: http://[2001:720:1500:1::a100]:80/index.html

4.1.2.2 Use of special addresses
There are some special addresses, which are found hard coded within the application
source, instead of using symbolic names. For instance, the addresses 127.0.0.0/8 is referred
to the localhost interface. When moving an application from an only IPv4 host to an only
IPv6 host, hard coded addresses will fail when establishing connections. So the use of
names instead of IP addresses is recommended, names could be reconfigured without
changing application source code.

Developers should review application source code to change the IPv4 addresses in Table 1
to consider portability to IPv6 only hosts.

Table 1: Special addresses.

Symbolic Name (IPv4 / IPv6) IPv4 Address IPv6 Address

INADDR_ANY / IN6ADDR_ANY_INIT 0.0.0.0 ::
INADDR_LOOPBACK / IN6ADDR_LOOPBACK_INIT 127.0.0.1 ::1
INADDR_BROADCAST 255.255.255.255 Not exist

4.1.2.3 Local IP address selection
IPv6 allows many IP addresses by each network interface with different reachability scope
(link-local, site-local or global). Hence, there should be mechanisms to select which source

14 / 14

http://[2001:720:1500:1::a100]:80/index.html

Programming Guidelines on Transition to IPv6

and destination addresses applications should use in order to know the behaviour of the
systems.

Normally, the name resolution functions return a list of valid addresses for a specific
FQDN. Applications should iterate this list to select the address to be used in the
communication channel configuration (for instance, to select the source address, for bind()
function, and to select the destination address, for sendto() or connect() functions).
Source address selection is a critical operation that gives information to the receiver about
the address to send the reply. If the selection is not appropriated the backward path could
be different from forward path, even if the addresses are administratively scoped, the reply
may be lost and communication between applications will fail.

When choosing source address, some applications use unspecific address to let the OS
kernel make this selection, named default address selection. When choosing destination
address, some criteria could be used to prefer one address based on the pair
source/destination values. The default address selection algorithm returns a preferred
address from a set of candidates, based on a policy to make the best choice. Administrators
can configure this mechanism to override the default behaviour. There are still some works
in progress around this topic (draft-ietf-ipv6-default-addr-select.txt).

4.1.2.4 ADU fragmentation
Application Data Unit (ADUs) is the block of data sent or received in a single
communication operation at application level. Applications alternate between computation
and communication phases, and during the communication phase they send or receive one
or more data structures, each forming an ADU. However, since the amount of data that
can be handled at any given time, in a single unit of operation is limited by the available
resources on the network interface node, the ADU must be fragmented in transfer units
(TUs).

The problem is to select the more adequate TU size. Long packets are transmitted more
efficiently, as the application overhead of the end systems is reduced. On the other hand,
longer packets tend to increase transit delays because of the intermediate relaying process,
which is not good in real time applications. The size of the TUs is directly related to the
maximum size of the IP packet used over a network (PMTU, Path Maximum Transmission
Unit) and the IP fragmentation process. Then, longer packets are likely to be fragmented to
adapt the packet size to the link layer.

Since IPv6 fragmentation is an end-to-end algorithm, [RFC 1981] recommends that all
IPv6 nodes should implement PMTU Discovery (PMTU-D) to optimise the throughput of
fragmented ADUs. PMTU-D is a mechanism to use the IPv6 packet size longer than fits
the IPv6 minimum MTU through all the networks traversed, increasing the efficiency of
transmission and guaranteeing that the IPv6 packets can travel through all networks to
reach the destination. If a packet is too large for a router to forward on to a particular link,
the router must send an ICMP “Destination Unreachable -- Fragmentation Needed”
message to the source address an the source host adjusts the packet size based on the
ICMP message.

However, the PMTU-D is implemented in the packetization protocol, but it is only a
recommendation not a mandatory network module, and routers do not always rely on
ICMP packets, see RFC2923. So, applications can send their TUs using a TU size longer
than the MTU of an intermediate link on the current path, between the source and the

15 / 15

Programming Guidelines on Transition to IPv6

destination nodes and it is likely none of the packets will reach the destination node. This
problem is known as the black hole. For example, in Figure 4, packets are not fragmented
at the source because they can be sent over this first link layer. But, when the packets reach
the intermediate link Rinter, which is using an outgoing MTU smaller than the packet size,
packets will be discarded and will not reach destination node. In Figure 4 TU size is longer
than the MTU3 of the intermediate link, at this point packet will be discarded.

Figure 4: Transfer Unit (TU) size problem if not PMTU-D implemented.

TCP is a packetization protocol and some implementations solve this problem
implementing black hole detection and sending smaller packets until the transmission is
done.

However, there are applications, which realize their own packetization process, maybe
sending UDP packets. If PMTU discovery is not properly working, data will not reach
destination. In this situation, applications must implement their own mechanisms to detect
black hole problem and send smaller packets, or use the minimum supported MTU for
IPv6 1280 octet packets.

4.1.2.5 Register systems based on IP addresses
Analysing network applications, dependencies in the source code with the IP address are
frequently found. For instance, one of the most popular ways to register remote nodes in a
collaborative system is based on using the IP addresses as keys for searching in a registry
system. Group communication is often related to a group membership concept based on a
participant registry system.

The registry system provides an identification method to allow connections from different
remote participants to a session. The problem is that an IP address cannot be used to

16 / 16

Programming Guidelines on Transition to IPv6

identify a peer node since IP addresses can change over time, for instance after a
renumbering process. Renumbering should be an infrequent event, but sometimes it will
happen and it should be a transparent process for applications.

The best solution to this problem is the use of identifiers independent of the network layer,
for instance random numbers. However, some applications require that the identifiers were
dependent on network address. One of the flexible solutions is the use of FQDN as stable
identifiers for participant nodes in the registry system. The FQDN remains invariable over
the time although it’s associated IP address can change. The resolver code will provide the
IP address if it was required at any time.

Sometimes applications require IP addresses instead of FQDN. When porting to IPv6, this
dependency will provoke some changes in the source code to support the new data
structures. In these cases, applications can get addresses from FQDN and store them in
configuration files for an unlimited time. This information should be refreshed periodically
to actualise IP address modifications and to avoid no longer valid information. The
refreshing process will guarantee the use of the last assigned IP address to a node.

4.2 IPv4/IPv6 Interoperability
The mechanism to select the appropriate IP address is decided by the name service. When
a network node wants to reach another, it asks the name service for its IP address. If the
answer is an IPv4 address, it is assumed that there is a path through Internet to link with
the remote node and that this remote node is capable of receiving IPv4 connections from
the source node. The same applies for a node that has only IPv6 address. It is assumed that
it understands IPv6 packets. If both source and destination nodes have dual stack, the
communication will use the type of address returned by the name service.

During first step of transition phase there is no IPv6 network. This document is not
devoted to study how to solve other communication aspects, which are not visible to the
application layer. If IPv6 addresses should be used during connection but IPv6 routers are
not part of the network infrastructure, a basic IPv4 framework should be used. This is
achieved by building IPv6 tunnels. They encapsulate IPv6 packets inside IPv4 header and
send them through the IPv4 network.

However, dual-stack should be used during most of the transition periods, because not all
IPv6-only implementations allow the interaction with any kind of network node. Following
we will study the interoperability between IPv4-only nodes, IPv6-only nodes and dual stack
nodes using the client/server model.

4.2.1 IPv6/IPv4 clients connecting to an IPv4 server at IPv4-only
node

There is an IPv4 server application running on IPv4-only node and we will analyze all
connection possibilities from clients, see Figure 5.

If an IPv4 client running on IPv4-only node connects to the IPv4 server, it will work as the
usual IPv4 client/server connection, since both of them are IPv4-only nodes.

17 / 17

Programming Guidelines on Transition to IPv6

When using an IPv4 client running at dual stack node, the client will request the server IP
address to the resolver and it will return the server IPv4 address. The client running at dual
stack will work as if it was running at IPv4-only node and will exchange IPv4 packets.

When using an IPv6 client running at IPv6-only node, since this node can only exchange
IPv6 packets, it cannot connect to the server, which can only exchange IPv4 packets. They
are using incompatible protocols.

If an IPv6 client is running at dual stack node, the client will request to the resolver the
server IP address. Since the server is running at an IPv4-only node, the resolver will return
the IPv4-mapped IPv6 address. The IPv6 client will use this address to connect to the IPv4
server and the dual stack node will send IPv4 packets when the IPv4-mapped IPv6 address
is used. Then, IPv6 client will work as it was connected to an IPv6 server and the IPv4
server will work as it was connected to an IPv4 client.

Figure 5: IPv4/IPv6 clients connecting to an IPv4 server at IPv4-only node.

4.2.2 IPv6/IPv4 clients connecting to an IPv6 server at IPv6-only
node

There is an IPv4 server application running at IPv6-only node and we will analyze all
connection possibilities from clients, see Figure 6.

18 / 18

Programming Guidelines on Transition to IPv6

Figure 6: IPv4/IPv6 clients connecting to an IPv6 server at IPv6-only node.

IPv4 clients cannot connect to an IPv6 server running at an IPv6-only node, since IPv4
clients cannot use IPv6 addresses. Then, only IPv6 clients can connect to the server using
the IPv6 address of the server node.

4.2.3 IPv6/IPv4 clients connecting to an IPv4 server at dual stack
node

There is an IPv4 server application running at dual stack node and we will analyze all
connection possibilities from clients, see Figure 7.

When using IPv4 clients, the mechanisms are similar to the 4.1.1 section, the IPv4 server at
only-IPv4 node case. Clients use the server IPv4 address. IPv4 packets are exchanged
between clients and server.

An IPv6 client at IPv6-only node cannot connect to the IPv4 server, since the server
cannot use IPv6 addresses. Although both nodes could communicate using IPv6 protocol,
since the server only uses IPv4, the client cannot connect to the server.

An IPv6 client at dual stack node can connect to the IPv4 server using IPv4 network. The
IPv6 client request to the resolver the server IP address, the resolver will return the IPv4-
mapped IPv6 address to the IPv6 client. As we analyzed at the 4.1.1 section, the IPv6 client
will work as it was connected to an IPv6 server and the IPv4 server will work as it was
connected to an IPv4 client.

