
Professional
Financial

Computing Using
Excel and VBA



HUMPHREY K. K. TUNG,
DONNY C. F. LAI, and
MICHAEL C. S. WONG

with STEPHEN NG

John Wiley & Sons (Asia) Pte. Ltd.

Professional
Financial

Computing Using
Excel and VBA



Copyright# 2010 JohnWiley & Sons (Asia) Pte. Ltd.

Published in 2010 by JohnWiley & Sons (Asia) Pte. Ltd.
2 Clementi Loop, #02–01, Singapore 129809

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, scanning, or

otherwise, except as expressly permitted by law, without either the prior written permission of

the Publisher, or authorization through payment of the appropriate photocopy fee to the
Copyright Clearance Center. Requests for permission should be addressed to the Publisher,

JohnWiley & Sons (Asia) Pte. Ltd., 2 Clementi Loop, #02–01, Singapore 129809,

tel: 65–6463–2400, fax: 65–6463–4605, e-mail: enquiry@wiley.com.

This publication is designed to provide accurate and authoritative information in regard to the

subject matter covered. It is sold with the understanding that the publisher is not engaged in

rendering professional services. If professional advice or other expert assistance is required, the
services of a competent professional person should be sought.

Neither the authors nor the publisher are liable for any actions prompted or caused by the

information presented in this book. Any views expressed herein are those of the authors and do
not represent the views of the organizations they work for.

Other Wiley Editorial Offices

JohnWiley & Sons, 111 River Street, Hoboken, NJ 07030, USA

JohnWiley & Sons, The Atrium, Southern Gate, Chichester, West Sussex, P019 8SQ,

United Kingdom
JohnWiley & Sons (Canada) Ltd., 5353 Dundas Street West, Suite 400, Toronto, Ontario,

M9B 6HB, Canada

JohnWiley & Sons Australia Ltd., 42 McDougall Street, Milton, Queensland 4064, Australia

Wiley-VCH, Boschstrasse 12, D-69469Weinheim, Germany

Library of Congress Cataloging-in-Publication Data

ISBN 978–0–470–82439–9

Typeset in 10.5/13pt Sabon-Roman by Thomson Digital, India

Printed in Singapore by Toppan Security Printing Pte. Ltd.

10 9 8 7 6 5 4 3 2 1



Contents

Preface ix

CHAPTER 1
Financial Engineering and Computing 1

1.1 Financial Engineering and Spreadsheet Modeling 1
1.2 Lehman Brothers’ Products for Retail Investors 3
1.3 Risk Management and Basel II 4
1.4 About the Book 4
1.5. Chapter Highlights 6
1.6 Other Remarks 7

CHAPTER 2
The GARCH(1,1) Model 9

2.1. The Model 9
2.2. Excel Implementation 10
2.3. Excel Plus VBA Implementation 15

CHAPTER 3
Finite Difference Methods 21

3.1. Difference Equations 21
3.2. Excel Implementation 24
3.3. VBA Implementation 28
3.4. Crank–Nicholson Scheme 33

CHAPTER 4
Portfolio Mean-Variance Optimization 37

4.1. Portfolio Selection 37
4.2. Excel Implementation 42
4.3. Excel Plus VBA Implementation 48

v



CHAPTER 5
Newton–Raphson Method 59

5.1. Newton–Raphson Method for Systems of Equations 59
5.2. VBA Routine 61

CHAPTER 6
Yield Curve Construction Using Cubic Spline 67

6.1. Cubic Spline Interpolation 67
6.2. Yield Curve Construction 75
6.3. Excel Plus VBA Implementation 77

CHAPTER 7
Binomial Option Pricing Model 85

7.1. Risk-Neutral Option Pricing
and the Binomial Tree 85

7.2. VBA Implementation 89

CHAPTER 8
The Black–Derman–Toy Model 95

8.1. The Term Structure Model and
the Black–Derman–Toy Tree 95

8.2. Excel Plus VBA Implementation 98

CHAPTER 9
Monte Carlo Option Pricing 109

9.1. The Monte Carlo Method 109
9.2. Risk-Neutral Valuation 112
9.3. VBA Implementation 114
9.4. Exotic Options 124
9.5. American Options 132

CHAPTER 10
Portfolio Value-at-Risk 143

10.1. Portfolio Risk Simulation 143
10.2. Monte Carlo Simulation for Multiple-Asset Portfolios 152
10.3. Historical Simulation for Multiple-Asset Portfolios 160
10.4. VBA Implementation of Portfolio Risk Simulation 164
10.5. Drill Down of Portfolio Risk 180

vi CONTENTS



CHAPTER 11
The Hull–White Model 189

11.1. Hull–White Trinomial Tree 189
11.2. Excel Plus VBA Implementation 196
11.3. The General Hull–White Model 203
11.4. Implementation of the General

Hull–White Model 210

CHAPTER 12
CreditMetrics Model 221

12.1. The CreditMetrics Model 221
12.2. Individual (Segregate) Asset Valuation Framework 221
12.3 Monte Carlo Simulation in Detail 225
12.4. Excel and VBA Implementation 227

CHAPTER 13
KMV–Merton Model 243

13.1. KMV–Merton Model of Credit Risk 243
13.2. Excel and VBA Implementation 248

APPENDIX A
VBA Programming 255

A.1 Introduction 255
A.2 A Brief History of VBA 255
A.3 Essential Excel Elements for VBA 256

A.3.1 Excel Cell Reference 257
A.3.2 Excel Defined Names 261
A.3.3 Excel Worksheet Functions 264

A.4 The VBA Development Environment (VBE) 266
A.4.1 The Developer Tab in the Ribbon 266
A.4.2 The Windows of VBE 268
A.4.3 The Project Explorer 272
A.4.4 The VBA Project Structure 273
A.4.5 The Procedure to Create a VBA Subroutine 275
A.4.6 The Procedure to Create a VBA Function 278

A.5 Basic VBA Programming Concepts 280
A.5.1 Variables and Data Types 285
A.5.2 Declaration and Assignment Statements 287
A.5.3 Flow Control Statements 293

A.6 VBA Arrays 300

Contents vii



A.7 Using Worksheet Matrix Functions in VBA 304
A.8 Summary 311

APPENDIX B
The Excel Object Model 315

APPENDIX C
VBA Debugging Tools 321

APPENDIX D
Summary of VBA Operators 327

APPENDIX E
Summary of VBA Functions 331

APPENDIX F
Summary of VBA Statements 333

APPENDIX G
Excel Array Formula 341

Index 349

viii CONTENTS



Preface

This book is a good company to Master degree programs in Financial
Engineering, Financial Risk Management, Quantitative Investment,

Computational Finance, or Mathematical Finance. Also, risk managers,
traders, IT analysts, quantitative analysts working in investment banks and
hedge fund will find it to be a good reference.

The book provides VBA examples on some widely-used finance and risk
models. We expect that readers have prior training on these models because
some of them require strong mathematical foundation. Through the
examples, readers can easily build their implementable analytics and apply
similar skills to other complex models.

Feedbacks from professors, students, analysts, and risk professionals
are warmly welcome.

Humphrey Tung
Donny Lai

Michael Wong
Stephen Ng

Email: efmcw103@gmail.com
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CHAPTER 1
Financial Engineering

and Computing

1.1 F INANC IA L ENG IN E ER ING AND SPREADSHE ET
MODE L I NG

‘‘Spreadsheet Modeling for Finance’’ has long been a popular course in the
MSc Financial Engineering program at the university we served in Hong
Kong. The course is different from introductory Excel courses in financial
management. It is an advanced course offered mainly to students with solid
training in mathematical finance, option pricing, and risk modeling. Most
of the students in the course have been designated a chartered financial
analyst (CFA) or certified as a financial risk manager (FRM). The financial
engineering program mainly recruits part-time students working in various
financial institutions. There are around 40 to 60 new recruits each year.Many
of them are derivatives traders, bank risk managers, bank IT specialists, fund
managers, product structurers, bank regulators, and product auditors. In
1997–2008, the program trained more than 500 graduates. Most of them
successfully applied the knowledge gained to their daily work.

Some may ask why no ‘‘quantitative analysts’’ are mentioned. Loosely
speaking, these financial engineering graduates are quantitative analysts in
nature. Strictly speaking, none of them carries the job title ‘‘quantitative
analyst.’’ A global investment bank may have one or two quantitative
analysts and/or financial engineers in Hong Kong. Given the presence of
15 global institutions, there are a maximum of 10 quantitative analyst
job vacancies a year. This number cannot satisfy the continuous supply of
financial engineering graduates every year. Although our graduates are not
called quantitative analysts, their training in financial engineering did help
their fast career development. Also, their quantitative skills have enabled
Hong Kong to excel in financial services.
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When we planned this book in 2007, the financial market in Hong Kong
was very bullish. Many China initial public offering (IPO) deals were
completed in Hong Kong. The Hang Seng Index reached over 30,000 points.
Structured products and hedge funds were prevalent in corporate banking
and private banking. Equity-linked notes, minibonds, and currency-linked
products were common in retail banking.

In addition to sizable financial institutions, Hong Kong is a hub of
boutique hedge funds. It is believed that there are 600 or more. These hedge
funds employ few people, but their asset under management (AUM) can be
over US$100 million each. In these hedge funds, financial and risk analysis is
mostly based on Excel and Visual Basic for Applications (VBA) programming.
This is a reason why the course ‘‘Spreadsheet Modeling’’ is very popular.

Our progress in writing this book was hindered by the financial tsunami
in 2008. High market volatility, depreciation of wealth, and massive layoffs in
the banking sector brought a lot of frustration to financial practitioners and
financial educators. When we completed this book in June 2009, the market
remained very weak. Many wealthy individuals suffered huge losses in the
past 12 months; financial institutions cut their manpower seriously; selling
complex products became difficult; and new regulations were enacted relating
to structured products. In 2009, students in the course ‘‘Spreadsheet Model-
ing’’ still enjoyed the class but were slightly worried outside of the class. This
is because the next round, which would be the fourth or fifth round, of
massive layoffs would affect them. Investment banking follows obvious
business cycles. This applies to study programs in financial engineering aswell.

Mature students are always pragmatic in acquiring knowledge.
Complex mathematics is very fancy, but our mature students tend to take it
for granted and focus mostly on the applications of the mathematics. The
course ‘‘Spreadsheet Modeling’’ makes those fancy mathematical concepts
more easily applicable. From the perspective of educators, this mindset
of the students is not harmful. After using Excel and VBA to build their
models, some students become more interested in complex mathematics.
What we would like them to know is not simply building models for
financial analysis. We wish that they could understand model risks and
estimate when these risks are likely to occur. The increased curiosity of our
students after the course made us feel satisfied about our educational efforts.

Many new financial products have no mathematical models. Due
to the advancement of technology, an analyst can easily apply Monte
Carlo simulation on related variables and find out an average value. Our
students especially like this analytical approach because there is less of a
mathematical foundation required. In fact, Excel and VBA can easily handle
Monte Carlo simulation.
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1 .2 L EHMAN BROTHERS ’ PRODUCTS FOR
RETA I L I NV ESTORS

Since 2005, Lehman Brothers began actively distributing a wide range of
structured products via retail banks in Hong Kong, as well as in Singapore.
One of our former financial engineering students came from France. After
graduation, he worked in Lehman Brothers (Tokyo). A major part of his
job was to structure products, which were finally sold to Hong Kong retail
investors via local retail banks.

These products included equity-linked notes, minibonds (collateralized
debt obligation [CDO] with total return swaps), and index-linked guaran-
teed notes. The equity-linked notes could provide an annual yield of
30 percent. Obviously the distribution of stock returns at that time was
asymmetric with high upside potential and limited downside risk. The
minibonds offered yields much better than bank deposits and the principle
was guaranteed by an AA/A-rated institution—Lehman Brothers. This
rating is better than that of many local banks.

Unfortunately, Lehman Brothers collapsed in September 2008. More
than 40,000 retail investors in Hong Kong became victims. Some lost
almost all their wealth. These victims continuously demonstrated in the
street, at the front doors of various banks, and at the entrance of the
Hong Kong Monetary Authority. Regulators encouraged banks to
buy back the Lehman products. Banks were unwilling to do so. The
Hong Kong banking industry experienced unprecedented exposure to
reputational risk. In fact, this risk has never been discussed seriously and
measured properly.

The Lehman incident made financial regulators extremely busy.
Many of our financial engineering students are working for the regulatory
bodies in Hong Kong. They were under serious pressure in the six-month
period after September 2008. To mitigate regulatory risk, the regulators in
Hong Kong announced a series of measures to prevent ordinary citizens
from mistakenly buying high-risk products. These measures included
mystery shopper programs (that is somebody pretending to be a bank client
in order to test the selling process of frontline people) and audio-recording
all relevant transactions. At the same time, the legal risk of banks inten-
sified. Misrepresentation and insufficient duty of care became the
words surrounding all financial institutions in Hong Kong. As a result,
one of our authors was appointed to be an expert witness in some legal
disputes relating to complex products. Risk management in banks
suddenly became crisis management. Quantitative risk measures seemed
less appealing.

Financial Engineering and Computing 3



1 .3 R I SK MANAGEMENT AND BASE L I I

This book does not cover much about Basel II, which is the standard of risk
management for the banking sector. There is a chapter about value-at-risk
(VaR) and a chapter about probability of default (PD). Both VaR and PD
are fundamental to bank capital charge. This book intends to share how
complex financial products can be priced properly with simple program-
ming tools. Asset pricing is a cornerstone of risk management. If an asset
does not have any pricing model, we find it hard to measure its risk and
evaluate its fair value. A pricing model facilitates scenario analysis:
how much the asset will gain or lose in different scenarios, including some
stress scenarios.

After the financial tsunami, Basel II has lost its credibility. Regulators
obviously underestimated the impact of pro-cyclicality on credit risk. In
2002–2006, our university worked closely with the Hong Kong Monetary
Authority to promote Basel II discussion in the Hong Kong banking sector.
One of our authors was also an architect of the first internal-ratings-based
system in Hong Kong. Basel II did help banks save capital charge. This
could be an incentive for banks to invest heavily in risk management sys-
tems. This is also a reason why banks were undercapitalized in the crisis.

Basel II imposes capital requirements on market risk, credit risk, and
operational risk. However, the interrelationship of these three risks has not
been considered seriously. The VaR methodology assumes normal distribu-
tion of asset returns. Many credit-linked products, such as CDOs, collater-
alized mortgage obligations (CMOs), and others, are marketable securities
subject to both interest rate risk plus credit migration risk. Actual or
expected increase in credit risk can substantially lower asset prices. It seems
that the Basel II capital requirement does not adequately address this issue.
How should the correlation of credit risk and market risk be modeled? That
is beyond the scope of this book.

Liquidity risk and stress testing risk are key issues in the collapse of
banks. These risks are covered in Pillar II of Basel II. How can liquidity risk
be modeled? Excel and VBA may help, but there is no consensus on what
assumptions should be adopted. Stress testing usually involves many
assumptions and a subjective selection of scenarios. Stress tests can be easily
done and regulators usually find it hard to challenge those test results.

1 .4 ABOUT THE BOOK

The main topic of this book is the practical implementation of financial
models using Excel and VBA programming. Too often, books on
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spreadsheet modeling provide only quick-and-dirty implementations of
financial models that have very little use in real-world applications. This
book focuses on the programming practices and skills to perform real-world
implementation of financial models that are robust, reusable, and flexible. It
takes an in-depth look at how to implement financial models using both
Excel and VBA, and discusses the essential programming practices and skills
in structuring complex financial models through advanced VBA features. It
provides comprehensive coverage of financial models in the areas of deriva-
tives pricing, market and credit risk modeling, and advanced interest rate
modeling. Each of the later chapters on model implementation starts with a
review of all the necessary financial theory and concepts from a practition-
er’s perspective. Step-by-step instructions on the implementation are then
provided to explain the programming techniques involved for models with
different complexities. Alternative approaches are also discussed to enable
readers a comprehensive understanding of different techniques.

This book is suitable for those who have solid backgrounds in financial
engineering, financial modeling, and financial risk management; a master’s
degree in financial mathematics, financial engineering, or computational
finance is preferable. CFA, FRM, or professional risk manager (PRM)
qualifications will be helpful to readers, but these readers must have prior
training in calculus and matrix algebra. When we wrote this book, we
surveyed books with relevant titles. None of them were advanced enough
for our MSc (Financial Engineering) students. Most books with titles
such as Financial Modeling, Excel Modeling in Finance, or Spreadsheet
Modeling in Finance are targeted at undergraduate students in Finance or
MBA students. Our book is targeted at financial engineering or mathematical
finance students at business schools or engineering schools.

The book title ‘‘Financial Computing’’ is modified from ‘‘Computa-
tional Finance.’’ When our MSc (Financial Engineering) program was first
launched in the 1990s, a number of professors from Carnegie Mellon
University (CMU) served as our program advisors and teaching fellows.
CMU offers a well-known program—MSc (Computational Finance).
Computational Finance focuses on financial models that are based on
mathematical theories and computational intelligence. Our book places less
emphasis on financial models although we provide brief summaries on the
theories mentioned in the book. We place more emphasis on how to
implement these advanced models with Excel and VBA programming. This
helps quantitative analysts quickly develop some models for their analytical
work. This is the reason we named the book ‘‘Financial Computing’’
instead of ‘‘Computational Finance.’’ Our book covers a small number of
well-known models and illustrates how Excel and VBA programming can
be applied to implement these models. Through these models, readers can
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pick up Excel and VBA skills easily and apply these skills to other complex
models. We believe that the book will be a good companion to any degree
program in financial engineering or financial mathematics.

1 .5 CHAPTER H I GHL I GHTS

Chapter 2 deals with the GARCH(1,1) model, which is used to predict
the volatility of asset prices. Volatility estimates are critical for derivatives
pricing and the volatility index can be traded. We introduce an effective
way to use Solver in conjunction with VBA routines to enhance the func-
tionality of Solver. Chapter 3 looks at the finite difference model, which
is frequently used in derivatives pricing based on the Black–Scholes partial
differential equation. We discuss the use of matrix manipulation under
Excel as well as the VBA programming environment. A general framework
that may be used to price a variety of options is formulated. Chapter 4
turns to portfolio mean-variance optimization. This is the base of modern
investment theory and investment portfolio formation. We pay particular
attention to the implementation of the Markowitz algorithm under short-
selling restrictions. In all these chapters, we discuss the deficiency in taking
a simple Excel implementation and demonstrate the necessity of using VBA
programming in efficiently coping with complex conditions.

Chapter 5 introduces the Newton–Raphson method. This numerical
procedure is powerful in solving a system of equations, and the routine
developed here will be useful throughout the book. Chapter 6 discusses
yield curve construction with cubic spline interpolation. We describe a
generalized bootstrapping method, a computer-intensive statistical method,
in the construction of a smooth yield curve given any available data set of
bond prices. This enables the construction of an interest rate tree discussed
in later chapters.

Chapters 7 and 8 deal with two different tree models in option pricings:
the binomial model and the Black–Derman–Toy model. The binomial model
can be applied to a wide range of equity derivatives. It can be implemented
very easily using VBA programming. The Black–Derman–Toy model is
particularly useful for pricing interest rate derivatives. We introduce an
effective way to implement this model in VBA taking bond options as our
working example.

Chapter 9 discusses option pricing using the Monte Carlo simulation
method, which is a powerful tool in the valuation of exotic options with
complex payoff conditions. We discuss various important issues regarding
this method and look at the implementation for a number of exotic options.
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In particular, we take a closer look at the Monte Carlo pricing of American-
style options with early exercising features.

Chapter 10 applies simulation techniques to determine portfolio value-
at-risk. This chapter aims at providing the necessary programming skills to
build a flexible and expandable risk engine for portfolio risk simulation.

Chapter 11 looks at the state-of-the-art Hull–White model of interest
rates, which is commonly adopted by the industry for pricing interest rate
derivatives. We discuss an effective way to implement the complex structure
of this model taking bond options again as an example.

Chapters 12 and 13 discuss two well-known credit risk models: the
CreditMetrics model and the KMV–Merton model. We start the discussion
of the CreditMetrics model with a single issuer and then move to credit
migration risk of credit portfolios. Chapter 12 focuses on the implemen-
tation of the credit RiskMetrics framework with the use of Monte Carlo
simulation. In Chapter 13 we introduce the structural model developed by
Robert C. Merton and extend our discussion to the KMV–Merton model.
The KMV–Merton model is best applied to publicly traded firms and its
underlying methodology predicts the probability of default of a firm within
a given time horizon.

Appendices A to G provide a review of Excel and VBA programming.
Many engineering school graduates may be familiar with Fortran, C, or Java
and seldom touch Excel or VBA. The appendices will help these readers.

In all chapters, mathematical models are briefly mentioned. Our focus
is to share with readers how to write relevant VBA programs. There is no
standard programming route for a single problem. Readers may find faster
programming methods to achieve the same outcome. These readers are
welcome to contact us and share your better approaches with us. Practical
exercises are provided at the end of each chapter that allow the readers to
apply their technical skills acquired from the chapter. The solutions to these
questions can be downloaded through the ftp link given by http://www.cs.
cityu.edu.hk/�donny/humphrey/financial_computing.

1 .6 OTHER REMARKS

We would like to thank our students in Hong Kong for asking us challeng-
ing questions in class. This helps improve our thinking and sharpen our
teaching performance. Among all the authors, Dr. Humphrey Tung contrib-
uted the most. He carefully reviewed every equation in the book. The other
three authors would like to thank him for his passion in this project.
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CHAPTER 2
The GARCH(1,1) Model

2 .1 THE MODEL

In this chapter, we discuss what is known as the GARCH(1,1) model,
introduced by Bollerslev.1 The distinctive feature of this model is that
volatilities of asset price returns are not constant. Under the stochastic
regime, price return rt between, for example, the end of previous day t � 1
and the end of day t can be generated through random normal drawings as:

rt ¼ e(m; st) ð2:1Þ
with dynamical volatility st and constant mean m. The model attempts
to keep track and forecast the variations in the volatility through time.
Applications of this so-called GARCH (generalized autoregressive
conditional heteroscedasticity) volatility are widespread especially in the
assessment of portfolio risk exposure over a short period of time.

In GARCH(1,1), future variance s2
tþ1 is a weighted average of its imme-

diate past estimation s2
t , the most recent observation of squared residual

(rt � m)2, and a long-run average variance VL. It follows an iteration
equation given by:

s2
tþ1 ¼ gVL þ a(rt � m)2 þ bs2

t ð2:2Þ

with weight factors a > 0, b> 0, and g> 0. Since the total weight must sum
up to one, we have:

g ¼ 1� a� b:

Note that the constant mean m in equation (2.2) can be estimated based on
its historical average. There are all together three parameters in the model,
namely (VL, a, b) that satisfy the constraints,

VL > 0; a > 0; b > 0; and aþ b < 1: ð2:3Þ
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They can be estimated under the notion of maximum likelihood of seeing
the historical data. Given the historical time series of price returns {r1,
r2, . . . , rn}, we can first estimate the constant mean historically as:

m ffi (1=n)(r1 þ . . .þ rn):

For a particular choice of model parameters, GARCH volatilities {s1,
s2, . . . , sn} can be generated through equation (2.2) where the iteration
starts off from observation r1 and estimate s2

1 ffi (r1 � m)2. According to the
random normal assumption in equation (2.1), the likelihood or chance of
the entire historical data set being observed is proportional to:

L / expf�1
2(r1 � m)2=s2

1gffiffiffiffiffiffiffiffiffiffiffi
2ps2

1

q � . . .� expf�1
2(rn � m)2=s2

ngffiffiffiffiffiffiffiffiffiffiffi
2ps2

n

p : ð2:4Þ

The best model parameters should therefore generate the volatilities {s1,
s2, . . . , sn} that maximize the likelihood L in (2.4) or equivalently the
logarithm of likelihood ln(L) given by:

ln(L) ¼ �1
2

Pn
t¼1 ln(s2

t )þ
(rt � m)2

s2
t

" #
ð2:5Þ

where all constant terms irrelevant to the maximization are ignored in
the equation.

2 .2 EXCE L IMPL EMENTAT I ON

Figure 2.1 illustrates how the above calculation could be organized in an
Excel spreadsheet.2 The table analyzes daily returns of the Dow Jones
Industrial Average (DJI) between March 22, 1990 and December 6, 2006.
The leading segment from 19900322 to 19940302 will be taken as in-sample
data for the determination of model parameters. The rest will be used as out-
of-sample data to back test the accuracy of the model. From row 13 onward,
column A in the table records the date, column B shows the closing of the
DJI on each of these dates, while column C calculates the corresponding
daily returns. For example, the formula adopted in C14 ¼ (B14 � B13)/B13.
The cell C2 defines the range ‘‘C14:C1011’’ of the entire in-sample historical
returns {r1, r2, . . . , rn}. The cell C3 ¼ AVERAGE(INDIRECT(C2)) calcu-
lates the corresponding constant mean m in the model. Trial values of the
model parameters (VL, a, b) are input through cells F5, F6, and F7,
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respectively. We may define several named cells to enhance the readability of
the formulae: C3(mu), F5(longvar), F6(alpha), F7(beta), and C7(zvalue).

The fourth column from D14 onward calculates the residuals (rt � m)
for each of these returns using the formula D14 ¼ (C14 �mu), for example.
GARCH variances s2

t are recorded in the fifth column from E14. They are
generated iteratively using the formula (see equation [2.2]):

E15 ¼ (1� alpha� beta) � longvarþ alpha �D14̂ 2þ beta � E14
starting off with the value in E14 = D14^2. To determine the best model
parameters, we need to first evaluate the likelihood value associated with
each trial parameter set. Column F under the data caption implements
term-by-term the expression for ln(L) in equation (2.5) using the formula:

F14 ¼ ð� 0:5Þ � ðLN(E14)þD14̂ 2=E14)

such that the total in-sample ln(L) is given by cell F10 ¼ SUM(OFFSET
(INDIRECT(C2),0,3)). For example, consider the trial model parameters of
(VL ¼ 0.00005, a ¼ 0.02, b ¼ 0.95) that satisfy the constraints in (2.3), we
have the likelihood value being ln(L) ¼ 4365.5993.

Here, we are interested in choosing (VL, a, b) that maximize ln(L)
under the constraints in (2.3). Such a task can be achieved by using the
Solver algorithm in Excel. We can simply go to Tools, then Solver, and the
Solver Parameters screen will pop up as shown in Figure 2.2. Set Target Cell
is the cell F10 that is the likelihood value ln(L), check Equal To as Max
for maximizing, and input the cells F5:F7 in By Changing Cells for the trial
values of VL, a, and b.

FIGURE 2.1 Excel Implementation of GARCH(1,1).
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The constraints in (2.3) can easily be included in the Solver algorithm
under the Subject to the Constraints field. Click Add and, as shown in
Figure 2.3, enter the following through the Add Constraint screen:

longvar >¼ 0; alpha >¼ 0; beta >¼ 0; and F8 <¼ 1

for the constraints VL > 0, a > 0, b > 0, and a þ b < 1, respectively. In the
spreadsheet, we have defined the cell F8 = alpha þ beta to be the sum of a
and b. Note that Solver provides only the choices ‘‘>¼’’ and ‘‘<¼’’ for our
purpose. Under a floating point environment, they work effectively in the
same way as the strictly greater and strictly smaller operators ‘‘>’’ and
‘‘<.’’ The non-negative constraints can also be included through an alterna-
tive setup. We can click Options to open the Solver Options screen and
check Assume Non-Negative that applies the constraints to the cells F5:F7
specified in By Changing Cells.

Solver adapts a gradient search algorithm specified by the Estimates,
Derivatives, and Search fields in the Solver Options screen as shown in
Figure 2.4. For the current problem, we need to insert a maximum running
time in Max Time, the number of iterations in the search in Iterations, and
in Precision the required precision in the cells F5:F7 in By Changing Cells.

FIGURE 2.2 Solver Parameters screen.

FIGURE 2.3 Add Constraint screen.
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Depending on the problem, this represents only the maximum achievable
precision if there is enough iterations. Here, Solver will normally require
10 to 20 iterations to achieve the precision of 10�8. To start off the search
algorithm, we need to provide initial values for the cells F5:F7. Suppose
we initiate the search with F5 ¼ 0.00007, F6 ¼ 0.04, and F7 ¼ 0.90. By
clicking Solve, Solver returns the optimal solutions to be F5 ¼ 0.00006663,
F6 = 0.03714556, and F7 ¼ 0.94929286 after the search with a maximum
likelihood of F10 ¼ 4374.46820612.

How good is the GARCH(1,1) model with these optimal parameters?
To answer this question, we will backtest the model with out-of-sample
historical data. In columns A and B we have included historical closings
of the DJI up to the trading day 20061206 with about 3,000 backtesting
points right after the in-sample data. The out-of-sample historical
returns are located in C1012 to C4227 as defined in cell C6, and the
GARCH variances are located in E1012 to E4227. Recall in the model,
known values of rt and s2

t will allow us to forecast the new variance
s2
tþ1 the next day when the actual rt+1 will be observed subsequently.

According to the random normal assumption in equation (2.1), the
confidence interval of rt+1 is given by [m � zst+1, m+zst+1] with z being
the confidence level. In this respect, we can backtest the accuracy of
the model by checking the percentage that the forecasted interval
has included the observation for the entire out-of-sample data. In Figure 2.1,
the cell C7 defines the chosen value of z, while the cell C8 calculates

FIGURE 2.4 Solver Options screen.
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the nominal confidence of the interval based on standard cumulative
probability as:

C8 ¼ NORMSDIST(C7)�NORMSDISTð�C7):

Column G under the data caption records on each day the success (1)
or failure (0) of whether the forecast confidence interval has included the
observation using the formula:

G14 ¼ IF(AND(C14 <¼ muþ zvalue � SQRT(E14); C14 >¼ mu

� zvalue � SQRT(E14)); 1; 0):

The cell C9 = AVERAGE(OFFSET(INDIRECT(C6),0,4)) then accumulates
the backtesting confidence for the entire out-of-sample data. To check the
accuracy of GARCH(1,1), we can compare this value with the nominal
value as given by C8.

There are critical issues on the choice of initial values that are relevant
to the current problem. Without going into a detailed discussion of its
search algorithm, we consider the following example to simply demonstrate
an important shortfall of Solver. For arbitrary choice of initial values, there
is indeed no guarantee of finding the correct optimal solution by Solver.
The initial values should be as close to the solution as possible.

EXAMPLE 2.1

Consider the single-variable function given by f (x) ¼1=3 x
3� 1=2 x

2 þ 1.
The local maximum and minimum are located at x ¼ 0 and x ¼ 1,
respectively, where f(0) ¼ 1 and f(1) ¼ 0.8333. The function is strictly
increasing to the right of the local minimum, and it is strictly decreas-
ing to the left of the local maximum.

Suppose we want to use Solver to determine the overall maximum
and minimum points of the function under the constraints x � �0.4
and x � 1.4.

The values of the function at both edges are given by f(�0.4) ¼
0.8987 and f(1.4) ¼ 0.9347. They are neither the maximum point nor
the minimum point of our concern. The solution should clearly be the
points x ¼ 0 and x ¼ 1, respectively (see Figure 2.5).

Depending on the initial value of x, Solver determines only the
nearest maximum or minimum point that is not necessarily the overall
solution. In particular, if the initial value is chosen to be x ¼ 1.2, the
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2 .3 EXCE L PLUS VBA IMPLEMENTAT I ON

In general, there is no a priori information on the model parameters in
GARCH(1,1). A preliminary procedure for the purpose of determining the
proper initial values for Solver would definitely be required in view of the
shortfall as demonstrated in the above example. An effective way to
perform such an integrated task is to write additional VBA routines
underneath the spreadsheet in Figure 2.1 such that Solver can be initiated
immediately after the preliminary procedure.

nearest maximum is located at x ¼ 1.4 (the right edge). Upon max-
imizing, Solver returns this point to be the solution rather than x ¼ 0
as expected. Similarly, if the initial value is chosen to be x ¼ �0.2 for
minimizing, Solver returns the nearest minimum at x ¼ �0.4 (the left
edge) not x ¼ 1 (see Table 2.1).

FIGURE 2.5 The plot of f(x) between x ¼ 1 and x ¼ 2.

TABLE 2.1 Set Iterations ¼ 20 and Precision ¼ 10�8.

Initial value Maximum by Solver Minimum by Solver

x ¼ 0.5 x ¼ �0.00000001 x ¼ 0.99999996
x ¼ 1.2 x ¼ 1.40000000 x ¼ 1.00000000
x ¼ �0.2 x ¼ �0.00000000 x ¼ �0.40000000
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We first develop a function called TotalLikelihood() that calculates the
likelihood value with trial model parameters. As input, the function reads in
the historical squared residuals {h1, h2, . . . , hn} where ht ¼ (rt � m)2, the
number of terms n, and the model parameters (VL, a, b). Iteratively, it
generates the GARCH variances fs2

1; s
2
2; . . . ; s

2
ng and accumulates the

likelihood value ln(L) according to equations (2.2) and (2.5), respectively.
The pseudo code of TotalLikelihood() is given by Code 2.1 as follows:

TotalLikelihood( h(1:n), n , a , b , VL )

# define v1 = s2
1 to start off the iteration and accumulate ln(L)

v(1) = h(1)

sum = ln( v(1) ) + h(1) / v(1)

# generate { v2 = s2
2, . . . , vn = s

2
n } by iteration and accumulate ln(L)

For ( i = 1 to n � 1 ) { v(i + 1) = ( 1 � a � b ) VL + a h(i) + b v(i)

sum = sum + ln( v(i + 1) ) + h(i + 1) / v(i + 1) }

TotalLikelihood = �½ sum

Code 2.1: Pseudo code of the TotalLikelihood() function.

We want to develop a search routine called EstimateBestParameters()
that scans through the valid region of the model parameters and identifies
the spot with the largest ln(L), which utilizes the above likelihood function.
Define in cell E2 the required precision prec of the parameters in this prelim-
inary procedure. According to the constraints in (2.3), the search for a
proper a and b should run through all points given by the double-loop as:

a ¼ i� prec; i ¼ 1; 2; . . . ;N � 1 ð2:6Þ
b ¼ j� prec; j ¼ 1; 2; . . . ;N � i� 1

where N ¼ (1/prec) is defined to be the number of grids between zero and
one with precision prec. We should always choose prec such that (1/prec) is
an integer. It can be shown3 that VL is simply the unconditional variance
E[(rt � m)2] of price returns. Numerically, it should be close to the historical
variance given by:

Vhistorical ¼ (1=n)[(r1 � m)2 þ . . .þ (rn � m)2]:

In practice, the search for a proper VL can be confined within the region

0.8Vhistorical � VL � 1.2Vhistorical

and run through the loop as:

VL ¼ (k� prec)Vhistorical; k ¼ klow; . . . ; khigh ð2:7Þ
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where klow and khigh are the nearest integers to 0.8N and 1.2N, respectively.
The pseudo code of EstimateBestParameters() is given by Code 2.2. As
input, the routine reads in historical price returns {r1, r2, . . . , rn}, the
number of terms n, and the search precision prec. As output, it returns the
best model parameters (VL, a, b) taken to be the initial values for Solver.
We can set the precision to 0.01 in EstimateBestParameters() and then use
Solver to fine-tune the model parameters. Alternatively, we can set the
precision to be very small and estimate the model parameters directly from
EstimateBestParameters(), but this will be numerically intensive.

EstimateBestParameters( )

# input historical price returns and precision parameter
Read n, r(1:n), and prec

# estimate the historical mean and variance
m = AVERAGE( r(1:n) )
Vhistorical = VAR( r(1:n) )

# construct the squared residuals
For ( i = 1 to n ) { h(i) = ( r(i) – m )2 }

# determine the number of grids given precision
N = Int(1/prec)

# scan through the valid region of the parameters for the largest ln(L)
maxlnL = �108

For ( i = 1 to N – 1 ) {
For ( j = 1 to N – i – 1 ) {

For ( k = Int(0.8N) to Int(1.2N) ) {

a = i prec , b = j prec , VL = k prec Vhistorical

lnL = Totallikelihood( h(1:n) , n , a , b , VL)

If( lnL �maxlnL ){maxlnL = lnL
besta = a , bestb = b , bestVL = VL }

} } }

# output best model parameters
Output bestVL, besta, and bestb

Code 2.2: Pseudo code of the EstimateBestParamters() routine.

The main routine EstimateBestParameters() can be invoked through the
button in the spreadsheet. In the VBA coding as shown in Code 2.3, it
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contains three subroutines and one function designed to tackle specific tasks
so that it can be maintained easily. The first statement will display a
message box asking for confirmation to start the calculation. It is always a
good practice to include a message box to avoid mis-invoking a long-
running procedure. The GetInputs() routine will read in historical price
returns and the precision parameter from the Excel spreadsheet and
generate both the squared residuals and historical variance for the evaluation
of likelihood values below. In the GetInputs() routine, the ByRef declaration
denotes that the particular variable will be evaluated internally and taken as
output of the routine. The first statement in GetInputs() inputs historical
price returns from the range of in-sample data defined in C2. The triple-loop
will scan through the valid region of the model parameters (VL, a, b) and
identify the best spot with maximum likelihood utilizing the TotalLikelihood()
function. The PutBestValues() routine will then return the estimated values
of the parameters to the cells E5:E7 for display, as well as to the cells F5:F7
for Solver input. The final statement triggers Solver to perform further
optimization based on these initial values. Certainly, it must be configurated
properly ahead of time as described in Section 2.2. As it will be used in
this implementation, we need to add Solver in the VBA reference section
by clicking on References in the Tools menu and checking Solver in the
Reference dialogue. The TRUE parameter of the SolverSolve function
suspends the display of the resulting dialogue at the end of Solver execution.