19 / 19

Programming Guidelines on Transition to IPv6

Figure 7: IPv4/IPv6 clients connecting to an IPv4 server at dual stack node.

4.2.4 IPv6/IPv4 clients connecting to an IPv6 server at dual stack
node

There is an IPv6 server application running at dual stack node and we will analyze all
connection possibilities from clients, see Figure 8.

IPv4 clients will connect using IPv4 protocol. They will use the IPv4 server address and
exchange IPv4 packets. These packets are delivered to the IPv6 server using IPv4-mapped
IPv6 addresses. Also, the server will use the IPv4-mapped IPv6 addresses when answering
the IPv4 client requests. The dual stack at the server node will send IPv4 packets when the
IPv4-mapped IPv6 address is used.

Figure 8: IPv4/IPv6 clients connecting to an IPv6 server at dual stack node.

IPv6 clients will use the server IPv6 address to connect to it and will exchange IPv6
packets.

20 / 20

Programming Guidelines on Transition to IPv6

4.2.5 IPv4/IPv6 clients connecting to an IPv4-only server and IPv6-
only server at dual stack node.

During transition there could be running different versions of the same application on a
dual stack node, the IPv4-only and the IPv6-only versions. The IPv4-only server will only
accept connections from IPv4 clients and the IPv6-only server will only attend to IPv6
clients, see Figure 9.

Figure 9: IPv4/IPv6 clients connecting to an IPv4-only server and IPv6-only server at dual stack

node.

This case allows separating the IPv4 connections from IPv6 ones. If only IPv6 connections
must be accepted, the IPv6-only server will be started. Notice that 4.2.4 is similar to this
case, but in that case the IPv6 server will accept all connection requests, from IPv4 and
IPv6 clients and cannot be separated connection from different protocol versions.

4.2.6 Client/server and network type interoperability
The Table 2 summarizes the combinations to connect clients and servers running at
different kind of nodes: IPv4-only node, IPv6-only node and dual stack node. The
combinations signed with “X” denote that communication between such kinds of nodes is
not possible. However, dual-stack combinations allow network communication in almost
all circumstances. There is only an exception: When the server is IPv4 and an IPv6 client
tries to communicate with it, the connection is only possible if client address is an IPv4-
mapped into IPv6 address. In this case, if the client chooses a pure IPv6 address, the server
will not be able to manage the client address.

Table 2: Client server and network type combinations.

21 / 21

Programming Guidelines on Transition to IPv6

 IPv4 server application IPv6 server application

 IPv4 node Dual-stack IPv6 node Dual-stack

IPv4 node IPv4 IPv4 X IPv4

IP
v4

 c
lie

nt

Dual-stack IPv4 IPv4 X IPv4

IPv6 node X X IPv6 IPv6

IP
v6

 c
lie

nt

Dual-stack IPv4 IPv4 / X IPv6 IPv6

Therefore, four application types can be distinguished:

IPv4-only: An application that is not able to handle IPv6 addresses i.e. it cannot
communicate with nodes that do not have an IPv4 address.

IPv6-aware: An application that can communicate with nodes that do not have IPv4
addresses i.e. the application can handle the larger IPv6 addresses. In some
cases this might be transparent to the application, for instance when the API
hides the content and format of the actual addresses.

IPv6-enabled: An application that, in addition to being IPv6-aware, takes advantage of
some IPv6 specific features such as flow labels. The enabled applications can
still operate over IPv4, perhaps in a degraded mode.

IPv6-required: An application that requires some IPv6 specific feature and therefore
cannot operate over IPv4.

During the gradual transition phase from IPv4 to IPv6, the same application should be run
in an IPv4 or IPv6 nodes. Hence, portability is one of the main features of applications,
which should work in both environments.

4.3 Porting Source Code
Most existing applications are written assuming IPv4. In general, most of them can be
converted without too much effort. Many changes could be done automatically and there
are some scripts to do it. However, there are applications that make special use of IPv4
addresses or include advanced features, such as multicasting, IP options or raw sockets. In
such cases, exhaustive code revision should be done.

Some changes are needed to adapt the socket API for IPv6 support: a new socket address
structure to carry IPv6 addresses, new address conversion functions and several new socket
options that are explained in RFC-2553. These extensions are designed to provide access to
the basic IPv6 features required by TCP and UDP applications, including multicasting,
while introducing a minimum of change into the system and providing complete
compatibility for existing IPv4 applications. Access to more advanced features (raw sockets,
header configuration, etc.) is addressed in RFC-2292.

22 / 22

Programming Guidelines on Transition to IPv6

The following subsections are an overview of changes in the basic BSD socket API to
support IPv6 (see RFC-2553 for details) and how the applications source code should be
changed in order to make it portable and protocol independent code.

4.3.1 Socket Address Structures
Functions provided by socket API use socket address structures to determine the
communication service access point. Since different protocols can handle socket functions,
a generic socket address structure is used as argument of these functions for any of the
supported communication protocol families, sockaddr.

struct sockaddr {
 sa_family_t sa_family; /* Address family */
 char sa_data[14]; /* protocol-specific address */
};

Although socket functions handle generic socket address structure, developers must fill the
adequate socket address structure according to the communication protocol they are using
to establish the socket. Concretely, the IPv4 sockets use the following structure,
sockaddr_in:

typedef uint32_t in_addr_t;
struct in_addr {
 in_addr_t s_addr; /* IPv4 address */
};

struct sockaddr_in {
 sa_family_t sin_family; /* AF_INET */
 in_port_t sin_port; /* Port number. */
 struct in_addr sin_addr; /* Internet address. */

 /* Pad to size of `struct sockaddr'. */
 unsigned char sin_zero[sizeof (struct sockaddr) -
 sizeof (sa_family_t) -
 sizeof (in_port_t) -
 sizeof (struct in_addr)];
};

And the IPv6 sockets use the following structure, sockaddr_in6, with a new address
family AF_INET6:

struct in6_addr {
 union {
 uint8_t u6_addr8[16];
 uint16_t u6_addr16[8];
 uint32_t u6_addr32[4];
 } in6_u;

 #define s6_addr in6_u.u6_addr8
 #define s6_addr16 in6_u.u6_addr16
 #define s6_addr32 in6_u.u6_addr32

23 / 23

Programming Guidelines on Transition to IPv6

};

struct sockaddr_in6 {
 sa_family_t sin6_family; /* AF_INET6 */
 in_port_t sin6_port; /* Transport layer port # */
 uint32_t sin6_flowinfo; /* IPv6 flow information */
 struct in6_addr sin6_addr; /* IPv6 address */
 uint32_t sin6_scope_id; /* IPv6 scope-id */
 };

The sockaddr_in or sockaddr_in6 structures are utilized when using respectively IPv4
or IPv6. Existing applications are written assuming IPv4, using sockaddr_in structure.
They can be easily ported changing this structure by sockaddr_in6. However, when
writing portable code, it is preferable to eliminate protocol version dependencies from
source code. There is a new data structure, sockaddr_storage, large enough to store all
supported protocol-specific address structures and adequately aligned to be cast to the a
specific address structure.

/* Structure large enough to hold any socket address (with the
historical exception of AF_UNIX). 128 bytes reserved. */

#if ULONG_MAX > 0xffffffff
define __ss_aligntype __uint64_t
#else
define __ss_aligntype __uint32_t
#endif
#define _SS_SIZE 128
#define _SS_PADSIZE (_SS_SIZE - (2 * sizeof (__ss_aligntype)))

struct sockaddr_storage
 {
 sa_family_t ss_family; /* Address family */
 __ss_aligntype __ss_align; /* Force desired alignment. */
 char __ss_padding[_SS_PADSIZE];
 };

Hence, portable applications should use sockaddr_storage structure to store their
addresses, IPv4 or IPv6 ones. This new structure hides the specific socket address structure
that the application is using.

4.3.2 Socket functions
The socket API has not been changed since it handles generic address structures,
independent from the protocol it is using. However, applications should change the value
of arguments used to call the socket functions. First, applications should allocate enough
memory to store the appropriate socket address structure. And second, before calling the
socket functions, the specific socket address structure should be cast to the generic one,
which is accepted by the socket functions as an argument.

int socket (int domain, int type, int protocol);

int listen (int s, int backlog);

24 / 24

Programming Guidelines on Transition to IPv6

ssize_t write (int fd, const void *buf, size_t count);

int send (int s, const void *msg, size_t len, int flags);

int sendmsg (int s, const struct msghdr *msg, int flags);

ssize_t read (int fd, void *buf, size_t count);

int recv (int s, void *buf, size_t len, int flags);

int recvmsg (int s, struct msghdr *msg, int flags);

int close (int fd);

int shutdown(int s, int how);

Socket calls where a socket address structure is provided from application to kernel.

int bind (int sockfd, struct sockaddr *my_addr, socklen_t addrlen);

int connect(int sockfd, const struct sockaddr *serv_addr,
 socklen_t addrlen);

int sendto (int s, const void *msg, size_t len, int flags,
 const struct sockaddr *to, socklen_t tolen);

Socket calls where a socket address structure is provided from kernel to application.

int accept (int s, struct sockaddr *addr, socklen_t *addrlen);

int recvfrom (int s, void *buf, size_t len, int flags,
 struct sockaddr *from, socklen_t *fromlen);

int getpeername(int s, struct sockaddr *name, socklen_t *namelen);

int getsockname(int s, struct sockaddr *name, socklen_t *namelen);

4.3.3 Required modifications when porting to IPv6
When porting to IPv6, some modifications related to the socket API are required in the
network applications.

Three modification types to be made when porting source code to IPv6 have been
identified:

a) Creating a socket.

b) Socket calls where a socket address structure is provided from application to kernel.

25 / 25

Programming Guidelines on Transition to IPv6

c) Socket calls where a socket address structure is provided from kernel to application.

There are some examples below of these three types of operation.

a) Creating a socket
The difference between creating an IPv4 and an IPv6 socket is the value of the family
argument in the socket call.