Sub EstimateBestParameters()
If MsgBox("Start calculation?'', vbYesNo + vbInformation) = vbNo Then Exit Sub
'Read inputs
Dim residualSq() As Double, hVar As Double, prec As Double
Call GetInputs(residualSq, hVar, prec)
'initialize values
Dim bestAlpha As Double, bestBeta As Double, bestLongVar As Double
Dim i As Integer, j As Integer, k As Integer
Dim nFrac As Integer: nFrac = Int(Round(1/prec,15))
Dim maxlnL As Double: maxlnL = -100000000#
'Iterate by the increment of alpha, beta, and longVar
Dim alpha As Double, beta As Double, longVar As Double, lnL As Double
For i = 1 To (nFrac -1)
alpha = i * prec
For j = 1 To (nFrac - i - 1)
beta = j * prec
For k = Int(0.8 * nFrac) To Int(1.2 * nFrac)
longVar = k * prec * hVar
lnL = TotalLikelihood(residualSq, alpha, beta, longVar)
If lnL <maxlnLThen
maxlnL = lnL
bestAlpha = alpha
bestBeta = beta
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bestLongVar = longVar
End If

Next k
Next j

Next i
'Write outputs
Call PutBestValues(bestAlpha, bestBeta, bestLongVar)
'Call solver and turn off the final Solver Results dialog
'Solver must be configurated ahead of time
SolverSolve (True)

End Sub

'Read inputs from excel
Sub GetInputs(ByRef residualSq() As Double, ByRef hVar As Double, ByRef prec As Double)
Dim priceReturn As Range: Set priceReturn =Range(Range("C2'').Text)
Dim mu As Double
With WorksheetFunction
mu = .Average(priceReturn)
hVar = .Var(priceReturn)

End With
ReDim residualSq(1 To priceReturn.Count)
Dim i As Integer
For i = 1 To priceReturn.Count
residualSq(i) = (priceReturn(i) - mu) ^ 2

Next
prec = Range("E2'').Value

End Sub

'Write outputs to excel
Sub PutBestValues(alpha As Double, beta As Double, longVar As Double)
Range("E5:F5'').Value = longVar
Range("E6:F6'').Value = alpha
Range("E7:F7'').Value = beta

End Sub

'Calculate the total log of likelihood
Function TotalLikelihood(residualSq() As Double, alpha As Double, beta As Double, longVar

As Double) As Double
Dim garchVar() As Double: ReDim garchVar(1 To UBound(residualSq))
garchVar(1) = residualSq(1)
Dim sum As Double: sum = Log(garchVar(1)) + residualSq(1)/garchVar(1)
Dim i As Integer
For i = 1 To (UBound(residualSq) - 1)
garchVar(i + 1) = (1 - alpha - beta) * longVar + alpha * residualSq(i) + beta * garchVar(i)
sum = sum + Log(garchVar(i + 1)) + residualSq(i + 1)/garchVar(i + 1)

Next
TotalLikelihood = -0.5 * sum

End Function

Code 2.3: VBA codes of the EstimateBestParameters() routine, GetInputs()
routine, PutBestValues() routine, and TotalLikelihood () function.
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REV I EW QUEST I ON

1. In the Exponentially Weighted Moving Average model (EWMA), future vari-
ance is a weighted average of its immediate past estimation and the most recent
observation of squared residual. It follows an iteration equation given by

s2
tþ1 ¼ (1� l)(rt � m)2 þ ls2

t

with weight factor 1 > l > 0. Modify the implementation in garch11.xls
to include the EWMA model. The factor l should be determined based on
maximum likelihood analysis starting from a preliminary search using VBA
and following by a fine tuning procedure using Solver.

ENDNOTES

1. T. Bollerslev, ‘‘Generalized Autoregressive Conditional Heteroscedasticity,’’
Journal of Econometrics, 31 (1986): 307–27. See also Robert Engle, ‘‘GARCH
101: The Use of ARCH/GARCH Models in Applied Econometrics,’’ Journal of
Economic Perspectives, Vol. 15, No. 4 (2001): 157–68.

2. Refer to garch11.xls
3. Stephen J. Taylor, ‘‘ARCH Models: Definitions and Examples,’’ in Asset Price

Dynamics, Volatility, and Prediction, (Princeton: Princeton University Press,
2005), 197–234.
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CHAPTER 3
Finite Difference Methods

3.1 D I F F ER ENCE EQUAT I ONS

In this chapter, we consider a numerical technique known as finite
difference method capable of solving differential equations by difference
equations.1 It relies on discretizing continuous variables into a grid of points
that spans the domain of interest and approximating differential operators
by finite differences. In this way, we can approximate a differential equation
by a difference equation that relates the function values at different points
on the grid. Hence, it can be solved numerically through iteration starting
from the initial condition. Suppose for example that variable x takes
on discrete values of {0, Dx, 2Dx, . . . } with grid size Dx. Derivative with
respect to x can be approximated by the finite difference as:

y0(x) ffi y(xþ Dx)� y(x)

Dx
:

Thus, we can numerically solve a general first-order differential equation y0

(x) = g(x, y) by the difference equation y(x + Dx) = y(x) + Dx g(x, y(x)) given
an initial value of y(0) = c for example.

The Black–Scholes partial differential equation in (3.1) describes the
option price F(S, t) with respect to its underlying asset price S and time t:

@

@t
F(S; t)þ rS

@

@S
F(S; t)þ 1

2s
2S2

@2

@S2
F(S; t) ¼ rF(S; t); F(S; t) ¼ c(S) ð3:1Þ

Together with the differential equation, there are payoff condition c(S)
at maturity T and intermediate boundary conditions at any time t prior to
maturity. The parameters r and s are, respectively, the risk-free interest rate
and volatility of the logarithmic price return of the asset. In particular, we
are interested in solving the Black–Scholes equation for the current values
F(S, 0) based on the difference equation in this method. Note that the asset
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FIGURE 3.1 Two-dimensional grid for the finite difference method.

price S is always positive and the option ceases to exist after it has matured.
In the finite difference method, we partition the domain of interest in asset
price and time using a two-dimensional grid with sizes DS and Dt as shown
in Figure 3.1.

For interior point (Sj, ti) on the grid, partial derivatives with respect to
asset price in equation (3.1) can be approximated to the second order of
price grid DS by the finite differences as:

@

@S
F(Sj; ti) ffi F(Sjþ1; ti)� F(Sj�1; ti)

2DS
: ð3:2Þ

@2

@S2
F(Sj; ti) ffi F(Sjþ1; ti)� 2F(Sj; ti)þ F(Sj�1; ti)

(DS)2
: ð3:3Þ

For the derivative with time, we adopt a forward difference approximation
to the first order of time grid Dt given by:

@

@t
F(Sj; ti) ffi F(Sj; tiþ1)� F(Sj; ti)

Dt
: ð3:4Þ

Replacing also the asset price terms in (3.1) by Sj = jDS, we can approximate
the Black–Scholes partial differential equation by the difference equation:

F(Sj; tiþ1) ¼ ajF(Sj�1; ti)þ bjF(Sj; ti)þ cjF(Sjþ1; ti); for j ¼ 1; . . . ; jmax � 1
i ¼ 0; . . . ; imax � 1

ð3:5Þ
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where

aj ¼ 1
2rjDt � 1

2s
2j2Dt

bj ¼ 1þ rDt þ s2j2Dt

cj ¼ �1
2rjDt � 1

2s
2j2Dt:

Note that the boundary values F(S0, ti+1) and F(Sjmax, ti+1) are both
missing in the iteration. For completeness, we include in equation (3.5) the
corresponding transformations:

F(S0; tiþ1) ¼ b0 F(S0; ti) ð3:6Þ
F(Sjmax; tiþ1) ¼ bjmax F(Sjmax; ti) ð3:7Þ

where bjmax = 1 and b0 = erDt or 1 for European or American-style options,2

respectively. The difference equation can now be written in matrix repre-
sentation as:

F(S0; tiþ1)
F(S1; tiþ1)

..

.

F(Sjmax�1; tiþ1)
F(Sjmax; tiþ1)

0
BBBBB@

1
CCCCCA ¼ G

F(S0; ti)
F(S1; ti)

..

.

F(Sjmax�1; ti)
F(Sjmax; ti)

0
BBBBB@

1
CCCCCA ð3:8Þ

where G is a (jmax + 1) � (jmax + 1) tridiagonal matrix given by:

b0 0 0 . . .
a1 b1 c1 0 . . .
0 a2 b2 c2 0 . . .

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

. . . ajmax�1 bjmax�1 cjmax�1

. . . 0 0 bjmax

0
BBBBBBB@

1
CCCCCCCA

ð3:9Þ

It is clear that equation (3.8) is iterating forward in time. To solve the
Black–Scholes equation, we need to iterate backward in time instead,
starting from the option’s payoff values at maturity to its current values at
t0. This can be done implicitly by reverting equation (3.8) through the inverse
matrix G�1 such that numerically it is given by the difference equation:3

F(S0; ti)
F(S1; ti)

..

.

0
B@

1
CA ¼ G�1

F(S0; tiþ1)
F(S1; tiþ1)

..

.

0
B@

1
CA ð3:10Þ
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for i¼ 0, . . . , imax � 1 and with payoff condition F(Sj, timax)¼c(Sj) at
maturity. For exotic options with intermediate boundary conditions, we
need to adjust each F(Sj, ti) on the left side of equation (3.10) according to
the boundary conditions before the next iteration with G�1 to an earlier
time. For example, an American put option has the payoff condition at
maturity given by:

c(Sj) ¼ maxfK� Sj; 0g
with a strike price K. The option can be exercised at any time prior to its
maturity based on the same payoff function. We should therefore compare
each F(Sj, ti) with its intrinsic value c(Sj) and perform the update according to
the early exercising condition as:

F(Sj; ti) ¼ maxfF(Sj; ti);c(Sj)g:
The errors involved in the use of equation (3.10) are proportional to

the time grid Dt and to the square of the price grid DS. Numerically, the
iteration is unconditionally stable in the sense that the solution remains well
behaved for arbitrarily large values of Dt and DS despite being less precise. A
more accurate procedure is given by the Crank–Nicholson scheme for which
the errors are proportional to (Dt)2 and (DS)2. The difference equation in this
scheme can be found in Section 3.4 and the iteration is unconditionally
stable but it is numerically more intensive.

3 .2 EXCE L IMPL EMENTAT I ON

Figures 3.2 to 3.4 illustrate how the difference equation in (3.10) could be
implemented in an Excel spreadsheet.4 As shown in Figure 3.2, option
parameters (T, K, r, s) are input through cells B4, B5, B6, and B7, respec-
tively. In the finite difference method, the price grid is configured by the
grid number jmax and the grid size DS. There is also the requirement that
boundary value Sjmax should presumably be far away from the strike price
K. Thus, the grid size cannot be chosen arbitrarily in order to improve ac-
curacy. Numerically, it is sufficient to consider Sjmax > 2K such that we
have a soft lower bound on the grid size as:

DS > 2K=jmax:

It is then clear that the grid number jmax should be defined to the full extent
of Excel in order to maximize precision. As jmax also governs the size of the
matrix G, we can at most take jmax ¼ 50 under the maximum capacity of
matrix operations in Excel. Thus, jmax ¼ 50 in B2 is a rigid parameter and
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the grid size DS is input through B8 with reference to its lower bound in
E8 ¼ 2�B5/B2. For the time grid configurated by imax and Dt, the boundary
value timax is defined to be the option maturity. Similarly, a large grid
number imax � 250 should be inserted in B3 utilizing the full column
space in Excel. The corresponding grid size Dt is presumably small and
determined in B9 ¼ B4/B3.

We now construct the tridiagonal matrix G as given by (3.9). We may
define several named cells to enhance the readability of the formulae: F5
(strike), F6(riskfree), F7(sigma), F8(dprice), and F9(dtime). Note that
jmax ¼ 50 is a rigid setup in the implementation, the size of the matrix is
51�51, and it is defined in cells B66:AZ116 from top-left to bottom-right.
It is convenient to first create the row and column labels of G such that all
entries can be defined with reference to the labeling. As is partially shown in
Figure 3.3, cells B65:AZ65 label the column number Lc: (0 � 50) of the
matrix, while A66:A116 label the row number Lr: (0 � 50) of the matrix.
For the top row and bottom row of the matrix, the nonzero entries are
defined according to (3.9) as:

G(Lr ¼ 0; Lc ¼ 0) ¼ b0 ¼ erDt or 1

G(Lr ¼ 50; Lc ¼ 50) ¼ bjmax ¼ 1:

FIGURE 3.2 Option parameters and grid configuration.

FIGURE 3.3 The matrix G (partially) together with row and column labels.
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In the case of a European-style option, we set B66 ¼ EXP(riskfree�
dtime), AZ116 ¼ 1, and elsewhere zero in the two rows. For all the interior
rows of the matrix, the entries can be defined according to the rules:

If (Lc ¼ Lr � 1); thenG(Lr;Lc) ¼ aj¼Lr ð3:11Þ
If (Lc ¼ Lr); thenG(Lr;Lc) ¼ bj¼Lr

If (Lc ¼ Lr þ 1); thenG(Lr;Lc) ¼ cj¼Lr

ElsewhereG(Lr;Lc) ¼ 0

where aj, bj, and cj are given by equation (3.5). We can use the row and
column labels as references and apply the following expression for B67 to
each of the cells B67:AZ115 in the interior rows.

IF(B$65 ¼ $A67� 1; 0:5 � riskfree � $A67 � dtime� 0:5 � sigma ^2�
($A67) ^ 2 � dtime;

IF(B$65 ¼ $A67; 1þ riskfree � dtimeþ sigma ^2 � ($A67) ^ 2 � dtime;
IF(B$65 ¼ $A67þ 1; � 0:5 � riskfree � $A67 � dtime� 0:5 � sigma ^2�

($A67) ^ 2 � dtime; 0)))

The difference equation in (3.10) requires instead the inverse matrix
G�1. It is efficient to explicitly calculate all the entries in G�1 for successive
usage as it is static in the iteration. The size of G�1 is also 51�51 and it is
defined in cells B119:AZ169. The entries can be determined based on the
matrix inverse operation adopted in these cells asMINVERSE(B66:AZ116)
where B66:AZ116 denotes the input matrixG. It is also convenient to name
G�1 in cells B119:AZ169 as inverseG.

To iterate equation (3.10) backward in time, we first construct a
two-dimensional structure catering for arrays of option prices evaluated at

FIGURE 3.4 The two-dimensional structure for price iteration together with time
and column labels.
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different times. As is partially shown in Figure 3.4, the row labels Lr:
(0 � 50) of the array are defined in cells A12:A62, while the underlying
asset prices are determined in B12:B62 according to the common expression
B12 ¼ $A12�dprice. We also create the time labels starting from D11 and
run toward the right end of the spreadsheet. We assign D11 ¼ B4 to be the
option maturity timax and subtract one Dt per step to the right by applying
recursively the common expression E11 ¼ ROUND(D11 � dtime, 8).
Here, the ROUND function rounds off each time label to 8 decimal places
to avoid a possible floating point problem in the procedure below.
The time label will hit the current time t0 at column offset from D11 with
the grid number imax, and will become negative thereafter. To initiate the
iteration, we define in D12:D62 the option’s payoff values at maturity with
respect to the asset prices in B12:B62. Suppose it is a put option with the
strike price defined in B5, then the payoff values can be defined using the
common expression:

D12 ¼ MAX(strike� B12; 0):

For one Dt prior to maturity, the option values in E12:E62 can be deter-
mined according to equation (3.10) through the matrix multiplication of
G�1 with the values D12:D62 at maturity. Iterating backward in time in
the same way, option values at different time labels can be determined
through their previous values in the immediate left-hand array using the
same G�1. For the arrays of option values under the time labels starting
from E11, we apply the common matrix operation as:

fE12 : E62 ¼ IF(E$11 >¼ 0; MMULT(inverseG;D$12 : D$62); 0 0 0 0 Þg
ð3:12Þ

where { . . . } denotes the condition that it is applied to the array in a collec-
tive sense through Ctrl-Shift-Enter. The iteration will terminate at the point
when the time label reaches the current time of exactly zero as ensured by
the ROUND function.5 As discussed above, this will appear at column off-
set of imax from D11. The current option values are then displayed in C12:
C62 adjacent to the asset prices based on the common expression C12 ¼
OFFSET(D12, 0, $B$3).

Figure 3.4 depicts only the pricing of a plain vanilla European-style
option. For exotic options with intermediate boundary conditions, we need
to adjust the generated option values in (3.12) according to some extra
conditions depending on the underlying asset prices in B12:B62. Since (3.12)
is collectively applied to the array of option prices, it is quite difficult to
include in the expression any dynamic update condition with reference to
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the row labels. However, we can replace the collective structure in (3.12) by
a flexible expression given by:

E12 ¼ IF(E$11>¼ 0; INDEX (MMULT(inverseG; D$12 : D$62); $A12þ 1; 1); 0 0 0 0 )

where the INDEX function returns exclusively the entry defined by the row
labels within a single column in the generated array. In this way, an intermedi-
ate condition such as an early exercising condition in an American-style option
can be included easily as:

E12 ¼ IF(E$11 >¼ 0; MAX(INDEX(MMULT(inverseG;D$12 : D$62);

$A12þ 1; 1); MAX(strike� $B12; 0)); 0 0 0 0 )

The common expression is applied to the entire array in cells E12:E62
and to every array of option values under the time labels. The same matrix
multiplication will be repeated in each cell along an array creating a numer-
ical burden in the implementation.6 Thus, it is efficient to implement the
difference equation in (3.10) with intermediate conditions through VBA.

3 .3 VBA IMPLEMENTAT I ON

In general, the same matrix operations can also be performed under the VBA
environment. It will be shown below that the difference equation in (3.10)
can be implemented in an effective way for which intermediate boundary
conditions can also be included efficiently in the iteration. We can adopt the
same input screen as depicted in Figure 3.2 for both the option parameters
(T, K, r, s) and grid configuration (imax, jmax, DS). We then develop a routine
called CalOptionPrices() that takes the above inputs and returns an array of
the current option values F(Lr = 0: jmax) with respect to asset prices {S0, S1,
S2, . . . , Sjmax}. The pseudo code of CalOptionPrices() is given by Code 3.1
as follows:

CalOptionPrices( T , K , r , s , imax , jmax , DS , F(0 : jmax) )

# determine the grid size of time
Dt = T / imax

# construct the matrixG according to the rules in (3.11)
G( 0 , 0 ) = Exp( rDt ) or 1
For ( Lc = 1 to jmax ) { G( 0 , Lc ) = 0 }

G( jmax , jmax ) = 1
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For ( Lc = 0 to jmax – 1 ) { G( jmax , Lc ) = 0 }

For ( Lr = 1 to jmax – 1 ) {
For ( Lc = 0 to jmax ) { If( Lc = Lr – 1 ) then

G( Lr , Lc ) = ½ r Lr Dt –½ s2 Lr
2 Dt

Elseif( Lc = Lr ) then
G( Lr , Lc ) = 1 + r Dt + s

2 Lr
2 Dt

Elseif( Lc = Lr + 1) then
G( Lr , Lc ) = �½ r Lr Dt –½ s2 Lr

2 Dt
Else

G( Lr , Lc ) = 0
Endif }

}

# initiate the option values at maturity based on the payoff condition
For ( Lr = 0 to jmax ) { F( Lr ) = payoff( K , Lr DS ) }

# perform the backward iterations in (3.10) imax number of times up to current option values in
conjunction with update according to intermediate boundary conditions
For ( i = 1 to imax ) { F( 0 : jmax ) = G

-1 ( 0 : jmax , 0 : jmax ) F( 0 : jmax )

call Boundary( F( 0 : jmax ) , jmax , DS, K ) }

Code 3.1: Pseudo code of the CalOptionPrices() routine.

In Code 3.1, the matrix multiplication is only performed once per itera-
tion in time followed by an update of the entire array of option values.
Intermediate conditions are thus executed efficiently in the implementa-
tion. To be flexible, we define both the payoff and intermediate boundary
conditions external to this routine. The payoff condition is defined through
the user function payoff(K, S) that evaluates according to the strike and
asset prices. The intermediate conditions are defined using the routine
Boundary() that updates an input array of option values. In the case of an
American-style option with an early exercising condition, for example, the
pseudo code of the Boundary() routine is given by Code 3.2 as follows:

Boundary( F(0 : jmax) , jmax , DS , K )

For ( Lr = 0 to jmax ) { F( Lr ) = MAX( F( Lr ) , payoff( K , Lr DS ) ) }

Code 3.2: Pseudo code of the Boundary() routine for an early exercising
condition.

Figure 3.5 depicts the spreadsheet design for this VBA implementation.7

The input section from row 1 to row 10 is taken to be the same as in
Figure 3.2 with a new button labeled ‘‘Calculate’’ that triggers the underlying
VBA procedures. The option pricings are displayed from row 12 onward in
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the same way as the first three columns in Figure 3.4. The main VBA routine
IFD() can be invoked through the ‘‘Calculate’’ button in the spreadsheet.
As shown in Code 3.3, we have divided the whole algorithm into three
parts handling the input, matrix calculation, and output tasks. The input
statements will read in both the option parameters and grid configuration
from cells B2:B8. The matrix calculations are performed through a single
call to the CalOptionPrices() routine. The output statements will then return
the resulting option prices to column C starting from row 12 with respect to
the underlying asset prices in column B.

The CalOptionPrices() routine first generates the matrix G according
to the rules in (3.11). By default, all elements in a declared VBA array are
initialized to zero. Thus, we need to assign only the tridiagonal entries of G
in the actual coding. The routine then initiates and iterates the array of
option prices together with the intermediate update conditions. The matrix
operation G�1F for the iteration is performed by calling a user-defined
routine SolveAxb() that calculates the column vector x(n � 1) = A�1b given
square matrix A(n � n) and column vector b(n � 1). The two external
functions Payoff() and Boundary() will serve to define the type of option
to be considered. Here, we consider an example of an American put option
with an early exercising boundary condition. For convenience, we have
also defined the function Max() to handle the maximum operation in the
payoff function.

FIGURE 3.5 Spreadsheet design for the implementation of the finite
difference method.
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The routine SolveAxb() will be useful for the implementations through-
out this book. The VBA coding of SolveAxb() is given in Code 3.4. The
parameters {n,iptr, jptr, kptr} define the entries of A(iptr: iptr þ n � 1, jptr:
jptrþ n� 1), b(kptr: kptr þ n� 1), and x(kptr: kptrþ n� 1) to be involved
in the matrix calculation. The vector x ¼ A�1b can be calculated very easily
by making a call to the Excel matrix functions MINVERSE and MMULT.
For Excel matrix functions, input and output are considered to be two-
dimensional spreadsheet objects with row and column labels starting off
from one. To avoid confusion in making cell references with the use of
Excel matrix functions, it is convenient to distinguish between VBA arrays
and spreadsheet objects by first making the conversion. We adopt the
naming convention with prefix ‘‘ws,’’ which will denote a spreadsheet
object. In Code 3.4, we have converted the VBA matrix A and vector b into
spreadsheet objects before calling the Excel functions. The output is a
spreadsheet object that should convert back into VBA vector x.

Sub IFD()
'Input parameters from worksheet
Dim iMax As Integer: iMax = Range("B3'').Value
Dim jMax As Integer: jMax = Range("B2'').Value
Dim maturity As Double: maturity = Range("B4'').Value
Dim strike As Double: strike = Range("B5'').Value
Dim riskFree As Double: riskFree = Range("B6'').Value
Dim sigma As Double: sigma = Range("B7'').Value
Dim dprice As Double: dprice = Range("B8'').Value

'Perform the matrix calculation
Dim Fvec() As Double: ReDim Fvec(0 To jMax)
Call CalOptionPrices(maturity, strike, riskFree, sigma, iMax, jMax, dprice, Fvec())

'Put results back to worksheet
Dim i As Integer
For i = 0 To jMax: Range(``C12'').Offset(i, 0) = Fvec(i): Next i

End Sub
_________________________________________________________________________

Sub CalOptionPrices(maturity As Double, strike As Double, riskFree As Double, sigma As Double, _
iMax As Integer, jMax As Integer, dprice As Double, ByRef Fvec() As Double)

Dim dtime As Double: dtime = maturity / iMax
Dim Lr As Integer, i As Integer

'Construct the matrix G
Dim Gmatrix() As Double: ReDim Gmatrix(0 To jMax, 0 To jMax)
Gmatrix(0, 0) = 1
Gmatrix(jMax, jMax) = 1
For Lr = 1 To jMax - 1
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Gmatrix(Lr, Lr - 1) = 0.5 * ((Lr * riskFree * dtime) - (Lr ^ 2 * sigma ^ 2 * dtime))
Gmatrix(Lr, Lr) = 1 + (riskFree * dtime) + (Lr ^ 2 * sigma ^ 2 * dtime)
Gmatrix(Lr, Lr + 1) = -0.5 * ((Lr * riskFree * dtime) + (Lr ^ 2 * sigma ^ 2 * dtime))

Next Lr

'Initialize the option vector according to the payoff condition
For Lr = 0 To jMax: Fvec(Lr) = Payoff(strike, Lr * dprice): Next Lr

'Perform the iteration
For i = 1 To iMax
Call SolveAxb(Gmatrix, Fvec, Fvec, jMax + 1, 0, 0, 0)
Call Boundary(Fvec, jMax, dprice, strike)

Next i

End Sub
_______________________________________________________________________________

'Put option payoff condition
Function Payoff(strike As Double, price As Double) As Double
Payoff = Max(strike - price, 0)

End Function
_______________________________________________________________________________

'Early exercising condition for American-style option
Sub Boundary(ByRef Fvec() As Double, jMax As Integer, dprice As Double, strike As Double)
Dim intrinsicValue As Double, Lr As Integer
For Lr = 0 To jMax
intrinsicValue = Payoff(strike, Lr * dprice)
Fvec(Lr) = Max(Fvec(Lr), intrinsicValue)
Next Lr

End Sub
_______________________________________________________________________________

Function Max(x As Double, y As Double) As Double
If x > y Then Max = x Else Max = y

End Function

Code 3.3: VBA codes of the IFD() routine, CalOptionPrices() routine,
Payoff() function, Boundary() routine, and Max() function.

Sub SolveAxb(Amatrix() As Double, bvec() As Double, ByRef xvec() As Double, _
n As Integer, iptr As Integer, jptr As Integer, kptr As Integer)

Dim wsAmatrix As Variant: ReDim wsAmatrix(1 To n, 1 To n)
Dim row As Integer, column As Integer
For row = 1 To n
For column = 1 To n: wsAmatrix(row, column) = Amatrix(iptr + row - 1, jptr + column - 1):
Next column

Next row
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Dim wsbvec As Variant: ReDim wsbvec(1 To n, 1 To 1)
For row = 1 To n: wsbvec(row, 1) = bvec(kptr + row - 1): Next row

Dim wsxvec As Variant:
With Application.WorksheetFunction
wsxvec = .MMult(.MInverse(wsAmatrix), wsbvec)

End With

Dim i As Integer
If n = 1 Then
For i = kptr To kptr + n - 1: xvec(i) = wsxvec(i - kptr + 1): Next i

Else
For i = kptr To kptr + n - 1: xvec(i) = wsxvec(i - kptr + 1, 1): Next i

End If

End Sub

Code 3.4: VBA codes of the SolveAxb() routine. Note that when n equals
one, the (1 � 1) spreadsheet output ‘‘wsxvec’’ has been degenerated into a
variant with only one index.

3 .4 : CRANK–N ICHOLSON SCHEME

In the Crank–Nicholson scheme, we adopt forward difference approxima-
tion for the time derivative and adjust accordingly all the other terms in the
differential equation by forward averaging. Using the two-dimensional grid
as depicted in Figure 3.1, we can approximate the time derivative in the
Black–Scholes equation (3.1) by forward difference as:

@

@t
F(Sj; ti) ffi F(Sj; tiþ1)� F(Sj; ti)

Dt

and adjust the F, (@F/@S), and (@2F/@S2) terms by averaging over the same
forward time as:

F(Sj; ti) ! [F(Sj; ttþ1)þ F(Sj; ti)]

2

@

@S
F(Sj; ti) ! @

@S

[F(Sj; tiþ1)þ F(Sj; ti)]

2

� �

ffi F(Sjþ1; tiþ1)� F(Sj�1; tiþ1)þ F(Sjþ1; ti)� F(Sj�1; ti)
4DS
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@2

@S2
F(Sj; ti) ! @2

@S2
[F(Sj; tiþ1)þ F(Sj; ti)]

2

� �

ffi
F(Sjþ1; tiþ1)� 2F(Sj; tiþ1)þ F(Sj�1; tiþ1)
þF(Sjþ1; ti)� 2F(Sj; ti)þ F(Sj�1; ti)

(2DS)2

The difference equation now reads:

(� 1
2aj)F(Sj�1; tiþ1)þ (1� 1

2dj)F(Sj; tiþ1)þ (� 1
2cj)F(Sjþ1; tiþ1)

¼ (12aj)F(Sj�1; ti)þ (1þ 1
2dj)F(Sj; ti)þ (12cj)F(Sjþ1; ti)

for j ¼ 1; . . . ; jmax � 1

i ¼ 0; . . . ; imax � 1
where:

aj ¼ 1
2rjDt � 1

2s
2j2Dt

dj ¼ rDt þ s2j2Dt

cj ¼ �1
2rjDt � 1

2s
2j2Dt:

For completeness, we also include the transformations in (3.6) and (3.7)
such that the difference equation can be written in matrix representation as:

Q

F(S0; ti þ 1)

F(S1; tiþ1)

..

.

F(Sjmax�1;tiþ1)

F(Sjmax;tiþ1)

0
BBBBBBB@

1
CCCCCCCA

¼ P

F(S0; ti)

F(S1; ti)

..

.

F(Sjmax�1;ti)

F(Sjmax;ti)

0
BBBBBBB@

1
CCCCCCCA

where P andQ are (jmax + 1) � (jmax + 1) tridiagonal matrices given by:

P ¼

b0 0 0 	 	 	
1
2 a1 1þ 1

2d1
1
2 c1 0 	 	 	

0 1
2 a2 1þ 1

2d2
1
2 c2 0 	 	 	

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

	 	 	 1
2 ajmax�1 1þ 1

2 djmax�1 1
2 cjmax�1

	 	 	 0 0 bjmax

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
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Q ¼

1 0 0 	 	 	
�1

2 a1 1� 1
2 d1 �1

2 c1 0 	 	 	
0 �1

2 a2 1� 1
2 d2 �1

2 c2 0 	 	 	
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

	 	 	 �1
2 ajmax�1 1� 1

2 bjmax�1 �1
2 cjmax�1

	 	 	 0 0 1

0
BBBBBBBBB@

1
CCCCCCCCCA

The difference equation can be iterated forward or backward in time by
inverting Q or P, respectively. It is unconditionally stable and the errors are
proportional to (Dt)2 and (DS)2.

REV I EW QUEST I ONS

1. Implement the implicit finite difference method under the Crank–
Nicholson scheme to price an American put option written on equity with the
following input parameters:

On option: r – Risk free interest rate
s – Volatility of the underlying equity
T – Time to maturity of the option
K – Strike price of the option

On precision: imax – Number of steps to maturity
jmax – Size parameter of the tridiagonal matrix
DS – Price increment in the lattice

2. Modify the implementation in Question 1 to include the pricing of a double
barrier put option written on same underlying and with upper and lower barri-
ers,H and L, respectively.

ENDNOTES

1. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, ‘‘Partial
Differential Equations,’’ in Numerical Recipes in C : The Art of Scientific
Computing, 2nd Edition, (Cambridge: Cambridge University Press, 1997),
827–888. For application on Black–Scholes pricings, see John C. Hull,
‘‘Mechanics of Options Markets,’’ in Options, Futures, and Other Derivatives,
(New Jersey: Prentice Hall, 2006), 181–203.

2. Assume Sjmax to be sufficiently large such that the change in time premium
between ti and ti+1 is insignificant. This gives:

bjmax ¼ F(Sjmax; tiþ1)=F(Sjmax; ti) ffi 1:
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For European and American call options, we have F(S0, ti) ¼ 0 and b0 is
thus arbitrary. For European put options, F(S0, ti) ¼ Ke�r(T�ti) from
put-call parity. This gives b0 ¼ erDt. For American put options, F(S0, ti)
¼ K due to early exercise and b0 ¼ 1.

3. For backward difference approximation of the time derivative in equation (3.1),

@F(Sj; ti)=@t ffi [F(Sj; ti)� F(Sj; ti�1)]=Dt:

The resulting difference equation is explicitly iterating backward
in time starting from the option’s maturity with a known payoff
condition. However, it is numerically stable only with very small time
grid Dt < (s2j2max)

�1. The scaling is also practically inconvenient as
doubling the price grids would require quadrupling the time grids to
maintain stability.

4. Refer to implicitfd_ep.xls.
5. Under double precision, there is a possible floating point problem that zero will

only be quoted up to 15 decimal places with an undesirable negative sign such
as �0.0000000000000011.

6. Refer to implicitfd_ap.xls.
7. Refer to implicitfd_ap_vba.xls.
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CHAPTER 4
Portfolio Mean-Variance

Optimization

4.1 PORTFOL I O S E L ECT I ON

The fundamental goal of portfolio selection is to optimally allocate invest-
ments between different assets by considering the trade-off between risk and
return. In this chapter, we discuss the implementation of a quantitative tool
known as Mean-Variance Optimization (MVO) using the matrix operation
in Excel and VBA. Consider a portfolio consisting of n assets with prices
{S1, . . . , Sn} and quantities {q1, . . . , qn}. If it is to be kept for a period
of time, the portfolio value at the end of the period will be subjected to
uncertain asset price changes {DS1, . . . , DSn}. The potential gain or loss of
the portfolio in this period can be summed up as:

DSP ¼
Xn

i¼1 qi DSi: ð4:1Þ

The objective of MVO is to determine the optimal portfolio content within
a budget so as to minimize the risk exposure in this period under an
expected growth in value. The idea relies on the correlation among asset
price changes under a stochastic regime for which the statistics can be
inferred from historical data.

It is convenient to rewrite equation (4.1) in terms of asset price returns
ri ¼ DSi/Si over the investment horizon for which portfolio return rP in
this period can be written as a weighted sum of asset returns in the basket.
This gives:

rP ¼
Xn

i¼1 wi ri;
Xn

i¼1 wi ¼ 1 ð4:2Þ

where the weight factor wi represents the fraction of the total portfolio bud-
get that will be invested in the i-th asset. In the stochastic model, uncertain
asset returns in (4.2) can all be considered random variables parameterized
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by historical means and variances. Written as the linear combination of
the asset returns in (4.2), portfolio return can also be considered a random
variable with mean and variance defined through (4.2) as:

mP ¼
Xn

i¼1 wi mi ð4:3Þ

s2
P ¼

Xn

i¼1
Xn

j¼1 wi wj sij ð4:4Þ

where mi and s2
i ¼ sii respectively denote the mean and variance of individ-

ual asset return ri, and sij for i 6¼ j denotes the covariance between two
different returns ri and rj. Under this framework, the task of MVO is to
determine the optimal portfolio content that minimizes the random variation
of the portfolio return in (4.4) given an expected return in (4.3) and that
should also be feasible under the portfolio budget. The variance terms w2

i s
2
i

in (4.4) are strictly positive and they are adding up. The idea of MVO relies
on the fact that the covariance terms wi wj sij in (4.4) could possibly be
negative and thus diversify the total portfolio variance.

It is efficient to express equations (4.3) and (4.4) in matrix multiplica-
tion and formulate MVO as the determination of the column vector w that:

minimize s2
P ¼ wTSw

subject towTm ¼ mP and uTw ¼ 1
ð4:5Þ

where

w ¼
w1

:
wn

2
4

3
5; m ¼

m1

:
mn

2
4

3
5; u ¼

1
:
1

2
4
3
5; S ¼

s2
1 s12 . . . s1n

s21 s2
2 . . . s2n

: :
: :

sn1 sn2 . . . s2
n

0
BBBB@

1
CCCCA:

The entries in the mean vector m and the variance-covariance matrix S
can presumably be estimated using historical asset returns over the same
horizon as the portfolio. The optimization in (4.5) allows both long and
short positions for which wi can be positive or negative. It can be solved
very easily using the method of Lagrange multipliers and the optimal
solution was first worked out by Merton1 as:

w ¼ (CmP � A)(S�1m)þ (B� AmP)(S
�1
u)

BC� A2
ð4:6Þ

s2
P ¼

Cm2
P � 2AmP þ B

BC� A2
ð4:7Þ
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where A = uTS�1m, B = mTS�1m, and C = uTS�1u. Since the variance-
covariance matrix S is symmetric, it can be shown that the two quadratic
forms, B and C, and the denominator BC � A2 are all positive. The optimal
portfolio mean-variance relation in (4.7) is then strictly convex as shown
in Figure 4.1(a). It is usual to invert (4.7) and present the risk-adverse domain
(mP � A/C) of the mean-variance relation in terms of the so-called portfolio
efficient frontier as shown in Figure 4.1(b) with the following optimal relation.

mP ¼
A

C
þ 1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(BC� A2)(Cs2

P � 1)

q
: ð4:8Þ

The above discussion analyzes the case in which all the available assets
are risky. We can extend the analysis to include risk-free cash that provides
a guaranteed return m0 over the investment period. Consider w0 to be the
fraction of the total portfolio budget that will be held as cash. Reformulate
the MVO in (4.5) as the determination of the column vector w and w0 that:

minimize s2
P ¼ wTSw

subject towTmþw0 m0 ¼ mP and uTwþw0 ¼ 1:
ð4:9Þ

Again, it can be solved very easily using the method of Lagrange multipli-
ers2 and the optimal portfolio content is given by:

w0 ¼ 1� (mP � m0)(A� m0C)

Cm2
0 � 2Am0 þ B

; w ¼ (mP � m0)(S
�1m� m0S

�1
u)

Cm2
0 � 2Am0 þ B

ð4:10Þ

that generates the efficient frontier as shown in Figure (4.2) with the follow-
ing linear optimal relation.3

mP ¼ m0 þ sP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cm2

0 � 2Am0 þ B
q

ð4:11Þ

FIGURE 4.1 (a) Optimal portfolio mean-variance relation with risky assets only,
and (b) Portfolio efficient frontier.
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We have considered so far MVO that allows both long and short
positions on the risky assets for which wi can be positive or negative.
Suppose there are short-selling restrictions on the risky assets due to
market constraint or internal policy. In such a long-only portfolio, the
asset positions wi are all limited to be non-negative in the optimization.
Accordingly, the MVO in (4.9) should be appended with additional
constraints as:

minimize s2
P ¼ wTSw

subject towTmþw0 m0 ¼ mP; u
Twþw0 ¼ 1; andw1; . . . ; wn � 0:

ð4:12Þ

It should be noted that the cash position w0 remains unconstrained in (4.12)
where it can be positive, zero, or negative. In principle, (4.12) can again be
solved using the method of Lagrange multipliers.4 However, the evaluation
of the optimal portfolio content would be non-trivial because of the
inequality constraints in the Kuhn-Tucker conditions.

Markowitz has developed an efficient algorithm5 that allows us to solve
the MVO in (4.12) simply using the optimal result in (4.10). Consider
another MVO related to (4.12) for which we delete the non-negative
constraints w1, 2, . . . , n � 0 and instead constrain a certain subset of
{w1, . . . , wn}, called the OUT subset, to be zero. The basic idea in the
Markowitz algorithm is that the optimal solution of this related problem
could possibly be a particular solution of the original problem for a specific
segment of the efficient frontier. The optimal solution can simply be
obtained from (4.10) by modifying the array entries in {S, m, u} associated
with the OUT subset. If wi is in the OUT subset, we set the i-th row of both
the vectors m and u to zero, and also the i-th row and i-th column of the
matrix S to zero except the diagonal entry which we set to be one.

mi ! 0; ui ! 0
Si1; . . . ; Sin ! 0; S1i; . . . ; Sni ! 0; except Sii ! 1

ð4:13Þ

FIGURE 4.2 Efficient frontier of a portfolio with cash and risky assets.
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Suppose {Sm, mm, um} are the modified arrays according to the OUT subset.
The optimal solution of the related problem is then given by:

w0 ¼ 1� (mP � m0)(Am � m0Cm)

Cmm
2
0 � 2Am m0 þ Bm

; w ¼ (mP � m0)(S
�1
m mm � m0S

�1
m um)

Cmm
2
0 � 2Am m0 þ Bm

ð4:14Þ

with multipliers:

l1 ¼ (mP � m0)

Cmm
2
0 � 2Am m0 þ Bm

; l2 ¼ �m0(mP � m0)

Cmm
2
0 � 2Am m0 þ Bm

where Am ¼ uTm S�1m mm, Bm ¼ mT
m S�1m mm, and Cm ¼ uTm S�1m um. It is clear

in (4.14) that wi = 0 inside the OUT subset. If all wi outside the OUT
subset are non-negative for a particular value of mP, (4.14) could possibly
be a solution of the MVO in (4.12) that also satisfies the Kuhn–Tucker
conditions as:

@L=@w0 ¼ �l1 m0 � l2 ¼ 0 ð4:15Þ
@L=@wi ¼ (Sw� l1 m� l2 u)i ¼ 0whenwi � 0

> 0 whenwi ¼ 0; for i ¼ 1; . . . ; n:
ð4:16Þ

It should be noted that @L/@w0 ¼ 0 in (4.15) would automatically be
satisfied with the multipliers defined in (4.14). Given portfolio return mP >
m0, we can determine the optimal portfolio content by solving the MVO in
(4.12) through the Markowitz algorithm as:

1. Define an OUT subset and construct the modified arrays {Sm, mm, um}
according to (4.13).

2. Check that all the entries of w in (4.14) are non-negative. If so, proceed
to step (3). If this is not the case, return to step (1) and try another
OUT subset.

3. Check that condition (4.16) has been satisfied. If so, w0 and w defined
in (4.14) will be an optimal solution given portfolio return mP. Other-
wise, return to step (1) and try anotherOUT subset.

In step (1), the size of the OUT subset can be chosen from Nout ¼ 0 to
Nout ¼ n � 1. When Nout ¼ n, there is only one OUT subset namely the
entire risky content {w1, . . . , wn}. The algorithm will not work as well
in this case as the denominator in (4.14) vanishes with mm and um being
zero vectors. However, this corresponds to the trivial portfolio content
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with w ¼ 0 and w0 ¼ 1. The algorithm is guaranteed to find a solution
before we exhaust the list of all OUT subsets. Also, the optimal portfolio
content is unique given the return. We should quit the routine once we
obtain a solution.

4 .2 EXCE L IMPL EMENTAT I ON

It is always convenient to separate the raw data from the actual calculations
using different worksheets defined as:6

dayclose—Historical daily closing prices of all risky assets to be
considered.

return—Historical price returns generated through ‘‘dayclose’’ for
specific time horizon.

MVO—Actual calculations of the mean-variance optimization based
on ‘‘return.’’

Figure 4.3 depicts the layout of the worksheet ‘‘dayclose’’ with historical
daily closing prices of 35 commonly traded commodities from the year
1998 to 2005. Sequences of closing prices are recorded in one column per
asset starting from column B onward with the corresponding time stamp
given by column A. In each column, the top cell records the asset name with
its ticker symbol in the following cell. For example, column B records the
daily closing prices of Crude Oil with the ticker symbol CL.

Figure 4.4 displays the worksheet ‘‘return,’’ which contains the histori-
cal price returns of the assets. They are generated dynamically using the raw
data in ‘‘dayclose’’ and according to the investment horizon defined in
cell K16 (named horizon) of worksheet ‘‘MVO.’’ Again, return sequences
are arranged one column per asset starting from column A onward with the
corresponding ticker symbol defined in the top cell. Such row labels can be

FIGURE 4.3 The layout of the worksheet ‘‘dayclose’’ with daily closing prices.
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constructed through a direct mapping from ‘‘dayclose’’ using the common
expression A1 ¼ dayclose!B2 along the row. The investment horizon should
be defined in number of days. Suppose, for example, it is taken to be five
days (horizon ¼ 5). The cell A2 should correspond to the price return of CL
with opening price dayclose!B3 and closing price dayclose!B8 five days
later. In the same way, the following cell A3 should correspond to the price
return from dayclose!B8 to dayclose!B13 in the subsequent five days. In
general, this can be done very easily using the OFFSET function with the
leftmost corner cell dayclose!$A$3 being the reference location in work-
sheet ‘‘dayclose.’’ In each column of worksheet ‘‘return,’’ price returns in
each cell can be calculated by identifying the opening and closing prices
through row offset from the reference location according to its row number
ROW() as:

opening price ¼ OFFSET(dayclose!$A$3; (ROW()� 2) � horizon; COLUMN())
closing price ¼ OFFSET(dayclose!$A$3; (ROW()� 1) � horizon; COLUMN())
price return ¼ (closing price� opening price)=opening price

The column number COLUMN() will provide a column offset from the
reference location to match the ticker symbol in the two worksheets.
Running down the row of ‘‘return,’’ price returns should be calculated until
the location of the closing price has exceeded the data range of ‘‘dayclose.’’
this happens when the closing price is pointing to a blank cell thereafter, and
where we simply insert a blank cell in ‘‘return.’’ The following expression
can be applied to every column of ‘‘return’’ with a ticker symbol:

IF(OFFSET(dayclose!$A$3; (ROW()� 1) � horizon; COLUMN()) ¼ 0000 ; 00 00 ;
(OFFSET(dayclose!$A$3; (ROW()� 1) � horizon; COLUMN())
� OFFSET(dayclose!$A$3; (ROW()� 2) � horizon; COLUMN()))
=OFFSET(dayclose!$A$3; (ROW()� 2) � horizon; COLUMN())):

FIGURE 4.4 The layout of the worksheet ‘‘return’’ with price returns over a specific
investment horizon.
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In worksheet ‘‘MVO,’’ we first construct the variance-covariance
matrix S using the asset price returns in ‘‘return.’’ Figure 4.5 depicts the
layout of the matrix with user-defined portfolio contents. As shown in the
figure, the number of assets to be included in the portfolio is arbitrary, with
the maximum size limited to ten. The choice of assets can be specified
through the cells J3:S3 by entering their ticker symbols. The total number
of assets in the portfolio is given by K15 ¼ COUNTA(J3:S3) that counts
the number of non-empty cells in this array. The adjacent cells J4:S4 will
identify the corresponding column location of data in worksheet ‘‘return’’
to facilitate calculation of the matrix. For an unused blank cell in J3:S3, the
adjacent cell will also be blank in J4:S4. The following expression can be
used to define J4 and apply to all other cells in J4:S4:

J4 ¼ IF(J3 ¼ 00 00 ; 00 00 ; MATCH(J3; return!1 : 1; 0)):

In Figure 4.5, the ticker symbol in J3 is defined as HG. The above function
will search for this item in array return!1:1 (row 1 of ‘‘return’’) and report in
J4 its relative position (the sixth column) in this array. We can use the col-
umn locations acquired in cells J4:S4 to construct the variance-covariance
matrix defined in cells J5:S14 (named as vcmatrix). We first repeat the same
sequence vertically in cells I5:I14 based on the common expression I5¼ IF(J4
¼ 00 00 ; 00 00 ; J4). Thus, each matrix entry Sij will be associated with the target
column locations of two assets from I5:I14 (for i ¼ 1, 2, . . . ) and J4:S4 (for
j ¼ 1, 2, . . . ). For example, the entry in J5 has target locations given by
I5 and J4. The corresponding return data to be included in the covariance
calculation can be identified using the OFFSET function with the cell
return!$A$2 in the leftmost column of ‘‘return’’ being the reference location.

COVAR(OFFSET(return!$A$2; 0; $I5� 1; nsample);
OFFSET(return!$A$2; 0; J$4� 1; nsample))

ð4:17Þ

FIGURE 4.5 The layout of the variance-covariance matrix in worksheet ‘‘MVO.’’
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For both target locations, the row and column offsets from the reference
location aim at the leading entry of the data set, the height parameter
(named nsample) then defines the downward range to be included in the
calculation. The height parameter is simply the size of the return data given
an investment horizon. It is defined in N16 ¼ COUNT(return!A:A) by
counting the number of numeric cells in column A of ‘‘return.’’ If there
are blank cells in J4:S4 (and so I5:I14), the variance-covariance matrix
will have redundant columns (and rows) relative to the unused cells. With
respect to such redundancy, the matrix should be augmented with zero
columns (and zero rows) except one at diagonal entries. We can use the
following formula to define J5 and all other matrix entries:

J5 ¼ IF(OR($I5 ¼ 00 00 ; J$4 ¼ 00 00 );
IF(ROW()� ROW($J$5) ¼ COLUMN()� COLUMN($J$5); 1; 0);
COVAR(OFFSET(return!$A$2; 0; $I5� 1; nsample);

OFFSET(return!$A$2; 0; J$4� 1; nsample))):

As shown in Figure 4.6, the mean vector m is defined in C5:C14 (named
mvec) of worksheet ‘‘MVO.’’ Similar to (4.17), it can be constructed with
reference to the target locations given by I5:I14. For example, the mean
return in C5 can be calculated according to the target location in I5 as:

AVERAGE(OFFSET(return!$A$2; 0; $I5� 1; nsample)):

Again, the mean vector will have zero redundant entries if there are blank
cells in I5:I14. This is also true for the u vector defined in B5:B14 (named
uvec). The following expressions can be used to define the mean vector and

FIGURE 4.6 The layout of the optimal output in worksheet ‘‘MVO.’’
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the u vector, respectively, as:

C5 ¼ IF($I5 ¼ 00 00 ; 0; AVERAGE(OFFSET(return!$A$2; 0; $I5� 1; nsample)))
B5 ¼ IF($I5 ¼ 00 00 ; 0; 1):

Consider first the MVO problem in (4.5) that allows both long and
short positions in risky assets. As shown in Figure 4.5, we have eval-
uated the factors A, B, and C in cells K17 (named Avalue), K18 (named
Bvalue), and K19 (named Cvalue), respectively, through Excel matrix
operations as:

K17 ¼MMULT(TRANSPOSE(uvec); MMULT(MINVERSE(vcmatrix); mvec))
K18 ¼MMULT(TRANSPOSE(mvec); MMULT(MINVERSE(vcmatrix); mvec))
K19 ¼MMULT(TRANSPOSE(uvec); MMULT(MINVERSE(vcmatrix); uvec)):

In Figure 4.6, the expected portfolio return mP is defined in D18 (named
mport) by scaling the choice of daily rate in C18 with the investment
horizon as D18 = C18�horizon. The optimal portfolio content w in (4.6)
can be determined in cells D5:D14 using the formula:

fD5 : D14 ¼ ((Cvalue �mport� Avalue) �MMULT(MINVERSE(vcmatrix); mvec)

þ (Bvalue� Avalue �mport) �MMULT(MINVERSE(vcmatrix); uvec))

=(Bvalue � Cvalue� Avalue 2̂)g:

The minimized portfolio variance s2
P can be calculated in D19 based on the

optimal content as:

D19 ¼MMULT(TRANSPOSE(D5 : D14); MMULT(vcmatrix; D5 : D14)):

Consider the MVO problem in (4.9) with the inclusion of cash. In
Figure 4.6, the risk-free return m0 is defined in D17 = C17�horizon (named
riskfree) by scaling the daily rate in C17. The optimal portfolio content w
and cash w0 in (4.10) can be determined in cells E5:E14 and E15, respec-
tively, using the formula:

fE5 : E14 ¼ (mport� riskfree) � (MMULT(MINVERSE(vcmatrix); mvec)
� riskfree �MMULT(MINVERSE(vcmatrix); uvec))
=(Cvalue � riskfree 2̂� 2 � Avalue � riskfreeþ Bvalue)g

E15 ¼ 1� (mport� riskfree) � (Avalue � riskfree � Cvalue)
=(Cvalue � riskfree 2̂� 2 � Avalue � riskfreeþ Bvalue):

As before, the minimized portfolio variance can also be calculated in E19
based on the optimal content.
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Consider now the MVO problem in (4.12) with short-selling restric-
tions on risky assets. We defer our discussion on the implementation of the
Markowitz algorithm to section 4.3 with the use of VBA. Here, we consider
solving this problem using Excel Solver despite the fact that there are critical
issues when initializing the algorithm. In Figure 4.6, the portfolio content w
to be optimized is defined in cells G5:G14. The corresponding cash position
w0 in G15 can be related to this content through the budget constraint w0 ¼
1 � uTw in (4.12) as:

G15 ¼ 1�MMULT(TRANSPOSE(uvec); G5 : G14):

In G18 and G19, we explicitly evaluate the expected return wTm þ w0 m0

and variancewTSw of the portfolio, respectively, relative to this content as:

G18 ¼MMULT(TRANSPOSE(G5 : G14); mvec)þG15 � riskfree
G19 ¼MMULT(TRANSPOSE(G5 : G14); MMULT(vcmatrix; G5 : G14)):

In the Solver Parameters screen as shown in Figure 4.7, we set the Target
Cells to be the portfolio variance in G19 and check Equal To as Min for
minimizing. We take in the By Changing Cells the portfolio content in cells
G5:G14 and include in the Subject to the Constraints field the condition
that the so-evaluated portfolio return in G18 must equal the prescribed
value mport in D18. In the Solver Options screen as shown in Figure 4.8,
we check Assume Non-Negative that imposes the non-negative constraints
in (4.12) on the portfolio content specified in the By Changing Cells. It is
sufficient to consider in Precision the required precision of 10�8 for the
algorithm and limit the number of iterations within 20. To start off the
search algorithm, we need to provide initial values for G5:G14 as close to

FIGURE 4.7 Solver Parameters screen.
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the solution as possible. A proper choice would be a cash portfolio with
no risky assets {w1 = 0, . . . , wn = 0}. However, there is no guarantee of
finding the correct optimal solution.

4 .3 EXCE L PLUS VBA IMPLEMENTAT I ON

An effective and reliable way to solve the MVO problem in (4.12) is to
implement the Markowitz algorithm as discussed in section 4.1 using VBA.
It is guaranteed to find the correct optimal solution that is unique given the
portfolio return. The idea is to examine all possible OUT subsets and iden-
tify the particular case that generates the optimal solution of the original
problem. The size of the OUT subset can run from Nout ¼ 0 to Nout ¼ n �
1. For each Nout, there are Nc (equals n choose Nout) OUT subsets with
different combinations:

Nout OUTsubsets Nc

0 ffg 1
1 fw1g; fw2g; . . . ; fwng n
2 fw1;w2g; fw1;w3g; . . . fw1;wng; fw2;w3g; . . . ;

fw2;wng; . . . ; fwn�1;wng 1
2n(n� 1)

:
n� 1 fw2;w3; . . . ;wng; fw1;w3; . . . ;wng; . . . ; fw1;w2; . . . ;wn�1g n

FIGURE 4.8 Solver Options screen.
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Among all possible OUT subsets above, there is a unique combination
for which the corresponding optimal content w given by (4.14) will be non-
negative and will satisfy the Kuhn-Tucker conditions in (4.16).

We first develop a routine called GetOutSubset() capable of generating
all OUT subsets given its size Nout ¼ k. Consider the array Ik(L, 1: k) that
provides in ascending order the pointers to all elements in different OUT
subsets labeled as L ¼ 1, . . . , Nc(k). When k ¼ 2, for example, we have
I2(1, 1) ¼ 1 and I2(1, 2) ¼ 2 that define the first OUT subset {w1, w2}.
Pointer arrays of size k can be generated by appending every pointer array
of size k � 1 with an additional entry of higher value. Given pointer array
Ik� 1(l

0, 1: k � 1) of size k �1, we can generate several pointer arrays of size
k (labeled consecutively as L ¼ l, l þ 1, . . . ); each with an additional entry
of a separate value greater than the last entry in the given array:

In this way, the entire set of pointer arrays Ik(L, 1: k) for L = 1, . . . , Nc(k)
can be generated iteratively by considering every Ik� 1(L

0, 1: k � 1) for L0 ¼
1, . . . , Nc(k � 1). The pseudo code of GetOutSubset() is given by Code
4.1 which performs such tasks. As input, the routine reads in all pointer
arrays for size k �1 and the number of combinations. As output, it
generates the arrays for size k and updates the number of combinations.
The iteration should start off from k ¼ 1 with Nc(1) ¼ n pointer arrays,
namely, I1(1, 1) ¼ 1, I1(2, 1) ¼ 2, . . . , and I1(n, 1) ¼ n. The VBA code
of GetOutSubset() is given by Code 4.2. Note that ‘‘nmax’’ and ‘‘Ncmax’’
are parameters that configure the maximum possible size of n and Nc,
respectively, in the module. In worksheet ‘‘MVO,’’ the number of assets to
be included in the portfolio is limited to below ten. We should set nmax ¼
10, and the maximum number of OUT subsets should correspondingly be
Ncmax ¼ 252 (10 choose 5).

GetOutSubset ( n, k, Nc, I( 1: Nc, 1: k ) )

l = 0

# input Nc and I for size k � 1, and consider every input array
For( L0 = 1 to Nc ) {

# for particular array I, generate several Inew for size k with consecutive labeling
For( j = I( L0, k � 1 ) + 1 to n ) { l = l + 1
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For( i = 1 to k � 1 ){ Inew( l, i ) = I( L0, i ) }
Inew( l, k ) = j }

}

# return Inew as I and update Nc

For( L = 1 to l ) { For( i = 1 to k ){ I( L, i ) =Inew( L, i ) } }
Nc = l

Code 4.1: Pseudo code of the GetOutSubset() routine.

Sub GetOutSubset(n As Integer, k As Integer, ByRef Nc As Integer, ByRef Iout() As Integer)
Dim lcount As Integer, L As Integer, Lprime As Integer
Dim i As Integer, j As Integer
Dim Inew(1 To Ncmax, 1 To nmax) As Integer

lcount = 0
For Lprime = 1 To Nc
For j = Iout(Lprime, k - 1) + 1 To n
lcount = lcount + 1
For i = 1 To k - 1
Inew(lcount, i) = Iout(Lprime, i)

Next i
Inew(lcount, k) = j

Next j
Next Lprime

For L = 1 To lcount
For i = 1 To k
Iout(L, i) = Inew(L, i)

Next i
Next L

Nc = lcount
End Sub

Code 4.2: VBA code of the GetOutSubset() routine.

We now want to develop a routine called Markowitz() that considers
every OUT subset generated from GetOutSubset() and performs the check-
ing in steps 1–3 as stated at the end of section 4.1. The pseudo code of
Markowitz() is given by Code 4.3. As input, it reads in the total number of
risky assets n, the data arrays {S, m, u}, the expected portfolio return mP,
and the risk-free return m0. As output, it returns the optimal portfolio
content w and cash position w0. To examine all possible OUT subsets, we
have considered in the outer loop the values of Nout from 0 to n � 1. For
each Nout, we generate all the OUT subsets and perform the checking
on every combination in the inner loop of L. The checking will proceed
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to higher values of Nout until an optimal solution has been identified
whereupon the procedure will be stopped immediately.

For Nout ¼ 0, there is Nc(0) ¼ 1 OUT subset {f} with no modification
on the entries in {S, m, u}. For Nout � 1, the OUT subsets are generated
iteratively through GetOutSubset() starting off from Nout ¼ 1 with Nc(1) ¼
n subsets as defined above. For each OUT subset, the modified arrays {Sm,
mm, um} will be constructed according to the generated pointer array, and
the portfolio content defined in (4.14) will also be calculated. The checking
of non-negative and Kuhn–Tucker conditions for such portfolio content
will subsequently be conducted.

It should be noted that the denominatorDm ¼ Cm m0
2� 2Am m0þ Bm in

(4.14) is strictly positive. However, it could possibly be negative due to
floating point precision that renders the sign of (4.14) to be misidentified.
Under double precision, a real number will only be quoted up to 15 decimal
places; it is therefore essential to adjust the denominator by a floating preci-
sion of e = 10�14. The same factor should also be used in checking whether a
real number x is negative (x < �e), nonnegative (x � �e), positive (x > e),
or zero (jxj � e). Using the first ‘‘Next L,’’ we skip those OUT subsets with
negative portfolio content in (4.14) if wi < �e for either component of w.
Then, for the Kuhn-Tucker conditions in (4.16), we skip again using the
second ‘‘Next L’’ if neither (hi > e) \ (jwij � e) or (jhij � e) \ (wi � �e) is
true (that is if testflag ¼ .False.) for either component of w and h = (Sw �
l1m � l2u). It runs through all L and proceeds to higher values of Nout. If
an OUT subset has not been filtered out by these two exit conditions, the
corresponding portfolio content in (4.14) will be the optimal solution of the
MVO in (4.12). The entire procedure will be stopped immediately by ‘‘Exit
Nout’’ that bypasses two nested loops.

Markowitz( n, m(1: n ), u(1: n), S(1: n, 1: n ), mP, m0, w(1: n), w0 )

e = 1 � 10�14

For ( Nout = 0 to n � 1 ) {

# generate the OUTsubsets
If( Nout = 0 ) then
Nc = 1

elseif( Nout = 1) then
Nc = n
For ( L = 1 to Nc ) { I( L, 1 ) = L }

else
Call GetOutSubset( n, Nout, Nc, I( 1: Nc, 1: Nout ) )

endif

For ( L = 1 to Nc ) {

Portfolio Mean-Variance Optimization 51



# construct the modified arrays according to (4.13)
For ( i = 1 to n ) { mm( i ) = m( i ), um( i ) = u( i )

For ( j = 1 to n ) do{ Sm( i, j ) = S( i, j ) } }

For ( k = 1 to Nout ) { i = I( L, k )
mm( i ) = 0 , um( i ) = 0
For ( j = 1 to n ) { Sm( i, j ) = 0, Sm( j, i ) = 0 }
Sm( i, i ) = 1 }

# calculate Am, Bm, and Cm

Am ¼ uT
m(1 : n)S�1m (1 : n; 1 : n)mm(1 : n)

Bm ¼ mT
m(1 : n)S�1m (1 : n; 1 : n)mm(1 : n)

Cm ¼ uT
m(1 : n)S�1m (1 : n; 1 : n) um(1 : n)

# calculate the portfolio content defined in (4.14)
Dm ¼ Cm m2

0 � 2Am m0 þ Bm þ e
l1 = ( mP – m0 )/Dm , l2 = – m0 ( mP – m0 )/Dm

w( 1: n ) = l1 S
�1
m ( 1: n, 1: n ) mm( 1: n ) + l2 S

�1
m ( 1: n, 1: n ) um( 1: n )

w0 = 1 – l1 ( Am – m0 Cm )

# check that all the entries of w in (4.14) are non-negative
For ( i = 1 to n ) { If( w( i ) < �e ) { Next L } }

# check that the KKTcondition (4.16) has been satisfied
h( 1: n ) = S( 1: n, 1: n ) w( 1: n ) – l1 m( 1: n ) – l2 u( 1: n )

For ( i = 1 to n ) { testFlag = OR( AND( ABS( h( i ) ) � e, w( i ) � � e ),
AND( h( i ) > e, ABS( w( i ) ) � e )

If ( .NOT. testFlag ) { Next L } }
Exit Nout

} }

Code 4.3: Pseudo code of the Markowitz() routine.

The VBA code of Markowitz() is given by Code 4.4. For the calculations
of Am, Bm, and Cm, we have used the routine SolveAxb() (see Code 3.4) to
first calculate the vectors S�1m mm and S�1m um. The matrix multiplications
with the transposed vectors uTm and mT

m can then be performed very easily
through the rule xTy ¼ Pn

i¼1 xi yi for two (n � 1) vectors. In addition, the
portfolio content w in (4.14) can also be calculated immediately using the
same results. Notice that the vector h = @L/@w in (4.16) has been determined
by directly applying the rule for matrix multiplication and addition as:

hi ¼
Xn

k¼1 Sikwk � l1mi � l2ui; for i ¼ 1; 2; . . . ; n:

To exit a nested loop during the checking of non-negative w and the KKT
condition, we use ‘‘GoTo nextL’’ and label the ‘‘Next L’’ statement in the
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coding as ‘‘nextL.’’ To terminate the entire procedure once the optimal
solution has been found, we exit two nested loops using ‘‘GoTo exitNout’’
for which we label the line immediately after ‘‘Next Nout’’ as ‘‘exitNout.’’

We will use the same spreadsheet design in Figures 4.5 and 4.6 for this
VBA implementation. The main VBA routine MVO() can be invoked through
the ‘‘Markowitz’’ button in the spreadsheet as shown in Figure 4.6. In
Code 4.5, we have divided the MVO() routine into three parts handling the
data input, the core Markowitz algorithm, and the output. As input, it reads
in the total number of risky assets n in cell K15, the expected portfolio return
mP in cell D18, and the risk-free return m0 in cell D17. It also reads in the data
arrays {S, m, u} according to the size of n with the use of the OFFSET func-
tion relative to the cells J5, C5, and B5, respectively. As output, it returns the
optimal portfolio content and cash position that display in cells F5:F14 and
F15, respectively. It should be noted that if n is less than nmax = 10, the addi-
tional portfolio contents in F5:F14 will always be zero in the output.

Sub Markowitz(n As Integer, mvec() As Double, uvec() As Double, vcmatrix() As Double, mport As Double, _
riskfree As Double, ByRef wvec() As Double, ByRef w0 As Double)

Dim Nout As Integer, Nc As Integer
Dim Iout(1 To Ncmax, 1 To nmax) As Integer
Dim L As Integer, i As Integer, j As Integer, k As Integer

Dim mvecm(1 To nmax) As Double
Dim uvecm(1 To nmax) As Double
Dim vcmatrixm(1 To nmax, 1 To nmax) As Double
Dim etavec(1 To nmax) As Double
Dim tempvec1(1 To nmax) As Double
Dim tempvec2(1 To nmax) As Double

Dim Am As Double, Bm As Double, Cm As Double, Dm As Double
Dim lambda1 As Double, lambda2 As Double
Dim testFlag As Boolean

For Nout = 0 To n - 1

'generate the OUTsubsets
If (Nout = 0) Then
Nc = 1

ElseIf (Nout = 1) Then
Nc = n
For L = 1 To Nc: Iout(L, 1) = L: Next L

Else
Call GetOutSubset(n, Nout, Nc, Iout)

End If

For L = 1 To Nc
'construct the modified arrays
For i = 1 To n
mvecm(i) = mvec(i)
uvecm(i) = uvec(i)
For j = 1 To n: vcmatrixm(i, j) = vcmatrix(i, j): Next j

Next i
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For k = 1 To Nout
i = Iout(L, k)
mvecm(i) = 0
uvecm(i) = 0
For j = 1 To n
vcmatrixm(i, j) = 0
vcmatrixm(j, i) = 0

Next j
vcmatrixm(i, i) = 1
Next k

'calculate Am, Bm, and Cm
Call SolveAxb(vcmatrixm, mvecm, tempvec1, n, 1, 1, 1)
Call SolveAxb(vcmatrixm, uvecm, tempvec2, n, 1, 1, 1)
Am = 0
Bm = 0
Cm = 0
For i = 1 To n
Am = Am + uvecm(i) � tempvec1(i)
Bm = Bm + mvecm(i) � tempvec1(i)
Cm = Cm + uvecm(i) � tempvec2(i)

Next i

'calculate the portfolio content
Dm = Cm � riskfree ^ 2 - 2 � Am � riskfree + Bm + eps
lambda1 = (mport - riskfree)/Dm
lambda2 = -riskfree � (mport - riskfree)/Dm
For i = 1 To n: wvec(i) = lambda1 � tempvec1(i) + lambda2 � tempvec2(i): Next i
w0 = 1 - lambda1 � (Am - riskfree � Cm)

'check that the portfolio content are non-negative
For i = 1 To n
If (wvec(i) < -eps) Then GoTo nextL

Next i

'checking the KKTcondition
For i = 1 To n
tempvec1(i) = 0
For j = 1 To n: tempvec1(i) = tempvec1(i) + vcmatrix(i, j) � wvec(j): Next j
etavec(i) = tempvec1(i) - lambda1 �mvec(i) - lambda2 � uvec(i)

Next i

For i = 1 To n
testFlag = (Abs(etavec(i)) <= eps And wvec(i)>= - eps)_
Or (etavec(i)>eps And Abs(wvec(i)) <= eps)
If (Not testFlag) Then GoTo nextL

Next i

GoTo exitNout

nextL: Next L

Next Nout

exitNout:

End Sub

Code 4.4: VBA code of the Markowitz() routine.
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Option Explicit
Private Const nmax = 10, Ncmax = 252
Private Const eps = 1 � 10 ^ -14

Sub MVO()

Dim n As Integer
Dim mvec(1 To nmax) As Double
Dim uvec(1 To nmax) As Double
Dim vcmatrix(1 To nmax, 1 To nmax) As Double
Dim mport As Double
Dim riskfree As Double
Dim wvec(1 To nmax) As Double
Dim w0 As Double
Dim i As Integer, j As Integer

n = Range("K15").Value
mport = Range("D18").Value
riskfree = Range("D17").Value

For i = 1 To n
mvec(i) = Range("C5").Offset(i - 1)
uvec(i) = Range("B5").Offset(i - 1)
For j = 1 To n: vcmatrix(i, j) =Range("J5").Offset(j - 1, i - 1): Next j

Next i

Call Markowitz(n, mvec, uvec, vcmatrix, mport, riskfree, wvec, w0)

For i = 1 To nmax: Range("F5").Offset(i - 1) = wvec(i): Next i
Range("F15").Value = w0

End Sub

Code 4.5: VBA code of the MVO() routine.

REV I EW QUEST I ONS

1. Modify the Markowitz algorithm in the current implementation to allow short-
selling restrictions to be applied only on a subset of assets A in the portfolio.
It should be noted that the optimal w and w0 can now be determined through
the Kuhn–Tucker conditions as

@L=@w0 ¼ 0;
@L=@wi ¼ 0 for i =2A;
@L=@wi ¼ 0 whenwi � 0; and @L=@wi > 0whenwi ¼ 0 for i 2 A;

where @L/@w0 = � l1 m0 � l2 and @L/@wi = (S w � l1m � l2u)i as given by
equations (4.15) to (4.16).
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2. Use SolverSove in VBA to generate the entire efficient frontier of the following
MVO problem for a portfolio with n risky assets and cash:

Minimize s2
P ¼ wTSw

subject towT mþw0m0 ¼ mP; uTwþw0 ¼ 1;

b1 � w1 � a1; . . . ;bn � wn � an

The efficient frontier should be plotted in Excel from mP = m0 to its maximum
extent given the trading limits [a1, b1], . . . , [an, bn].

ENDNOTES

1. Robert C. Merton, ‘‘An Analytic Deviation of the Efficient Portfolio Frontier,’’
Journal of Financial and Quantitative Analysis 7, No. 3 (1972): 1851-1872. We
first define the Lagrange function L that incorporates the objective function and
the constraints in (4.5) with two multipliers l1 and l2 as:

L ¼ 1
2w

TSw� l1(w
Tm� mP)� l2(u

Tw� 1):

The optimal w can be determined through the first order stationary conditions:
{@L/@w1 = 0, . . . , @L/@wn = 0} in conjunction with the original constraints.

2. Similarly, we can define the Lagrange function L with two multipliers l1 and
l2 as:

L ¼ 1
2w

TSw� l1(w
Tmþw0m0 � mP)� l2(u

Twþw0 � 1):

The optimal w and w0 can be determined through the stationary conditions:
{@L/@w0 = 0, @L/@w1 = 0, . . . , @L/@wn = 0}.

3. We can rewrite the optimal risky content in (4.10) asw ¼ (1 � w0) ŵwhere ŵ =
(S�1m � m0S

�1u)/(A � m0C). Along the efficient frontier, we are actually buy-
ing or short-selling various units of the so-called market portfolio {ŵ1, . . . ,
ŵn} together with cash holdings. For m0 < A/C, the cash position w0 can be
positive, zero, or negative through borrowing. For m0 � A/C, the cash position
is, however, strictly positive.

4. Define the Lagrange functionH with multipliers {l1, l2, a1, . . . , an} as:

H ¼ L� a1w1 � . . .� an wn;

where L ¼ 1

2
wT Sw� l1(w

Tmþw0 m0 � mP)� l2(u
Twþw0 � 1)

With inequality constraints, the optimal w and w0 can be determined through
the Kuhn–Tucker conditions:
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@L=@w0 ¼ 0; @L=wi ¼ ai; ai�0; wi�0; and ai wi ¼ 0 for i ¼ 1; . . . ; n

that can be rewritten as @L/@w0 ¼ 0, @L/@wi ¼ 0 when wi � 0, and @L/@wi > 0
when wi ¼ 0 for i ¼ 1, . . . , n.

5. H.M. Markowitz, G.P. Todd, and W.F. Sharpe, Mean-Variance Analysis in
Portfolio Choice and Capital Markets, Frank J. Fabozzi Associates, 1987.

6. Refer to mean_variance_opt.xls.
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CHAPTER 5
Newton–Raphson Method

5.1 NEWTON–RAPHSON METHOD FOR SYSTEMS
OF EQUAT I ONS

The use of Excel Solver is quite convenient for finding a solution {x1, . . . ,
xn} for the zero of an objective function where g(x1, . . . , xn) ¼ 0. For
multiple objective functions with the same variables, however, it is
not applicable for Solver to solve simultaneously the zero of a system of
equations given by:

g1(x1; . . . ; xn) ¼ 0
. . .

gn(x1; . . . ; xn) ¼ 0:
ð5:1Þ

We consider here a powerful numerical procedure known as the Newton–
Raphson method1 capable of handling such a problem. The objective in this
chapter is to build a generic VBA routine for the Newton–Raphson proce-
dure that will definitely be useful in the implementation of the financial
models to be discussed in forthcoming chapters.

Algebraically, the method is derived from the familiar Taylor series
expansion of a function in the neighborhood of a point. Suppose we want
to determine the zero of a function with one variable where g(xsoln) ¼ 0.
Consider a trial guess of the solution xold where the error involved eold is
presumably small. The Taylor expansion of the function in the neighbor-
hood of xold can be written as:

g(xold þ eold) ¼ g(xold)þ g0(xold) eold þ . . .

where the higher-order terms in the series are unimportant. The
entire expression must vanish by definition as xsoln ¼ xold þ eold is the
zero of the function. Hence, we can estimate the error in the trial solution
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as eold ffi � g(xold)/g0(xold) and accordingly update the guess to be:

xnew ¼ xold � g(xold)

g0 (xold)
: ð5:2Þ

The error involved in xsoln ¼ xnew þ enew after the update will be much
smaller as it can be shown that the size of enew is in quadratic power2 of
eold. In equation (5.2), it requires the evaluation of both the function and
the derivative at the trial guess, and generates an update that is much closer
to the solution. Under a defined precision Dx, the derivative can be approxi-
mated using the numerical difference given by:

g0(x) ffi g(xþ Dx)� g(x)

Dx
:

The Newton–Raphson procedure should proceed iteratively using (5.2) and
stop literally when the improvement has reached the precision limit of jxnew
� xoldj � Dx.