• IPv4 source code:

socket(PF_INET, SOCK_STREAM, 0); /* TCP socket */
socket(PF_INET, SOCK_DGRAM, 0); /* UDP socket */

• IPv6 source code:

socket(PF_INET6, SOCK_STREAM, 0); /* TCP socket */
socket(PF_INET6, SOCK_DGRAM, 0); /* UDP socket */

b) Socket calls where a socket address structure is provided from application to

kernel
Socket address structure is filled before calling the socket function.

• IPv4 source code (a complete example is included in appendix in the ListenServer4.cpp
file):

struct sockaddr_in addr;
socklen_t addrlen = sizeof(addr);

/*
 fill addr structure using an IPv4 address before calling socket
 funtion
*/

bind(sockfd,(struct sockaddr *)&addr, addrlen);

26 / 26

Programming Guidelines on Transition to IPv6

• IPv6 source code:

struct sockaddr_in6 addr;
socklen_t addrlen = sizeof(addr);

/*
 fill addr structure using an IPv6 address before calling socket
 function
*/

bind(sockfd,(struct sockaddr *)&addr, addrlen);

• Portable source code (a complete example is included in appendix, in the
ListenServer.cpp file):

struct sockaddr_storage addr;
socklen_t addrlen;

/*
 fill addr structure using an IPv4/IPv6 address and
 fill addrlen before calling socket function
*/

bind(sockfd,(struct sockaddr *)&addr, addrlen);

c) Socket calls where a socket address structure is provided from kernel to

application
When calling this kind of socket functions, the socket address structure is filled in with the
address of the source entity.

• IPv4 source code (a complete example is included in appendix, in the
TCPDayTimeServer4.cpp file):

struct sockaddr_in addr;
socklen_t addrlen = sizeof(addr);

accept(sockfd,(struct sockaddr *)&addr, &addrlen);

/*
 addr structure contains an IPv4 address
*/

27 / 27

Programming Guidelines on Transition to IPv6

• IPv6 source code:

struct sockaddr_in6 addr;
socklen_t addrlen = sizeof(addr);

accept(sockfd,(struct sockaddr *)&addr, &addrlen);

/*
 addr structure contains an IPv4 address
*/

• Portable source code (a complete example is included in appendix, in the
TCPDayTimeServer.cpp file):

struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);

accept(sockfd,(struct sockaddr *)&addr, &addrlen);

/*
 addr structure contains an IPv4/IPv6 address
 addrlen contains the size of the addr structure returned
 */

4.3.4 Address conversion functions
The address conversion functions convert between binary and text address representation.
Binary representation is the network byte ordered binary value, which is stored in the
socket address structure and the text representation, named presentation, is an ASCII string.

The IPv4 address conversion functions are the following ones:

/*
 From text to IPv4 binary representation
*/
int inet_aton (const char *cp, struct in_addr *inp);
in_addr_t inet_addr(const char *cp);

/*
 From IPv4 binary to text representation
*/
char *inet_ntoa(struct in_addr in);

The new address conversion functions which work with both IPv4 and IPv6 addresses are
the following ones:

28 / 28

Programming Guidelines on Transition to IPv6

/*
 From presentation to IPv4/IPv6 binary representation
*/
int inet_pton(int family, const char *src, void *dst);

/*
 From IPv4/IPv6 binary to presentation
*/
const char *inet_ntop(int family, const void *src,
 char *dst, size_t cnt);

• IPv4 source code (a complete example is included in appendix, in the
TCPDayTimeServer.cpp file):

struct sockaddr_in addr;
char *straddr;

memset(&addr1, 0, sizeof(addr));
addr.sin_family = AF_INET; /* family */
addr.sin_port = htons(MYPORT); /* port, networt byte order */

/*
 from text to binary representation
*/
inet_aton("138.4.2.10", &(addr.sin_addr));

/*
 from binary to text representation
*/
straddr = inet_ntoa(addr.sin_addr);

• IPv6 source code:

struct sockaddr_in6 addr;
char straddr[INET6_ADDRSTRLEN];

memset(&addr, 0, sizeof(addr));
addr.sin6_family = AF_INET6; /* family */
addr.sin6_port = htons(MYPORT); /* port, networt byte order */

/*
 from presentation to binary representation
*/
inet_pton(AF_INET6, “2001:720:1500:1::a100",
 &(addr.sin6_addr));

/*
 from binary representation to presentation
*/
inet_ntop(AF_INET6, &addr.sin6_addr, straddr,
 sizeof(straddr));

29 / 29

Programming Guidelines on Transition to IPv6

4.3.5 Resolving names
Applications should use names instead of addresses for hosts. Names are easier to
remember and remain the same; however numeric addresses could change more frequently.

From applications point of view the name resolution is a system-independent process.
Applications call functions in a system library known as the resolver, typically
gethostbyname and gethostbyaddr, which is linked into the application when the
application is built. The resolver code is the burden of making the resolution dependent of
the system configuration.

There are two new functions to make name and address conversions protocol independent,
getaddrinfo and getnameinfo. Besides, the use of these new ones instead of
gethostbyname and gethostbyaddr is recommended because the latter are not normally
reentrant and could provoke problems in threaded applications.

The getaddrinfo function returns a linked list of addrinfo structures, which contains
information requested for a specific set of hostname, service and additional information
stored in an addrinfo structure.

struct addrinfo {
 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
 int ai_family; /* AF_UNSPEC, AF_INET, AF_INET6 */
 int ai_socktype; /* SOCK_STREAM, SOCK_DGRAM ... */
 int ai_protocol; /* IPPROTO_IP, IPPROTO_IPV6 */
 size_t ai_addrlen; /* length of ai_addr */
 struct sockaddr ai_addr; /* socket address structure */
 char ai_canonname; /* cannonical name */
 struct addrinfo ai_next; /* next addrinfo structure */
};

/* function to get socket address structures */

int getaddrinfo(const char *node, const char *service,
 const struct addrinfo *hints,
 struct addrinfo **res);

When writing a typical client application, node and service are normally specified. When
writing a server application, they both can be specified too, but in many cases only service
is specified, allowing clients to connect to any node interfaces.

Applications should examine the linked list returned by getaddrinfo to use the adequate
structure. In some cases, not all the addresses returned by this function can be used to
create a socket.

The getaddrinfo function allocates a set of resources for the returned linked list. The
freeaddrinfo function frees these resources.

/* function to free the resources allocated by getaddrinfo */

void freeaddrinfo(struct addrinfo *res);

30 / 30

Programming Guidelines on Transition to IPv6

Next, an example of getaddrinfo and freeaddrinfo usage (complete examples are
included in appendix, in the listenServer.cpp and connectClient.cpp files):

n = getaddrinfo(hostname, service, &hints, &res);

/*
 Try open socket with each address getaddrinfo returned,
 until getting a valid socket.
*/

resave = res;

while (res) {
 sockfd = socket(res->ai_family,
 res->ai_socktype,
 res->ai_protocol);

 if (!(sockfd < 0))
 break;

 res = res->ai_next;
}

freeaddrinfo(ressave);

The getnameinfo function provides from a socket address structure, the address and
service as character strings. Next, an example of use (a complete example is included in
appendix, in the UDPDayTimeServer.cpp file):

char clienthost [NI_MAXHOST];
char clientservice[NI_MAXSERV];

/* ... */

/* listenfd is a server socket descriptor waiting connections
 from clients
*/

connfd = accept(listenfd,
 (struct sockaddr *)&clientaddr,
 &addrlen);

getnameinfo((struct sockaddr *)&clientaddr, addrlen,
 clienthost, sizeof(clienthost),
 clientservice, sizeof(clientservice),
 NI_NUMERICHOST);

printf(“Received request from host=[%s] port=[%s]\n”,
 clienthost, clientservice);

31 / 31

Programming Guidelines on Transition to IPv6

Typically, applications do not require knowing the version of the IP they are using. Hence,
applications only should try to establish the communication using each address returned by
resolver until it works. However, applications could have a different behaviour when using
IPv4, IPv6, IPv4-compatible-IPv6 or IPv4-mapped, etc. addresses.

There are defined some macros to help applications to test the type of address they are
using, see Table 3.

Table 3: Macros for testing type of addresses.

int IN6_IS_ADDR_UNSPECIFIED (const struct in6_addr *);
int IN6_IS_ADDR_LOOPBACK (const struct in6_addr *);
int IN6_IS_ADDR_MULTICAST (const struct in6_addr *);
int IN6_IS_ADDR_LINKLOCAL (const struct in6_addr *);
int IN6_IS_ADDR_SITELOCAL (const struct in6_addr *);
int IN6_IS_ADDR_V4MAPPED (const struct in6_addr *);
int IN6_IS_ADDR_V4COMPAT (const struct in6_addr *);
int IN6_IS_ADDR_MC_NODELOCAL (const struct in6_addr *);
int IN6_IS_ADDR_MC_LINKLOCAL (const struct in6_addr *);
int IN6_IS_ADDR_MC_SITELOCAL (const struct in6_addr *);
int IN6_IS_ADDR_MC_ORGLOCAL (const struct in6_addr *);
int IN6_IS_ADDR_MC_GLOBAL (const struct in6_addr *);

4.3.6 Multicasting
When using UDP multicast facilities some changes must be carried out to support IPv6.
First application must change the multicast IPv4 addresses to the IPv6 ones, and second,
the socket configuration options.

IPv6 multicast addresses begin with the following two octets: FF0X.

The multicast socket options are used to configure some of parameters for sending
multicast packets, see Table 4.

Applications using multicast communication open a socket and need to configure it to
receive multicast packets. This is the main difference between the multicast and unicast
socket use. Once the socket is opened and a multicast address is bind, it is required to
configure at least the membership option to join to the multicast group. It will allow
receiving all information sent to this multicast group.

Table 4: Multicast socket options.

IPv6 OPTION

IPV6_MULTICAST_IF Interface to use for outgoing multicast packets.

IPV6_MULTICAST_HOPS Hop limit for multicast packets.

IPV6_MULTICAST_LOOP Multicast packets are looped back to the local application.

IPV6_ADD_MEMBERSHIP Join a multicast group.

IPV6_DROP_MEMBERSHIP Leave a multicast group.

32 / 32

Programming Guidelines on Transition to IPv6

In the following example it is shown how can be configured, in both cases with IPv4 and
IPv6, three multicast socket options: LOOP, MEMBERSHIP and TTL. The same function,
setsockopt, is used in both cases. The main difference is the option constant values and
the multicast group addresses. In IPv4 the multicast group is represented using a
sockaddr_in structure and in IPv6 it is represented using a sockaddr_in6.

int
joinGroup(int sockfd, int loopBack, int mcastTTL,
 struct sockaddr_storage *addr)
{
 int r1, r2, r3, retval;

 retval=-1;

 switch (addr->ss_family) {
 case AF_INET: {
 struct ip_mreq mreq;

 mreq.imr_multiaddr.s_addr=
 ((struct sockaddr_in *)addr)->sin_addr.s_addr;
 mreq.imr_interface.s_addr= INADDR_ANY;

 r1= setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_LOOP,
 &loopBack, sizeof(loopBack));
 if (r1<0)
 perror("joinGroup:: IP_MULTICAST_LOOP:: ");

 r2= setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_TTL,
 &mcastTTL, sizeof(mcastTTL));
 if (r2<0)
 perror("joinGroup:: IP_MULTICAST_TTL:: ");

 r3= setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
 (const void *)&mreq, sizeof(mreq));
 if (r3<0)
 perror("joinGroup:: IP_ADD_MEMBERSHIP:: ");

 } break;

 case AF_INET6: {
 struct ipv6_mreq mreq6;

 memcpy(&mreq6.ipv6mr_multiaddr,
 &(((struct sockaddr_in6 *)addr)->sin6_addr),
 sizeof(struct in6_addr));

 mreq6.ipv6mr_interface= 0; // cualquier interfaz

 r1= setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_LOOP,
 &loopBack, sizeof(loopBack));
 if (r1<0)
 perror("joinGroup:: IPV6_MULTICAST_LOOP:: ");

 r2= setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,
 &mcastTTL, sizeof(mcastTTL));

33 / 33

Programming Guidelines on Transition to IPv6

 if (r2<0)
 perror("joinGroup:: IPV6_MULTICAST_HOPS:: ");

 r3= setsockopt(sockfd, IPPROTO_IPV6,
 IPV6_ADD_MEMBERSHIP, &mreq6, sizeof(mreq6));
 if (r3<0)
 perror("joinGroup:: IPV6_ADD_MEMBERSHIP:: ");

 } break;

 default:
 r1=r2=r3=-1;
 }

 if ((r1>=0) && (r2>=0) && (r3>=0))
 retval=0;

 return retval;
}

The complete description of multicast daytime example can be seen in appendix.

34 / 34

Programming Guidelines on Transition to IPv6

5. Guidelines on developing new applications
In the design of applications to use IPv6 some characteristics must be taken into account.
First of all it is necessary to separate the transport module from the rest of application
functional modules. This separation makes the application independent on the network
system used. Then, if the network protocol is changed, only the transport module should
be modified. Transport module should provide the communication channel abstraction
with basic channel operations and generic data structures to represent the addresses. These
abstractions could be instantiated as different implementations depending on the network
protocol required at any moment. The application will deal with this generic
communication channel interface without knowing the network protocol used. Using this
design if a new network protocol is added, application developers only need to implement
a new instance of the channel abstraction, which manages the features of this new protocol.

Once the transport module has been designed, there are some implementations details
related to the type of the nodes which will run the application: IPv4-only nodes, IPv6-only
nodes or both, dual stack.

Within the transport module the use of the new API with extensions for IPv6 is mandatory,
but it is strongly recommended to make the program protocol independent (for instance,
using the BSD socket API consider getaddrinfo and getnameinfo instead of gethostbyname
and gethostbyaddr). The new IPv6 functions are only valid if this protocol is supported by
all installed systems. IPv6 is now reaching maturity and most popular systems provide it as
default in their standard distributions. However, IPv6 support does not force to use it, only
after the complete network configuration is defined, applications will use IPv4 or IPv6.

Protocol independent code is feasible if the design is based on the principal building block
for transitioning, the dual stack. Dual stacks maintain two protocol stacks that operate in
parallel and thus it is allowed to operate via either protocol. The operating system running
dual stack translates IPv4 addresses to IPv4-mapped IPv6 ones when communicating to
IPv4 remote applications.

Although applications are written following program protocol independent rules, other
points have to be considered such as the movement of binary code between IPv4-only
nodes, dual stacks nodes or IPv6-only nodes.

Compilation options (#ifdefs in C language) can be provided throughout the code to
select the proper use environment. If IPv6 is not supported the IPv4-only code will be
selected for compilation during installation process. However, if IPv6 is supported (Kernel
level support) by installed systems, the code for IPv6 or the IPv4 could be selected for
compilation, depending on the requirements of applications. Notice that if the kernel
supports IPv6, it only means the IPv6 option could be activated and while this option is
disabled the node will be only use IPv4 stack. During the transition period nodes are
usually running dual stack, both IPv4 and IPv6 stacks. The problem with the conditional
compilation approach is that the code becomes littered with compilation options very
quickly and harder to follow and maintain.

If an application is compiled on a system, which supports dual stack and move the binary
code to an IPv4-only node without IPv6 kernel support, the source code must be
recompiled to use the original IPv4 API. The binary code generated on the dual stack uses
the new system functions, which are not supported in the IPv4-only node.

35 / 35

Programming Guidelines on Transition to IPv6

If the binary code is moved, which has been compiled on a dual stack, to an IPv4-only
node with IPv6 kernel support and IPv6 stack not activated, recompilation is not required.
Since the IPv6 stack is not activated, the node cannot establish IPv6 connections. However,
the resolver system could return an IPv6 address to an application query and the
application should be prepared to discard this IPv6 address and select the IPv4 one to
open connections.

All these alternatives are summarized in Table 5.

Table 5: IPv4 or IPv6 activation.

NODE APPLICATION CONNECTIONS

IPv6
kernel

support

Dual
stack

activated

Network API
used

Application
type

IPv4
connection

IPv6

connection

Yes IPv6 extensions
(portable code) IPv6-enabled IPv4 stack IPv6 stack

Yes
No IPv6 extensions

(portable code) IPv6-enabled IPv4 stack
IPv6 address resolution

Connection error.

No
Without IPv6
extensions

(old API)

IPv4-only
(compiled
with IPv4
options)

IPv4 stack Error

In summary, if applications follow the recommendations explained above, using a
separated protocol independent transport module, which provides a generic
communication API, it is easy to adapt them to new network protocols. Besides, the
generic communication API could be implemented as a communication library to be used
for many applications. This solution encourages the code reusability and makes
communication modules of applications easy to maintain.

Finally, if the new application is designed only for the new IPv6 environment, the code is
simpler than dual stack implementation. The new application will work only with other
IPv6 nodes. When the local IPv6 node wants to use IPv6 application to communicate with
a remote IPv4 node, one standard network transition mechanism should be provided
[NAT-PT] [SIIT] [6to4]. Depending on the application, sometimes it is possible to use
special dual-stack edge servers at the IPv4 and IPv6 border as application level proxies,
removing the need for network-level transition.

36 / 36

Programming Guidelines on Transition to IPv6

6. Conclusions
Today, IP has established itself as a primary vehicle for our global system of electronic
communication enabling a vast array of client/server computing applications. Although the
IP success story took years to unfold, it’s the time to make refinement plans for the current
IP version (IPv4). The IP next generation known as IPng or IPv6 is both a near-term and
long-range concern for network owners and service providers. Though it is based on
much-needed enhancements to IPv4 standards, IPv6 should by viewed as a broad retooling
project that will ultimately provide a much-needed evolutionary architecture of today’s
applications and networks.

Transition between today’s IPv4 Internet and the new IPv6 one will be a long process
during which both protocol versions will coexist. But transition is not only related to
networks, but also to involved applications. Existing applications are written assuming IPv4
and it takes a long time to produce new versions to work over IPv6 interface.

The simplest transition scenario combines dual stack network with a mechanism to
transform all IPv6 related operations to the traditional well-known transport interface
defined for IPv4 [BIS, BIA]. These techniques maintain actual applications (IPv4) and
introduce IPv6 only at network level. They are based on the insertion of translation
modules devoted to intercept and transform network data between application and
network and vice-versa.

Unless all previous procedures are valid in a very early phase, finally applications should be
ported to the new scenario. Sometimes IPv6 version can be developed in parallel with
other programmed modifications. However, in most cases we only want to maintain the
initial functionality and adapt communications module to enable IPv6.

There are two probable scenarios during transition. The first is based on maintaining two
application versions and the second with only one dual version.

We can forget old IPv4 applications and maintain them only to communicate with IPv4
nodes during transition period. The transition methodology consists in developing a
complete set of applications designed to work only over IPv6 transport layer. The main
advantage is to be ready with new applications after transition period. To finish IPv6
transition it is necessary only to removed IPv4 applications and dual stack network.
However, the selection of suitable applications during transition period it’s a user
responsibility. When tests, configuration or management of applications are considered, the
application selection is not a problem, because their users normally have technical
knowledge. However, with most of end-user applications the user hasn’t enough
knowledge or doesn’t want to know which is the proper application version should be used
in each connection. Moreover, during transition period will be necessary to provide data
servers working both IPv4 and IPv6 to accept connections not only from new but also
from old nodes.

The second transition scenario looks for changing existing applications, not developing
new ones. The porting process takes the original IPv4 application, review source code and
produces a new version adapted to work over both IPv4 and IPv6 environments. The
porting process is a little bit more complex than IPv6 only support, but the result is more
flexible to be used during transition period. Transition period will be probably a long
period during which there will be islands, not only IPv6 but also IPv4, interested for users
in the new environments. This is because during a long period most of data servers will be
maintained in the IPv4 only environment.