The method can readily be generalized to multiple dimensions such
as the system of equations in (5.1). Consider a trial guess of the zero
solution fxold1 ; . . . ; xoldn g with errors feold1 ; . . . ; eoldn g. The Taylor expansions
of the multivariable functions in the neighborhood of the trial guess can be
written as:

gi(x
old
1 þ eold1 ; . . . ; xoldn þ eoldn ) ¼ gi(x

old
1 ; . . . ; xoldn )

þPn
j¼1
�
@gi(x

old
1 ; . . . ; xoldn )=@xj

�
eoldj þ . . . ; i ¼ 1; . . . ; n:

They must all vanish simultaneously as fxold1 þ eold1 ; . . . ; xoldn þ eoldn g is the
zero of the system. Again, we can estimate the errors in the trial solution
and update the guess to be:

xnew ¼ xold �V�1(xold1 ; . . . ; xoldn ) g(xold1 ; . . . ; xoldn ) ð5:3Þ
where x ¼ {x1, . . . , xn} and g ¼ {g1, . . . , gn} are defined to be column
vectors in the matrix equation andV is a n�n square matrix given by:

V(x1; . . . ; xn) ¼
@g1(x1; . . . ; xn)=@x1 . . . @g1(x1; . . . ; xn)=@xn

..

. ..
.

@gn(x1; . . . ; xn)=@x1 . . . @gn(x1; . . . ; xn)=@xn

0
B@

1
CA:

ð5:4Þ
The partial derivatives in (5.4) can be approximated using the numerical
difference under a defined precision Dx as:

60 PROFESSIONAL FINANCIAL COMPUTING USING EXCEL AND VBA



@

@xj
gi(x1; . . . ; xn) ffi

gi(x1; . . . xj þ Dx; . . . ; xn)� gi(x1; . . . ; xn)

Dx
: ð5:5Þ

Similarly, the Newton–Raphson procedure should proceed iteratively using
(5.3) and stop when the improvements for all variables have reached the
precision limit of jxinew � xi

oldj � Dx.

5 .2 VBA ROUT IN E

We want to build a generic VBA routine called NewtonRaphson() that
implements the Newton–Raphson procedure as given by equations (5.3),
(5.4), and (5.5) in an arbitrary dimension. The objective functions should
be defined external to the routine such that it is applicable to different kinds
of problems. The pseudo code of NewtonRaphson() is given by Code 5.1.
The routine reads in trial values of the variables {x1, . . . , xn} together with
a designated precision Dx in the solution. It returns the last updated values
as the solution of the problem through the iteration procedure bounded
by the precision limit. The iteration starts off from the trial values (initiate
xold ¼ x with the trial values whenNitr ¼ 1) and will continue to update the
variables (x ¼ xold � V�1g) when the precision limit has not yet been
reached (precflag ¼ FALSE). To prevent entering a dead loop, we impose
an upper limit of Nitrmax ¼ 1000 on the maximum number of iterations
to be performed. As reference, NewtonRaphson() returns the status of the
precision flag at exit to indicate whether it is terminated by the iteration
limit where the designated precision has not been met. For cross-checking
purposes, the routine also returns the maximum deviation from zero among
all the functions as evaluated at the point of exit.

At each update, the iteration requires an ad hoc evaluation of both the
objective functions and their partial derivatives. This can be done through
an external routine called FunctionArray() that defines the kind of problem
at hand and returns an array of function values {g1, . . . , gn} evaluated at
specific input values of {x1, . . . , xn}. Partial derivatives in the entries of V
can be estimated by making two consecutive calls to FunctionArray() based
on the numerical difference in (5.5). While the double-loop structure with j
and i will run through all its entries, the interior loop with k will shift
only the appropriate term in the array {x1, . . . , xn} by Dx before making a
second call to FunctionArray() for changes in function values.

The VBA code of NewtonRaphson() is given by Code 5.2. For the
calculation of variable update, we have again used the routine SolveAxb()
to calculate the shift V�1g. During the iteration, the value of precflag
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under the logical conjunction of an array of conditions can be determined
by looping through each of the conditions. The precision limit has
been reached (precflag ¼ .TRUE.) if there is no violation on either of these
conditions. Consider now the use of the NewtonRaphson() routine in the
following examples.

EXAMPLE 5.1

Suppose we want to solve simultaneously the zero of a pair of func-
tions (n ¼ 2) given by

g1(x1; x2) ¼ x21 þ x22 � 1

g2(x1; x2) ¼ x1 þ x2:

Here, the FunctionArray() routine should be able to read in specific
values of {x1, x2} and return the corresponding function values
{g1, g2}. The Newton–Raphson solution of this problem will have the
following VBA structure.

Sub Test()
Dim x(1 To 2) As Double, n As Integer, prec As Double, precFlag As Boolean,
maxDev As Double

n = 2
x(1) = Range("B2").Value
x(2) = Range("C2").Value
prec = Range("D2").Value
Call NewtonRaphson(n, prec, x, precFlag, maxDev)
Range("B3:C3") = x
Range("D3") = precFlag
Range("E3") = maxDev

End Sub

Sub FunctionArray(n As Integer, x() As Double, ByRef g() As Double)
g(1) = x(1) ^ 2 + x(2) ^ 2 - 1
g(2) = x(1) + x(2)

End Sub
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EXAMPLE 5 .2

A practical example of interest in finance is the estimation of the so-
called implied volatility in option pricing where the theoretical Black–
Scholes value matches the market price. Taking the volatility parameter
s to be the only variable (n ¼ 1), we want to solve the zero of the fol-
lowing function that represents the difference between, for example, the
call option prices based on the Black-Scholes formula and the market.

g(s) ¼ SN(d)� Ke�rTN(d � s
ffiffiffiffi
T

p
)� cmarket; d ¼ ln(S=K)þ (rþ 1

2 s
2)T

s
ffiffiffiffi
T

p

Here, S is the asset price, r is the risk-free interest rate, and K and T are
the strike price and maturity of the option, respectively. The term cmar-

ket is the market option price with the same strike and maturity. The
mathematical function N(x) is the cumulative normal distribution
with zero mean and unit standard deviation. In VBA, we can simply
use the Excel function NORMSDIST for values of N(x). The VBA
coding for this routine is given as follows:

Sub calImpVol()
Dim sigma(1 To 1) As Double, n As Integer, prec As Double, precFlag As Boolean,

maxDev As Double
n = 1
sigma(1) = Range("C7").Value
prec = Range("C10").Value
Call NewtonRaphson(n, prec, sigma, precFlag, maxDev)
Range("C11") = sigma(1)
Range("C12") = precFlag
Range("C13") = maxDev

End Sub

Sub FunctionArray(n As Integer, sigma() As Double, ByRef g() As Double)
Dim assetPrice As Double, exercisePrice As Double, timeMaturity As Double
Dim riskFree As Double, marketCallPrice As Double, d As Double
assetPrice = Range("C2").Value
exercisePrice = Range("C3").Value
timeMaturity = Range("C4").Value
riskFree = Range("C5").Value
marketCallPrice = Range("C6").Value
d = Log(assetPrice / exercisePrice) + (riskFree + 0.5 * sigma(1) ^ 2) * timeMaturity
d = d / (sigma(1) * timeMaturity ^ 0.5)
With Application.WorksheetFunction

g(1) = assetPrice * .NormSDist(d) - _
exercisePrice * Exp(-riskFree * timeMaturity) * _
.NormSDist(d - sigma(1) * timeMaturity ^ 0.5) - marketCallPrice

End With
End Sub (Continued )
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NewtonRaphson( n , Dx , x(1:n) , precflag ,maxdev )

# define the maximum number of iterations
Nitrmax = 1000

# iterate to a new point when both the precision and iteration limits have not yet been reached
For( Nitr = 1 to Nitrmax ) {

# initiate the array of variables for iteration
xold ( 1 : n ) = x( 1 : n )

# determine the function values
call FunctionArray( n , xold(1:n) , g(1:n) )

# determine the matrixV by making another call to FunctionArray with shifted x

For ( j = 1 to n ) { For ( k = 1 to n ) { xshift(k) = xold(k) + Dx djk }

call FunctionArray( n , xshift(1:n) , gshift(1:n) )

For ( i = 1 to n ) { V(i, j) = [ gshift(i) � g(i) ] / Dx }
}

# iterate and update the column array of variables
x( 1 : n ) = xold( 1 : n ) �V-1( 1 : n , 1 : n ) g( 1 : n )

# check the precision limit and update the precision flag
precflag ( AND( j x(1) � xold(1) j � Dx , . . . , j x(n) � xold(n) j � Dx )

If( precflag ) then exit Nitr
}

(Continued )
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# determine at exit the maximum deviation from zero among all the functions
call FunctionArray( n , x(1:n) , g(1:n) )

maxdev = MAX( j g1j , . . . , j gn j )
Code 5.1: Pseudo code of the NewtonRaphson() routine.

Sub NewtonRaphson(n As Integer, prec As Double, ByRef x() As Double, ByRef precFlag As
Boolean, ByRef maxDev As Double)

Const nItrMax As Integer = 1000
Dim xOld() As Double: ReDim xOld(1 To n)
Dim xShift() As Double: ReDim xShift(1 To n)
Dim gShift() As Double: ReDim gShift(1 To n)
Dim g() As Double: ReDim g(1 To n)
Dim omega() As Double: ReDim omega(1 To n, 1 To n)
Dim Dx() As Double: ReDim Dx(1 To n)

Dim i As Integer, j As Integer, k As Integer, nItr As Integer
For nItr = 1 To nItrMax
'initiate the array of variables and determine the function values
For i = 1 To n: xOld(i) = x(i): Next i
Call FunctionArray(n, xOld, g)
'determine the matrix omega
For j = 1 To n
For k = 1 To n: xShift(k) = xOld(k) + prec * IIf(j = k, 1, 0): Next k
Call FunctionArray(n, xShift, gShift)
For i = 1 To n: omega(i, j) = (gShift(i) - g(i)) / prec: Next i

Next j

'iterate and update the array of variables
Call SolveAxb(omega, g, Dx, n, 1, 1, 1)
For i = 1 To n: x(i) = xOld(i) - Dx(i): Next i

'check the precision limit and update the precision flag
For i = 1 To n
If Abs(x(i) - xOld(i)) <= prec Then
precFlag = True
Else
precFlag = False
Exit For
End If

Next i
If precFlag Then Exit For

Next nItr
'determine the maximum deviation at exit
Call FunctionArray(n, x, g)
maxDev = 0
For i = 1 To n
If Abs(g(i)) > maxDev Then maxDev = Abs(g(i))
Next i

End Sub

Code 5.2: VBA code of the NewtonRaphson() routine.
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REV I EW QUEST I ONS

1. Use the NewtonRaphson() routine to solve numerically the value of r2-years in
the following equation:

$114:26 ¼ $5 e�r6-months�0:5 þ $5 e�r1-year�1:0 þ $5 e�½(r1-yearþr2-years)�1:5

þ $105 e�r2-years�2:0

with r6-months = 0.0213 and r1-year = 0.0238.
2. Use the NewtonRaphson() routine to solve numerically the value of l in the

EWMA model in Question 1 when the logarithm of likelihood in Equation
(2.5) is maximized (dln(L)/dl ¼ 0). How would you choose the trail value of l
to initialize the search?

ENDNOTES

1. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, “Root Finding
and Nonlinear Sets of Equations,” in Numerical Recipes in C : The Art of
Scientific Computing, 2nd Edition (Cambridge: Cambridge University Press,
1997), 347–393.

2. From (5.2), we have enew ¼ eold þ g(xsoln � eold)/g0(xsoln � eold). We can expand
the terms g and g0 around xsoln to get enew 
 � 1

2 [g
00(xsoln)/g0(xsoln)](eold)2.
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CHAPTER 6
Yield Curve Construction Using

Cubic Spline

6.1 CUB IC SPL IN E I NT ERPOLAT I ON

In this chapter, we describe a generalized bootstrapping method to determine
the yield curve given any available data set of bond prices.1 In the bootstrap-
ping method as discussed in standard texts, zero-coupon rates are extracted
iteratively from the net present value expressions of coupon-bearing bond
prices for which discount rates for all coupons are presumably determined
from previous steps. With insufficient bond data, such intermediate rates
could possibly be missing in the bootstrapping sequence causing the entire
procedure to cease immediately. Consider, for example, the yield curve con-
struction based on the following sample bond prices as shown in Table 6.1.

The first two instruments (maturities of six months and one year) are
zero-coupon bonds. The corresponding zero-coupon rates of r6-months ¼
2.13% and r1-year ¼ 2.38% can be calculated very easily from the bond
prices by considering the discount of their face values as:

$98:94 ¼ $100e�r6-months�0:5 and $97:65 ¼ $100e�r1-year�1:0:

TABLE 6.1 Sample bond prices with the bootstrapped zero-coupon rates.

Bond
price

Face
value

Time to
maturity

Semi-annual
coupon

Zero-coupon
rate

$98.94 $100 6 months $0 2.13%
$97.65 $100 1 year $0 2.38%
$114.26 $100 2 years $5 2.63%
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The last instrument is a two-year coupon-bearing bond with coupon
payments every six months. In the bootstrapping method, the zero rate
r2-years is calculated from the net present value expression of the two-
year bond price given by:

$114:26 ¼ $5e�r6-months�0:5 þ $5e�r1-year�1:0 þ $5e�r1:5-years�1:5 þ $105e�r2-years�2:0:
ð6:1Þ

In equation (6.1), the intermediate zero rate, r1.5-years for one-and-a-half
years, has not yet been determined in the previous procedure. The two-year
zero rate cannot be calculated prior to the determination of such a missing
rate. Naively, the missing zero rate r1.5-years can be approximated through
linear interpolation between the one-year and two-year zero rates as,

r1:5-years ¼ 1
2 (r1-year þ r2-years):

In this way, the two-year zero rate in equation (6.1) can loosely be
estimated as r2-years ¼ 2.63%. In a generalized method, the same problem
can be overcome using cubic spline interpolation instead that estimates all
missing rates in the bootstrapping procedure.

Spline is a piecewise smooth function joined together by different
segments of polynomials. The polynomials of adjacent segments are joined
smoothly at break points, called knots,with continuous derivatives. Given n
knots {(x1, y1), (x2, y2), . . . , (xn, yn)} as shown in Figure 6.1, interpolation
among all these points can be achieved through a spline with n�1
polynomials {f1, f2, . . . , fn�1}. The simplest solution to the interpolating
problem would be the spline with linear polynomials. To improve numerical
accuracy using higher order polynomials, additional assumptions beside the
smoothness conditions are required to uniquely define the coefficients in the
polynomials. A common choice would be the spline with cubic polynomials
defined through additional linear assumptions at both endpoints of the
interpolating interval (known as the natural spline conditions).

FIGURE 6.1 Cubic spline interpolation with n knots.
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In cubic spline interpolation with n knots at {(x1, y1), (x2, y2), . . . , (xn,
yn)} where x1 < x2 < . . . < xn, there are n � 1 cubic polynomials fi(x)¼ ai
þ bix þ cix

2 þ dix
3 (for i ¼ 1, 2, . . . , n � 1) with a total of 4(n � 1)

unknown spline coefficients. The polynomials must generate the corre-
sponding knot values to their left and right ends in each segment as:

yi ¼ fi(xi); for i ¼ 1; 2; . . . ; n� 1 ð6:2Þ
yiþ1 ¼ fi(xiþ1); for i ¼ 1; 2; . . . ; n� 1: ð6:3Þ

The smoothness conditions are given by the continuities of the polynomials
as well as their first and second derivatives, f

0
i(x) ¼ bi þ 2cixþ 3dix

2 and
f
00
i(x) ¼ 2ci þ 6dix respectively, at each knot. The polynomials are continu-

ous at each knot according to equations (6.2) and (6.3). The continuities of
their first and second derivatives are given by:

f
0
i(xiþ1) ¼ f

0
iþ1(xiþ1); for i ¼ 1; 2; . . . ; n� 2 ð6:4Þ

f
00
i(xiþ1) ¼ f

00
iþ1(xiþ1); for i ¼ 1; 2; . . . ; n� 2: ð6:5Þ

There are all together only 4(n�1)�2 matching conditions as expressed in
equations (6.2) to (6.5). The spline coefficients can be uniquely defined
through the natural spline conditions that force the spline to be linear
outside the interpolating interval. This is given by the vanishing of second
derivatives at both end knots as:

f
00
1(x1) ¼ f

00
n�1(xn) ¼ 0: ð6:6Þ

The matching conditions together with the natural spline conditions
can be rewritten in matrix representation as:

y1
..
.

yn�1
y2
..
.

yn
0
..
.

..

.

0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

¼M

a1
b1
c1
d1

..

.

..

.

an�1
bn�1
cn�1
dn�1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

ð6:7Þ
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There are 4(n � 1) rows in the two column vectors of (6.7) associated with
the same number of conditions as expressed in the above equations. The 4
(n � 1) � 4(n � 1) square matrix M is shown in Figure 6.2. As indicated in
the figure, the highlighted entries can easily be read off from the conditions
in (6.2) to (6.6) while all other entries are zero. The spline coefficients on
the right side of (6.7) can be determined by inverting the matrix equation
with the inverse of matrix M.

EXAMPLE 6 .1

Consider the cubic spline interpolation for the zero-coupon rates as
extracted previously based on the sample bond prices. In this case, we
have n ¼ 3 knots located at:

x1 ¼ 0:5 year; y1 ¼ 2:13%

x2 ¼ 1:0 year; y2 ¼ 2:38%

x3 ¼ 2:0 years; y3 ¼ 2:63%:

It requires two cubic polynomials f1(x) and f2(x) in the interpola-
tion. Their coefficients can be determined by solving the matrix
equation in (6.7) as:

2:13
2:38
2:38
2:63
0
0
0
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
¼

1 0:5 0:25 0:125 0 0 0 0
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
0 0 0 0 1 2 4 8
0 1 2 3 0 �1 �2 �3
0 0 2 6 0 0 �2 �6
0 0 2 3 0 0 0 0
0 0 0 0 0 0 2 12

0
BBBBBBBBBB@

1
CCCCCCCCCCA

a1
b1
c1
d1

a2
b2
c2
d2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

The cubic spline is then calculated to be:

f1(x) ¼ 1:88þ 0:4167xþ 0:25x2 � 0:1667x3; for 0:5 � x � 1:0

f2(x) ¼ 1:63þ 1:1667x� 0:50x2 þ 0:0833x3; for 1:0 � x � 2:0:

(continued )
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We first want to develop a generic VBA routine called CubicSpline()
that implements the cubic spline interpolation by solving the coefficients in
equation (6.7) given knots. It would be useful in the construction of
the yield curve under the problem of missing rates. The pseudo code of
CubicSpline() is given by Code 6.1. It reads in the location of n knots at
{x1, . . . , xn} and {y1, . . . , yn}, and returns the spline coefficients {a1, . . . ,
an�1}, {b1, . . . , bn�1}, {c1, . . . , cn�1}, and {d1, . . . , dn�1} in the interpola-
tion. The VBA code of CubicSpline() is given by Code 6.2. For the calcula-
tion of the spline coefficients, we have again used the routine SolveAxb() to
invert the matrix equation in (6.7).

CubicSpline( n , x(1 : n) , y(1 : n) , a(1 : n � 1) , b(1 : n � 1) , c(1 : n � 1) , d(1 : n � 1) )

# define the column vector R on the left side of equation (6.7)
For ( i = 1 to n � 1 ) {R( i ) = y( i )

R( n � 1 + i ) = y( i + 1 )
R( 2(n � 1) + i ) = 0
R( 3(n � 1) + i ) = 0 }

# initialize the entries of matrixM

For ( i = 1 to 4(n � 1) ) { For ( j = 1 to 4(n � 1) ) { M( i , j ) = 0 } }

# define the entries in the first ( n � 1 ) rows
ptr = 0, For ( i = 1 to n � 1 ) {M( ptr + i , 4(i � 1) +1 )= 1

M( ptr + i , 4(i � 1) +2 )= x( i )

(continued )

Cubic spline with f1(x) and f2(x)
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M( ptr + i , 4(i � 1) +3 )= x2( i )
M( ptr + i , 4(i � 1) +4 )= x3( i ) }

# define the entries in the second ( n � 1 ) rows
ptr = n � 1, For ( i = 1 to n � 1 ) {M( ptr + i , 4(i � 1) +1 )= 1

M( ptr + i , 4(i � 1) +2 )= x( i + 1 )
M( ptr + i , 4(i � 1) +3 )= x2( i + 1 )
M( ptr + i , 4(i � 1) +4 )= x3( i + 1 ) }

# define the entries in the following ( n - 2 ) rows
ptr = 2( n � 1 ), For ( i = 1 to n � 2 ) {M( ptr + i , 4(i � 1) +2 )= 1

M( ptr + i , 4(i � 1) +3 )= 2x( i + 1 )
M( ptr + i , 4(i � 1) +4 )= 3x2( i + 1 )
M( ptr + i , 4(i � 1) +6 )= �1
M( ptr + i , 4(i � 1) +7 )= �2x( i + 1 )
M( ptr + i , 4(i � 1) +8 )= �3x2( i + 1 ) }

# define the entries in the next ( n � 2 ) rows
ptr = 3( n � 1 ) � 1, For ( i = 1 to n � 2 ) {M( ptr + i , 4(i � 1) +3 )= 2

M( ptr + i , 4(i � 1) +4 )= 6x( i + 1 )
M( ptr + i , 4(i � 1) +7 )= �2
M( ptr + i , 4(i � 1) +8 )= �6x( i + 1 )

}
# define the entries in the last 2 rows
ptr = 4( n � 1 ) � 2
M( ptr + 1 , 3 ) = 2,M( ptr + 1 , 4 ) = 6x( 1 )
M( ptr + 2 , 4(n � 1) � 1 ) = 2 ,M( ptr + 2 , 4(n � 1) ) = 6x( n )
# determine the spline coefficients Q by solving the matrix equation
Q( 1 : 4(n � 1) ) =M�1( 1 : 4(n � 1) , 1 : 4(n � 1) ) R( 1 : 4(n � 1) )

For ( i = 1 to n � 1 ) { a( i ) = Q( 4(i � 1) + 1 )
b( i ) = Q( 4(i � 1) + 2 )
c( i ) = Q( 4(i � 1) + 3 )
d( i ) = Q( 4(i � 1) + 4 ) }

Code 6.1: Pseudo code of the CubicSpline() routine.

Sub CubicSpline(n As Integer, x() As Double, y() As Double, ByRef a() As Double, ByRef b()
As Double, ByRef c() As Double, ByRef d() As Double)

Dim i As Integer, j As Integer, ptr As Integer
Dim Mmatrix() As Double: ReDim Mmatrix(1 To 4 * (n - 1), 1 To 4 * (n - 1))
Dim Rvec() As Double: ReDim Rvec(1 To 4 * (n - 1))
Dim Qvec() As Double: ReDim Qvec(1 To 4 * (n - 1))

For i = 1 To (n - 1)
Rvec(i) = y(i)
Rvec(n - 1 + i) = y(i + 1)
Rvec(2 * (n - 1) + i) = 0
Rvec(3 * (n - 1) + i) = 0

Next i

For i = 1 To 4 * (n - 1)
For j = 1 To 4 * (n - 1): Mmatrix(i, j) = 0: Next j

Next i
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ptr = 0
For i = 1 To (n - 1)

Mmatrix(ptr + i, 4 * (i - 1) + 1) = 1
Mmatrix(ptr + i, 4 * (i - 1) + 2) = x(i)
Mmatrix(ptr + i, 4 * (i - 1) + 3) = x(i) ^ 2
Mmatrix(ptr + i, 4 * (i - 1) + 4) = x(i) ^ 3

Next i

ptr = n - 1
For i = 1 To (n - 1)

Mmatrix(ptr + i, 4 * (i - 1) + 1) = 1
Mmatrix(ptr + i, 4 * (i - 1) + 2) = x(i + 1)
Mmatrix(ptr + i, 4 * (i - 1) + 3) = x(i + 1) ^ 2
Mmatrix(ptr + i, 4 * (i - 1) + 4) = x(i + 1) ^ 3

Next i

ptr = 2 * (n - 1)
For i = 1 To (n - 2)

Mmatrix(ptr + i, 4 * (i - 1) + 2) = 1
Mmatrix(ptr + i, 4 * (i - 1) + 3) = 2 * x(i + 1)
Mmatrix(ptr + i, 4 * (i - 1) + 4) = 3 * x(i + 1) ^ 2
Mmatrix(ptr + i, 4 * (i - 1) + 6) = -1
Mmatrix(ptr + i, 4 * (i - 1) + 7) = -2 * x(i + 1)
Mmatrix(ptr + i, 4 * (i - 1) + 8) = -3 * x(i + 1) ^ 2

Next i

ptr = 3 * (n - 1) - 1
For i = 1 To (n - 2)

Mmatrix(ptr + i, 4 * (i - 1) + 3) = 2
Mmatrix(ptr + i, 4 * (i - 1) + 4) = 6 * x(i + 1)
Mmatrix(ptr + i, 4 * (i - 1) + 7) = -2
Mmatrix(ptr + i, 4 * (i - 1) + 8) = -6 * x(i + 1)

Next i

ptr = 4 * (n - 1) - 2
Mmatrix(ptr + 1, 3) = 2
Mmatrix(ptr + 1, 4) = 6 * x(1)
Mmatrix(ptr + 2, 4 * (n - 1) - 1) = 2
Mmatrix(ptr + 2, 4 * (n - 1)) = 6 * x(n)

Call SolveAxb(Mmatrix(), Rvec(), Qvec(), 4 * (n - 1), 1, 1, 1)

For i = 1 To (n - 1)
a(i) = Qvec(4 * (i - 1) + 1)
b(i) = Qvec(4 * (i - 1) + 2)
c(i) = Qvec(4 * (i - 1) + 3)
d(i) = Qvec(4 * (i - 1) + 4)

Next i

End Sub

Code 6.2: VBA code of the CubicSpline() routine.
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6 .2 Y I E LD CURVE CONSTRUCT I ON

In example 6.1, we have adopted a two-year zero rate of r2-years ¼ 2.63%
based on a linear approximation. In this case, the two-year bond price
in equation (6.1) will not necessarily be satisfied with the interpolated
one-and-a-half year zero rate r1.5-years ¼ f2(1.5) using the cubic spline.
In a generalized method of yield curve construction, r2-years should be
determined such that the resulting cubic spline will provide an interpo-
lated value of r1.5-years that exactly reproduces the two-year bond price.
This can be achieved through a numerical search of r2-years using the
Newton–Raphson procedure over the error on the net present value
expression as:

$114:26 ¼ $5e�r6-months�0:5 þ $5e�r1-year�1:0 þ $5e�f2(1:5jr2-years)�1:5 þ $105e�r2-years�2:0

ð6:8Þ

where f2(xjr2-years) denotes the resulting cubic polynomial for a specific
value of r2-years. As described in the VBA coding below, we can simply call
the NewtonRaphson() routine in chapter 5 with one variable and initiate the
search using the value of the nearest zero rate. The error in (6.8) can be cal-
culated based on the following setup in FunctionArray(). Under the preci-
sion requirement of 10�8, the two-year zero rate is extracted to be r2-years ¼
2.63125423% with a slight correction from the linear approximation.

Sub Searchr2y()
Dim r2y(1 To 1) As Double, prec As Double, precFlag As Boolean, maxDev As Double
r2y(1) ¼ 2.38
prec ¼ 0.00000001
Call NewtonRaphson(1, prec, r2y, precFlag, maxDev)
Range("B2").Value¼ r2y(1)
Range("B3").Value¼ precflag
Range("B4").Value¼maxDev

End Sub

Sub FunctionArray(n As Integer, r2y() As Double, ByRef NPVerr() As Double)
Dim x(1 To 3) As Double, y(1 To 3) As Double
Dim a(1 To 2) As Double, b(1 To 2) As Double, c(1 To 2) As Double, d(1 To 2) As Double
x(1) ¼ 0.5
x(2) ¼ 1.0
x(3) ¼ 2.0
y(1) ¼ 2.13
y(2) ¼ 2.38
y(3) ¼ r2y(1)
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Call CubicSpline(3, x, y, a, b, c, d)
Dim xm As Double: xm ¼ 1.5
Dim ym As Double: ym ¼ a(2) + b(2) * xm + c(2) * xm ^ 2 + d(2) * xm ^ 3
NPVerr(1) ¼ 114.26 - 5 * Exp(-(y(1) / 100) * x(1)) - 5 * Exp(-(y(2) / 100) * x(2)) - 5 *

Exp(-(ym / 100) * xm) - 105 * Exp(-(y(3) / 100) * x(3))
End Sub

Practically, we perform a yield curve construction based on a set of ob-
served bond prices {B1, B2, . . . , Bn} with terms to maturity {T1 < T2

< . . . < Tn} and face values {L1, L2, . . . ,Ln}. Associated with each of
these bonds, there are fixed coupon payments {c1 ¼ 0, c2, . . . , cn} sched-
uled sequentially in time at:

t21; t22; . . . � T2; for bond B2

. . . . . .
tn1; tn2; . . . � Tn; for bond Bn:

We denote r(t) to be the zero-coupon rate with term to maturity t. The
objective is to extract the zero rates {r(T1), . . . , r(Tn)} according to the
observed bond prices. For the construction to be attainable, the first bond
B1 in the data set with the shortest term must be the zero coupon, and all
of the above coupon payments must be scheduled on or after T1. The net
present value expressions for each of these bonds are given by:

B1 ¼ L1e
�r(T1)T1

B2 ¼ c2e
�r(t21)t21 þ c2e

�r(t22)t22 þ . . .þ (c2 þ L2) e
�r(T2)T2 ;T1 � t21 < t22 < . . . � T2

. . . . . .
Bn ¼ cne

�r(tn1)tn1 þ cne
�r(tn2)tn2 þ . . .þ (cn þ Ln) e

�r(Tn)Tn ;T1 � tn1 < tn2 < . . . � Tn:

ð6:9Þ

In equation (6.9), the bootstrapping procedure starts off from the determi-
nation of the shortest zero rate r(T1) from B1. However, it is clear that there
are missing discount rates for the coupon payments in the immediate deter-
mination of r(T2), and similarly for all others in the following steps, from
the coupon-bearing bond prices.

In the generalized method, such a problem can be overcome using cubic
spline interpolation with knots at {T1, T2, . . . , Tn}. Discount rates for
coupon payments in (6.9) can be estimated by their interpolated values
based on n�1 cubic polynomials {f1, f2, . . . , fn � 1} in the spline as:

r(t) ¼ fk(tjr(T1); . . . ; r(Tn)); Tk < t � Tkþ1: ð6:10Þ

In equation (6.10), fk(tjr(T1), . . . , r(Tn)) denotes the resulting cubic poly-
nomials using (6.7) with specific knot values {r(T1), . . . , r(Tn)}. Thus, we
need to determine the zero rates {r(T1), . . . , r(Tn)} such that the resulting
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cubic spline will generate interpolated values of coupon discount rates
consistent with the bond prices. This is similar to the problem in (6.8)
and can also be achieved through a numerical search using the Newton–
Raphson method over the errors on the expressions in (6.9). As B1 is
assumed to be a zero-coupon bond, the shortest zero rate r(T1) can be
extracted directly from (6.9) as:

r(T1) ¼ � 1

T1
ln

B1

L1

� �
: ð6:11Þ

However, it is convenient to include r(T1) in the Newton–Raphson proce-
dure and formulate a search for the entire set of zero rates with (6.11) taken
to be the common initial value. It can be shown that r(T1) will remain
stationary during the search for which the extra loading on the procedure
is insignificant.

6 .3 EXCE L PLUS VBA IMPLEMENTAT I ON

The errors on the net present value expressions in equation (6.9) can be
calculated based on the FunctionArray() routine with pseudo code given by
Code 6.3. Given zero rates {r(T1), . . . , r(Tn)}, the routine will return an
array of error values {g1, . . . , gn} with respect to different expressions in
(6.9). Bond data such as bond prices, terms to maturity, face values, coupon
payments, number of coupons, and the payment schedules are inputted
from Excel and stored as VBA arrays. The layout of the data interface in
Excel will be discussed later in this section. For specific values of the zero
rates during the search, the corresponding cubic spline is first calculated by
calling the CubicSpline() routine. In Code 6.3, tc(i, j) denotes the time of the
j-th coupon payment for the i-th bond. The double loop with labels i and j
will run through all coupon payments for the entire set of coupon-bearing
bonds. The interpolated value of the discount rate with term tc(i, j) can be
determined according to (6.10) by identifying the relevant segment from Tk

to Tkþ1 in the spline such that Tk < tc(i, j) � Tkþ1. The interpolation can
then be performed using the cubic polynomial in this segment parameterized
by the spline coefficients ak, bk, ck, and dk. To determine the required value
of k, it is straight forward to run k from 1 to i � 1 and recall that tc(i, j) � Ti

as defined in (6.9). In Code 6.3, we have made efficient use of a pointer ptr
that records the location of Tk (setting ptr ¼ k) for previous coupon pay-
ment. In this way, we can instead run k from ptr to i � 1 and start off the
pointer from ptr ¼ 1 at every initial coupon payment. Once we have identi-
fied the appropriate value of k, we should immediately proceed to the next
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coupon payment with new value of j. It should be noted that the k-loop does
not provide the checking for tc(i, j) at exactly the leftmost knot T1. We have
included such checking and assign the knot value of rc(i, j) ¼ r(T1) before the
k-loop. As discussed in earlier chapters, the checking should be conducted
through the absolute limit j tc(i, j) � T1 j � e with precision e ¼ 10�14 to
avoid a possible floating point problem. Using the interpolated values of the
coupon discount rates, the errors on the net present value expressions in
(6.9) can then be calculated very easily in terms of an array {g1, . . . , gn}.

The numerical search for the zero rates can be conducted very effi-
ciently using the CalZeroRates() routine with pseudo code as depicted in
Code 6.4. The number of unknown zero rates n and the designated preci-
sion limit of the search prec are first defined in the routine. Data on the
shortest zero-coupon bond are also inputted from Excel as the numerical
search should be initiated from the value defined in (6.11). The search can
be performed by calling the NewtonRaphson() routine that will in turn call
the FunctionArray() routine in Code 6.3 for the evaluation of the objective
functions {g1, . . . , gn}. Upon exiting from a successful search, it will return
the zero rates {r(T1), . . . , r(Tn)} for which all error values {g1, . . . , gn}
have vanished under the designated precision limit with precflag ¼ TRUE
and maxdev � prec. The returned zero rates together with the precision flag
and the maximum deviation should then be outputted into Excel.

Figure 6.3 illustrates the layout of the bond data interface in the Excel
spreadsheet.2 Information on different bonds is arranged in a row-by-
row format starting from the ninth row. These include term to maturity
(column A), bond price (column C), face value (column D), coupon pay-
ment (column E), number of coupons (column F), and payment schedule
(column G onward). The VBA code of the FunctionArray() routine is given
by Code 6.5. Accordingly, bond data are read off row-by-row from the
spreadsheet with the use of the OFFSET function relative to the header

FIGURE 6.3 Bond data interface in the Excel spreadsheet.
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cells in the eighth row. The VBA code of the main CalZeroRates() routine
is given by Code 6.6. It can be invoked through the ‘‘Calculate Zero Rates’’
button in Excel. The total number of bonds in the data and the designated
precision of the search are read off from the named cells B4(nbond) and E4
(prec), respectively. Initial values of the zero rates are defined based on the
shortest zero-coupon bond inserted at one row offset from the header row.
Upon exiting from the Newton–Raphson procedure, the returned zero rates
are outputted into the spreadsheet underneath the header ‘‘Zero Rate’’ and
adjacent to the corresponding terms to maturity. As reference, the precision
flag and the maximum deviation of the search are also outputted into cells
E5 and E6, respectively.

As reference, it is useful to generate a smooth yield curve and display in
the spreadsheet the zero rates for intermediate values of the maturity term.
This can be done by calling the CubicSpline() routine with the bootstrapped
zero rates from CalZeroRates() as knot values. The VBA code of the
GenYieldCurve() routine that performs this task is given by Code 6.7.
It can be invoked through the ‘‘Generate Yield Curve’’ button in Excel.
Bootstrapped zero rates and the corresponding terms to maturity are
inputted into VBA through row offset from the header cells B8 and A8,
respectively. They are taken as knots for the CubicSpline() routine in order
to generate the cubic spline approximation of the yield curve. As shown in
Figure 6.4, we have defined in the named cell E23(npoint) the number of
internal points between any two adjacent knots Ti and Tiþ1. Subsequent
values of the maturity term from the left to right ends are defined through
the double-loop with labels i and j as:

term ¼ Ti þ j� (Tiþ1 � Ti)=(npoint þ 1); where i ¼ 1; . . . ; n� 1

and j ¼ 0; . . . ; npoint:

FIGURE 6.4 Constructed yield curve in an Excel spreadsheet.
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In this way, a smooth yield can be generated using the interpolated value
fi(term) and outputted into the spreadsheet underneath the header cells
A24 and B24. It should be noted that the right-end knot at Tn has not been
covered by the double loop. For completeness, it has been appended to the
yield curve at the end of Code 6.7.

FunctionArray( n , r(1 : n) , g(1 : n) )

# input bond data from Excel

Read terms to maturity { T1, T2, . . . , Tn } as array T(1 : n)

Read bond prices { B1, B2, . . . , Bn } as array B(1 : n)

Read face values { L1, L2, . . . , Ln } as array L(1 : n)

Read coupon payments { c1 = 0, c2, . . . , cn } as array C(1 : n)

Read number of coupon for each bond{m1 = 0 ,m2 , . . . ,mn } as arraym(1 : n)

Read coupon payment schedule { { t21, t22, . . . }, . . . , { tn1, tn2, . . . } } as array tc(1 : n , 1 : Max(m) )

# generate the cubic spline given knot values rs at Ts

Call CubicSpline( n , T(1 : n) , r(1 : n) , a(1 : n � 1) , b(1 : n � 1) , c(1 : n � 1) , d(1 : n � 1) )

# interpolate the discount rates rc at all coupon payments tc according to (6.10)

For( i = 2 to n ) {

ptr = 1

For( j = 1 tom(i) ) {

t = tc(i , j)

If( j t � T(1) j � e ) { rc(i , j ) = r(1) , Next j }
For( k = ptr to i � 1 ) { If( T(k) < t � T(k + 1) ) Then

rc(i , j) = a(k) + b(k) t + c(k) t
2 + d(k) t3

ptr = k

Next j

Endif }

}

}

# calculate the NPV errors g according to (6.9)

For( i = 1 to n ) { g(i) = B(i) � L(i) e�r(i) T(i)

For( j = 1 tom(i) ) { g(i) = g(i) � C(i) e�rc(i , j) tc(i , j) }
}

Code 6.3: Pseudo code of the FunctionArray() routine.

CalZeroRates( )

# input from EXCEL number of unknown zero rates

Read n

# input from EXCEL the designated precision limit of the numerical search

Read prec

# input from EXCEL data on the shortest zero-coupon bond and initiate the search according to (6.11)

Read T1, B1, and L1
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rinit = � (1/T1) ln(B1 / L1)
For( i = 1 to n ) { r(i) = rinit }

# perform the numerical search for the zero rates using Newton-Raphson procedure

Call NewtonRaphson( n , prec , r(1 : n) , precflag ,maxdev )

# output to EXCEL the returned zero rates, precision flag, and maximum deviation

Write r(1 : n), precflag, andmaxdev

Code 6.4: Pseudo code of the CalZeroRates() routine.

Option Explicit
Private Const eps = 1 * 10 ^ -14
Private Const mmax = 100

Sub FunctionArray(n As Integer, rzero() As Double, ByRef g() As Double)

Dim T() As Double: ReDim T(1 To n)
Dim Bprice() As Double: ReDim Bprice(1 To n)
Dim par() As Double: ReDim par(1 To n)
Dim coupon() As Double: ReDim coupon(1 To n)
Dim m() As Integer: ReDim m(1 To n)
Dim tc() As Double: ReDim tc(1 To n, 1 To mmax)
Dim rc() As Double: ReDim rc(1 To n, 1 To mmax)

Dim i As Integer, j As Integer, k As Integer, ptr As Integer
Dim tau As Double
Dim a() As Double: ReDim a(1 To n - 1)
Dim b() As Double: ReDim b(1 To n - 1)
Dim c() As Double: ReDim c(1 To n - 1)
Dim d() As Double: ReDim d(1 To n - 1)

'input bond data
For i = 1 To n
T(i) = Range("A8").Offset(i, 0)
Bprice(i) = Range("C8").Offset(i, 0)
par(i) = Range("D8").Offset(i, 0)
coupon(i) = Range("E8").Offset(i, 0)
m(i) = Range("F8").Offset(i, 0)
For j = 1 To m(i)
tc(i, j) = Range("G8").Offset(i, j - 1)

Next j
Next i

'generate the cubic spline
Call CubicSpline(n, T, rzero, a, b, c, d)

'interpolate the coupon discount rates
For i = 2 To n
ptr = 1
For j = 1 To m(i)
tau = tc(i, j)
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If (Abs(tau - T(1)) <= eps) Then
rc(i, j) = rzero(1)
GoTo nextj

End If
For k = ptr To i - 1
If (tau > T(k) And tau <= T(k + 1)) Then
rc(i, j) = a(k) + b(k) * tau + c(k) * tau ^ 2 + d(k) * tau ^ 3
ptr = k
GoTo nextj

End If
Next k

nextj: Next j
Next i

'calculate the NPV errors
For i = 1 To n
g(i) = Bprice(i) - par(i) * Exp(-rzero(i) * T(i))
For j = 1 To m(i)
g(i) = g(i) - coupon(i) * Exp(-rc(i, j) * tc(i, j))

Next j
Next i

End Sub

Code 6.5: VBA code of the FunctionArray() routine.

Sub CalZeroRates()
Dim n As Integer: n = Range("nbond").Value
Dim prec As Double: prec = Range("prec").Value

Dim TAs Double: T = Range("A8").Offset(1, 0)
Dim Bprice As Double: Bprice = Range("C8").Offset(1, 0)
Dim par As Double: par = Range("D8").Offset(1, 0)
Dim rinit As Double: rinit = -(1 / T) * Log(Bprice / par)

Dim i As Integer
Dim rzero() As Double: ReDim rzero(1 To n)
Dim precFlag As Boolean
Dim maxDev As Double

For i = 1 To n: rzero(i) = rinit: Next i

Call NewtonRaphson(n, prec, rzero, precFlag, maxDev)

For i = 1 To n: Range("B8").Offset(i, 0) = rzero(i): Next i
Range("E5").Value = precFlag
Range("E6").Value = maxDev

End Sub

Code 6.6: VBA code of the CalZeroRates() routine.
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Sub GenYieldCurve()
Dim n As Integer: n = Range("nbond").Value
Dim T() As Double: ReDim T(1 To n)
Dim rzero() As Double: ReDim rzero(1 To n)
Dim i As Integer, j As Integer, k As Integer

Dim a() As Double: ReDim a(1 To n - 1)
Dim b() As Double: ReDim b(1 To n - 1)
Dim c() As Double: ReDim c(1 To n - 1)
Dim d() As Double: ReDim d(1 To n - 1)

For i = 1 To n
T(i) = Range("A8").Offset(i, 0)
rzero(i) = Range("B8").Offset(i, 0)

Next i

Call CubicSpline(n, T, rzero, a, b, c, d)

Dim npoint As Integer: npoint = Range("npoint").Value
Dim term As Double

Range("A25:B200").ClearContents

k = 0
For i = 1 To n - 1
For j = 0 To npoint
k = k + 1
term = T(i) + j * (T(i + 1) - T(i)) / (npoint + 1)
Range("A24").Offset(k, 0) = term
Range("B24").Offset(k, 0) = a(i) + b(i) * term + c(i) * term ^ 2 + d(i) * term ^ 3

Next j
Next i

Range("A24").Offset(k + 1, 0) = T(n)
Range("B24").Offset(k + 1, 0) = rzero(n)

End Sub

Code 6.7: VBA code of the GenYieldCurve() routine.

REV I EW QUEST I ON

1. Develop a VBA routine that generates the implied volatility surface, with
respect to option strike price K and maturity term T, based on the market prices
of plain vanilla call options written on the same asset as

c(K1; T1); c(K2; T1); . . . ; c(Km; T1)
c(K1; T2); c(K2; T2); . . . ; c(Km; T2)

..

.

c(K1; Tn); c(K2;Tn); . . . ; c(Km; Tn);
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n – Number of available option maturity terms

m – Number of available option strike prices

As discussed in Example 5.2, the plain vanilla call option prices can be
converted into a set of implied volatilities s(Ki, Tj) utilizing the Black–Scholes
pricing formula with current asset price S0 and risk-free interest rate r. In
practice, the implied volatility surface is parameterized as

s(K; T) ¼ b0(T)þ b1(T)
Xffiffiffiffi
T

p
� �

þ b2(T)
Xffiffiffiffi
T

p
� �2

;

X ¼ ln
K

S0erT

� �
called moneyness

with coefficients b0(T), b1(T), and b2(T) depending on the maturity term. For
each of the maturity term {T1, T2, . . . , Tn}, the volatility skew (s versus K) can
be obtained by least-square fitting of the coefficients b0(T), b1(T), and b2(T) to
the implied volatilities in the data. Using then the contours of volatility skew,
the volatility term structure (s versus T) for arbitrary strike K can be obtained
through cubic spline interpolation. In this way, it is possible to estimate the in-
terpolated value of implied volatility s(K, T) for any strike and maturity within
K1 � K � Km and T1 � T � Tn, respectively.

ENDNOTES

1. R. Deaves and M. Parlar, ‘‘A Generalized Bootstrap Method to Determine the
Yield Curve,’’ Applied Mathematical Finance 7, No. 4 (2000): 257–270.

2. Refer to yield_curve.xls.
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CHAPTER 7
Binomial Option Pricing Model

7 .1 R I SK -N EUTRAL OPT I ON PR I C ING AND THE
B INOM IA L TRE E

Options are financial instruments that convey the right, but not the obliga-
tion, to enter into a future transaction written on an underlying asset. In the
stochastic model, asset price return during the time increment from t to
t þ Dt is assumed to follow a random normal process as:

DSt=St ¼ e(mDt; s
ffiffiffiffiffi
Dt

p
) ð7:1Þ

where m and s are the mean rate and volatility of return respectively. For
constant and flat interest rate r, the current price of an option written on
this asset can be defined based on the present value of its average maturity
payoff at time T as:1

f 0 ¼ e�rT Ê(f T jS0): ð7:2Þ

In (7.2), we are averaging over all realized maturity payoffs of the option fT
in respect to sample asset prices generated through the so-called risk-neutral
process related to (7.1). The option price f0 is said to be evaluated at the
current asset price S0 that initiates the risk-neutral process. Equation (7.2)
is referred to as the risk-neutral option pricing that is proven to be equiva-
lent to the Black–Scholes differential equation. For a traded underlying
asset such as stock, it can be shown that the risk-neutral process is simply
given by (7.1) with the replacement of the mean rate m by the interest rate r.
The risk-neutral average in (7.2) can only be calculated analytically for
options with a simple structure. In general, the calculation would be highly
intense for options with an exotic exercising condition.

In Figure 7.1(a), the risk-neutral process of the asset price starts from S0
and ends with ST at the option’s maturity. The k-th statistical moment of the
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maturity price under the risk-neutral process is given by:

Ê(SkT) ¼ Sk0 e
krT þ 1

2k(k�1)s2T : ð7:3Þ

In the binomial model, we can simplify the calculation of the risk-neutral
average in (7.2) by adopting a binomial representation for the price
movement in Figure 7.1(a). The simplest model is the one-step binomial
tree initiated from S0 with either an up or down scenario for the maturity
price as shown in Figure 7.1(b). In general, it requires three factors in the
parameterization: the branching probability p, the up factor u, and the
down factor d. They can be determined by matching the statistical moments
of the maturity price in (7.4) such that the binomial step will mimic the
leading statistical properties of a full stochastic description.

p(uS0)
k þ (1� p)(dS0)

k ¼ Sk0 e
krT þ 1

2k(k�1)s2T : ð7:4Þ

In this way, the risk-neutral average in (7.2) can be estimated to be:

Ê(f T) ¼ p f (uS0;T)þ (1� p) f (dS0;T): ð7:5Þ

It should be noted that the risk-neutral process itself is parameterized by
only two factors, r and s, in the stochastic model. It is therefore not admis-
sible to find three factors { p, u, d } that satisfy the matching condition (7.4)
simultaneously for k equals 1, 2, and 3.

In Cox–Ross–Rubinstein parameterization,2 we instead define the
binomial tree in Figure 7.1(b) with two factors { p, u, d = 1/u } and
match (7.4) simultaneously for the first two moments. This gives:

p ¼ erT � (1=u)

u� (1=u)
ð7:6Þ

FIGURE 7.1 (a) The risk-neutral process of an asset price, and (b) its one-step
binomial tree representation.
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u ¼ 1

2
(e�rT þ e(rþs

2)T)þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(e�rT þ e(rþs2)T)2 � 4

q
: ð7:7Þ

For the higher-order moments (k � 3) in (7.4), it can be shown that the
discrepancies are always in the second order of the stochastic factors rT and
s2T using the parameters p and u as defined above.3 Thus, the error
involved in the estimation in (7.5) will be insignificant if both the sizes of rT
and s2T are small compared with one. Alternatively, in a more symmetric
parameterization by Jarrow and Rudd4 defined as p ¼ 1

2 ; u;d
� �

, the bino-
mial factors are calculated in the same way to be:

u ¼ erT(1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es2T � 1

p
) ð7:8Þ

d ¼ erT(1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es2T � 1

p
): ð7:9Þ

In this case, the discrepancies for the higher-order moments are shown5 to
be only in the second order of the factor s2T.

To improve accuracy, and especially when there are intermediate bound-
ary conditions for the option, it is essential to extend the binomial model into
multiple steps of n with equal time intervals of Dt = T/n as depicted in Figure
7.2(a). Consider the particular subtree in Figure 7.2(b) that goes from time t
to t þ Dt with the initial asset price of St. Here, the binomial factors can be
determined by matching the statistical moments of the end price St þ Dt under
the risk-neutral process and conditional to the initial price as:

p(uSt)
k þ (1� p)(dSt)

k ¼ Skt e
krDt þ 1

2k(k�1)s2Dt: ð7:10Þ

It is obvious from (7.10) that the factors are determined to be independent
of the initial price. For constant volatility of return, they are also considered

FIGURE 7.2 (a) A multiple-step binomial tree of an asset price. (b) A one-step
subtree from time t to t þ Dt with initial asset price St.
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to be universal for every subtree in the multiple-step representation. In
Cox–Ross–Rubinstein or Jarrow-Rudd parameterization, the binomial
factors are given by equations (7.6) to (7.9) with time interval T replaced by
Dt. The discrepancies in higher-order moments are now in the second order
of the smaller quantities rDt and s2Dt.

For an n-step binomial model, there are 2n ways of how S0 will evolve
into the maturity price and pick up a certain sequence of u and d factors
along the tree. To evaluate the risk-neutral average in (7.2), we need to
keep track of the option’s payoff for each of these scenarios in respect to the
exercising conditions. This renders the calculation to be highly inefficient
for very large n. Since the u and d factors are universal for every subtree,
tree nodes are recombining in the way that an up movement followed by a
down will have the same asset price as in its reverse order. As shown in
Figure 7.3, this makes the number of end nodes to grow in the way as n þ 1,
and the total number of nodes for the entire n-step tree is manageable at
1
2 (nþ 1)(nþ 2), a lot less than the scenarios.

At time t ¼ iDt, there are i þ 1 nodes from the top to bottom of the
tree with asset prices defined to be Sij ¼ ui�jdjS0 where j runs from 0 to i.
The j-th node is connected to both the j-th and (j þ 1)-th nodes at a later
time t þ Dt through a subtree. It is then efficient instead to consider an itera-
tive form of risk-neutral pricing with respect to all these subtrees as:

f (Sij; t) ¼ e�rDt[ pf (Siþ1j; t þ Dt)þ (1� p) f (Siþ1jþ1; t þ Dt)]; j ¼ 0; . . . ; i:

ð7:11Þ

Equation (7.11) allows us to generate the option prices at time t based on
the option prices at later time t þ Dt. At option maturity T ¼ nDt, there are
nþ 1 nodes with asset prices Snj¼ un�jdjS0 where j runs from 0 to n. We can
start the iteration from the maturity payoffs c(ST) of the option and work
backward in time toward its current value f(S0, 0). For exotic options with
intermediate boundary conditions, we need to adjust the risk-neutral

FIGURE 7.3 A multiple-step binomial tree with recombining nodes.
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pricings in (7.11) according to the boundary conditions before the next iter-
ation to an earlier time. For example, an American style option can be exer-
cised at any time prior to its maturity based on the same payoff function
c(Sij). We should therefore compare each f(Sij, t) in (7.11) with its intrinsic
value and perform the update according to the early exercising condition as:

f (Sij; t) ¼ maxff (Sij; t); c(Sij)g: ð7:12Þ

7 .2 VBA IMPL EMENTAT I ON

The iteration of option prices in (7.11) can be implemented very easily in
VBA. We first develop a routine called GenOptionTree() that performs the
iteration and generates the option prices at every node in the binomial tree.
The pseudo code of GenOptionTree() is given by Code 7.1. It requires the
input of option parameters (T, K, S0, r, s) and the tree configuration (n,
treetype), where treetype specifies the use of Cox—Ross—Rubinstein or
Jarrow-Rudd parameterization. The routine returns the array of iterated
option prices fij ¼ f(Sij, iDt) as well as the array of asset prices Sij at every
tree node with time label i running from 0 to n and node label j running
from 0 to i. The iteration starts from the maturity payoffs of the option at
end nodes with i ¼ n. The payoff condition is defined through an external
function payoff(K, S) with strike price K. It works backward in time from
i ¼ n � 1 to i ¼ 0 and applies (7.11) to the subtree of every node in each
column. Intermediate boundary conditions are defined using the routine
Boundary(K, S, f) that updates the iterated option price immediately after
its risk-neutral generation. The VBA code of GenOptionTree() is given by
Code 7.2 together with the Payoff() function and Boundary() routine
defined specifically for American put options according to (7.12).

Figure 7.4 depicts the spreadsheet design for this VBA implementation.6

The button labeled ‘‘Binomial Pricing’’ will trigger the main VBA routine
called BinomialPricing() with VBA code given by Code 7.3. The option
parameters and tree configuration are inputted into this routine through the
named cells B4(maturity), B5(strike), B6(assetprice), B7(riskfree), B8
(sigma), B10(treetype), and B11(n). It will call GenOptionTree() for the
price arrays and the resulting option price of f00 will be outputted to cell
B14. The entire option tree will be displayed in the spreadsheet by choosing
‘‘Yes’’ in cell B12. As a reference, the corresponding asset prices will also be
displayed adjacent to the option prices. This can be done by running over
both the time and node labels for the price arrays, and allocating cells
through row and column offsets from the reference cell B17 for j and i,
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respectively. To display the option and asset prices in alternative columns,
we have adopted even column offset 2i for option prices and odd column
offset 2i þ 1 for asset prices. The corresponding forward time on the tree
will also be displayed along the header row using even column offset from
B17. It should be noted that there are all together 255 columns in this
spreadsheet. The number of time steps in B11 should be fewer than 127
when we choose ‘‘Yes’’ in cell B12. It is then necessary to impose a valida-
tion check for the cell B11 as:

= IF(AND(B12 = "Yes", B11 > = 127), FALSE, TRUE)

under Data, Validation, and Settings with Allow chosen to be Custom and
to apply the above condition in Formula.

GenOptionTree( T , K , S0 , r, s , n , treetype , S(0 : n , 0 : n) , f(0 : n , 0 : n) )

# define the size of the time interval

Dt = T/n

# define the tree factors in Cox–Ross–Rubinstein or Jarrow–Rudd parameterization

If( treetype = "Cox–Ross–Rubinstein'' ) then

u ¼ 1
2
(e�rDt þ e(rþs

2)=Dt)þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(e�rDt þ e(rþs2)Dt)2 � 4

q
; d ¼ 1=u;

p ¼ (erDt � 1=u)=(u� 1=u)

Elseif( treetype = "Jarrow–Rudd") then

u ¼ erDt(1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es2Dt � 1

p
); d ¼ erDt (1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
es2Dt � 1

p
); p ¼ 1

2

Endif

FIGURE 7.4 Spreadsheet design of binomial option pricing.
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# setting up the maturity payoffs of the option

For( j = 0 to n ){ S( n , j ) = un � jd j S0
f( n , j ) = Payoff( K , S( n , j ) ) }

# iterate the option price backward in time and update according to intermediate boundary
condition

For( i = n � 1 to 0 ){

For( j = 0 to i ){ S( i , j ) = ui � jd j S0

f( i , j ) = e�rDt [ pf( i + 1 , j) + (1 � p) f( i + 1 , j + 1 ) ]

Call Boundary( K,S( i , j ) , f( i , j ) ) } }

Code 7.1: Pseudo code of the GenOptionTree() routine.

Sub GenOptionTree(maturity As Double, strike As Double, assetPrice As Double, riskFree As
Double, sigma As Double, n As Integer, treetype As Variant, ByRef STree()
As Double, ByRef fTree() As Double)

Dim St As Double, ft As Double
Dim u As Double, d As Double, p As Double
Dim i As Integer, j As Integer
Dim dtime As Double: dtime = maturity / n

If (treetype = "Cox-Ross-Rubinstein") Then
u = 0.5 * (Exp(-riskFree * dtime) + Exp((riskFree + sigma ^ 2) * dtime)) _
+ 0.5 * Sqr((Exp(-riskFree * dtime) + Exp((riskFree + sigma ^ 2) * dtime)) ^ 2 - 4)

d = 1 / u
p = (Exp(riskFree * dtime) - 1 / u) / (u - 1 / u)

ElseIf (treetype = "Jarrow-Rudd") Then
u = Exp(riskFree * dtime) * (1 + Sqr(Exp(sigma ^ 2 * dtime) - 1))
d = Exp(riskFree * dtime) * (1 - Sqr(Exp(sigma ^ 2 * dtime) - 1))
p = 0.5

End If

For j = 0 To n
St = u ^ (n - j) * d ^ (j) * assetPrice
STree(n, j) = St
fTree(n, j) = Payoff(strike, St)

Next j

For i = n - 1 To 0 Step -1
For j = 0 To i
St = u ^ (i - j) * d ^ (j) * assetPrice
STree(i, j) = St
ft = Exp(-riskFree * dtime) * (p * fTree(i + 1, j) + (1 - p) * fTree(i + 1, j + 1))
Call Boundary(strike, St, ft)
fTree(i, j) = ft
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Next j
Next i
End Sub
_________________________________________________________________________

Function Payoff(strike As Double, assetPrice As Double) As Double
Payoff = Max(strike - assetPrice, 0)

End Function
_________________________________________________________________________

Sub Boundary(strike As Double, assetPrice As Double, optionPrice As Double)
optionPrice = Max(optionPrice, Payoff(strike, assetPrice))

End Sub
_________________________________________________________________________

Function Max(x As Double, y As Double) As Double
If x > y Then Max = x Else Max = y

End Function

Code 7.2: VBA code of the GenOptionTree() routine together with the
Payoff() function and Boundary() routine defined for an American
put option.

Sub BinomialPricing()
Dim maturity As Double: maturity = Range("maturity").Value
Dim strike As Double: strike = Range("strike").Value
Dim riskFree As Double: riskFree = Range("riskFree").Value
Dim sigma As Double: sigma = Range("sigma").Value
Dim assetPrice As Double: assetPrice = Range("assetPrice").Value
Dim n As Integer: n = Range("n").Value
Dim treetype As Variant: treetype = Range("treetype").Text
Dim fTree() As Double: ReDim fTree(0 To n, 0 To n)
Dim STree() As Double: ReDim STree(0 To n, 0 To n)
Dim i As Integer

Call GenOptionTree(maturity, strike, assetPrice, riskFree, sigma, n, treetype, STree, fTree)
Range("B14").Value = fTree(0, 0)

Range("B17:IV144").ClearContents

If (Range("B12").Text = "Yes") Then
For i = 0 To n
Range("B17").Offset(0, 2 * i) = i * (maturity / n)
For j = 0 To i
Range("B17").Offset(j + 1, 2 * i) = fTree(i, j)
Range("B17").Offset(j + 1, 2 * i + 1) = STree(i, j)

Next j
Next i

End If
End Sub

Code 7.3: VBA code of the main BinomialPricing() routine.
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REV I EW QUEST I ONS

1. Modify the GenOptionTree() routine to price a European-style double barrier
knock-out call option written on equity with maturity payoff at time T given by

f T ¼ maxfST � K; 0g; forU > ST > L:

It should be noted that there are substantial errors coming from the location of
the two knock-out conditions on a binomial lattice. The convergence is very
slow and a large number of time steps are required to obtain a reasonably accu-
rate result.

2. Modify the GenOptionTree() routine to price a one-touch option written on
equity. For predetermined upper barrier L above the current asset price S0, the
option gives an agreed upon payout P at hit if the underlying asset reaches or
surpasses the barrier level during the life of the option. If the barrier level is not
breached prior to expiration at T, the option expires worthless.

3. Modify the GenOptionTree() routine to price an accumulator option written on
equity. With accumulator, investor agrees to buy a certain amount N of a stock
at a fixed price K over a regular intervals (or settlement dates T1, T2, . . . ,
Tn ¼ T) for a period T. There is a knock out price L greater than K that termi-
nates the accumulator contract.

ENDNOTES

1. Denotes option price ft ¼ f(St, t) at time t. Using Ito’s lemma it can be shown
that e�rtft is a martingale under risk-neutral preference. This gives e�rtft ¼
Ê(e�rsfsjSt) for s > t, and the conditional expectation is evaluated based on the
risk-neutral process of the underlying asset price starting off from St.

2. J. Cox, S. Ross, and M. Rubinstein, ‘‘Option Pricing: A Simplified Approach,’’
Journal of Financial Economics 7, no. 3 (1979): 229-263.

3. In the first order of rT and s2T, it can be shown using (7.6) and (7.7) that:

L(k) ¼ [uk � (1 /u)k]=[u � (1 /u)] ffi k þ (1/6)k(k � 1)(k þ 1) s2T.

This gives

p(u)k þ (1 � p)(1/u)k ¼ erTL(k) � L(k � 1) ffi 1 þ krT þ 1
2k(k � 1)s2T.

4. R.A. Jarrow and A. Rudd, ‘‘Option Pricing,’’ (Homewood, Illinois: Richard D.
Irwin, 1983).

5. In this case, we have p(u)k þ (1� p)(d)k ¼ 1
2 (u

k þ dk) and it is easy to show that
uk þ dk ffi ekrT (2 þ k(k � 1)s2T) in the first order of s2T using (7.8) and (7.9).

6. Refer to binomialtree_ap.xls.
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CHAPTER 8
The Black–Derman–Toy Model

8 .1 THE T ERM STRUCTURE MODEL AND
THE BLACK–DERMAN–TOY TRE E

Analogous to stock options, interest rate derivatives depend on their under-
lying asset, which is generally the interest rate. The behavior of interest rates
for all maturity terms will thus play a crucial role in the corresponding pric-
ing scheme. In a one-factor term structure model, there is only one under-
lying process known as the instantaneous short rate rt that defines the
interest rate at any time t for a very short borrowing term. In this model,
the time evolution of the entire yield curve will solely be driven by the
behavior of this short-term interest rate. Derivatives can be priced in
accordance with the short-rate process under a risk-neutral preference as:

f 0 ¼ Ê(e
�
R T

0
rtdtf T jr0) ð8:1Þ

with a discount factor that cumulates over a generated interest rate path
with current value r0. The option payoff fT in (8.1) is evaluated according
to the realized rate at its maturity. The modern approach to the modeling of
stochastic short rate started with the early equilibrium model by Vasicek1

and evolved into the rigorous no-arbitrage formulation by Heath, Jarrow,
and Morton.2 For numerical pricing of options, however, it is sufficient to
have a discrete tree-type model for the risk-neutral short rate that exactly
matches the current yield curve and its stochastic properties. In this connec-
tion, Black, Derman, and Toy3 (BDT) have developed a simple binomial
model that can be calibrated to fit the current term structures of zero-
coupon bond prices and volatilities.

The BDT model has adopted a recombining binomial lattice for
the risk-neutral short rate with discrete time interval Dt as shown in
Figure 8.1(a).

95

Professional Financial Computing Using Excel and VBA
by Humphrey K. K. Tung, Donny C. F. Lai, Michael C. S. Wong and Stephen NG

Copyright © 2010 John Wiley & Sons (Asia) Pte. Ltd.



At time t ¼ iDt, there are iþ1 nodes from the top to bottom of the tree with
short rates defined to be rij where j runs from 0 to i. They represent the
annualized one-period interest rates for the shortest borrowing term of Dt
from time t to tþDt. The BDT tree follows the Jarrow and Rudd parameter-
ization with symmetric branching probabilities of p ¼ 1

2. In general, the up
and down factors will depend on time and the corresponding value of the
short rate. If we assume a non-stochastic structure for the short-rate volatil-
ity, it can be shown that its ratio will only depend on time, and the entire
column of short rates at time step i can be parameterized by two factors as:4

rij ¼ ai(bi)
j: ð8:2Þ

The BDT tree provides a tool for evaluating the risk-neutral pricing of inter-
est rate options as given by (8.1). Consider the one-step subtree as depicted
in Figure 8.1(b), the risk-neutral pricing in (8.1) can be written as:

f ij ¼ e�rijDt 1
2 f iþ1 j þ 1

2 f iþ1 jþ1Þ
	

ð8:3Þ

where e�rijDt is the discount factor that cumulates over the one-step interest
rate path with realized rate rij. The current price of the option f00 can be
determined by iterating (8.3) backward in time starting from its maturity
payoff c(rT) and along a tree with a longer time horizon.

A short-rate tree with time interval Dt and horizon Ttree ¼ NtreeDt,
can be constructed by calibrating the current term structures of zero-
coupon bond prices {P0(t1), P0(t2), . . . , P0(tNtreeþ1)} and their volatilities
{s0(t2), . . . , s0(tNtreeþ1)}. The maturity terms of the bonds must coincide
with the time structure of the tree for which tm = mDt. The size of Dt
must be kept very small so as to improve the accuracy and to cope with the
intermediate boundary condition for the option. In this respect, the current

FIGURE 8.1 (a) A BDT binomial model with recombining tree nodes. (b) The risk-
neutral pricing of an option along a BDT subtree.
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term structures with arbitrary time intervals can be constructed through
cubic spline interpolation as discussed in an earlier chapter. Practically, the
size of Dt can be taken as the shortest maturity term available in market
bond data in order to maximize precision. For a zero-coupon bond that
matures at time tm, the forward bond price Pij(tm) at previous tree node
(i, j) should satisfy the risk-neutral pricing in (8.3) for the subtree as:

Pij(tm) ¼ e�rijDt 1
2Piþ1 j(tm)þ 1

2 Piþ1 jþ1(tm)
� �

: ð8:4Þ

The current bond price and its volatility can be determined by iterating (8.4)
backward in time starting from its maturity at time tm with Pmj(tm) ¼ $1
for the entire column of tree nodes. The short-rate tree should generate the
values consistent with the market term structures such that5:

P0(tm) ¼ P00(tm) ð8:5Þ

s0(tm) ¼ 1

2
ffiffiffiffiffi
Dt

p ln
P11(tm)

P10(tm)

� �
; m � 2: ð8:6Þ

It is clear that the current short rate r00 ¼ a0 at time step i ¼ 0 can be
fixed by calibrating P00(t1) from (8.4) with P0(t1) as in (8.5). This gives:

a0 ¼ � 1

Dt
lnP0(t1): ð8:7Þ

Knowing r00, the two short rates r10 ¼ a1 and r11 ¼ a1b1 at time step i ¼ 1
can be fixed by calibrating P00(t2), P10(t2), and P11(t2) from (8.4) with
P0(t2) and s0(t2), as in (8.5) and (8.6), respectively. This can be achieved by
implementing the Newton–Raphson procedure for {a1, b1} taking {a0, b0 =
0.5} as their trial values. In (8.2), short rates at time step i are parameterized
by only two factors given by rij ¼ ai (bi)

j. Similarly, they can be fixed by
calibrating P00(tiþ1), P10(tiþ1), and P11(tiþ1) from (8.4) with P0(tiþ1) and
s0(tiþ1) knowing all previous short rates on the tree. In this way, the tree
can be constructed through forward induction in time that subsequently
matches current bond prices and volatilities with longer maturity terms.
A short-rate tree with horizon Ttree ¼ NtreeDt would require market
term structures with maturities {t1, t2, . . . , tNtreeþ1} as input. The factors
{ai, bi } at each stage can be calibrated utilizing the Newton–Raphson
procedure with trial values {ai�1, bi�1} taken from the preceding time step.

A BDT tree can easily be applied to price interest rate derivatives based
on the risk-neutral pricing in (8.3). For example, consider a European call
option with strike price K and maturity T written on a coupon-bearing
bond that matures at later time t. The bond has a face value of Lpar and
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pays regular coupons of value C under the time schedule {s1, s2, . . . , snc
}.

In this case, we need to construct a BDT tree with a time horizon that
covers the entire life of the underlying bond. To maximize the accuracy of
the pricing, the chosen size of the time interval Dt must be very close to the
shortest maturity term of the bond data, while the BDT tree could also
reach t with discrete time steps. Market term structures with maturities
that coincide with such time increments can be constructed through cubic
spline interpolation. Strictly speaking, the BDT tree should be constructed
up to one time step prior to the maturity of the underlying bond. The total
time horizon is thus given by Ttree ¼ t�Dt with Ntree ¼ (t/Dt)� 1 steps.
For simplicity, suppose the option matures at time step H on the tree for
which T ¼ HDt. The maturity payoff of the option c(rHj

) is evaluated
according to the realized forward price of the underlying bond on the tree
node (H, j) as:

fHj
¼ maxfK� BHj (t); 0g; j ¼ 0; 1; . . . ;H: ð8:8Þ

The forward bond prices in (8.8) can be determined by iterating (8.3) for the
underlying bond that utilizes the BDT tree. The iteration starts off from the
bond’s maturity at time step Ntree with face value Lpar and works backward
to the option’s maturity at time step H. The coupon payments can be
considered an adjustment to the risk-neutral pricing in (8.3) with respect to
the intermediate boundary condition as:

Bij(t)þ ri(s1; s2; . . . ; snc )C: ð8:9Þ

The term ri(s1, s2, . . . , snc
) in (8.9) counts the total number of coupons

being paid during the time interval (i� 1
2 )Dt < t � (iþ 1

2 )Dt. Thus, the option
payoffs on different tree nodes can readily be evaluated, and the current price
of the option f00 can be determined by iterating (8.3) backward again for the
option from time stepH to 0.

8 .2 EXCE L PLUS VBA IMPLEMENTAT I ON

We first develop a routine called GenBDTTree() that generates the BDT
short-rate tree given current term structures of zero-coupon bond prices
and their volatilities. The pseudo code of GenBDTTree() is given by Code
8.1. It requires the input of tree configuration (Ttree, Ntree) and the market
term structures with maturities {t1, t2, . . . , tNtree +1}. The routine returns
the array of short rates rij at every node of the BDT tree with time label i
runs from 0 to Ntree and node label j runs from 0 to i. In GenBDTTree(),
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the time interval of the tree is defined to be Dt ¼ Ttree/Ntree. Together with
the input market term structures, they are kept as common data at the mod-
ule scope that can be accessed by other routines within the module. The
routine will generate the factors a and b for each column of short rates
through forward-time induction regulated by the time pointer iptr. The
addressed aiptr and biptr are determined based on their results at preceding
time steps from 0 to iptr�1. It is also convenient to declare iptr, a, and b as
module-level variables rather than passing their updated values through
subroutine arguments.

The starting value a0 is defined in (8.7) and we arbitrarily choose b0 to
be the mid-value 0.5. To generate the entire BDT tree, the time pointer iptr
would be required to run from 1 to Ntree. At each iptr, the tree has presum-
ably been constructed up to time step iptr�1. The factors aiptr and biptr are
determined by calling a two-dimensional Newton–Raphson procedure as
discussed in Chapter 5. It will solve for x(1) and x(2), setting as aiptr and
biptr respectively, such that the discrepancies in (8.5) and (8.6) for maturity
term tiptrþ1 are both acceptable under the specified precision prec. The trial
values of x(1) and x(2) in the numerical search are taken to be the results at
the preceding time step. The discrepancies, namely g(1) and g(2), are calcu-
lated through an external routine Functionarray() that iterates all forward
bond prices using (8.4) with maturity values of $1 at iptrþ1 and utilizes the
trial values at iptr together with the results in previous time steps. Here,
the values of P0(tiptrþ1) and s0(tiptrþ1) on the market term structures as well
as the resulting a and b in previous time steps can readily be assessed by
virtue of their declaration at the module level. Finally, short rates for the
entire BDT tree can easily be generated according to (8.2) once all a and b

have been determined.
The VBA code of GenBDTTree() and Functionarray() are given by

Code 8.2. Altogether, they are kept under the module called BDTtree6

and can readily be used to price, for example, the European call option
written on a coupon-bearing bond as defined in (8.8). In this respect,
we develop a routine called GenBDTBondOptionTree() that performs
the iteration and generates the option prices along the BDT tree. The
pseudo code of GenBDTBondOptionTree() is given by Code 8.3. It
requires the input of option parameters (T, K, t, Lpar, C, nc, {s1, s2, . . . ,
snc

}) and returns the array of option prices fij as well as the short rates
rij at every tree node prior to the option maturity with time label i runs
from 0 to H and node label j runs from 0 to i. The routine first
constructs the market term structures with horizon t that match the
maturity of the underlying bond. These are done through an external
procedure called GenTermStructures() capable of generating the term
structures with maturities {t1, t2, . . . , tNterm ¼ t} where tm ¼ mDt.
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The size of the time interval Dt has been chosen according to the availa-
ble bond data as discussed previously. Recall that the BDT tree should
be constructed up to one time step prior to the maturity of the bond.
We should therefore define the tree configuration to be Ntree ¼ Nterm �
1 and Ttree ¼ t � Dt. The corresponding BDT tree of short rates can be
constructed very easily by calling the GenBDTTree() routine. It is then
straightforward to use the short rates on the tree and to generate the
forward prices of the underlying bond at option maturity with time
label H. For convenience, we should generate the bond prices for
the entire BDT tree so that the coding can be easily modified to value
exotic options with intermediate boundary conditions that depend on
forward bond prices. The forward bond prices BHj

(t) can be used to
evaluate the option payoffs fHj

at maturity, and the option prices fij at
every other tree node can be generated by iterating (8.3) backward
in time. The external function CouponCount() counts the number of
coupons being paid at each time step in the iteration and updates the
risk-neutral pricing as discussed in (8.9). In CouponCount(), we are running
through the entire payment schedule {s1, s2, . . . , snc} in backward order and
identifying those payments that appear within the specified time range from
tlow to tup . It is efficient to exit the procedure by setting exitFlag ¼ TRUE
whenever we see an unmatched payment immediately after a matched case
(when CouponCount > 0). The VBA code of GenBDTBondOptionTree() is
given by Code 8.4.