37 / 37

Programming Guidelines on Transition to IPv6

Reviewing existing applications to work both IPv4 and IPv6 simultaneously requires two
phases: code analysis and code rewriting. Code examination is required to locate the
following issues:

• IP addresses management

• Network information storage: data structures

• Communications API functions and pre-defined constants

After code identification, code-rewriting can take place. Many changes can be done
automatically and there are some applications to do it [SUN, HP]. However, many
applications make special use of IPv4 addresses and socket structures, consequently
automatic rewriting is not possible. The most important issues that should be taken into
account are the following:

• Names resolution,

• Sockets address structures,

• Sockets programming interface,

• Address conversion functions and

• Multicast interface

Finally, if a design of a new IPv6 application is considered, some recommendations should
be taken into account. First of all, it should be decided if the new application will be ready
for IPv6 only or it will be a dual one. IPv6 only application doesn’t know IPv4 protocol,
therefore v6 to v4 adaptation should be added to the system when IPv4 interaction is
demanded. However, a dual application is a little more complex than previous one.

Applications should include code to select the proper interface depending on the
correspondent node. To isolate all these operations from the rest of the application a
transport module is recommended. The transport module provides a clear and uniform
interface to the rest of the application hiding all protocol selection details.

This complex scenario can be summarized in the following items:

• Service continuity: IPv6 transition is not only an address or routing issue but also
mainly a service enhancement. All commercial services deployed recently such as
QoS, Intranets, group collaboration or IP telephony, have to be continuously
provided whatever the IP infrastructure might be.

• Mixed scenario during transition: The introduction of IPv6 will be slow compared
with the size of Internet. When IPv4 and IPv6 have to coexist, keeping transition
under control is essential to avoid a final scenario with two parallel Internet
infrastructures. Therefore, the application porting process should be included with
enough resources in the transition plan. In standard environments, the application
porting process has a reduced cost because most of typical applications are already
IPv6 enabled. The LONG Project has made an updated catalogue of such
applications.

• Transition is not always a necessary solution: Deploying new applications not
demanding a complete development to support IPv4 in combination with IPv6
users. Next generation applications will be available only in the new environment.

38 / 38

Programming Guidelines on Transition to IPv6

Deploying transition mechanisms at a large scale can lead to scalability issues that
could heavily limit the IPv6 performance compared to a native solution. Moreover,
the availability of new applications only in the new environment is the best
mechanism to accelerate transition from actual IPv4 environment to the new IPv6
one.

39 / 39

Programming Guidelines on Transition to IPv6

7. Bibliography
[APPT] Myung-Ki Shin et al, Application Aspects of IPv6 Transition. <draft-shin-ngtrans-

application-transition-00.txt>, May 2002.
[ASI] W. Stevens, M. Thomas. Advanced Sockets API for IPv6. February 1998. RFC2292.
[ASAPI] W. Richard Stevens, Advanced Sockets API for IPv6. <draft-ietf-ipngwg-rfc2292bis-

07.txt> Expires: October 19, 2002. Obsoletes RFC 2292.
[AURL] R. Hinden, B., Carpenter, L. Masinter, Format for Literal IPv6 Addresses in URL's.

RFC2732. December 1999.
[BIA] Seungyun Lee et al, Dual Stack Hosts using Bump–In-The-API (BIA). <draft-ietf-

ngtrans-bia-01.txt>, November 2001, work in progress.
[BIS] K. Tsuchiya, H. Higuchi, Y. Atarashi, Dual Stack Hosts using the Bump-In-The-Stack

technique (BIS). RFC 2767, February 2000.
[BISE] R.E. Gilligan, Basic Socket Interface Extensions for IPv6. <draft-ietf-ipngwg-

rfc2553bis-05>. Obsoletes RFC 2553. February 2002.
[BSI] R. Gilligan, S., Thomson, J. Bound, W. Steven. Basic Socket Interface Extensions for

IPv6. March 1999. RFC2553.
[DASL] Richard Draves, Default Address Selection for IPv6. <draft-ietf-ipv6-default-addr-

select-08.txt>. June 17, 2002.
[DSF] K. Nicholsms, S. Blake, F. Baker, D. Black, Definition of the Differentiated Services

Field (DS Field) in the IPv4 and IPv6 Headers. RFC2474.
[DSTM] Jim Bound et al, Dual Stack Transition Mechanism (DSTM). <draft-ietf-ngtrans-

dstm-08.txt>, December 2002.
[DYTP] J. Postel. Daytime Protocol. RFC867. May 1983.
[HPMT] K S Gundu Rao and Ramesh, HP - UX IPv4 - IPv6 migration tool. November 2002.
[IPV6] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Architecture. RFC 2460,

December 1998.
[LD31] T. de Miguel, E. Castro et al, Requirements and guidelines for distributed laboratorios

applications migration. LONG Project IST-1999-20393, D3.1. May 2001.
[MTUD] J. McCann, S. Deering, J. Mogul, Path MTU Discovery for IP version 6. RFC1981.

August 1996.
[NAT] Srisuresh, P. and K. Egevang, Traditional IP Network Address Translator (Traditional

NAT). RFC 3022, January 2001.
[NATPT] Tsirtsis, G. and P. Srisuresh, Network Address Translation – Protocol Translation

(NAT-PT). RFC 2766, February 2000.
[PMTU] K. Lahey, TCP problems with Path MTU Discovery,. September 2000.
[PAPPS] Porting Applications to the IPv6 APIs, Solaris Version 8. Sun Microsystems Inc.

Revision 2. October 1999.
[RRNM] M. Crawford, Router Renumbering for IPv6. RFC2894. August 2000.
[SIIT] Nordmark, E., Stateless IP/ICMP Translator (SIIT), RFC 2765, February 2000.
[STV1] Richard Stevens. The Unix Network Programming – Volume 1.
[STV2] Richard Stevens, Gary Wright. TCP/IP Illustrated – Volume 2.
[TMHR] R Gilligan and E Nordmark, Transition mechanisms for IPv6 Hosts and Routers. RFC

2893.[V6AA] R. Hinden, S. Deering, IP Version 6 Addressing Architecture.
RFC2373. July 1998.

40 / 40

Programming Guidelines on Transition to IPv6

8. Appendix: Examples of real porting process
This appendix is devoted to show some simple applications, which can be used to illustrate
porting procedures. This appendix is used to review characteristics and methods described
in previous sections.

Porting guidelines are valid for any programming language, however for simplicity,
application-porting examples are provided only in C language. All these examples have
been tested in a SuSE Linux 8.0 distribution, kernel version 2.4.10.

8.1 Original daytime version
Daytime is a simple utility, which returns the time and date of a node in a human-readable
format. It is defined in RFC 867 and it works at the port number 13.

It is a good example to show porting guidelines with a very simple application. Like most
of distributed applications, daytime is composed of a client and a server programs. It can
operate over TCP and UDP.

8.1.1 IPv4 Daytime server (TCP/UDP)
The server is composed of a main program and a general function listen_server to
create and configure a server socket. First, we will analyze this function which will be used
by the daytime server program, both TCP and UDP versions.

The listen_socket function has the following parameters: hostname to wait
connections in a specific network interface, service to determine the port number (in this
case, the family must be AF_INET to use IPv4 protocol) and socktype to determine if
using TCP or UDP protocol.

The listenServer.h file contains the listen_server function definition and the
listenServer.cpp contains its implementation.

File “ListenServer4.h”

#ifndef listen__server__h__
#define listen__server__h__

/*
 listen_server
 creates a server server socket listening at a hostname:
 service using the socket type specified in
 the function arguments.
*/

int
listen_server(const char *hostname,
 const char *service,
 int socktype);

#endif

File “ListenServer4.cpp”

41 / 41

Programming Guidelines on Transition to IPv6

The listen_socket function requests socket address information to the resolver module.
From this information the listen_socket tries to create a new socket, configures it to
accept incoming connection requests from clients and returns the valid socket descriptor
value.

#include <netdb.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/socket.h>

#include "listenServer.h"

const int LISTEN_QUEUE=128;

int
listen_server(const char *hostname,
 const char *service,
 int socktype)
{

 struct sockaddr_in sin;
 struct hostent *phe;
 struct servent *pse;
 struct protoent *ppe;
 int sockfd;
 char *protocol;

 memset(&sin, 0, sizeof(sin));

 sin.sin_family=AF_INET;

 switch(socktype) {

 case SOCK_DGRAM:
 protocol= "udp";
 break;

 case SOCK_STREAM:
 protocol= "tcp";
 break;

 default:
 fprintf(stderr,
 "listen_server:: unknown socket type=[%d]\n",
 socktype);
 return -1;
 }

 if ((pse = getservbyname(service, protocol))) {
 sin.sin_port = pse->s_port;

42 / 42

Programming Guidelines on Transition to IPv6

 } else if ((sin.sin_port = htons((u_short)atoi(service))) ==0) {
 fprintf(stderr,
 "listen_server:: could not get service=[%s]\n",
 service);
 return -1;
 }

 if (!hostname) {
 sin.sin_addr.s_addr= INADDR_ANY;

 } else {
 if ((phe = gethostbyname(hostname))) {
 memcpy(&sin.sin_addr, phe->h_addr, phe->h_length);

 } else if ((sin.sin_addr.s_addr = inet_addr(hostname)) ==
 INADDR_NONE) {
 fprintf(stderr,
 "listen_server:: could not get host=[%s]\n",
 hostname);
 return -1;
 }
 }

 if ((ppe = getprotobyname(protocol)) == 0) {
 fprintf(stderr,
 "listen_server:: could not get protocol=[%s]\n",
 protocol);
 return -1;
 }

 if ((sockfd = socket(PF_INET, socktype, ppe->p_proto)) < 0) {
 fprintf(stderr,
 "listen_server:: could not open socket\n");
 return -1;
 }

 if (bind(sockfd, (struct sockaddr *)&sin, sizeof(sin)) != 0) {
 fprintf(stderr,
 "listen_server:: could not bind socket\n");
 close(sockfd);
 return -1;
 }

 listen(sockfd, LISTEN_QUEUE);

 return sockfd;
}

From the listen_socket function we can build the dayTime server program.