The VBA code of the GenTermStructures() routine is given by
Code 8.5. It takes zero-coupon bond prices and volatilities of available
maturities from Excel and generates the required term structures
through cubic spline interpolation. It should be noted that the specific
horizon should not exceed the longest maturity term of the market bond
data. The total number of time steps Nterm is chosen to be the nearest
multiple of the shortest market term in covering the specified horizon.
The size of the time interval defined as Dt ¼ (horizon/Nterm) will be
close to the shortest market term. In fact, it will be greater than
the shortest market term as Nterm is a truncated integer. The cubic
spline coefficients can be determined by calling the CubicSpline() routine
with market bond data. The output term structures with maturities {Dt,
2Dt, . . . , NtermDt} can then be generated by evaluating the interpolated
values using the coefficients based on a similar procedure as discussed
in Code 6.5. The routine can also generate the term structures with
additional maturities {Dt, 2Dt, . . . , (Nterm þ Na)Dt} as defined by the
integer Na in the input. However, the total horizon should remain below
the longest maturity term of the market bond data.
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Figure 8.2 depicts the spreadsheet design for this VBA implementation.
The market bond data are inputted into the GenTermStructures() routine
through the named cell B4(nbond) and the entries in rows 5, 6, and 7.
Presumably, these could be obtained utilizing the bootstrapped zero rates
from the CalZeroRates() routine as discussed in chapter 6. The button
labeled ‘‘BDT Pricing’’ will trigger the main VBA routine called BDTPricing
() with the VBA code given by Code 8.6. The option parameters are inputted
into this routine through the named cells B12(optionMaturity), B13(strike),
B14(bondMaturity), B15(par), B16(coupon), B17(nCoupon), and the entries
in row 18. It will call GenBDTBondOptionTree() for the arrays of option
prices and short rates. The current option price f00 will be outputted to cell
B20. By selecting ‘‘Yes’’ in cell E13, the entire option tree will be displayed
in the spreadsheet. As a reference, the corresponding short rates will also be
displayed adjacent to the option prices. Similar to the procedure discussed in
Code 7.3, this can be done by running over both the time and node labels,
and allocating cells through row and column offsets from the reference
cell B23. Recall that there are all together 255 columns in the spreadsheet.
The option maturity in B12 will determine the number of time steps on the
tree as displayed in E12 ¼ INT(B12/B5). It should be fewer than 127 when
we choose ‘‘Yes’’ in E13. It is then necessary to impose a validation check
for the cell B12 as:

= IF(AND(E13 = "Yes", E12 > = 127), FALSE, TRUE)

under Data, Validation, and Settings.

FIGURE 8.2 Spreadsheet design of Black–Derman–Toy option pricing.
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# define the following module-level variables
Dt , P0( 1 : Ntreemax + 1 ) , s0( 1 : Ntreemax + 1 ) , iptr , a( 0 : Ntreemax ) , b( 0 : Ntreemax )
_________________________________________________________________________

GenBDTTree( Ttree, Ntree , BondPrice( 1 : Ntree + 1 ) , BondVol( 1 : Ntree + 1 ) , r( 0 : Ntree , 0 : Ntree ) )
# define the size of the time interval
Dt = Ttree / Ntree

# assign the market term structures with maturities t1, t2, . . . , and tNtree + 1 to common arrays
For( k = 1 to Ntree + 1 ) { P0(k) = BondPrice(k) , s0(k) = BondVol(k) }

# define a0 according to (8.7) and choose b0 to be 1
2

a(0) = (�1/Dt) logP0(1) , b(0) = 0.5

# set x(1) and x(2) as a and b, respectively. Use the Newton-Raphson procedure to estimate next x(1)
# and x(2) taking the last results as trial values.
x(1) = a(0) , x(2) = b(0)
For( iptr = 1 to Ntree ) { Call NewtonRaphson( 2, prec , x(1 : 2) , precflag ,maxdev )

a( iptr ) = x(1) , b( iptr ) = x(2) }

# generate the short-rate tree from the resulting a and b according to (8.2)
For( k = 0 to Ntree ) { For( j = 0 to k ){ r( k , j ) = a(k) b(k) j } }
_______________________________________________________________________________

Functionarray( n , x(1 : n) , g(1 : n) )

# define the face values of the zero-coupon bond with maturity at ti + 1
For( j = 0 to iptr + 1 ) { Pforward( iptr + 1 , j ) ¼ 1 }

# iterate (8.4) backward in time and generate all forward bond prices on the tree using the trial values
# of ai = x(1) and bi = x(2) together with known a and b in previous time steps

For( j = 0 to iptr ) {
Pforward( iptr , j ) = e

� x(1) x(2) j Dt [ 12 Pforward( iptr + 1 , j ) + 1
2 Pforward( iptr + 1 , j + 1 ) ] }

For( k = iptr�1 to 0,�1 ) {
For( j = 0 to k ) { Pforward( k , j ) = e

�a(k)b(k) j Dt [ 12 Pforward( k + 1 , j ) + 1
2 Pforward( k + 1 , j + 1) ] }

}

# calculate the discrepancies in (8.5) and (8.6)
g(1) = P0(iptr + 1)�Pforward( 0 , 0 )

g(2) ¼ s0(iptr + 1)� 1

2
ffiffiffiffiffi
Dt

p ln
Pforward (1 ; 1)
Pforward (1 ; 0)


 �

Code 8.1: Pseudo code of the GenBDTTree() routine.

Option Explicit
Private iptr As Integer
Private dtime As Double
Private alpha(0 To nTreeMax) As Double
Private beta(0 To nTreeMax) As Double
Private P0(1 To nTreeMax + 1) As Double
Private Sigma0(1 To nTreeMax + 1) As Double
_________________________________________________________________________
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Sub GenBDTTree(Ttree As Double, Ntree As Integer, BondPrice() As Double, BondVol() As Double,
rshort() As Double)

Dim x(1 To 2) As Double, prec As Double, precFlag As Boolean, maxDev As Double
prec = 0.00000001

Dim k As Integer, j As Integer

Dim dtime As Double: dtime = Ttree / Ntree

For k = 1 To Ntree + 1
P0(k) = BondPrice(k)
Sigma0(k) = BondVol(k)

Next k

alpha(0) = -(1 / dtime) * Log(P0(1))
beta(0) = 0.5

x(1) = alpha(0)
x(2) = beta(0)

For iptr = 1 To Ntree
Call NewtonRaphson(2, prec, x, precFlag, maxDev)
alpha(iptr) = x(1)
beta(iptr) = x(2)

Next iptr

For k = 0 To Ntree
For j = 0 To k: rshort(k, j) = alpha(k) * beta(k) ^ j: Next j

Next k

End Sub
_______________________________________________________________________________

Sub FunctionArray(n As Integer, x() As Double, ByRef g() As Double)
Dim Pf(0 To nTreeMax + 1, 0 To nTreeMax + 1) As Double
Dim k As Integer, j As Integer

For j = 0 To iptr + 1: Pf(iptr + 1, j) = 1: Next j

For j = 0 To iptr
Pf(iptr, j) = Exp(-x(1) * x(2) ^ j * dtime) * (Pf(iptr + 1, j) + Pf(iptr + 1, j + 1)) / 2

Next j

For k = iptr - 1 To 0 Step -1
For j = 0 To k
Pf(k, j) = Exp(-alpha(k) * beta(k) ^ j * dtime) * (Pf(k + 1, j) + Pf(k + 1, j + 1)) / 2

Next j
Next k

g(1) = P0(iptr + 1) - Pf(0, 0)
g(2) = Sigma0(iptr + 1) - Log(Pf(1, 1) / Pf(1, 0)) / (2 * Sqr(dtime))

End Sub

Code 8.2: VBA code of the GenBDTTree() routine together with the
Functionarray() routine.
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GenBDTBondOptionTree( T , K , t , Lpar , C , nc , s( 1 : nc ) , H , r( 0 : H , 0 : H ) , f( 0 : H , 0 : H ) )

# generate the market term structures with horizon t
Call GenTermStructures( t , 0 , Nterm , Dt , BondPrice( 1 : Nterm ) , BondVol( 1 : Nterm ) )

# define BDT tree configuration
Ntree = Nterm�1 , Ttree = t�Dt

# generate the BDT tree with Ntree steps and horizon Ttree

Call GenBDTTree(Ttree , Ntree , BondPrice( 1 : Ntree + 1 ) , BondVol( 1 : Ntree + 1 ) , r( 0 : Ntree , 0 : Ntree ) )

# define the time label at option maturity
H = Int( T / Dt )

# generate the forward prices of the underlying bond

r = CouponCount( ( Ntree + 1� 1
2 )Dt , (Ntree + 1 + 1

2 )Dt , nc , s( 1 : nc ) )
For( j = 0 to Ntree + 1 ) { Bforward( Ntree + 1 , j ) = Lpar + rC }

For( i = Ntree to 0 ,�1 ) {
r = CouponCount( ( i� 1

2 )Dt , ( i +
1
2 )Dt , nc , s( 1 : nc ) )

For( j = 0 to i ) { Bforward( i , j ) = e
� r(i , j) Dt [ 12 Bforward( i + 1 , j ) + 1

2 Bforward( i + 1 , j + 1) ] + rC }
}

# generate the option prices

For( j = 0 to H ) { f( H , j ) = Payoff( K , Bforward( H , j ) ) }

For( i = H�1 to 0,�1 ) {
For( j = 0 to i ) { f( i , j ) = e� r(i , j) Dt � 1

2 f( i + 1 , j ) +
1
2 f( i + 1 , j + 1)

�
}

}
________________________________________________________________________________

CouponCount( tlow , tup , nc , s( 1 : nc ) )

exitFlag = FALSE
CouponCount = 0
For( k = nc to 1,�1 ) { If ( tlow < s(k) � tup ) Then

CouponCount = CouponCount = 1
Elseif = CouponCount = 0) Then

exitFlag = TRUE
Endif
If( exitFlag ) Exit k }

Code 8.3: Pseudo code of the GenBDTBondOptionTree() routine.
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Sub GenBDTBondOptionTree(optionMaturity As Double, strike As Double, bondMaturity As Double,
par As Double, coupon As Double, nCoupon As Integer, paymentSchedule()As Double,
ByRef Hf As Integer, ByRef rShort() As Double,ByRef fTree() As Double)

Dim bondPrice(1 To nTreeMax + 1) As Double
Dim bondVol(1 To nTreeMax + 1) As Double
Dim i As Integer, j As Integer
Dim Nterm As Integer, dtime As Double

Call GenTermStructures(bondMaturity, 0, Nterm, dtime, bondPrice, bondVol)

Dim Ntree As Integer: Ntree = Nterm - 1
Dim Ttree As Double: Ttree = bondMaturity - dtime

Call GenBDTTree(Ttree, Ntree, bondPrice, bondVol, rShort)

Dim Bf() As Double: ReDim Bf(0 To Ntree + 1, 0 To Ntree + 1)

Hf = Int(optionMaturity / dtime)

i = Ntree + 1
Dim rho As Integer
rho = CouponCount((i - 0.5) * dtime, (i + 0.5) * dtime, nCoupon, paymentSchedule)
For j = 0 To i: Bf(i, j) = par + rho * coupon: Next j

For i = Ntree To 0 Step -1
rho = CouponCount((i - 0.5) * dtime, (i + 0.5) * dtime, nCoupon, paymentSchedule)
For j = 0 To i
Bf(i, j) = Exp(-rShort(i, j) * dtime) * (Bf(i + 1, j) + Bf(i + 1, j + 1)) / 2 + rho * coupon

Next j
Next i

For j = 0 To Hf: fTree(Hf, j) = Payoff(strike, Bf(Hf, j)): Next j

For i = Hf - 1 To 0 Step -1
For j = 0 To i
fTree(i, j) = Exp(-rShort(i, j) * dtime) * (fTree(i + 1, j) + fTree(i + 1, j + 1)) / 2

Next j
Next i

End Sub
________________________________________________________________________________

Function CouponCount(timeLow As Double, timeUp As Double, nCoupon As Integer,
paymentSchedule() As Double) As Integer

Dim k As Integer
Dim exitFlag As Boolean
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exitFlag = False
CouponCount = 0

For k = nCoupon To 1 Step -1
If (Round(paymentSchedule(k), epsDP) > timeLow And Round(paymentSchedule(k), epsDP) <=

timeUp) Then
CouponCount = CouponCount + 1

ElseIf (CouponCount > 0) Then
exitFlag = True

End If
If (exitFlag) Then Exit For

Next k

End Function

Code 8.4: VBA code of the GenBDTBondOptionTree() routine.

Sub GenTermStructures(horizon As Double, Na As Integer, ByRef Nterm As Integer, ByRef
dtime As Double, ByRef bondPrice() As Double, ByRef bondVol() As Double)
Dim nbond As Integer: nbond = Range("nbond").Value
Dim bondMaturity() As Double: ReDim bondMaturity(1 To nbond)
Dim bondPriceData() As Double: ReDim bondPriceData(1 To nbond)
Dim bondVolData() As Double: ReDim bondVolData(1 To nbond)
Dim a() As Double: ReDim a(1 To nbond - 1)
Dim b() As Double: ReDim b(1 To nbond - 1)
Dim c() As Double: ReDim c(1 To nbond - 1)
Dim d() As Double: ReDim d(1 To nbond - 1)
Dim av() As Double: ReDim av(1 To nbond - 1)
Dim bv() As Double: ReDim bv(1 To nbond - 1)
Dim cv() As Double: ReDim cv(1 To nbond - 1)
Dim dv() As Double: ReDim dv(1 To nbond - 1)
Dim i As Integer, k As Integer

For i = 1 To nbond
bondMaturity(i) = Range("A5").Offset(0, i)
bondPriceData(i) = Range("A6").Offset(0, i)
bondVolData(i) = Range("A7").Offset(0, i)

Next i

Call CubicSpline(nbond, bondMaturity, bondPriceData, a, b, c, d)
Call CubicSpline(nbond, bondMaturity, bondVolData, av, bv, cv, dv)

Nterm = Int(horizon / bondMaturity(1))
dtime = horizon / Nterm

Dim term As Double
Dim ptr As Integer

ptr = 1
For i = 1 To Nterm + Na
term = i * dtime
If (Abs(term - bondMaturity(1)) <= eps) Then

106 PROFESSIONAL FINANCIAL COMPUTING USING EXCEL AND VBA



bondPrice(i) = bondPriceData(1)
bondVol(i) = bondVolData(1)
GoTo Nexti

End If
For k = ptr To nbond - 1
If (term > bondMaturity(k) And term <= bondMaturity(k + 1)) Then
bondPrice(i) = a(k) + b(k) * term + c(k) * term ^ 2 + d(k) * term ^ 3
bondVol(i) = av(k) + bv(k) * term + cv(k) * term ^ 2 + dv(k) * term ^ 3
ptr = k
GoTo Nexti

End If
Next k

Nexti: Next i

End Sub

Code 8.5: VBA code of the GenTermStructures() routine.

Sub BDTPricing()
Dim i As Integer, j As Integer
Dim rShort(0 To nTreeMax, 0 To nTreeMax) As Double
Dim fTree(0 To nTreeMax, 0 To nTreeMax) As Double
Dim Hf As Integer
Dim optionMaturity As Double: optionMaturity = Range("optionMaturity").Value
Dim strike As Double: strike = Range("strike").Value
Dim bondMaturity As Double: bondMaturity = Range("bondMaturity").Value
Dim par As Double: par = Range("par").Value
Dim coupon As Double: coupon = Range("coupon").Value
Dim nCoupon As Integer: nCoupon = Range("nCoupon").Value
Dim paymentSchedule() As Double: ReDim paymentSchedule(0 To nCoupon)

For i = 1 To nCoupon: paymentSchedule(i) = Range("A18").Offset(0, i): Next i

Call GenBDTBondOptionTree(optionMaturity, strike, bondMaturity, par, coupon, nCoupon,
paymentSchedule, Hf, rShort, fTree)

Range("B20").Value = fTree(0, 0)

Range("B23:IV150").ClearContents

If (Range("E13").Text = "Yes") Then
For i = 0 To Hf
Range("B23").Offset(0, 2 * i) = i * (optionMaturity / Hf)
For j = 0 To i
Range("B23").Offset(j + 1, 2 * i) = fTree(i, j)
Range("B23").Offset(j + 1, 2 * i + 1) = rShort(i, j)

Next j
Next i

End If

End Sub

Code 8.6: VBA code of the BDTPricing() routine.
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REV I EW QUEST I ONS

1. How would you modify the GenBDTBondOptionTree() routine to price an
American-style bond option?

2. Develop another VBA routine that can be used to price an interest rate floorlet.
A floorlet provides a floor of Rfloor on LIBOR rate at future time Twith borrow-
ing term d and notional principle M. The floorlet payoff is made at the begin-
ning of the rate period as

f T ¼ dMmaxfRfloor � LT(T; d); 0g

where LT(T, d) is the discrete compounding LIBOR rate as seen at time T for the
borrowing period between T and Tþ d. It can be related to the forward bond
price PT(Tþd) with $1 face value as

LT(T; d) ¼ (1=d)($1=PT(T þ d)� 1):

ENDNOTES
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3. F. Black, E. Derman, and W. Toy, ‘‘A One-Factor Model of Interest Rates and Its
Application to Treasury Bond Options,’’ Financial Analysts Journal 46, No. 1
(1990): 33-39.

4. It can be shown that the variance of ln(rtþDt) conditional to rt is given by
V̂(ln(rtþDt)jrt) ¼ n2t Dt, where nt is the short-rate volatility as seen at time t.
Under a binomial representation, the same variance is calculated to be
1
4 ln

2(riþ1 j=riþ1 jþ1) conditional to the starting rate of rij. Thus, the branching
rule for rij should satisfy the condition that:

(riþ1 jþ1=riþ1 j) ¼ (dij=uij) ¼ e�2nij
ffiffiffiffi
Dt

p
:

For non-stochastic short-rate volatility that does not depend on rij, the
factor bi ¼ e�2nij

ffiffiffiffi
Dt

p
will depend only on time.

5. Refer to the derivation in Endnote 4 for bond price volatility in (8.6) and note
that it is positively defined.

6. Refer to BDTtree_ebc.xls.
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CHAPTER 9
Monte Carlo Option Pricing

9.1 THE MONTE CARLO METHOD

The Monte Carlo method provides numerical solutions to a variety of
mathematical problems by performing statistical samplings on a computer.
In the risk-neutral pricing of options, we are most interested in evaluating
the expected value of a function g(x) under a random variable x as:

E(g(x)) ¼
Z þ1

�1
dx g(x)w(x) ð9:1Þ

where w(x) is the probability density function of x. In general, it would be
difficult to derive an analytical formula for (9.1), and a numerical estima-
tion seems to be the only way out. Monte Carlo simulation provides a
simple and flexible numerical method to solve these types of problems.1

Consider the random sample {x1, x2, . . . , xn} generated based on the
probability density function w(x). The estimates of the mean and variance
of g(x) are given by:

m ¼ 1

n

Xn

i¼1 g(xi) and s2 ¼ 1

n� 1

Xn

i¼1 (g(xi)�m)2: ð9:2Þ

According to the central limit theorem, the random variable defined as:

m� E(g(x))
sffiffiffi
n

p
ð9:3Þ

tends to follow a standard normal distribution with increasing sample size n
and is irrespective of the distribution of g(x). Thus, the sample average m
approaches a normal distribution with mean E(g(x)) and standard deviation
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ðs= ffiffiffi
n

p Þ. On this basis, the confidence interval in the estimation of E(g(x))
can be obtained as:

E(g(x)) ¼ m� z
sffiffiffi
n

p ð9:4Þ

with, for example, confidence level of 68.27 percent for z = 1. We refer to
the term ðs= ffiffiffi

n
p Þ in (9.4) as the standard error in the estimation of E(g(x)).

To reduce the standard error by a factor of ten, the sample size has to be
increased one hundredfold. The method is thus computationally inefficient
in its fundamental form called the crude Monte Carlo simulation.

There are variance reduction techniques that instead focus on reducing
the size of s in the standard error. The common approach is known as the
control variate method. It takes the analytic solution of a similar but
simpler problem to improve the accuracy in the estimated solution of a
complex problem. Suppose that the expected value E(h(x)) can be evaluated
analytically as H. In relation to the original function g(x), we can introduce
a new function given by:

~g(x) ¼ g(x)� h(x) ð9:5Þ

through the control variate h(x) and rewrite (9.1) as:

E(g(x)) ¼ H þ
Z þ1

�1
dx ~g(x)w(x): ð9:6Þ

Thus, we can determine the confidence interval in the estimation of
E(g(x)) based on the estimates of the mean and variance of ~g(x) instead
given by:

E(g(x)) ¼ (H þ ~m)� z
~sffiffiffi
n

p : ð9:7Þ

It can be shown that the variances of g(x) and ~g(x) can be related as:

var(~g(x)) ¼ var(g(x))þ var(h(x))� 2 cov(g(x); h(x)): ð9:8Þ

If g(x) and h(x) are similar problems, the covariance between them is posi-
tive. In (9.8), the variance of ~g(x) will be less than the variance of g(x) as
long as cov(g(x); h(x)) > 1

2var(h(x)). It is therefore possible to reduce the
size of the standard error by identifying a highly correlated problem with a
known analytic solution.

An alternative approach is known as the antithetic variate method. In
the case of a standard normal variable, it makes use of the symmetric prop-
erty around zero in the density function. Again, we can introduce a new
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function given by:

ĝ(x) ¼ 1
2[g(x)þ g(� x)] ð9:9Þ

through antithetic variate of the form �x. We can rewrite (9.1) using the
symmetric property of the standard normal variable x as:

E(g(x)) ¼
Z þ1

�1
dx ĝ(x)w(x): ð9:10Þ

Similarly, we can determine the confidence interval in the estimation of
E(g(x)) based on the estimates of the mean and variance of ĝ(x) given by:

E(g(x)) ¼ m̂� z
ŝffiffiffi
n

p : ð9:11Þ

The variance of ĝ(x) is expected to be smaller than the variance of g(x) as it
is already an average quantity of two samples. It can be shown that the two
variances can be related as:

var(ĝ(x)) ¼ 1
2 var(g(x))þ 1

2 cov(g(x); g(�x)): ð9:12Þ

If the covariance between g(x) and g(�x) is negative, it is always efficient to
consider the estimates for ĝ(x) rather than doubling the size of independent
samples.

Figure 9.1 depicts, for example, the Monte Carlo estimation of the
expected value E(ex) with x taken to be a standard normal variable. In
Excel, random samples of x ¼ e(0, 1) can be generated very easily by calling
the functionNORMSINV(RAND()). They will be used to evaluate the sam-
ple values of g(x) ¼ ex for which the mean and variance can be estimated. In
the figure, we compare the confidence intervals evaluated through the crude
simulation with those based on the variance reduction techniques. For the
control variate method, we have adopted a highly correlated problem E(x)
with a known analytic solution of zero. Thus, we introduce ~g(x) ¼ ex � x

FIGURE 9.1 Monte Carlo simulation for E(ex).
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for which E(ex) ¼ E(ex � x). For the antithetic variate method, it is clear
that the covariance between ex and e�x is negative. We thus define ĝ(x) ¼
1
2 (e

x þ e�x) with E(ex) ¼ E( 12 (e
x þ e�x)). In both cases, we have shown that

there are significant reductions in the size of the standard errors.

9 .2 R I SK -N EUTRAL VALUAT I ON

In risk-neutral valuation, the current price of an option can be defined based
on the present value of its average maturity payoff at time T as:

f 0 ¼ Ê(e�rTf T jS0) ð9:13Þ

where r is the constant interest rate. Here, we are averaging over realized
maturity payoffs of the option fT in respect to sample asset prices generated
through their risk-neutral process that initiated at current price S0. In the
stochastic model, the asset price return during the time increment from t to
t þ Dt is assumed to follow a random normal process as:

DSt=St ¼ mDt þ s
ffiffiffiffiffi
Dt

p
e(0; 1) ð9:14Þ

where m and s are respectively the mean rate and volatility of return. For
traded assets such as stocks, the risk-neutral process is simply given by
(9.14) with m replaced by r in the drift term. Practically, it is convenient to
consider the asset price movement based on the risk-neutral process. For
constant volatility of return, it is shown to follow an iterative equation with
arbitrary time duration given by:

Stþt ¼ Stexp((r� 1
2s

2)t þ s
ffiffiffi
t

p
e(0; 1)): ð9:15Þ

In particular, we have:

ST ¼ S0 exp((r� 1
2s

2)T þ s
ffiffiffiffi
T

p
e(0; 1)) ð9:16Þ

that generates the maturity price ST directly from S0 in a single step.
This will be useful when there is no intermediate boundary condition for
the option.

As our first example, we consider a European call option written on a
non-dividend paying stock with strike price K. It should be noted that an
analytic solution, known as the Black–Scholes formula, exists for this
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option given by:

f BS0 ¼ S0 N(d)� K e�rT N(d � s
ffiffiffiffi
T

p
); d ¼ ln(S0=K)þ (rþ 1

2 s
2)T

s
ffiffiffiffi
T

p : ð9:17Þ

Here, we use this simple example to demonstrate the use of the Monte
Carlo procedure for option pricing. In this case, the option payoff will
depend solely on the underlying asset price at maturity regardless of its
intermediate values. We can simply use (9.16) to generate the maturity price
of the asset by a single random number e from e(0, 1). The sample maturity
price can then be used to evaluate the sample maturity payoff of the option
according to the function:

f T(e) ¼ maxfST(e)� K; 0g: ð9:18Þ

For variance reduction, we can adopt the maturity price ST itself as the
control variate and consider the new function:

~f T(e) ¼ maxfST(e)� K; 0g � ST(e): ð9:19Þ

The control variate has an analytic solution given by Ê(e�rT ST jS0) ¼ S0 in
which we can rewrite (9.13) as:

f 0 ¼ S0 þ Ê(e�rT~f T jS0): ð9:20Þ

Alternatively, we can simply take �e as the antithetic variate and introduce
the new function:

f̂ T(e) ¼ 1
2[maxfST(e)� K; 0g þmaxfST(� e)� K; 0g]: ð9:21Þ

Figure 9.2 depicts the Monte Carlo results for the current price of the Euro-
pean call option with parameters defined in cells B2:B6. Random samples of
e are first generated in the Excel spreadsheet, and they will be used to gener-
ate the sample maturity prices ST(e) as well as their antithetic values ST(�e).
Sample values of the functions fT(e), ~f T(e), and f̂ T(e) can then be evaluated,
in which their means and variances can be estimated. As shown in the
figure, there are significant reductions in the size of the standard errors
with the use of the variance reduction techniques. As reference, the Black–
Scholes pricing in (9.17) is 12.34 for the European call option parameter-
ized by B2:B6.

An important application of the Monte Carlo method is the pricing of
exotic options with intermediate boundary conditions. For example, a
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barrier knock-out option will have a maturity payoff depending on whether
the underlying asset price has surpassed a predetermined barrier level prior
to its maturity. Thus, it is sometimes necessary to generate the entire path of
asset prices in discrete time increments {t1, . . . , tN ¼ T} during the life of
the option. To this end, we can use (9.15) to generate iteratively the risk-
neutral asset price at tiþ1 based on the price at ti as:

Stiþ1 ¼ Stiexp((r� 1
2s

2)(tiþ1 � ti)þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiþ1 � ti

p
eiþ1) ð9:22Þ

and trace out the path by running i from 0 to N � 1 with random numbers
{e1, . . . , eN} from e(0, 1). The sample path can then be used to evaluate the
sample option payoff according to some path-dependent conditions. It
should be noted that we have defined in the iteration t0 ¼ 0, and the choice
of time increments will depend on the boundary conditions of the option.

9 .3 VBA IMPLEMENTAT I ON

A crucial part of the Monte Carlo method is the generation of the standard
normal random numbers. The procedure starts with a pseudo-random num-
ber generator (PRNG) that ‘‘randomly’’ produces a real number between 0
and 1 with uniform probability so that every number will have the same
chance of being generated. The numbers generated by PRNG are not truly
random in that they are completely determined by an initial seed integer. In
fact, they are considered to be random only subject to standard statistical
tests for randomness.2 Uniform random numbers can be transformed into
standard normal random numbers through the Box-Muller algorithm as:

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ln(u1)

p
cos(2pu2)

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ln(u1)

p
sin(2pu2):

ð9:23Þ

FIGURE 9.2 Monte Carlo simulation for the current price of a European call option.
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In (9.23), u1 and u2 are two uniform random numbers generated indepen-
dently by PRNG. They can be transformed into a pair of standard normal
random numbers e1 and e2 that are also independent. A more efficient trans-
formation is to rewrite (9.23) so as to avoid the time-consuming evaluation
of trigonometric functions. This is known as the polar rejection algorithm
given by:

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ln(w)

w

r
(2u1 � 1)

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ln(w)

w

r
(2u2 � 1); ifw ¼ (2u1 � 1)2 þ (2u2 � 1)2 < 1:

ð9:24Þ

The drawback in (9.24) is that the uniform random numbers inputted
should stay inside a unit circle.

In an Excel spreadsheet, PRNG is given by the RAND() function that
automatically reseeds based on the system clock. The transformation of
uniform random numbers into standard normal random numbers is
conducted by the NORMSINV(RAND()) function that takes RAND() as
input. In VBA implementation, it is highly inefficient to generate random
numbers interactively through Excel as the number of calls will be
enormous in a Monte Carlo simulation. It is therefore essential to develop a
VBA routine that implements for instance the polar rejection algorithm in
(9.24). It can be defined through an external function called StdNormNum
() that returns a standard normal random number upon each request.
The VBA code of this function is given by Code 9.1. In VBA, PRNG is
given by the Rnd() function in which the generated sequence is completely
determined by the default seed value. To prevent using repetitive sequences
in Monte Carlo simulation, we can alter the seed based on the system clock
by calling Randomize once in the main routine. It is important to note that
we should not Randomize every time we call Rnd() as the random behavior
can be badly skewed.

In both the Box–Muller and polar rejection algorithms, two usable
standard normal random numbers are generated at the same time. In order
to obtain maximum efficiency, we should utilize both of them by saving the
unused random number for the next request. In Code 9.1, this can be done
through two static variables flagSave and snnSave that retain their latest
values after termination of the procedure. The static variable flagSave is
initialized to 0 at the very first call to the function when flagSave is still an
empty cell checked by the IsEmpty function. When flagSave ¼ 0, the
function generates two random numbers and returns only the one under
snnUse. The second random number is saved under snnSave with flagSave
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set to 1. The two static variables will retain these values upon the next
request where the function simply returns the random number under
snnSave and resets flagSave ¼ 0.

Function StdNormNum() As Double
Dim v1 As Double, v2 As Double, w As Double, fac As Double
Dim snnUse As Double
Static flagSave As Integer: If IsEmpty(flagSave) Then flagSave = 0
Static snnSave As Double
If (flagSave = 0) Then

newtrial:
v1 = 2# * Rnd() - 1#
v2 = 2# * Rnd() - 1#
w = v1 ^ 2 + v2 ^ 2
If (w >= 1#) Then GoTo newtrial
fac = Sqr(-2# * Log(w) / w)
snnSave = fac * v1
snnUse = fac * v2
flagSave = 1

Else
snnUse = snnSave
flagSave = 0

End If
StdNormNum = snnUse

End Function

Code 9.1: VBA code of the StdNormNum() function.

To generate a very long random sequence, it is advisable to use the stan-
dard algorithm for PRNG known as ran0() proposed by Park and Miller3

instead. This generator has passed all theoretical tests so far and is definitely
safer to use despite the fact that it is relatively slower than Rnd(). In
Code 9.2, we have included the VBA code of ran0() and refer the reader
to the original literature (see endnote 3) for a detailed discussion of the
algorithm. As in Rnd(), the seed value in ran0() should only be initiated once
in the main routine. It can be any nonzero integer such as seed ¼ 56789 and
it must not be altered between successive calls in a random sequence.

Public seed As Long

Function ran0() As Double
Dim IA As Long: IA = 16807
Dim IM As Long: IM = 2147483647
Dim IQ As Long: IQ = 127773
Dim IR As Long: IR = 2836
Dim MASK As Long: MASK = 123459876
Dim AM As Double: AM = 1# / IM
Dim k As Long
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seed = seed Xor MASK
k = seed / IQ
seed = IA * (seed - k * IQ) - IR * k
If (seed < 0) Then seed = seed + IM
ran0 = AM * seed
seed = seed Xor MASK

End Function

Code 9.2: VBA code of the ran0() function.

We again consider the pricing of a European call option written on a
non-dividend paying stock as discussed in the previous section. Here, it
is efficient and convenient to develop VBA routines that separately
perform the three different simulation tasks as demonstrated in Figure 9.2.
The VBA codes of the McEuropeanCall() routine for crude simulation, the
CMcEuropeanCall() routine for control variate method, and the AMcEuro-
peanCall() routine for antithetic variate method are given by Code 9.3.
They all require the input parameters {S0, K, r, s, T, n} and return the esti-
mation of the current option price together with the standard error. In both
routines, the random sample of e is generated by calling the StdNormNum()
function, and it will be used to generate sample maturity price ST(e) using
(9.16). For the antithetic variate method, the same random number with
a negative sign will also be used to generate the antithetic price ST(�e).
Sample values of the functions fT(e), ~f T(e), and f̂ T(e) are then evaluated
respectively in different routines using (9.18), (9.19), and (9.21). The
estimates of the mean and variance of their present values can be obtained
by summing up all the sample values and their squares as in (9.2) through a
loop that runs from 1 to n. It is also convenient to implement an alternative
expression for the variance estimate in (9.2) as:

s2 ¼ 1

n� 1

Xn

i¼1 g
2(xi)� n

n� 1
m2: ð9:25Þ

In both routines, the mean estimate will be returned as the estimation
of the current option price. For the control variate method, remember
to include the analytic solution of S0 for the control variate in the mean
estimate as discussed in (9.20). The standard error in the estimation can be
determined by taking an additional factor of 1=

ffiffiffi
n

p
in the variance estimate.

Table 9.1 illustrates the relative performance of the three routines in terms
of the sizes of standard errors and computation times. We adopt the same
parameterization as in Figure 9.2 and consider one million samples in the
Monte Carlo simulation. In this example, the control variate method is
shown to be highly effective, while there is only mild improvement for the
antithetic variate method.
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As our second example, we consider a European call option written on
a stock with expected dividend payments {D1, . . . , DN} at {t1, . . . , tN ¼
T} prior to its maturity. Assume Sti represents the asset price right after the
dividend Di has been paid at ti. We can use (9.22) to first generate the asset
price at tiþ1 using Sti and then incorporate the price drop due to the payment
Diþ1 as:

Stiþ1 ¼ Stiexp((r� 1
2s

2)(tiþ1 � ti)þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiþ1 � ti

p
eiþ1)�Diþ1: ð9:26Þ

In this way, the maturity price ST of the asset can be generated iteratively by
running i from 0 toN � 1. If at any time the right-hand side (RHS) of (9.26)
is less than or equal to zero, the iteration should stop and restart all over
again from i ¼ 0. The maturity price can be used to evaluate the option pay-
off according to the function:

f T(e1; . . . ; eN) ¼ maxfST(e1; . . . ; eN)� K; 0g: ð9:27Þ

For variance reduction, it is effective to adopt the case of a non-
dividend paying stock as the control variate and consider the new function:

~f T(e1; . . . ; eN) ¼ maxfST(e1; . . . ; eN)� K; 0g �maxfS(0)T (e1; . . . ; eN)� K; 0g:
ð9:28Þ

The control price S
(0)
T at maturity is generated simultaneously with ST using

the same random sequence but with zero dividend payments. The control
variate has an analytic solution given by the Black–Scholes formula in
(9.17) for which (9.13) can be written as:

f 0 ¼ f BS0 þ Ê(e�rT~f T jS0): ð9:29Þ

It is always straightforward to take �e as the antithetic variate and generate
the antithetic value of ST using the negative sequence {�e1, . . . , �eN}. It is

TABLE 9.1 Relative performance of different Monte Carlo routines for a European
call option.

Crude
Simulation

Control Variate
Method

Antithetic Variate
Method

Mean 12.338 12.334 12.340
Standard Error 0.018 0.011 0.010
Relative CPU Time 1.00 1.02 1.33
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then convenient to introduce the new function:

f̂ T(e1; . . . ; eN) ¼ 1
2[maxfST(e1; . . . ; eN)� K; 0g þmaxfST(� e1; . . . ;�eN)� K; 0g]

ð9:30Þ
as the two payoffs are negatively correlated. However, as shown below, the
effectiveness of the antithetic variate method in (9.30) is limited.

The pseudo code of the McEuropeanCallDiv() routine for crude simula-
tion is given by Code 9.4. The routine reads in the parameters {S0, K, r, s, n}
as well as the details of dividend payments as N, {t1, . . . , tN ¼ T}, and
{D1, . . . , DN}. To initiate (9.26), the current time t0 ¼ 0 by definition
should also be included in the input time array. Similarly, the routine returns
the estimation of the current option price together with the standard error. In
the inner loop, sample maturity price ST of the asset is generated iteratively
by running i in (9.26) from 0 to N � 1. The iteration starts off from S0 and
moves forward by calling the StdNormNum() function successively. It should
restart from S0 at the beginning of the loop if the asset price is less than or
equal to zero at any time. Sample payoff fT in (9.27) and its present value
can be evaluated using the asset price immediately after the iteration. The
estimates of the mean and variance can be obtained based on the sample
sum and squared sum accumulated through the outer loop that runs from
sample number 1 to n. The VBA code of the McEuropeanCallDiv() routine
is given by Code 9.5.

It is easy to modify the algorithm for crude simulation and include the
appropriate procedures for variance reduction. The VBA code of the
CMcEuropeanCallDiv() routine for the control variate method is given by
Code 9.6. In the inner loop, the iteration of the control price is performed
simultaneously with ST using the same random sequence and the same start-
ing price but with no dividend payment. Again, we should restart both
iterations if either one of them is less than or equal to zero. In this way, the
sample value of the function ~f T in (9.28) can be evaluated based on the
iterated prices. In the estimation of the option price, we have also included
the Black–Scholes formula given by the function BsEuropeanCall(). The
VBA code of the AMcEuropeanCallDiv() routine for the antithetic variate
method is also given by Code 9.6. In this case, the antithetic price is gener-
ated simultaneously with ST using, however, the negative sequence. Similarly,
the sample value of the function f̂ T in (9.30) can be evaluated based on
the prices immediately after the iteration. Table 9.2 illustrates the relative
performance of the three routines based on one million simulation samples.
We adopt the same parameterization as in Figure 9.2 and consider the
dividend payments of D1,2,3,4 ¼ 0.25 at quarterly time intervals {t1 ¼ 0.25,
t2 ¼ 0.50, t3 ¼ 0.75, t4 ¼ 1.00}. Again, the control variate method is shown
to be much more effective than the antithetic variate method.
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Sub McEuropeanCall(assetPrice As Double, strike As Double, riskFree As Double, sigma As
Double, maturity As Double, nsample As Long, ByRef optionPrice As Double,
ByRef stdErr As Double)

Dim sum As Double, sum2 As Double, gen As Double
Dim mean As Double, sd As Double, Ls As Long
Dim St As Double, fTAs Double, pVAs Double
sum = 0
sum2 = 0
For Ls = 1 To nsample
gen = StdNormNum()
St = assetPrice * Exp((riskFree - 0.5 * sigma ^ 2) * maturity + sigma * Sqr(maturity) * gen)
fT = CallPayoff(strike, St)
pV = Exp(-riskFree * maturity) * fT
sum = sum + pV
sum2 = sum2 + pV * pV

Next Ls
mean = sum / nsample
sd = Sqr(sum2 / (nsample - 1) - (nsample / (nsample - 1)) * mean ^ 2)
optionPrice = mean
stdErr = sd / Sqr(nsample)

End Sub
_________________________________________________________________________

Sub CMcEuropeanCall(assetPrice As Double, strike As Double, riskFree As Double, sigma
As Double, maturity As Double, nsample As Long, ByRef optionPrice As Double,
ByRef stdErr As Double)

Dim sum As Double, sum2 As Double, gen As Double
Dim mean As Double, sd As Double, Ls As Long
Dim St As Double, fTAs Double, pVAs Double
sum = 0
sum2 = 0
For Ls = 1 To nsample
gen = StdNormNum()
St = assetPrice * Exp((riskFree - 0.5 * sigma ^ 2) * maturity + sigma * Sqr(maturity) * gen)
fT = CallPayoff(strike, St) - St
pV = Exp(-riskFree * maturity) * fT
sum = sum + pV
sum2 = sum2 + pV * pV

TABLE 9.2 Relative performance of different Monte Carlo routines for a European
call option written on a dividend paying asset.

Crude
Simulation

Control Variate
Method

Antithetic Variate
Method

Mean 11.782 11.794 11.802
Standard Error 0.018 0.0005 0.010
Relative CPU Time 1.00 1.31 1.36
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Next Ls
mean = sum / nsample
sd = Sqr(sum2 / (nsample - 1) - (nsample / (nsample - 1)) * mean ^ 2)
optionPrice = assetPrice + mean
stdErr = sd / Sqr(nsample)

End Sub
_________________________________________________________________________

Sub AMcEuropeanCall(assetPrice As Double, strike As Double, riskFree As Double, sigma
As Double, maturity As Double, nsample As Long, ByRef optionPrice As Double,
ByRef stdErr As Double)

Dim sum As Double, sum2 As Double, gen As Double
Dim mean As Double, sd As Double, Ls As Long
Dim St As Double, Sta As Double, fTAs Double, pVAs Double
sum = 0
sum2 = 0
For Ls = 1 To nsample
gen = StdNormNum()
St = assetPrice * Exp((riskFree - 0.5 * sigma ^ 2) * maturity + sigma * Sqr(maturity) * gen)
Sta = assetPrice * Exp((riskFree - 0.5 * sigma ^ 2) * maturity + sigma * Sqr(maturity) *

(-gen))
fT = (CallPayoff(strike, St) + CallPayoff(strike, Sta)) / 2
pV = Exp(-riskFree * maturity) * fT
sum = sum + pV
sum2 = sum2 + pV * pV

Next Ls
mean = sum / nsample
sd = Sqr(sum2 / (nsample - 1) - (nsample / (nsample - 1)) * mean ^ 2)
optionPrice = mean
stdErr = sd / Sqr(nsample)

End Sub

_________________________________________________________________________

Function CallPayoff(strike As Double, assetPrice As Double) As Double
CallPayoff = Max(assetPrice - strike, 0)

End Function

Function Max(x As Double, y As Double) As Double
If x > y Then Max = x Else Max = y

End Function

Code 9.3: VBA codes of the McEuropeanCall(), CMcEuropeanCall(), and
AMcEuropeanCall() routines.

McEuropeanCallDiv( S0 , K , r , s , N , t(0 : N) , D(1 : N) , n , f0 , error )

# zeroize the sample sum and squared sum
sum = 0 , sum2 = 0
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For( Ls= 1 to n ){

# initialize the asset price
St=S0

# generate the asset price at each dividend date
For( i = 0 to N� 1 ){

e ¼ StdNormNum( )
St ¼ St exp((r � 1

2s
2)[t(i þ 1)� t(i)]þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t(i þ 1)� t(i)

p
e)� D(i þ 1)

If( St � 0 ) go back to the statement St ¼ S0 and restart all over again }

# evaluate the option payoff function as in (9.27)
fT = CallPayoff( K , St )
PV = e�rTfT

# accumulate the sample sum and squared sum
sum = sum + PV
sum2 = sum2 + PV2 }

# evaluate the estimates of mean and variance
m = sum / n

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1 sum2�
n

n� 1m
2

r

# return the estimation of option price and standard error
f0 =m
error = s /

ffiffiffi
n

p

Code 9.4: Pseudo code of the McEuropeanCallDiv() routine.

Sub McEuropeanCallDiv(assetPrice As Double, strike As Double, riskFree As Double,
sigma As Double, nDiv As Integer, timeDiv() As Double, paymentDiv() As Double,
nsample As Long, ByRef optionPrice As Double, ByRef stdErr As Double)

Dim sum As Double, sum2 As Double, gen As Double
Dim mean As Double, sd As Double, Ls As Long
Dim St As Double, fTAs Double, pVAs Double, i As Integer
sum = 0
sum2 = 0
For Ls = 1 To nsample

NewTrial:
St = assetPrice
For i = 0 To nDiv - 1
gen = StdNormNum()
St = St * Exp((riskFree - 0.5 * sigma ^ 2) * (timeDiv(i + 1) - timeDiv(i)) + sigma *

Sqr(timeDiv(i + 1) - timeDiv(i)) * gen) - paymentDiv(i + 1)
If (St <= 0) Then GoTo NewTrial

Next i
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fT = CallPayoff(strike, St)
pV = Exp(-riskFree * timeDiv(nDiv)) * fT
sum = sum + pV
sum2 = sum2 + pV * pV

Next Ls
mean = sum / nsample
sd = Sqr(sum2 / (nsample - 1) - (nsample / (nsample - 1)) * mean ^ 2)
optionPrice = mean
stdErr = sd / Sqr(nsample)

End Sub

Code 9.5: VBA code of the McEuropeanCallDiv() routine.

Sub CMcEuropeanCallDiv(assetPrice As Double, strike As Double, riskFree As Double,
sigma As Double, nDiv As Integer, timeDiv() As Double, paymentDiv() As Double,
nsample As Long, ByRef optionPrice As Double, ByRef stdErr As Double)

Dim sum As Double, sum2 As Double, gen As Double
Dim mean As Double, sd As Double, Ls As Long
Dim St As Double, St0 As Double, fTAs Double, pVAs Double, i As Integer
sum = 0
sum2 = 0
For Ls = 1 To nsample

NewTrial:
St = assetPrice
St0 = assetPrice
For i = 0 To nDiv - 1
gen = StdNormNum()
St = St * Exp((riskFree - 0.5 * sigma ^ 2) * (timeDiv(i + 1) - timeDiv(i)) + sigma *

Sqr(timeDiv(i + 1) - timeDiv(i)) * gen) - paymentDiv(i + 1)
St0 = St0 * Exp((riskFree - 0.5 * sigma ^ 2) * (timeDiv(i + 1) - timeDiv(i)) + sigma *

Sqr(timeDiv(i + 1) - timeDiv(i)) * gen)
If (St <= 0 Or St0 <= 0) Then GoTo NewTrial

Next i
fT = CallPayoff(strike, St) - CallPayoff(strike, St0)
pV = Exp(-riskFree * timeDiv(nDiv)) * fT
sum = sum + pV
sum2 = sum2 + pV * pV

Next Ls
mean = sum / nsample
sd = Sqr(sum2 / (nsample - 1) - (nsample / (nsample - 1)) * mean ^ 2)
optionPrice = BsEuropeanCall(assetPrice, strike, riskFree, sigma, timeDiv(nDiv)) + mean
stdErr = sd / Sqr(nsample)

End Sub
_________________________________________________________________________

Sub AMcEuropeanCallDiv(assetPrice As Double, strike As Double, riskFree As Double,
sigma As Double, nDiv As Integer, timeDiv() As Double, paymentDiv() As Double,
nsample As Long, ByRef optionPrice As Double, ByRef stdErr As Double)

Dim sum As Double, sum2 As Double, gen As Double
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Dim mean As Double, sd As Double, Ls As Long
Dim St As Double, Sta As Double, fTAs Double, pVAs Double, i As Integer
sum = 0
sum2 = 0
For Ls = 1 To nsample

NewTrial:
St = assetPrice
Sta = assetPrice
For i = 0 To nDiv - 1
gen = StdNormNum()
St = St * Exp((riskFree - 0.5 * sigma ^ 2) * (timeDiv(i + 1) - timeDiv(i)) + sigma *

Sqr(timeDiv(i + 1) - timeDiv(i)) * gen) - paymentDiv(i + 1)
Sta = Sta * Exp((riskFree - 0.5 * sigma ^ 2) * (timeDiv(i + 1) - timeDiv(i)) + sigma *

Sqr(timeDiv(i + 1) - timeDiv(i)) * (-gen)) - paymentDiv(i + 1)
If (St <= 0 Or Sta <= 0) Then GoTo NewTrial

Next i
fT = (CallPayoff(strike, St) + CallPayoff(strike, Sta)) / 2
pV = Exp(-riskFree * timeDiv(nDiv)) * fT
sum = sum + pV
sum2 = sum2 + pV * pV

Next Ls
mean = sum / nsample
sd = Sqr(sum2 / (nsample - 1) - (nsample / (nsample - 1)) * mean ^ 2)
optionPrice = mean
stdErr = sd / Sqr(nsample)

End Sub
_________________________________________________________________________

Function BsEuropeanCall(assetPrice As Double, strike As Double, riskFree As Double,
sigma As Double, maturity As Double) As Double

Dim d1 As Double, d2 As Double
d1 = (Log(assetPrice / strike) + (riskFree + 0.5 * sigma ^ 2) * maturity) / (sigma *

Sqr(maturity))
d2 = d1 - sigma * Sqr(maturity)
With Application.WorksheetFunction
BsEuropeanCall = assetPrice * .NormSDist(d1) - strike * Exp(-riskFree * maturity) *
.NormSDist(d2)

End With
End Function

Code 9.6: VBA codes of the CMcEuropeanCallDiv() and
AMcEuropeanCallDiv() routines.

9 .4 EXOT I C OPT I ONS

In this section, we apply the Monte Carlo method to the pricing of exotic
options with path-dependent payoffs at maturity. For example, an Asian
call option will have its payoff depending on the average asset price over a
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set of predetermined forward times {t1, t2, . . . , tN ¼ T} given by:

AT ¼ 1

N
(St1 þ . . .þ StN ): ð9:31Þ

Again, we can generate iteratively the asset prices at every forward time
above by running the index i from 0 to N � 1 in (9.22) with random
numbers {e1, . . . , eN}. The average asset price can be used to evaluate the
option payoff according to the function:

f T(e1; . . . ; eN) ¼ maxfAT(e1; . . . ; eN)� K; 0g: ð9:32Þ

For variance reduction, it is effective to adopt the case for the geometric
average asset price as the control variate and consider the new function:

~f T(e1; . . . ; eN) ¼ maxfAT(e1; . . . ; eN)� K; 0g �maxfGT(e1; . . . ; eN)� K; 0g:
ð9:33Þ

The geometric average asset price is defined as:

GT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
St1 . . . StN

N
p

: ð9:34Þ

It is easy to show that GT is lognormally distributed with risk-neutral
average given by:

Ê(GT jS0) ¼ S0e
rv1þ1

2s2ðn2�n1Þ; na ¼ 1

Na

XN

i¼1 (N � iþ 1)a(ti � ti�1):

ð9:35Þ
The control variate has an analytic solution given by the Black–Scholes
formula as:4

f BS0 ¼ Ê(GT jS0)e�rTN(r)� K e�rTN(r� s
ffiffiffiffiffi
n2

p
); r ¼ ln(Ê(GT jS0)=K)þ 1

2s
2n2

s
ffiffiffiffiffi
n2

p :

ð9:36Þ

The pseudo code of the CMcArAsianCall() routine for the pricing of an
Asian call option is given by Code 9.7. The routine reads in the parameters
{S0, K, r, s, n}, a set of forward averaging times{t1, . . . , tN ¼ T}, and N.
Similarly, the input time array should also include the current time defined
as t0 = 0 to initiate (9.22). Again, the routine returns the estimation of the
current option price together with the standard error. In the inner loop, as-
set prices at every averaging time are generated iteratively for which their
arithmetic and geometric averages can be evaluated. It should be noted that
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the multiplication of a long sequence of prices could possibly overflow the
numerical procedure. It is safer to determine the geometric average by
summing up the logarithmic prices. Sample payoff ~f T in (9.33) and
its present value can be evaluated using the iterated average prices. The
estimates of the mean and variance can be obtained based on the sample
sum and squared sum. We have also included the Black-Scholes formula for
the geometric case given by the function BsGeAsianCall(). The VBA code
of the CMcArAsianCall() routine is given by Code 9.8. Table 9.3 demon-
strates the effectiveness of the use of the geometric average price as a control
variate based on one million simulation samples. We adopt the same
parameterization as in Figure 9.2 and consider the set of averaging times
{t1 ¼ 0.50, t2 ¼ 0.75, t3 ¼ 1.00}.

As our second example of an exotic option, we consider a double bar-
rier knock-out (DKO) European call option with maturity payoff depending
on the breaching condition of the asset price with respect to two predefined
barriers (H > S0 > L). In principle, the intermediate knock-out condition is
subjected to continuous asset price movement between time 0 and T. In
(9.22), we can adopt an equal time interval of Dt ¼ T/N for large N such
that the generated prices {St0 ¼ S0, St1, . . . , StN ¼ ST} at discrete time ti ¼
iDt will be a good approximation of a continuous path. Thus, we can gener-
ate iteratively the asset price movement for the entire life of the option by
running i from 0 toN � 1 as:

Stiþ1 ¼ Stiexp((r� 1
2s

2)Dt þ s
ffiffiffiffiffi
Dt

p
eiþ1) ð9:37Þ

with random numbers {e1, . . . , eN}. If the asset price hits either one of the
barriers at any time prior to the option maturity, the option is immediately
knocked-out and the payoff is set to zero or to a constant rebate c payable at
the hitting time. Otherwise, it will be evaluated according to the maturity
price based on a call-type payoff function as:

f T(e1; . . . ; eN) ¼
c er(T�th); if Sth (e1; . . . ; eh) � H or Sth (e1; . . . ; eh) � L for th � T

maxfST(e1; . . . ; eN)� K; 0g; otherwise

(

ð9:38Þ

TABLE 9.3 The relative performance of the CMcArAsianCall() routine as compared
with crude simulation.

Crude Simulation Control Variate Method

Mean 9.691 9.6787
Standard Error 0.014 0.0004
Relative CPU Time 1.00 1.12
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For variance reduction, it is difficult in this case to identify a control
variate that works consistently and effectively for a general barrier condi-
tion. We have also checked that the antithetic price movement gene-
rated through the negative random sequence doesn’t work well for the
barrier option.

The pseudo code of the McDKOCall() routine for the crude pricing of a
DKO European call option is given by Code 9.9. The routine reads in the
parameters {S0, K, H, L, c, r, s, N, T, n} and returns the estimation of
the option price together with the standard error. Here, the intermediate
knock-out condition is examined through an external procedure called
DKOBoundary() that assigns crossflag ¼ TRUE if the input price has
surpassed either one of the barriers H and L. It is essential to first examine
the knock-out condition at current time and return the trivial solution f0¼ 0
with no estimation error. In the inner loop, sample asset price movement
with time interval Dt is generated iteratively using (9.37) starting from its
current value S0. The knock-out condition is checked at every time step by
calling DKOBoundary() for the newly iterated price. If crossflag ¼ TRUE
at any time, the hitting time is tagged as th and the iteration should stop
immediately. Otherwise, it should continue through the entire loop and exit
as the maturity price ST. In either case, sample payoff fT in (9.38) can be
evaluated according to the flag crossflag in conjunction with the hitting
time or the maturity price. The VBA code of the McDKOCall() routine is
given by Code 9.10.

There are two sources of error in the Monte Carlo pricing of the DKO
option. First, the method relies on statistical estimation and the statistical
error is governed by the sample size. Second, the statistical estimates are
actually referring to the case with discrete time steps. Thus, there is system-
atic error in the method as we are not estimating the true option price under
continuous price movement. The error will depend on the size of Dt in the
configuration of the problem. It can be improved by taking smaller time
steps, but there is a trade-off between computational time and accuracy.
Table 9.4 demonstrates the significance of the size of Dt in the pricing based

TABLE 9.4 The relative performance of the McDKOCall() routine under different
time step configurations.

Dt = 0.1
(N = 10)

Dt = 0.01
(N = 100)

Dt = 0.001
(N = 1000)

Dt = 0.0001
(N = 10000)

Mean 1.2328 0.7533 0.6089 0.5661
Standard Error 0.0035 0.0027 0.0024 0.0023
Relative CPU Time 1.00 7.51 69.61 697.22
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on one million simulation samples. We adopt the same parameterization as
in Figure 9.2 and consider the barrier levels of H ¼ 120 and L ¼ 80 with
zero rebate c ¼ 0. It can be seen in the table that the effect is quite critical
especially for the mean estimate. We have shown in Figure 9.3 that the
systematic error5 for the mean estimate will only decrease proportionately
to the square root of Dt. If the size of Dt is not small enough, the error will
be quite substantial.

CMcArAsianCall( S0 , K , r , s , N , t(0 : N) , n , f0 , error )

# zeroize the sample sum and squared sum
sum = 0 , sum2 = 0

For( Ls = 1 to n ){

# initialize the asset price, sum of price and logarithmic sum of price
St ¼ S0 ; SS ¼ 0 ; SlnS ¼ 0

# generate the asset price at each averaging time
For( i = 0 to N� 1 ){ e = StdNormNum( )

St ¼ St exp((r � 1
2 s
2)[t(i þ 1)� t(i)]þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t(i þ 1)� t(i)

p
e)

SS ¼ SS þ St

SlnS ¼ SlnS þ ln(St ) g

# evaluate the arithmetic and geometric average asset prices
AT ¼ SS=N

GT ¼ exp(SlnS=N)

FIGURE 9.3 The plot of systematic error versus Dt for the pricing of the DKO
call option.
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# evaluate the option payoff function as in (9.33)
fT = CallPayoff( K , AT ) �CallPayoff( K , GT )
PV = e�rTfT

# accumulate the sample sum and squared sum
sum = sum + PV
sum2 = sum2 + PV2 }

# evaluate the estimates of mean and variance
m = sum / n

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1 sum2� n
n�1m

2
q

# return the estimation of option price and standard error
f0 = BsGeAsianCall( S0 , K , r , s , N , t(0 : N) ) +m
error = s /

ffiffiffi
n

p

Code 9.7: Pseudo code of the CMcArAsianCall() routine.

Sub CMcArAsianCall(assetPrice As Double, strike As Double, riskFree As Double,
sigma As Double, nAvg As Integer, timeAvg() As Double, nsample As Long,
ByRef optionPrice As Double, ByRef stdErr As Double)

Dim sum As Double, sum2 As Double, gen As Double
Dim mean As Double, sd As Double, Ls As Long
Dim St As Double, fT As Double, pVAs Double, i As Integer
Dim sumPrice As Double, sumLnPrice As Double
Dim amAvg As Double, gmAvg As Double
sum = 0
sum2 = 0
For Ls = 1 To nsample
St = assetPrice
sumPrice = 0
sumLnPrice = 0
For i = 0 To nAvg - 1
gen = StdNormNum()
St = St * Exp((riskFree - 0.5 * sigma ^ 2) * (timeAvg(i + 1) - timeAvg(i)) + sigma *

Sqr(timeAvg(i + 1) - timeAvg(i)) * gen)
sumPrice = sumPrice + St
sumLnPrice = sumLnPrice + Log(St)

Next i
amAvg = sumPrice / nAvg
gmAvg = Exp(sumLnPrice / nAvg)
fT = CallPayoff(strike, amAvg) - CallPayoff(strike, gmAvg)
pV = Exp(-riskFree * timeAvg(nAvg)) * fT
sum = sum + pV
sum2 = sum2 + pV * pV

Next Ls
mean = sum / nsample
sd = Sqr(sum2 / (nsample - 1) - (nsample / (nsample - 1)) * mean ^ 2)
optionPrice = BsGeAsianCall(assetPrice, strike, riskFree, sigma, nAvg, timeAvg) + mean
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stdErr = sd / Sqr(nsample)
End Sub
_________________________________________________________________________

Function BsGeAsianCall(assetPrice As Double, strike As Double, riskFree As Double,
sigma As Double, nAvg As Integer, timeAvg() As Double) As Double

Dim meanG As Double
Dim nu1 As Double, nu2 As Double, i As Integer
Dim d1 As Double, d2 As Double
nu1 = 0
nu2 = 0
For i = 1 To nAvg
nu1 = nu1 + (nAvg - i + 1) * (timeAvg(i) - timeAvg(i - 1))
nu2 = nu2 + (nAvg - i + 1) ^ 2 * (timeAvg(i) - timeAvg(i - 1))

Next i
nu1 = nu1 / nAvg
nu2 = nu2 / nAvg ^ 2
meanG = assetPrice * Exp(riskFree * nu1 + 0.5 * sigma ^ 2 * (nu2 - nu1))
d1 = (Log(meanG / strike) + 0.5 * sigma ^ 2 * nu2) / (sigma * Sqr(nu2))
d2 = d1 - sigma * Sqr(nu2)
With Application.WorksheetFunction
BsGeAsianCall = Exp(-riskFree * timeAvg(nAvg)) * (meanG * .NormSDist(d1) - strike *

.NormSDist(d2))
End With

End Function

Code 9.8: VBA code of the CMcAsianCall() routine.

McDKOCall( S0 , K , H , L, c , r , s , N , T , n , f0 , error )

# check the knock-out condition for the current asset price
Call DKOBoundary( H , L , S0 , crossflag )
If( crossflag ) then
f0 = 0 , error = 0
Exit subroutine

Endif

# define the size of time interval
Dt = T / N

# zeroize the sample sum and squared sum
sum = 0 , sum2 = 0

For( Ls = 1 to n ){

# initialize the asset price
St = S0

# generate the asset price at each intermediate time and check the knock-out condition
For( i = 0 to N� 1 ){ e = StdNormNum( )

St ¼ St exp( ( r � 1
2 s
2) Dt þ s

ffiffiffiffiffi
Dt

p
e)
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Call DKOBoundary( H , L , St , crossflag )
If( crossflag ) then

th = iDt
exit i

Endif }

# evaluate the option payoff function as in (9.38)
If( crossflag ) then
fT = c e

r( T � th )

Else
fT = CallPayoff( K , St )

Endif

PV = e�rTfT

# accumulate the sample sum and squared sum
sum = sum + PV
sum2 = sum2 + PV2 }

# evaluate the estimates of mean and variance
m = sum / n

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1 sum2�
n

n� 1m
2

r

# return the estimation of option price and standard error
f0 =m
error = s /

ffiffiffi
n

p

Code 9.9: Pseudo code of the McDKOCall() routine.

Sub McDKOCall(assetPrice As Double, strike As Double, upperBarrier As Double,
lowerBarrier As Double, rebate As Double, riskFree As Double, sigma As Double,
nStep As Integer, maturity As Double, nsample As Long,ByRef optionPrice As Double,
ByRef stdErr As Double)

Dim sum As Double, sum2 As Double, gen As Double
Dim mean As Double, sd As Double, Ls As Long
Dim St As Double, fT As Double, pVAs Double, i As Integer
Dim crossFlag As Boolean
Dim timeHit As Double
Dim dtime As Double: dtime = maturity / nStep

Call DKOBoundary(upperBarrier, lowerBarrier, assetPrice, crossFlag)
If (crossFlag) Then
optionPrice = 0
stdErr = 0
Exit Sub

End If
sum = 0
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sum2 = 0
For Ls = 1 To nsample
St = assetPrice
For i = 0 To nStep - 1
gen = StdNormNum()
St = St * Exp((riskFree - 0.5 * sigma ^ 2) * dtime + sigma * Sqr(dtime) * gen)
Call DKOBoundary(upperBarrier, lowerBarrier, St, crossFlag)
If (crossFlag) Then
timeHit = i * dtime
Exit For

End If
Next i
If (crossFlag) Then
fT = rebate * Exp(riskFree * (maturity - timeHit))

Else
fT = CallPayoff(strike, St)

End If
pV = Exp(-riskFree * maturity) * fT
sum = sum + pV
sum2 = sum2 + pV * pV

Next Ls
mean = sum / nsample
sd = Sqr(sum2 / (nsample - 1) - (nsample / (nsample - 1)) * mean ^ 2)
optionPrice = mean
stdErr = sd / Sqr(nsample)

End Sub
_________________________________________________________________________

Sub DKOBoundary(upperBarrier As Double, lowerBarrier As Double, assetPrice As Double,
ByRef crossFlag As Boolean)

If (assetPrice >= upperBarrier Or assetPrice <= lowerBarrier) Then
crossFlag = True

Else
crossFlag = False

End If
End Sub

Code 9.10: VBA codes of the McDKOCall() and DKOBoundary() routines.

9 .5 AMER I CAN OPT I ONS

One of the most important problems in option pricing is the valuation of
American-style options with early exercising features. For example, an
American put option can be exercised at any time prior to its maturity with
its intrinsic value evaluated according to the payoff function c(S) ¼ max
{K � S, 0}. At time t with underlying asset price St, the fair value of an
American put option can be defined based on the risk-neutral expectation
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of its discounted payoff as:

F(St; t) ¼ Ê(e�r(ts�t) c(Sts)jSt) ð9:39Þ
where ts is the first exercising time along a random asset price movement
starting off from St. It can occur at option’s maturity or at any earlier time
when the intrinsic value is greater than the fair value at that point. Similarly,
it is optimal to exercise the option early at time t based on the criteria as:

c(St) � F(St; t): ð9:40Þ

The price of the American put option should also include this feature and is
given by:

f (St; t) ¼ maxfF(St; t); c(St)g: ð9:41Þ

The equality condition in (9.40) can serve to define a critical price Sc(t)
at time t for which the early exercising criteria will be satisfied6 whenever
St � Sc(t). In this way, the criteria can be implemented very easily by check-
ing the asset price with respect to a critical price. It should be noted that the
fair value F(St, t) can only be evaluated when all critical prices, or a bound-
ary, at forward time of t have been determined. This means that critical
price Sc(t) can only be determined through backward iteration starting
off from the option’s maturity with Sc(T) ¼ K. To determine the current
price of the American put option, we need to first generate the entire
critical boundary prior to its maturity and then evaluate the risk-neutral
expectation as:

f 0 ¼ maxfÊ(e�rtsc(Sts )jS0); c(S0)g: ð9:42Þ
Again, we can adopt equal time interval of Dt ¼ T/N for large N and

consider the discrete time steps ti ¼ iDt for the entire life of the option with i
runs from 0 toN. At time ti, consider Sti ¼ x and suppose the critical bound-
ary at forward time is given by {Sc(tiþ1), . . . , Sc(tN) ¼ K}. The fair value of
the American put option can be estimated by Monte Carlo simulation as:

F(Sti ¼ x; ti) ¼ Ê(e�r(ts�ti) c(Sts)jSti ¼ x): ð9:43Þ

In (9.43), we can generate iteratively the asset price movement for the
remaining life of the option by running j in (9.44) from i to N � 1 starting
from Sti ¼ x.

Stjþ1 ¼ Stjexp((r� 1
2s

2)Dt þ s
ffiffiffiffiffi
Dt

p
ej) ð9:44Þ
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If the generated price Stjþ1 � Sc(tjþ1) at any forward time prior to the
option’s maturity, the option should be exercised immediately and ts ¼ tjþ1
in (9.43). Otherwise, it will be exercised at maturity for positive payoff and
ts ¼ T. The critical price Sc(ti) at time ti can be determined by identifying the
value of x for which the mean estimate in (9.43) matches the intrinsic value.
This is the same as solving the root of the function given by:

y(x) ¼ F(x; ti)� c(x) ð9:45Þ

where y(x) is subjected to the standard error in the estimation of F(x, ti).
It can be done by performing a linear regression for y(x) 
 bx þ a in the
neighborhood7 of its trial value x ¼ Sc(tiþ1) with xroot 
 � a/b. It is essential
for the size of y(xroot) to be less than the standard error in F(x, ti). Other-
wise, a new xroot should be determined through another linear regression
around the old one until y(xroot) becomes zero within the statistical error. In
this way, the entire critical boundary can be determined by iterating the
above procedure for all ti in a backward scheme starting from tN�1 to t0
with Sc(tN) ¼ K.

We first develop a routine called FvAmericanPut() capable of estimating
the fair value of an American put option at forward time based on Monte
Carlo simulation. The pseudo code of FvAmericanPut() is given by
Code 9.11. It reads in the parameters {x, K, r, s, N, T, n}, a time pointer i
for the reference forward time ti, and the critical prices {Sc(tiþ1), . . . ,
Sc(tN)} thereafter. The routine returns the Monte Carlo estimation of the
fair value together with the standard error. In the inner loop, asset price
movement between ti and T is generated iteratively using (9.44) with time
interval of Dt. At each time step, the early exercising criteria is examined
through an external procedure called APBoundary() that assigns exercise-
flag ¼ TRUE if the iterated asset price is less than the critical price. If exer-
ciseflag ¼ TRUE at any time, the iteration should terminate immediately
with stopping time taken to be the updated ts in the loop. Otherwise, it
should continue until the option matures at which ts ¼ T. The discounted
payoff in (9.43) can then be evaluated using the stopping time and the
terminal asset price in the iteration. The VBA code of FvAmericanPut() is
given by Code 9.12.

We then develop a routine called McAmericanPut() that performs the
backward iteration based on the FvAmericanPut() routine. The pseudo
code of McAmericanPut() is given by Code 9.13. It reads in the parameters
{S0, K, r, s, N, T, n} and returns the estimation of the option price together
with the standard error. In the backward iteration, we can generate the
critical boundary by running the time pointer i in FvAmericanPut() back-
ward from N � 1 to 0 with Sc(tN) ¼ K being the starting value. At time ti in
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the loop, the critical prices from tiþ1 to tN are presumably calculated in pre-
vious steps. It is then straightforward to estimate F(x, ti) in (9.45) by calling
FvAmericanPut(), and the main task is to determine the root of y(x) that
corresponds to the critical price Sc(ti) at time ti. We adopt Sc(tiþ1) as the trial
value of the root and consider a linear regression for y(x) in the neighbor-
hood of this value. In the inner loop, we generate h ¼ 100 data points for
the regression with values of x that spread across a small region of d ¼ 1
percent below the trial value. The linear regression can be performed
through an external routine called Regn() and it should be noted that the
errors in y(x) are roughly constant.8 The resulting a and b would provide a
good approximation for xroot and the corresponding y(xroot) should be
calculated by calling FvAmericanPut(). In the IF statement, it is important
to check explicitly that y(xroot) is zero within the standard error in the
estimation. If so, we can assign xroot to be the critical price Sc(ti). Otherwise,
it can be used to update the trial value and the regression should be repeated
starting from the line labeled ‘‘NewTrialValue.’’ The VBA code of
McAmericanPut() is given by Code 9.14.

Once we have determined the critical boundary in the backward
iteration, the current price of the American put option can be estimated
by calling FvAmericanPut() with S0 and comparing the fair value with the
intrinsic value according to (9.42). The systematic error here would depend
on the accuracy of the critical boundary determined under discrete time
interval. Figure 9.4 illustrates the deviation in the critical boundaries
determined based on, for example, Dt ¼ 0.1 and Dt ¼ 0.001. Table 9.5
demonstrates the overall significance of the size of Dt in the pricing of the
American put option. We adopt the same parameterization as in Figure 9.2
and consider again one million samples in the simulation. It has been show
in Figure 9.5 that the systematic error for the mean estimate will only
decrease proportionately to the linear order of Dt. Thus, the error will be
less substantial here than in the pricing of a DKO option.

TABLE 9.5 The relative performance of the McAmericanPut() routine under
different time step configurations.

Dt ¼ 0.1

(N ¼ 10)

Dt ¼ 0.01

(N ¼ 100)

Dt ¼ 0.001

(N ¼ 1000)

Mean 7.909 7.982 7.985
Standard Error 0.009 0.009 0.009
Relative CPU Time 1.00 26.76 752.62
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FvAmericanPut( x , K , r , s , N , T , i , Sc( i þ1 : N ) , n , F , error )

# define the size of time interval and the reference forward time
Dt = T / N , ti = iDt

# zeroize the sample sum and squared sum
sum = 0 , sum2 = 0

For( Ls = 1 to n ){
# initialize the asset price
St = x

FIGURE 9.4 Critical boundary of the American put option.

FIGURE 9.5 The plot of systematic error versus Dt for the pricing of the American
put option.
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# generate the asset price at each time step, check early exercising criteria, and update
the latest time
For( j = i to N� 1 ){ e = StdNormNum( )

St ¼ St exp( ( r � 1
2 s
2) Dt þ s

ffiffiffiffiffi
Dt

p
e)

Call APBoundary( St , Sc( j + 1 ) , exerciseflag )
ts ( ( j + 1 )Dt
If( exerciseflag ) exit j }

# evaluate the discounted payoff in (9.43)
PV = e�r( ts�ti )PutPayoff( K , St )

# accumulate the sample sum and squared sum
sum = sum + PV
sum2 = sum2 + PV2 }

# evaluate the estimates of mean and variance
m = sum / n

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1 sum2�
n

n� 1m
2

r

# return the estimation of option price and standard error
F =m
error = s /

ffiffiffi
n

p

Code 9.11: Pseudo code of the FvAmericanPut() routine.

Sub FvAmericanPut(assetPrice As Double, strike As Double, riskFree As Double,
sigma As Double, nStep As Integer, maturity As Double, iptr As Integer,
Scritical() As Double, nsample As Long, ByRef fairValue As Double,
ByRef stdErr As Double)

Dim sum As Double, sum2 As Double, gen As Double
Dim mean As Double, sd As Double, Ls As Long
Dim St As Double, pVAs Double, j As Integer
Dim exerciseFlag As Boolean
Dim timeStop As Double
Dim dtime As Double: dtime = maturity / nStep
Dim timeRef As Double: timeRef = iptr * dtime
sum = 0
sum2 = 0
For Ls = 1 To nsample
St = assetPrice
For j = iptr To nStep - 1
gen = StdNormNum()
St = St * Exp((riskFree - 0.5 * sigma ^ 2) * dtime + sigma * Sqr(dtime) * gen)
timeStop = (j + 1) * dtime
Call APBoundary(St, Scritical(j + 1), exerciseFlag)
If (exerciseFlag) Then Exit For
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Next j
pV = Exp(-riskFree * (timeStop - timeRef)) * PutPayoff(strike, St)
sum = sum + pV
sum2 = sum2 + pV * pV

Next Ls
mean = sum / nsample
sd = Sqr(sum2 / (nsample - 1) - (nsample / (nsample - 1)) * mean ^ 2)
fairValue = mean
stdErr = sd / Sqr(nsample)

End Sub

_________________________________________________________________________

Sub APBoundary(assetPrice As Double, criticalPrice As Double, exerciseFlag As Boolean)
If (assetPrice <= criticalPrice) Then
exerciseFlag = True

Else
exerciseFlag = False

End If
End Sub

_________________________________________________________________________

Function PutPayoff(strike As Double, assetPrice As Double) As Double
PutPayoff = Max(strike - assetPrice, 0)

End Function

Code 9.12: VBA code of the FvAmericanPut() routine.

McAmericanPut( S0 , K , r , s , N , T , n , f0 , error )

# define the configuration of the linear regression
h = 100 , d = 0.01

# define the critical price at option's maturity
Sc( N ) = K

# generate the critical boundary
For( i = N� 1 to 0, �1 ){

# define the trial value for the root of (9.45)
xroot = Sc( i + 1 )

NewTrialValue : inc = dxroot / h

# generate plotting points for (9.45) in the neighborhood of the trial value
For( k = 1 to h ){ Xfit(k) = xroot�k inc

Call FvAmericanPut( Xfit(k) , K , r , s , N , T , i , Sc( i + 1 : N ) , n , F , error )
Yfit(k) = F�PutPayoff( K , Xfit(k) ) }
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# perform a linear regression for (9.45) and obtain an approximation for its root

Call Regn( Xfit( 1 : h ) , Yfit( 1 : h ) , h , b , a )
xroot = � a b

# check the validity of the approximated root and, if necessary, use it as a new trial value.
Call FvAmericanPut( xroot , K , r , s , N , T , i , Sc( i + 1 : N ) , n , F , error )
If( j F�PutPayoff( K , xroot ) j > error ) Then GoTo NewTrialValue

# assign the valid root of (9.45) as the critical price
Sc( i ) ¼ xroot }

# knowing the critical boundary, evaluate the option price and standard error according to (9.42)
Call FvAmericanPut( S0 , K , r , s , N , T , i , Sc( 0 : N ) , n , F , error )
f0 =max( F , PutPayoff( K , S0 ) )

Code 9.13: Pseudo code of the McAmericanPut() routine.