43 / 43

Programming Guidelines on Transition to IPv6

File “TCPDayTimeServer4.cpp”

The TCP dayTime server creates a TCP server socket using the listen_socket function
and waits for TCP client connections.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <errno.h>

#include “listenServer.h”

const char *DAYTIME_PORT="13";

int
main(int argc, char *argv[])
{
 int listenfd, connfd, port;
 socklen_t addrlen;
 char timeStr[256];
 char *clienthost;
 struct sockaddr_in clientaddr;
 time_t now;

 /* local server socket listening at daytime port=13 */
 listenfd = listen_server(NULL,DAYTIME_PORT, SOCK_STREAM);

 if (listenfd < 0) {
 fprintf(stderr,
 "listen_socket error:: could not create listening "
 "socket\n");
 return -1;
 }

 for (; ;) {
 addrlen = sizeof(clientaddr);

 /* accept daytime client connections */
 connfd = accept(listenfd,
 (struct sockaddr *)&clientaddr,
 &addrlen);

 if (connfd < 0)
 continue;

 clienthost = inet_ntoa(clientaddr.sin_addr);
 port = ntohs(clientaddr.sin_port);
 printf("Received request from host=[%s] port=[%d]\n",
 clienthost, port);

44 / 44

Programming Guidelines on Transition to IPv6

 /* process daytime request from a client */
 memset(timeStr, 0, sizeof(timeStr));
 time(&now);
 sprintf(timeStr, "%s", ctime(&now));
 write(connfd, timeStr, strlen(timeStr));
 close(connfd);
 }

 return 0;

}

File “UDPDayTimeServer4.cpp”

The UDP dayTime server creates an UDP server socket using the listen_socket
function and waits for UDP client connections.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <errno.h>

#include “listenServer.h”

const char *DAYTIME_PORT="13";

int
main(int argc, char *argv[])
{
 int listenfd, connfd, port, n;
 socklen_t addrlen;
 char timeStr[256];
 char request[256];
 char *clienthost;
 struct sockaddr_in clientaddr;
 time_t now;

 /* local server socket listening at daytime port=13 */
 listenfd = listen_server(NULL,DAYTIME_PORT, SOCK_DGRAM);

 if (listenfd < 0) {
 fprintf(stderr,
 "listen_socket error:: could not create listening "
 "socket\n");
 return -1;
 }

 addrlen = sizeof(clientaddr);

 for (; ;) {

45 / 45

 /* accept daytime client connections */

Programming Guidelines on Transition to IPv6

 n = recvfrom(listenfd,
 request,
 sizeof(request),
 0,

ruct sockaddr * (st)&clientaddr,
 &addrlen);

f (connfd < 0) i
 continue;

 clienthost = in et_ntoa(clientaddr.sin_addr);
 port = ntohs(clientaddr.sin_port);

[%s] port=[printf("Received request from host= %d]\n",
 clienthost, port);

 /* process daytime request from a client */
 memset(timeStr, 0, sizeof(timeStr));
 time(&now);

Str, "%s", ctime(&now)); sprintf(time

 n = sendto(listenfd, timeStr, sizeof(t imeStr), 0,
 (struct sockaddr *)&clientaddr,
 addrlen);
 }

 ret urn 0;

}

8.1.2 IPv4 Daytime client (TCP/UDP)
 the client and an answer from the server.

operation phase.

ile “ConnectClient4.h”

t__h__

The daytime service is reduced to a request from
In TCP version, the request is combined with connection a request. Therefore, the
protocol answer is also combined with a connection acceptance message.

The daytime client is structured in two parts: connection phase and
Connection phase is grouped in one function (connect_client) and operation phase is
reduced to a single read (or a recvfrom in the UDP version).

F

#ifndef connect__clien
#define connect__client__h__

nt i
connect_client (const char *hostname,
 const char *service,

; int socktype)
#endif

File “ConnectClient4.cpp”

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

46 / 46

Programming Guidelines on Transition to IPv6

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <netinet/in.h>
#include <arpa/inet.h>

.h#include "connectClient "

int
onnect_client (const char *c hostname,
 const char *service,
 int socktype)
{
 struct sockaddr_in sin;
 struct hostent *phe;

 struct servent *pse;
 struct protoent *ppe;
 int sockfd;
 char *protocol;

 memset(&sin, 0, sizeof(sin));

 sin.sin_family=AF_INET;

 switch(socktype) {

 case SOCK_DGRAM:
 protocol= "u

 dp";
 break;

TREAM: case SOCK_S
 protocol = "tcp";
 break;

 default:
 fprintf(stderr,
 "listen_server:: unknown socket type=[%d]\n",
 socktype);
 return -1;
 }

 ((pse = getservb if

yname(service, protocol))) {
 sin.sin_port = pse->s_port;

((u_short)atoi(serv } else if ((sin.sin_port = htons
 fprintf(stderr,

ice)))==0) {

 "connec_client:: could not get service=[%s]\n",

; service)
 return -1;
 }

 (!hostname) { if
 fprintf(stderr,
 "connect_client:: there should be a hostname!\n");
 return -1;

 } else {

= gethostbyname(hostname))) { if ((phe

47 / 47

Programming Guidelines on Transition to IPv6

mcpy(&sin.sin_addr, phe->h_addr, phe->h_length); me

 } else if ((sin.sin_addr.s_addr = inet_addr(hostname)) ==
 INADDR_NONE) {
 fprintf(stderr,

t=[%s]\n", "connect_client:: could not get hos
); hostname

 return -1;
 }
 }

 ((pp if

e = getprotobyname(protocol)) == 0) {
 fprintf(stderr,
 "connect_client:: could not get p

);
rotocol=[%s]\n",

 protocol
 return -1;
 }

 ((sockfd = soc if ket(PF_INET, socktype, ppe->p_proto)) < 0) {
 fprintf(stderr,
 "connect_client:: could not open socket\n");
 return -1;
 }

 (connect(sock if

fd,(struct sockaddr *)&sin, sizeof(sin)) < 0) {
 fprintf(stderr,
 "connect_client:: could not connect to host=[%s]\n",

);

 hostname
 return -1;
 }

turn sockfd; re

}

File “TCPDayTimeClient4.cpp”

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>

#include "connectClient.h"

const char *DAYTIME_PORT="13";

nt i
main(int argc, char *argv[])
{
 int connfd;
 char *myhost;

 char timeStr[256];

 myhost = "127.0.0.1";

48 / 48

Programming Guidelines on Transition to IPv6

 if (argc > 1)
 myhost = argv[1];

 connfd = connect_client(myhost,

 DAYTIME_PORT,
 SOCK_STREAM);

 if (connfd < 0) {
 fprintf(stderr,
 "client error:: could not create connected socket\n");
 return -1;
 }

0, sizeof(timeStr)); memset(timeStr,

 whi le (read(connfd, timeStr, sizeof(timeStr)) > 0)
 printf("%s", timeStr);

 close(connfd);

 return 0;
}

File “UDPDayTimeClient4.cpp”

include <sys/types.h> #
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>

 #include <unistd.h>
#include <string.h>

#include "connectClient.h"

onst char *DAYTIME_Pc ORT="13";

int
ain(int argc, char *argv[]) m
{
 int connfd;
 char *myhost;
 char timeStr[256];

 myhost = "127.0.0.1";
 if (argc > 1)
 myhost = argv[1] ;

ct_client connfd = conne (myhost,

 DAYTIME_PORT,
 SOCK_STREAM);

 if (connfd < 0) {
 fprintf(stderr,
 "client error:: could not create connected socket\n");
 return -1;

49 / 49

Programming Guidelines on Transition to IPv6

 }

 letter = '1';
 m= write(connfd, &letter, sizeof(letter));

 memset(timeStr, 0, sizeof(timeStr));

 read(connfd, timeStr, sizeof(timeStr));
 printf("%s\n", timeStr);

 close(connfd);

 return 0;
}

8.2 The unicast daytime ported to IPv6
In the following sections it is shown how daytime service is ported from IPv4 to IPv6.

er previous program analysis, the
ut compilation.

same connection
model, however the code to set up connections should be adapted.

The TCP and UDP versions of the daytime server program use a common function to
er function. This function generates a server
 family (IPv4 or IPv6) and socket type (TCP or

h”
ifndef listen__server__h__

Following previous described porting guidelines and aft
code should be reviewed to support IPv4 and IPv6 witho

IPv6 sockets library is similar to IPv4 version and therefore server or client code does not
change for the operation phase. The connection phase maintains the

8.2.1 Daytime server (TCP/UDP)

create the server socket, the listen_serv
socket from a hostname, the service, socket
UDP) parameters.

File “listenServer.

#
#define listen__server__h__

/*
 listen_server
 creates a server serv er socket listening at a hostname:service
 using the family and socket type specified in the function
 arguments.
*/

int

ten_server(const lis

char *hostname,
 const char *service,
 int family,
 int socktype);

#endif

File “listenServer.cpp”

50 / 50

Programming Guidelines on Transition to IPv6

include <sys/types.h> #
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>

 #include <unistd.h>

#include "listenServer.h"

onst int LISTEN_QUEUc E=128;

nt i
listen_server(const char *hos
 const char *ser

tname,
 vice,
 int family,
 int socktype)
{

re struct addrinfo hints, *res, * ssave;
 int n, sockfd;

 memset(&hints, 0, sizeof(struct addrinfo));

 /*
 AI_PASSIVE flag: the resulting address is
 to a socket for accepting incoming connect

used to bind
 ions.
 So, when the hostname==NULL, getaddrinfo function will
 return one entry per allowed protocol family containing
 the unspecified address for that family.
 */

 hints.ai_flags = AI_PASSIVE;

ts.ai_family = family; hin
 hint s.ai_socktype = socktype;

rvice n = getaddrinfo(hostname, se , &hints, &res);

 if (n <0) {
 fprintf(stderr,
 "getaddrinfo error:: [%s]\n",
 gai_strerror(n));
 return -1;
 }

 ressave=res;

 /*
 Try open so
 until getti

cket with each address getaddrinfo returned,
 ng a valid listening socket.
 */
 sockfd=-1;
 while (res) {

 sockfd = socket(res->ai_family,
 res->ai_socktype,
 res->ai_protocol);

 if (!(sockfd < 0)) {
 if (bind(sockfd, res->ai_addr, r
 break;

es->ai_addrlen) == 0)

51 / 51

Programming Guidelines on Transition to IPv6

 close(sockfd);
 sockfd=-1;
 }
 res = res->ai_next;
 }

 if (sockfd < 0) {

 freeaddrinfo(ressave)

;
 fprintf(stderr,
 "socket error:: could not open socket\n");
 return -1;
 }

LISTEN_QUEUE); listen(sockfd,

 fre eaddrinfo(ressave);

 return sockfd;
}

The TCP daytime server uses listen_server with SOCK_STREAM and PF_UNSPEC
arameters to obtain a server socket, which will accept connections to all of the interfaces.

When clients connect to the server, it will answer with the daytime information and close

erver.cpp”

include <sys/types.h>

p

the client connection.

File “TCPDayTimeS

#
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <time.h>
#include <string.h>
#include <unistd.h>

#include "listenServer.h"

onst char *DAYTIME_Pc ORT="13";

nt i
main(int argc, char *argv[])
 {
 int listenfd, connfd;
 socklen_t addrlen;
 char timeStr[256];

 struct sockaddr_storage clientaddr;
 time_t now;
 char clienthost[NI_MAXHOST];
 char clientservice[NI_MAXSERV];

 /* local server socket listening at daytime port=13 */
 listenfd = listen_server(NULL, D
 AF_UNSPEC, SOCK_STREAM);

AYTIME_PORT,

52 / 52

Programming Guidelines on Transition to IPv6

 if (listenfd < 0) {
 fprintf(stderr,
 "listen_socket error:: could not create listening "
 "socket\n");
 return -1;
 }

 for (; ;) {

 addrlen = siz eof(clientaddr);

 /* accept daytime client connections */
 connfd = accept(listenfd,
 (struct sockadd r *)&clientaddr,
 &addrlen);

 if (connfd < 0)
 continue;

 memset(clienthost

erv
, 0, sizeof(clienthost));

 memset(clients ice, 0, sizeof(clientservice));

 getnameinfo((struct sockaddr *)&clientaddr, addrlen,
 clienthost, sizeof(clienthost),
 clientservice, sizeof(clientservice),
 NI_NUMERICHOST);

 printf(“Received request from host=[%s] port=[%s]\n

ice);
”,

 clienthost, clientserv

 /* process daytime request from a client */

; memset(timeStr, 0, sizeof(timeStr))
 time(&now);
 sprintf(timeStr, "%s", ctime(&now));

)); write(connfd, timeStr, strlen(timeStr
); close(connfd

 }

 return 0;
}

The UDP daytime server uses listen_server with SOCK_DGRAM and PF_UNSPEC
arameters to obtain a server socket, which will receive connections to all of the interfaces.

When clients connect to the server, it will answer with the daytime information and close

erver.cpp”
include <sys/types.h>

p

the client connection.

File “UDPDayTimeS

#
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <time.h>
#include <string.h>

53 / 53

Programming Guidelines on Transition to IPv6

#include "listenServer.h"

const char *DAYTIME_PORT="13";

nt i
main(int argc, char *argv[])
 {
 int listenfd, n;
 socklen_t addrlen;
 char *myhost;

 char timeStr[256];
 struct sockaddr_storage clientaddr;
 time_t now;
 char b[256];
 char clienthost[NI_MAXHOST];

ervice[NI_MAXSERV]; char clients

 myhost=NULL;
 if (argc > 1)
 myhost=argv[1];

 listenfd= listen_server(myhost,

 DAYTIME_PORT,
 AF_UNSPEC,
 SOCK_DGRAM);

 if (listenfd < 0) {
 fprintf(stderr,
 "listen_server error:: co uld not create listening "
 "socket\n");
 return -1;
 }

(clientaddr addrlen = sizeof
r (; ;) {

);
 fo
 n = recvfrom(listenfd,
 b,

 sizeof(b),
 0,

ruct soc (st kaddr *)&clientaddr,
 &addrlen);

 if (n < 0)
 continue;

 memset(clienthost, 0, sizeof(clienthost));
 memset(clientservice, 0, sizeof(clientservice));

 getnameinfo((struct sockaddr *)&clientaddr, addrlen,
 clienthost, sizeof(clienthost),
 clientservice, sizeof(clientservice),
 NI_NUMERICHOST);

 printf("Received request from host=[%s] port=[%s]\n

ice);
",

 clienthost, clientserv

 memset(timeStr, 0, sizeof(timeStr));

54 / 54

Programming Guidelines on Transition to IPv6

 time(&now);
 sprintf(timeStr, "%s", ctime(&now));

 n = sendto(listenfd, timeStr, sizeof(timeStr), 0,
 (struct sockaddr *)&clienta
 addrlen);

ddr,

 }

 return 0;
}

The porting process is simple because all main changes are grouped inside listen_server
nction. If application is not correctly structured porting effort increases. Sometimes, it is

much better to review the program structure that only to change functions calls to make

ts look for concrete functions and change them by new function version
however, program structure is not analyzed and many times the result is very poor.

8.2.2 Example: Daytime client (TCP/UDP).
The TCP and UDP versions of the daytime client program use a common function to

. This function generates a client
 or IPv6) and socket type (TCP or

nt.h”
ifndef connect__client__h__

fu

the adaptation.

This is the reason why scripts to change code automatically are not recommended.
Automatic scrip

create the client socket, the connect_client function
socket from a hostname, the service, socket family (IPv4
UDP) parameters.

File “ConnectClie

#
#define connect__client__h__

int
connect_client (const char *ho
 const char *se

stname,
 rvice,
 int family,
 int socktype);
#endif

55 / 55

Programming Guidelines on Transition to IPv6

File “ConnectClient.cpp”
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include "connectClient.h"

int
connect_client (const char *hostname,
 const char *service,
 int family,
 int socktype)
{
 struct addrinfo hints, *res, *ressave;
 int n, sockfd;

 memset(&hints, 0, sizeof(struct addrinfo));

 hints.ai_family = family;
 hints.ai_socktype = socktype;

 n = getaddrinfo(hostname, service, &hints, &res);

 if (n <0) {
 fprintf(stderr,
 "getaddrinfo error:: [%s]\n",
 gai_strerror(n));
 return -1;
 }

 ressave = res;

 sockfd=-1;
 while (res) {
 sockfd = socket(res->ai_family,
 res->ai_socktype,
 res->ai_protocol);

 if (!(sockfd < 0)) {
 if (connect(sockfd, res->ai_addr, res->ai_addrlen) == 0)
 break;

 close(sockfd);
 sockfd=-1;
 }

 res=res->ai_next;
 }

 freeaddrinfo(ressave);
 return sockfd;
}

56 / 56

Programming Guidelines on Transition to IPv6

The TCP daytime server uses connect_client with the following input parameter
values: SOCK_STREAM, PF_UNSPEC, the hostname and the port where TCP daytime server is
listening. The client socket connects to this server using IPv4 or IPv6 depending on if the
server hostname is resolved to an IPv4 or an IPv6 address. Clients will wait for the daytime
answer from the server.

File “TCPDayTimeClient.cpp”
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>

#include "connectClient.h"

const char *DAYTIME_PORT="13";

int
main(int argc, char *argv[])
{
 int connfd;
 char *myhost;
 char timeStr[256];

 myhost = "localhost";
 if (argc > 1)
 myhost = argv[1];

 connfd= connect_client(myhost,
 DAYTIME_PORT,
 AF_UNSPEC,
 SOCK_STREAM);

 if (connfd < 0) {
 fprintf(stderr,
 "client error:: could not create connected socket "
 "socket\n");
 return -1;
 }

 memset(timeStr, 0, sizeof(timeStr));

 while (read(connfd, timeStr, sizeof(timeStr)) > 0)
 printf("%s", timeStr);

 close(connfd);

 return 0;
}

57 / 57

Programming Guidelines on Transition to IPv6

The UDP daytime server uses connect_client with the following input parameter values:
SOCK_DGRAM, PF_UNSPEC, the hostname and the port where TCP daytime server is
listening. And the same as in the TCP case, the client socket connects to this server using
IPv4 or IPv6 depending on if the server hostname is resolved to an IPv4 or an IPv6
address. Clients will wait for the daytime answer from the server.

File “UDPDayTimeClient.cpp”

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>

#include "connect_client.h"

const char *DAYTIME_PORT="13";

int
main(int argc, char *argv[])
{
 int connfd, n, m;
 char *myhost;
 char timeStr[256];
 char letter;

 myhost = "localhost";
 if (argc > 1)
 myhost=argv[1];

 connfd = connect_client(myhost,
 DAYTIME_PORT,
 AF_UNSPEC,
 SOCK_DGRAM);

 if (connfd < 0) {
 fprintf(stderr,
 "client error:: could not create connected socket "
 "socket\n");
 return -1;
 }

 letter = '1';
 m= write(connfd, &letter, sizeof(letter));

 memset(timeStr, 0, sizeof(timeStr));

 n = read(connfd,
 timeStr,
 sizeof(timeStr));

 printf("%s\n", timeStr);

58 / 58

Programming Guidelines on Transition to IPv6

 close(connfd);

 return 0;
}

8.3 The multicast daytime
In this section daytime utility is used to analyze porting problems related to multicast
applications. Also, daytime service is used to show this porting process. Daytime is a very
simple service, which is easy to be adapted to multicast.

First some useful functions that will be used in the multicast server/client examples are
explained. The get_addr function returns a sockaddr_storage struct filled with a valid
socket address struct for the address, service, family and socket type input parameters. The
joinGroup function configures the socket with useful multicast options.

The file mcastutil.h defines the basic multicast socket interface. It defines the following
functions:

� get_addr fills the sockaddress_storage struct, addr, with information
related to the hostname, service, family and socktype.
int
get_addr (const char *hostname,
 const char *service,
 int family,
 int socktype,
 struct sockaddr_storage *addr);

� joinGroup specifies the address group to be used in the application. It configures
the socket with some useful multicast options like loopBack and mcastHop.
int
joinGroup(int sockfd, int loopBack, int mcastHop,
 struct sockaddr_storage *addr);

� isMulticast checks if an address is a valid multicast group.
int
isMulticast(struct sockaddr_storage *addr);

File “mcastutil.cpp”

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <time.h>

#include "mcastutil.h"

int
get_addr (const char *hostname,
 const char *service,

59 / 59

Programming Guidelines on Transition to IPv6

 int family,
 int socktype,
 struct sockaddr_storage *addr)
{
 struct addrinfo hints, *res, *ressave;
 int n, sockfd, retval;

 retval = -1;

 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_family = family;
 hints.ai_socktype = socktype;

 n = getaddrinfo(hostname, service, &hints, &res);

 if (n <0) {
 fprintf(stderr,
 "getaddrinfo error:: [%s]\n",
 gai_strerror(n));
 return retval;
 }

 ressave = res;

 sockfd=-1;
 while (res) {
 sockfd = socket(res->ai_family,
 res->ai_socktype,
 res->ai_protocol);

 if (!(sockfd < 0)) {
 if (bind(sockfd, res->ai_addr, res->ai_addrlen) == 0) {
 close(sockfd);
 memcpy(addr, res->ai_addr, sizeof(*addr);
 retval=0;
 break;
 }

 close(sockfd);
 sockfd=-1;
 }
 res=res->ai_next;
 }

 freeaddrinfo(ressave);

 return retval;
}

int
joinGroup(int sockfd, int loopBack, int mcastTTL,
 struct sockaddr_storage *addr)
{
 int r1, r2, r3, retval;

 retval=-1;

 switch (addr->ss_family) {

60 / 60

Programming Guidelines on Transition to IPv6

 case AF_INET: {
 struct ip_mreq mreq;

 mreq.imr_multiaddr.s_addr=
 ((struct sockaddr_in *)addr)->sin_addr.s_addr;
 mreq.imr_interface.s_addr= INADDR_ANY;

 r1= setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_LOOP,
 &loopBack, sizeof(loopBack));
 if (r1<0)
 perror("joinGroup:: IP_MULTICAST_LOOP:: ");

 r2= setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_TTL,
 &mcastTTL, sizeof(mcastTTL));
 if (r2<0)
 perror("joinGroup:: IP_MULTICAST_TTL:: ");

 r3= setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
 (const void *)&mreq, sizeof(mreq));
 if (r3<0)
 perror("joinGroup:: IP_ADD_MEMBERSHIP:: ");

 } break;

 case AF_INET6: {
 struct ipv6_mreq mreq6;

 memcpy(&mreq6.ipv6mr_multiaddr,
 &(((struct sockaddr_in6 *)addr)->sin6_addr),
 sizeof(struct in6_addr));

 mreq6.ipv6mr_interface= 0; // cualquier interfaz

 r1= setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_LOOP,
 &loopBack, sizeof(loopBack));
 if (r1<0)
 perror("joinGroup:: IPV6_MULTICAST_LOOP:: ");

 r2= setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,
 &mcastTTL, sizeof(mcastTTL));
 if (r2<0)
 perror("joinGroup:: IPV6_MULTICAST_HOPS:: ");

 r3= setsockopt(sockfd, IPPROTO_IPV6,
 IPV6_ADD_MEMBERSHIP, &mreq6, sizeof(mreq6));
 if (r3<0)
 perror("joinGroup:: IPV6_ADD_MEMBERSHIP:: ");

 } break;

 default:
 r1=r2=r3=-1;
 }

 if ((r1>=0) && (r2>=0) && (r3>=0))
 retval=0;

 return retval;

61 / 61

Programming Guidelines on Transition to IPv6

}

int
isMulticast(struct sockaddr_storage *addr)
{
 int retVal;

 retVal=-1;

 switch (addr->ss_family) {
 case AF_INET: {
 struct sockaddr_in *addr4=(struct sockaddr_in *)addr;
 retVal = IN_MULTICAST(ntohl(addr4->sin_addr.s_addr));
 } break;

 case AF_INET6: {
 struct sockaddr_in6 *addr6=(struct sockaddr_in6 *)addr;
 retVal = IN6_IS_ADDR_MULTICAST(&addr6->sin6_addr);
 } break;

 default:
 ;
 }

 return retVal;
}

File “mcastserver.cpp”

The multicast server is similar to unicast server. It initializes the service, it stops the process
(recvfrom) waiting for client connections and it answers immediately after any request.

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <time.h>

#include "mcastutil.h"

const char *DAYTIME_PORT="13";

int
main(int argc, char *argv[])
{
 int sockfd, n;
 char *mcastaddr;
 char timeStr[256];
 char b[256];
 struct sockaddr_storage clientaddr, addr;
 socklen_t addrlen;
 time_t now;

62 / 62

Programming Guidelines on Transition to IPv6

 char clienthost[NI_MAXHOST];
 char clientservice[NI_MAXSERV];

 mcastaddr = "FF01::1111";
 if (argc ==2)
 mcastaddr=argv[1];

 memset(&addr, 0, sizeof(addr));

 if (get_addr(mcastaddr, DAYTIME_PORT, PF_UNSPEC,
 SOCK_DGRAM, &addr) <0)
 {
 fprintf(stderr, "get_addr error:: could not find multicast "
 "address=[%s] port=[%s]\n", mcastaddr, DAYTIME_PORT);
 return -1;
 }

 if (isMulticast(&addr)<0) {
 fprintf(stderr,
 "This address does not seem a multicast"
 "address [%s]\n",
 mcastaddr);
 return -1;
 }

 sockfd = socket(addr.ss_family, SOCK_DGRAM, 0);

 if (bind(sockfd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
 perror("bind error:: ");
 close(sockfd);
 return -1;
 }

 if (joinGroup(sockfd, 0 , 8, &addr) <0) {
 close(sockfd);
 return -1;
 }

 addrlen=sizeof(clientaddr);
 for (; ;) {
 n = recvfrom(sockfd,
 b,
 sizeof(b),
 0,
 (struct sockaddr *)&clientaddr,
 &addrlen);

 if (n <0)
 continue;

 memset(clienthost, 0, sizeof(clienthost));
 memset(clientservice, 0, sizeof(clientservice));

 getnameinfo((struct sockaddr *)&clientaddr, addrlen,
 clienthost, sizeof(clienthost),
 clientservice, sizeof(clientservice),
 NI_NUMERICHOST);

63 / 63

Programming Guidelines on Transition to IPv6

 printf("Received request from host=[%s] port=[%s]\n",
 clienthost, clientservice);

 memset(timeStr, 0, sizeof(timeStr));
 time(&now);
 sprintf(timeStr, "%s", ctime(&now));

 n = sendto(sockfd, timeStr, sizeof(timeStr), 0,
 (struct sockaddr *)&addr,
 sizeof(addr));
 if (n<1)
 perror("sendto error:: \n");

 }
 return 0;
}

File “mcastclient.cpp”

The multicast client joins the multicast group and waits announcements received by the
multicast group.

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>

#include "mcastutil.h"

const char *DAYTIME_PORT="13111";

int
main(int argc, char *argv[])
{
 int sockfd, n;
 char *mcastaddr;
 char timeStr[256];
 char letter;
 struct sockaddr_storage addr, clientaddr;
 int addrlen;
 socklen_t clientaddrlen;

 mcastaddr = "FF01::1111";
 if (argc == 2)
 mcastaddr=argv[1];

 addrlen=sizeof(addr);
 memset(&addr, 0, addrlen);

 if (get_addr(mcastaddr, DAYTIME_PORT,

64 / 64

Programming Guidelines on Transition to IPv6

 PF_UNSPEC, SOCK_DGRAM, &addr)<0)
 {
 fprintf(stderr, "get_addr error:: could not find multicast "
 "address=[%s] port=[%s]\n", mcastaddr, DAYTIME_PORT);
 return -1;

 }

 sockfd = socket(addr.ss_family, SOCK_DGRAM, 0);

 if (bind(sockfd, (struct sockaddr *)&addr, addrlen) <0) {
 perror("bind error:: \n");
 close(sockfd);
 return -1;
 }

 if (joinGroup(sockfd, 0 , 8, &addr) <0) {
 close(sockfd);
 return -1;
 }

 letter = '1';
 n = sendto(sockfd, &letter, sizeof(letter), 0,
 (struct sockaddr *)&addr,
 addrlen);

 if (n<0) {
 perror("sendto error:: ");
 close(sockfd);
 return -1;
 }

 memset(timeStr, 0, sizeof(timeStr));
 clientaddrlen=sizeof(clientaddr);

 n = recvfrom(sockfd,
 timeStr,
 sizeof(timeStr),
 0,
 (struct sockaddr *)&clientaddr,
 &clientaddrlen);

 if (n<0) {
 perror("sendto error:: ");
 close(sockfd);
 return -1;
 }

 printf("%s\n", timeStr);

 close(sockfd);
 return 0;
}

65 / 65

	Introduction
	Transition to IPv6 without changing applications
	Transition scenarios
	Porting applications
	Analyzing existing programs
	Application transport module
	Other application modules with IP address dependencies
	IP address parsers
	Use of special addresses
	Local IP address selection
	ADU fragmentation
	Register systems based on IP addresses

	IPv4/IPv6 Interoperability
	IPv6/IPv4 clients connecting to an IPv4 server at IPv4-only node
	IPv6/IPv4 clients connecting to an IPv6 server at IPv6-only node
	IPv6/IPv4 clients connecting to an IPv4 server at dual stack node
	IPv6/IPv4 clients connecting to an IPv6 server at dual stack node
	IPv4/IPv6 clients connecting to an IPv4-only server and IPv6-only server at dual stack node.
	Client/server and network type interoperability

	Porting Source Code
	Socket Address Structures
	Socket functions
	Required modifications when porting to IPv6
	Address conversion functions
	Resolving names
	Multicasting

	Guidelines on developing new applications
	Conclusions
	Bibliography
	Appendix: Examples of real porting process
	Original daytime version
	IPv4 Daytime server (TCP/UDP)
	IPv4 Daytime client (TCP/UDP)

	The unicast daytime ported to IPv6
	Daytime server (TCP/UDP)
	Example: Daytime client (TCP/UDP).

	The multicast daytime