Sub McAmericanPut(assetPrice As Double, strike As Double, riskFree As Double,
sigma As Double, nStep As Integer, maturity As Double, nsample As Long,
ByRef optionPrice As Double, ByRef stdErr As Double)

Dim Scritical() As Double: ReDim Scritical(0 To nStep)
Dim iptr As Integer, k As Integer
Dim nFit As Integer: nFit = 100
Dim delta As Double: delta = 0.01
Dim inc As Double
Dim xroot As Double, fairValue As Double
Dim xFit() As Double: ReDim xFit(1 To nFit)
Dim yFit() As Double: ReDim yFit(1 To nFit)
Dim slope As Double, intercept As Double
Scritical(nStep) = strike
For iptr = nStep - 1 To 0 Step -1
xroot = Scritical(iptr + 1)

NewTrialValue: inc = delta * xroot / nFit
For k = 1 To nFit
xFit(k) = xroot - k * inc
Call FvAmericanPut(xFit(k), strike, riskFree, sigma, nStep, maturity, iptr, Scritical,
nsample, fairValue, stdErr)

yFit(k) = fairValue - PutPayoff(strike, xFit(k))
Next k
Call Regn(xFit, yFit, nFit, slope, intercept)
xroot = -intercept / slope
Call FvAmericanPut(xroot, strike, riskFree, sigma, nStep, maturity, iptr, Scritical,
nsample, fairValue, stdErr)

If (Abs(fairValue - PutPayoff(strike, xroot)) > stdErr) Then GoTo NewTrialValue
Scritical(iptr) = xroot
Range("A1").Offset(nStep - 1 - iptr, 0) = iptr * (maturity / nStep)
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Range("B1").Offset(nStep - 1 - iptr, 0) = xroot
Application.StatusBar = "Done simulation i : " & iptr

Next iptr
Call FvAmericanPut(assetPrice, strike, riskFree, sigma, nStep, maturity, 0, Scritical,
nsample, fairValue, stdErr)

optionPrice = Max(fairValue, PutPayoff(strike, assetPrice))
End Sub

_________________________________________________________________________

Sub Regn(xFit() As Double, yFit() As Double, nFit As Integer, ByRef slope As Double,
ByRef intercept As Double)

Dim avgX As Double, avgYAs Double, avgX2 As Double, avgY2 As Double, avgXY
As Double

Dim i As Integer
avgX = 0
avgY = 0
avgX2 = 0
avgY2 = 0
avgXY = 0
For i = 1 To nFit
avgX = avgX + xFit(i)
avgY = avgY + yFit(i)
avgX2 = avgX2 + xFit(i) ^ 2
avgY2 = avgY2 + yFit(i) ^ 2
avgXY = avgXY + xFit(i) * yFit(i)

Next i
avgX = avgX / nFit
avgY = avgY / nFit
avgX2 = avgX2 / nFit
avgY2 = avgY2 / nFit
avgXY = avgXY / nFit
slope = (avgXY - avgX * avgY) / (avgX2 - avgX ^ 2)
intercept = (avgX2 * avgY - avgX * avgXY) / (avgX2 - avgX ^ 2)

End Sub

Code 9.14: VBA code of the McAmericanPut() routine.

REV I EW QUEST I ONS

1. A lookback call option written on equity has the maturity payoff at time T
given by

cT ¼ ST � K; K ¼ minfDT ; Sming:

The strike price K of the option is the minimum asset price that has achieved
when looking back from the maturity time to its issue time. Here, DT is the
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minimum price achieved from current time t ¼ 0 up to option’s maturity, and
Smin is the historical minimum price achieved from issue time up to current
time. Use Monte-Carlo simulation to price a lookback call option and use a
European call option with Smin being the strike price as control variate in the
simulation.

2. Repeat the pricing of a one-touch option in Question (7.2) using Monte Carlo
simulation. Use antithetic variate as variance reduction technique in the
simulation.

3. In the Cox–Ingersoll–Ross model, the risk-neutral process of short rate is given
by

Drt ¼ a(b� rt)Dt þ s
ffiffiffiffi
rt

p ffiffiffiffiffi
Dt

p
e(0; 1)

where a, b, s, and r0 are constant parameters. Interest rate derivatives are con-
sidered to be function over this stochastic variable for which current value of
derivatives can be determined through risk-neutral expectation of discounted
payoff at maturity. Use Monte Carlo simulation to estimate the risk-neutral
pricing of pure discount bond with maturity at T given by

P0(T) ¼ Ê exp �
Z T

0

rt dt

� �
$1jr0

� �

where {a, b, s, r0} are taken to be input parameters. As control variate in the
simulation, consider the analytic solution from the Vasicek model written as

P0(T)¼ ($1)exp
B(T)� Tð Þ a2b�½s2

� 

a2

� s2B(T)2

4a

( )
e�B(T)r0 ; B(T) ¼ 1� e�aT

a

In this model, short rate follows instead the risk-neutral process given by

Drt ¼ a(b� rt) Dt þ s
ffiffiffiffiffi
Dt

p
e(0; 1)

with the same parameters.
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4. A. Kemna and A. Vorst, ‘‘A Pricing Method for Options Based on Average
Asset Values,’’ Journal of Banking and Finance 14, No. 1 (1990): 113-129.

5. Consider the systematic error given by jmDt�mtrue j 
 a(Dt)b where a and b are
constants. As mtrue is not known a priori, we can choose mbest to be the best
estimate in Table 9.4 and write:

log10jmDt �mbestj ¼ b log10Dt þ log10aþ log10j1� dj;
d ¼ (mbest �mtrue)=(mDt �mtrue):

In the region where Dt is not too small, the term d is negligible and b can be
estimated by the slope of the plot log10j mDt � mbest j versus log10Dt in Figure
9.3. It can be shown that b 
 0.5 in the linear fitting.

6. This is true as both c(St) and F(St, t) are decreasing function with St. Also, c(St)
vanishes for large St.

7. Avoid taking the out-of-money region of the option by virtue of the linear
approximation for (9.45).

8. In the fitting of a set of h data points (xk, yk) to a straight line y ¼ bx þ a where
y is subjected to a constant measurement error, the best fit parameters in the
linear model are given by:

b ¼ (hxyi � hxihyi)=D; a ¼ (hx2ihyi � hxihxyi)=D; D ¼ hx2i � hxi2:
The estimation errors of a and b are both in the order of 1=

ffiffiffi
h

p
. Thus, the size of

h must be sufficiently large to ensure stability in the iteration of the critical
boundary.
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CHAPTER 10
Portfolio Value-at-Risk

10 .1 PORTFOL I O R I SK S IMULAT I ON

Value-at-Risk (VaR) is a single number summarizing the uncertainty in the
future value of a financial asset. It is an extrapolation into the future based
on the assumption that the future will behave statistically the same as the
past. In the random walk regime, we have adopted a statistical description
of what should have happened in the past. Thus, we can only predict what
might happen in the future based on the same principle, making the future
asset value statistically uncertain. In this chapter, we describe the two
approaches for calculating the VaR measure of a financial asset based on
historical data. In general, we define VaR as the asset value in the worst
case scenario under certain confidence level. For example, there is a 95 per-
cent chance that the future asset value will be greater than its 95 percent
VaR number.1 Suppose, {q(1), q(2), . . . , q(100)} are the daily price returns
of an asset for the last 100 days. Under the random walk assumption, asset
price returns are considered to be independent and identically distributed.
Tomorrow’s return q0 is a random quantity that follows the same statistical
distribution inferred from the historical sequence. In this sense, the histori-
cal returns are taken to be random samples of q0 with a 95 percent VaR
simply given by the fifth lowest return. This is known as the historical simu-
lation that generates the VaR measure directly from historical data. An
alternative approach is called the Monte Carlo simulation that adopts a ran-
dom normal process for the price returns with mean and standard deviation
estimated from the data. In this case, random samples of q0 are generated
from the random normal drawing with 95 percent VaR given by the return
at exactly the 5 percent left-tail probability of normal distribution.

In Monte Carlo simulation, asset price return over the time horizon T is
assumed to follow a random normal process given by:2

q ¼ e(mT ; sT) ð10:1Þ
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where mT and sT are estimated from its historical returns {q(1), q(2), . . . ,
q(nd)} with the same time horizon. Random samples of future asset return
fq̂0(1); q̂0(2); . . . ; q̂0(ns)g for the following period of T are generated
through (10.1) that embodies the statistical mean and standard deviation as
observed in the past. For a portfolio constructed based on this single asset,
the mark-to-market value of the portfolio F(St, t) can be evaluated given the
asset price together with the reference time. The corresponding random
samples of future portfolio return fQ̂0(1); Q̂0(2); . . . ; Q̂0(ns)g over T can be
generated based on the changes in its mark-to-market values according to
the sample asset returns as:3

Q̂0(L) ¼
F(ŜT(L);T)�F(S0; 0)

F(S0; 0)
ð10:2Þ

where S0 is the current asset price and ŜT(L) ¼ S0(1þ q̂0(L)) is the future
asset price at T with respect to a sample return. The portfolio VaR can then
be determined through the sample mean GT and standard deviation ST of
the portfolio returns. In particular, the 95 percent VaR of the portfolio over
the time horizon T is given by GT � 1.645ST.

It is easy to use (10.1) and extend the VaR measure over a longer time
horizon Th ¼ hT that is a multiple of T. Random sequences of future asset
returns for consecutive periods of T can be generated through (10.1) as
ffq̂0(L); q̂T1

(L); . . . ; q̂Th�1 (L)g; L ¼ 1; 2; . . . ; nsg. The future asset price at
Th can be evaluated with respect to a return sequence as:

ŜTh
(L) ¼ S0(1þ q̂0(L))(1þ q̂T1

(L)) . . . (1þ q̂Th�1 (L)): ð10:3Þ

Random samples of the portfolio return over the time horizon Th can be
generated using (10.2) with mean GTh

and standard deviation STh
, and the

95 percent portfolio VaR is determined to be GTh
� 1:645STh

.

EXAMPLE 10.1

Consider the following historical set of nd ¼ 1000 daily price returns of
the Hang Seng Index (HSI) during the period from June 9, 2004 to June
5, 2008.4 Suppose it is June 5, 2008 with a daily closing of the index
S0 ¼ 24,255.29 and the risk-free interest rate r ¼ 5 percent per year.

(I) Use Monte Carlo simulation to determine the one-day 95 percent
VaR of a portfolio containing one European call option written
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on the index with Strike ¼ 24,500, Maturity ¼ 0.25 year, and
Volatility ¼ 25 percent per year.
1. As shown in Figure 10.1, the time horizon of the simulation is

T ¼ 1 day.
2. Historical mean and standard deviation of the HSI daily price

return are estimated based on the data set in C3:C1002 to be
mT ¼ 0.0767 percent and sT ¼ 1.3514 percent.

3. Random samples of the HSI daily price return fq̂0(1); q̂0(2); . . . ;
q̂0(ns ¼ 5; 000)g are generated in D3:D5002 through the ran-
dom normal number generator e(mT ¼ 0.0767 percent, sT ¼
1.3514 percent).

4. The corresponding index values fŜT(1); ŜT(2); . . . ; ŜT(5; 000)g
at one-day horizon are determined in E3:E5002 according to
ŜT(L) ¼ S0(1þ q̂0(L)).

5. The current mark-to-market value of the portfolio is eval-
uated in I10 using the Black—Scholes call pricing as:

F(S0;0) ¼ BSCallPrice(S0; Strike; r; Volatility; Maturity)
¼ 1; 237:34:

6. Mark-to-market values of the portfolio at one-day horizon
are also evaluated in F3:F5002 as:

F(ŜT(L);T) ¼ BSCallPrice(ŜT(L); Strike; r;
Volatility; Maturity�T)

with sample portfolio returns calculated in G3:G5002 using
(10.2). The mean and standard deviation of the portfolio re-
turns at the one-day horizon can then be estimated as GT ¼
0.7870 percent and ST ¼ 14.4039 percent using these sam-
ples. The one-day 95 percent VaR of the portfolio is given by
the left-tail value GT � 1.645 ST ¼ �22.91 percent.

(II) Determine now the five-day 95 percent VaR of the same portfolio.
1. As shown in Figure 10.2, the time horizon of the simulation is

T5 ¼ 5 days.
2. In row 3, for example, a random sequence of the HSI daily

returns fq̂0(1); q̂T1
(1); q̂T2

(1); q̂T3
(1); q̂T4

(1)g for five consecu-
tive days is generated in A3:E3 using the same random normal

(Continued)
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In historical simulation, historical returns {q(1), q(2), . . . , q(nd)}
themselves are taken as the random samples of asset return
f~q0(1) ¼ q(1); ~q0(2) ¼ q(2); . . . ; ~q0(ns) ¼ q(ns)g for the following period of
T. In principle, the adopted samples will exhibit all statistical properties as
observed in the past. However, the drawback of using historical simulation
is that it can only generate a finite amount of samples for which ns � nd.
Random samples of portfolio return f ~Q0(1);

~Q0(2); . . . ;
~Q0(ns)g over the

same horizon can be generated based on the changes in its mark-to-market
values according to (10.2) with asset price at T taken to be ~ST(L) ¼ S0(1þ
~q0(L)) with respect to a sample return. The portfolio VaR can be deter-
mined through the left-tail value of its probability distribution. The tail
pointer corresponding to a p% confidence is given by IV ¼ (1 � 0.01p)ns,
and the p% VaR measure is defined to be the (IV)-th lowest portfolio return
in the generated sample set.

We can also extend the VaR measure over a longer time horizon Th

based on the same historical data set. Random sequences of asset returns for
consecutive periods of T can be generated through non-overlapping

number generator as above. The corresponding index value at
the five-day horizon is determined in F3 according to:

ŜT5
(1) ¼ S0(1þ 0:004253)(1� 0:011032)(1þ 0:002796)

(1þ 0:012861)(1� 0:001972):

3. The mark-to-market value of the portfolio at five-day horizon
is evaluated in G3 as:

F(ŜT5
(1);T5) ¼ BSCallPrice(ŜT5

(1); Strike; r; Volatility;
Maturity� T5)

with portfolio return calculated in H3 using (10.2) again.
There are all together 5000 sample return sequences being
generated in row 3 to row 5002. The mean and standard devi-
ation of portfolio returns at five-day horizon are estimated to
be GT5

¼ 1.7636 percent and ST5
¼ 32.6659 percent, and the

five-day 95 percent VaR is given by GT5
� 1.645 ST5

¼ �51.97
percent.

(Continued)

148 PROFESSIONAL FINANCIAL COMPUTING USING EXCEL AND VBA



sequences of historical returns in {q(1), q(2), . . . , q(nd)} as:

fqð1); . . . qðh)|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
L¼1

; q(hþ 1); . . . ; q(2h)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L¼2

; . . . ;

q(ðns � 1)hþ 1); . . . ; q(nsh)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L¼ns

; . . . ; q(nd)g

such that:

f~q0(L) ¼ q((L� 1)hþ 1); ~qT1
(L) ¼ q((L� 1)hþ 2); . . . ;

~qTh�1 (L) ¼ q(Lh)g; L ¼ 1; 2; . . . ; ns
ð10:4Þ

with sample size ns � (nd / h). Similarly, future asset price at Th can be eval-
uated with respect to a return sequence as:

~STh
(L) ¼ S0(1þ ~q0(L))(1þ ~qT1

(L)) . . . (1þ ~qTh�1 (L)): ð10:5Þ

Random samples of portfolio return over Th can be generated using (10.2)
with the VaRmeasure again determined through its probability tail.

(III) Use historical simulation to determine the one-day 95 percent
VaR of the call option portfolio.
1. As shown in Figure 10.3, the time horizon of the simulation is

T ¼ 1 day.
2. Historical returns in C3:C1002 are taken directly as the ran-

dom samples of HSI daily price return f~q0(1); ~q0(2); . . . ;
~q0(ns ¼ 1000)g depicted in D3:D1002. It is clear that the
maximum sample size is limited to be ns ¼ nd ¼ 1000.

3. The same number of random portfolio returns are generated in
G3:G1002 following the same procedure as adopted previously.

4. The left-tail pointer corresponding to a 95 percent confidence
is given by IV ¼ (1 � 0.95)�1,000 ¼ 50, and the one-day
95 percent VaR of the portfolio is determined to be �22.41
percent using the Excel function SMALL(G3:G1002, IV).

(IV) Now determine the five-day 95 percent VaR of the portfolio.
1. As shown in Figure 10.4, the time horizon of the simulation is

T5 ¼ 5 days.

EXAMPLE 10.1 (CONT INUED)

(Continued)
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10 .2 MONTE CARLO S IMULAT I ON FOR
MULT I P L E - ASSET PORTFOL I OS

For a portfolio with multiple assets, price return over the time horizon T is
defined as the change in its mark-to-market value according to the asset
price returns in the portfolio content. In Monte Carlo simulation, random
samples of future asset returns fq̂i;0(1); q̂i;0(2); . . . ; q̂i;0(ns)g over the period
T are generated for all underlying assets with label i ¼ 1, 2, . . . , n.
Random samples of portfolio price return fQ̂0(1); Q̂0(2); . . . ; Q̂0(ns)g can
be generated based on the sample asset returns as:

Q̂0(L) ¼
F(Ŝ1;T(L); Ŝ2;T(L); . . . ; Ŝn;T(L);T)�F(S1;0; S2;0; . . . ; Sn;0; 0)

F(S1;0; S2;0; . . . ; Sn;0; 0)
;

L ¼ 1; 2; . . . ; ns

ð10:6Þ

where Ŝi;T(L) ¼ Si;0(1þ q̂i;0(L)) is the future price of asset i at time T with
respect to a sample return. In the real market, it has been observed that asset
price returns can be significantly correlated. The existence of such a

2. Random sequences of HSI daily returns for five consecutive
days are generated through non-overlapping sequences of
historical returns in C3:C1002. For example, f~q0(1); ~qT1

(1);
~qT2

(1); ~qT3
(1); ~qT4

(1)g in D3:H3 are taken from C3:C7, while
f~q0(2); ~qT1

(2); ~qT2
(2); ~qT3

(2); ~qT4
(2)g in D8:H8 are taken from

C8:C12, and so on. This can be achieved by taking row and
column offsets from C3 and assigning them to the cells with
the sample sequences of daily returns as:

OFFSET($C$3; (ROW()� ROW($C$3)) � 5
þ COLUMN()� COLUMN($C$3)� 1; 0):

3. The maximum sample size is now limited to ns ¼ Int(nd /
h) ¼ 200.

4. Random samples of portfolio returns are generated in K3:
K202 as before.

5. The left-tail pointer corresponding to a 95 percent confidence
is given by IV¼ (1� 0.95)�200¼ 10, and the one-day 95 per-
cent VaR of the portfolio is determined to be �46.72 percent
using the Excel function SMALL(K3:G202, IV).

(Continued)
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correlation causes the contribution of risk coming from different assets to
be diversified in the portfolio.

It is essential to extend (10.1) for the random generation of multiple
asset price returns with defined means and variance-covariance among
assets. We first construct a set of correlated random normal numbers {v1,
v2, . . . , vn} based on an independent set {e1, e2, . . . , en} generated from
e(0,1). We consider the linear combination for every vi as:

vi ¼
Xn

k¼1 aikek ð10:7Þ

with mean E(vi) ¼ 0 and variance-covariance rij ¼ E(vivj) ¼
Pn

k¼1 aikajk.
Since rij are positively defined and symmetric, it can be shown through
Cholesky decomposition that a is a lower triangular matrix with strictly
positive diagonal entries. This implies a simpler structure for (10.7) given by:

v1 ¼ a11e1
v2 ¼ a21e1 þ a22e2

. . . . . . . . .
vn ¼ an1e1 þ an2e2 þ . . .þ annen

ð10:8Þ

with

rij ¼ ai1aj1 þ ai2aj2 þ . . .þ aijajj; for i � j: ð10:9Þ

It is then easy to adopt the so-called Cholesky algorithm and determine
all aij in (10.8) iteratively using (10.9) by running i from 1 to n as:

r11 ¼ a11a11; a
2
11 ¼ r11

r21 ¼ a21a11; a21 ¼ r21
a11

¼ r21

r22 ¼ a21a21 þ a22a22; a
2
22 ¼ r22 � a2

21 ¼ r22 � r221

r31 ¼ a31a11; a31 ¼ r31
a11

¼ r31

r32 ¼ a31a21 þ a32a22; a32 ¼ (r32 � a31a21)

a22
¼ (r32 � r31r21)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r221

q
r33 ¼ a31a31 þ a32a32 þ a33a33;

a2
33 ¼ r33 � a2

31 � a2
32

¼ r33 �
r31(r31 � r32r21)þ r32(r32 � r31r21)

(1� r221)

. . . and so on.
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Equivalently, the algorithm can also be performed through the follow-
ing equations5 where aij are determined iteratively by running i from 1 to n.

aij ¼
rij �

Pj�1
k¼1 aikajk

ajj
; for j ¼ 1; 2; . . . ; i� 1 ð10:10Þ

aii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rii �

Xi�1
k¼1 a

2
ik

r
ð10:11Þ

It should be noted that the iteration starts off from the diagonal entry
a11 ¼ ffiffiffiffiffiffiffi

r11
p

in (10.11). For i > 1, the off-diagonal entries are determined
iteratively by running j from 1 to i � 1 in (10.10) prior to the determination
of the diagonal entry in (10.11). For multiple asset price returns over the
time horizon T with means {m1,T, m2,T, . . . , mn,T} and variance-covariance
sij,T among assets, we first generate the random set {v1, v2, . . . , vn} using
(10.8) with rij ¼ sij,T / (si,T sj,T), where si;T ¼ ffiffiffiffiffiffiffiffiffi

sii;T
p

. We then rescale vi to
become q̂i;0 according to its mean and standard deviation as:

q̂i;0 ¼ mi;T þ ai;T vi; for i ¼ 1; 2; . . . ; n ð10:12Þ

such that the conditions E(q̂i;0) ¼ mi;T and E[(q̂i;0 � mi;T)(q̂j;0 � mj;T)] ¼ sij;T

are explicitly satisfied. It is convenient to develop a generic VBA routine
called Cholesky() capable of generating a set of correlated random normal
numbers given their means and variance-covariance. The pseudo code of
Cholesky() is given in Code 10.1. For our purpose, it reads in {n, sij,T, mi,T}
and returns an array of correlated asset price returns fq̂1;0; q̂2;0; . . . ; q̂n;0g.
The VBA code of the Cholesky() routine is given in Code 10.2.

Cholesky( n , s(1 : n , 1 : n) , m(1 : n) , q(1 : n) )

# define the correlation coefficients
For( i = 1 to n ){ For( j = 1 to i ) { r( i , j ) = s( i , j ) /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(i; i)s(j; j)

p
} }

# determine a iteratively through (10.10) and (10.11)
For( i = 1 to n ){
For( j = 1 to i � 1 ){ Sa = 0

For( k = 1 to j � 1 ){ Sa = Sa + a( i , k ) a( j , k ) }
a( i , j ) = [ r( i , j ) � Sa ] / a( j , j ) }

Sa = 0
For( k = 1 to i � 1 ){ Sa = Sa + a( i , k ) a( i , k ) }
a(i; i) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(i; i)� Sa

p
}

# generate an independent sequence of e from e( 0 , 1 )
For( i = 1 to n ){ e(i) = StdNormNum( ) }
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# construct a correlated sequence of q using (10.8) and (10.12)
For( i = 1 to n ){ q(i) = 0

For( j = 1 to i ){ q(i) = q(i) + a( i , j ) e(j) }
q(i) ¼ m(i)þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(i; i)

p
q(i) }

Code 10.1: Pseudo code of the Cholesky() routine.

Sub Cholesky(n As Integer, vc() As Double, mean() As Double, ByRef qvec() As Double)
Dim rho() As Double: ReDim rho(1 To n, 1 To n)
Dim alpha() As Double: ReDim alpha(1 To n, 1 To n)
Dim gen() As Double: ReDim genvec(1 To n)
Dim i As Integer, j As Integer, k As Integer
Dim alphasum As Double

For i = 1 To n For j = 1 To i: rho(i, j) = vc(i, j)/Sqr(vc(i, i) * vc(j, j)): Next j: Next i

For i = 1 To n
For j = 1 To i � 1
alphasum = 0
For k = 1 To j � 1: alphasum = alphasum + alpha(i, k) * alpha(j, k): Next k
alpha(i, j) = (rho(i, j) � alphasum)/alpha(j, j)
Next j
alphasum = 0
For k = 1 To i � 1: alphasum = alphasum + alpha(i, k) * alpha(i, k): Next k
alpha(i, i) = Sqr(rho(i, i) � alphasum)
Next i

For i = 1 To n: genvec(i) = StdNormNum(): Next i

For i = 1 To n
qvec(i) = 0
For j = 1 To i: qvec(i) = qvec(i) + alpha(i, j) * genvec(j): Next j
qvec(i) = mean(i) + Sqr(vc(i, i)) * qvec(i)
Next i
End Sub

Code 10.2: VBA code of the Cholesky() routine.

EXAMPLE 10.2

Consider the following historical set of nd ¼ 1000 daily price returns
of the Hang Seng Index (HSI) and the Hong Kong Shanghai Banking
Corporation (HSBC) during the period from June 9, 2004 to June 5,
2008.6 Suppose it is currently June 5, 2008, with daily closings of
SHSI,0 ¼ 24,255.29 and SHSBC,0 ¼ 131.30, and the risk-free interest
rate is r ¼ 5 percent per year.

(Continued)
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(I) Use Monte Carlo simulation to determine the one-day 95 percent
VaR of a portfolio containing the following assets:

& One European call option written on the HSI index with Strike1
¼ 24,500, Maturity1 ¼ 0.25 year, and Volatility1 ¼ 25 percent
per year.

& One European put option written on 100 shares of HSBC stock
with Strike2 ¼ 130, Maturity2 ¼ 0.50 year, and Volatility2 ¼
30 percent per year.

1. As shown in Figure 10.5, the time horizon of the simulation
is T ¼ 1 day.

2. The historical means and variance-covariance of daily price
returns in L6:M6 and L4:M5, respectively, are estimated
based on the synchronized data sets in C3:C1002 and
E3:E1002.

3. Random samples of ns ¼ 5000 correlated daily price returns
q̂HSI;0(L) and q̂HSBC;0(L) are generated by calling the Cholesky()
routine in VBA as

Sub genMC1day()
Dim mean(1 To 2) As Double, vc(1 To 2, 1 To 2) As Double
Dim q(1 To 2) As Double, assetPriceListNow(1 To 2) As Double
Dim Ls As Long, i As Integer
mean(1) = Range("MC1day!L6").Value
mean(2) = Range("MC1day!M6").Value
vc(1, 1) = Range("MC1day!L4").Value
vc(1, 2) = Range("MC1day!M4").Value
vc(2, 1) = Range("MC1day!L5").Value
vc(2, 2) = Range("MC1day!M5").Value
assetPriceListNow(1) = Range("MC1day!L7").Value
assetPriceListNow(2) = Range("MC1day!M7").Value
seed = 56789
For Ls = 1 To 5000
Call Cholesky(2, vc, mean, q)
For i = 1 To 2: Range("MC1day!F3").Offset(Ls - 1, i - 1) =
assetPriceListNow(i) *(1 + q(i)): Next i
Next Ls

End Sub

4. The corresponding future asset prices ŜHSI;T(L) and ŜHSBC;T(L)
at the one-day horizon are determined in F3:F5002 and G3:
G5002, respectively, according to Ŝi;T(L) ¼ Si;0 (1þ q̂i;0(L)).

(Continued)
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It is easy to extend the VaR measure over a longer time horizon Th ¼ hT.
Random sequences of multiple asset price returns for consecutive periods of
T can be generated by calling the Cholesky() routine repeatedly for every
time step as:

5. The current mark-to-market value of the portfolio is evaluated
in L12 using the Black–Scholes call and put pricings as:

F(SHSI;0; SHSBC;0; 0) ¼ BSCallPrice(SHSI;0; Strike1; r;
Volatility1;Maturity1)
þ100� BSPutPrice(SHSBC; 0; Strike2;
r; Volatility2; Maturity2)

¼ 2116:60:

6. The mark-to-market values of the portfolio at the one-day
horizon are also evaluated in H3:H5002 as:

F(ŜHSI;T(L); ŜHSBC;T(L); T) ¼ BSCallPrice(ŜHSI;T(L);
Strike1; r; Volatility1; Maturity1� T)
þ 100� BSPutPrice(ŜHSBC;T(L); Strike2; r;
Volatility2;Maturity2� T)

with sample portfolio returns calculated in I3:I5002 using
(10.6). The mean and standard deviation of the portfolio
returns at the one-day horizon can then be estimated as
GT ¼ 0.1566 percent and ST ¼ 6.4869 percent using these
samples. The one-day 95 percent VaR of the portfolio is given
by the left-tail value GT � 1.645 ST ¼ �10.51 percent.

{   q̂1, 0(L)  ,   q̂1, T1(L)   ,   …   ,   q̂1, Th − 1(L)   }   

q̂n, 0(L)  ,   q̂n, T1(L)   ,   …   ,   q̂n, Th − 1(L)   }   

q̂2, 0(L)  ,   q̂2, T1(L)   ,   …   ,   q̂2, Th − 1(L)   }   {   

:                                                 : :

{   L = 1, 2, … , ns

↑
Cholesky( ) 

↑
Cholesky( ) 

↑
Cholesky( ) 

(Continued)
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Future asset prices at Th can be evaluated iteratively with respect to the re-
turn sequences as:

Ŝi;Th
(L) ¼ Si;0(1þ q̂i;0(L))(1þ q̂i;T1

(L)) . . . (1þ q̂i;Th�1 (L)) ð10:13Þ

and the procedure can be implemented very easily based on the pseudo code
given by:

For( L = 1 to ns ){
For( i = 1 to n ){ Ŝ(i) = Si,0}
For(m = 0 to h � 1 ){ Call Cholesky( n, s(1: n, 1: n), m(1: n),q̂(1: n) )

For( i = 1 to n ){ Ŝ(i ) = Ŝ(i )(1 + q̂(i )) } }
}

(II) Use Monte Carlo simulation to determine the five-day 95 percent
VaR of the same option portfolio.

1. As shown in Figure 10.6, the time horizon of the simulation is
T5 ¼ 5 days.

2. Random samples of ns ¼ 5,000 future asset prices ŜHSI,T5
(L) and

ŜHSBC,T5
(L) at the five-day horizon are generated in A3:A5002

and B3:B5002, respectively, using the VBA code according to
(10.13) as:

Sub genMC5day()
Dim mean(1 To 2) As Double, vc(1 To 2, 1 To 2) As Double
Dim q(1 To 2) As Double, assetPriceListNow(1 To 2) As Double, assetPriceList
(1 To 2) As Double

EXAMPLE 10.2 (CONT INUED)

FIGURE 10.6 Monte Carlo simulation of the multiple-asset portfolio with a
five-day horizon.

(Continued)
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10 .3 H I STOR I CAL S IMULAT I ON FOR
MULT I P L E - ASSET PORTFOL I OS

In historical simulation, historical price returns for multiple assets are taken
directly as random samples of correlated asset returns for the following

Dim Ls As Long, m As Integer, i As Integer
mean(1) = Range("MC1day!L6").Value
mean(2) = Range("MC1day!M6").Value
vc(1, 1) = Range("MC1day!L4").Value
vc(1, 2) = Range("MC1day!M4").Value
vc(2, 1) = Range("MC1day!L5").Value
vc(2, 2) = Range("MC1day!M5").Value
assetPriceListNow(1) = Range("MC1day!L7").Value
assetPriceListNow(2) = Range("MC1day!M7").Value
seed = 56789
For Ls = 1 To 5000
For i = 1 To 2: assetPriceList(i) = assetPriceListNow(i): Next i
For m = 0 To 4
Call Cholesky(2, vc, mean, q)
For i = 1 To 2: assetPriceList(i) = assetPriceList(i) * (1 + q(i)): Next i
Next m
For i = 1 To 2: Range("MC5day!A3").Offset(Ls - 1, i - 1) = assetPriceList(i):
Next i
Next Ls
End Sub

3. Mark-to-market values of the portfolio at the five-day horizon are
also evaluated in C3:C5002 as:

F(ŜHSI;T5
(L); ŜHSBC;T5

(L)T5)

¼ BSCallPrice(ŜHSI;T5
(L); Strike1; r; Volatility1; Maturity1� T5)

þ100� BSPutPrice(ŜHSBC;T5
(L)Strike2; r; Volatility2; Maturity2� T5)

with sample portfolio returns calculated in D3:D5002. The mean
and standard deviation of the portfolio returns at the five-day
horizon are estimated to be GT5

¼ 0.6907 percent and ST5
¼

13.3368 percent. The five-day 95 percent VaR of the portfolio is
given by GT5

� 1.645 ST5
¼ �24.54 percent.

(Continued)
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period of T. In this manner, we can generate the sample returns as:

~qi;0(L) ¼ qi(L); for i ¼ 1; 2; . . . ; n ð10:14Þ

by reading off synchronized price returns from the historical data set
given by:

{   q1(1)  ,   q1(2)   ,   …   ,   q1(ns)   ,   …   ,   q1(nd)   } 

q2(1)  ,   q2(2)   ,   …   ,   q2(ns)   ,   …   ,   q2(nd)   } 

qn(1)  ,   qn(2)   ,   …   ,   qn(ns)   ,   …   ,   qn(nd)   } 

{   

:              :                         :

{   

↑
L = 1 

↑
L = 2 

↑
L = ns

Future asset prices at T can then be evaluated as ~Si;T(L) ¼ Si;0(1þ ~qi;0(L))
with respect to the sample returns. In principle, the adopted samples will
exhibit all statistical properties as observed in the past including the correla-
tion among different assets.

For a longer time horizon Th, random sequences of multiple asset
returns for consecutive periods of T can be generated through non-
overlapping sequences of historical returns as:

~qi;Tm
(L) ¼ qi((L� 1)hþmþ 1); for i ¼ 1; 2; . . . ; n

m ¼ 0; 1; . . . ;h� 1
ð10:15Þ

{   q1(1), … , q1(h) ,  q1(h + 1), … , q1(2h)  ,  ….  ,  q1((ns − 1)h + 1), … , q1(nsh)  ,  …  ,  q1(nd)   } 

{   qn(1), … , qn(h) ,  qn(h + 1), … , qn(2h)  ,  ….  ,  qn((ns − 1)h + 1), … , qn(nsh)  ,  …  ,  qn(nd)   } 

q2(1), … , q2(h) ,  q2(h + 1), … , q2(2h)  ,  ….  ,  q2((ns − 1)h + 1), … , q2(nsh)  ,  …  ,  q2(nd)   } {   

:                                   :                                                         :

↑
L = 1 

↑
L = 2 

↑
L = ns

Again, the maximum sample size is limited to ns � (nd / h). The future asset
prices at Th can be evaluated with respect to the return sequence as:

~Si;Th
(L) ¼ Si;0(1þ ~qi;0(L))(1þ ~qi;T1

(L)) . . . (1þ ~qi;Th�1 (L)) ð10:16Þ
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that can be implemented through the pseudo code given by:

For( L = 1 to ns ){
For( i = 1 to n ){ ~S(i) = Si,0

For(m = 0 to h � 1 ){ ~q(i) = q( (L � 1)h +m + 1)
~S(i) = ~S(i)(1 + ~q(i) ) } }

}

EXAMPLE 10.3

(I) Use historical simulation to determine the one-day 95 percent
VaR of the same option portfolio in Example 10.2.

1. As shown in Figure 10.7, the time horizon of the simulation is
T ¼ 1 day.

2. Historical returns in C3:C1002 and E3:E1002 are taken as the
random samples of daily price returns ~qHSI;0(L) and ~qHSBC;0(L),
respectively. The sample size is limited to ns ¼ nd ¼ 1000.

3. Future asset prices ~SHSI;T(L) and ~SHSBC;T(L) at the one-day horizon
are determined in F3:F1002 and G3:G1002, respectively, accord-
ing to ~Si;T(L) ¼ Si;0(1þ ~qi;0(L)).

4. The same number of random portfolio returns are generated in I3:
I1002.

5. The left-tail pointer corresponding to a 95 percent confidence is
given by IV ¼ (1 � 0.95)�1,000 ¼ 50, and the one-day 95 percent
VaR of the portfolio is determined to be�10.17 percent.

(II) Now determine the five-day 95 percent VaR of the portfolio.
1. As shown in Figure 10.8, the time horizon of the simulation is

T5 ¼ 5 days.
2. Random samples of ns ¼ Int(nd / h) ¼ 200 future asset prices

~SHSI;T5
(L) and ~SHSBC;T5

(L) at the five-day horizon are gener-
ated in A3:A202 and B3:B202, respectively, using the VBA
code according to (10.16) as:

Sub genHS5day()
Dim nd As Integer: nd = Range("HS1day!K4").Value
Dim ns As Integer: ns = Int(nd / 5)
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10 .4 VBA IMPL EMENTAT I ON OF PORTFOL I O
R I SK S IMULAT I ON

In this section, we consider the implementation of portfolio risk simulation
using Excel and VBA. To ensure flexibility and expandability, the imple-
mentation is effectively modularized and follows the system architecture as
laid out in Figure 10.9. It contains the following modules that perform dif-
ferent tasks in the risk simulation.

Market Data—it provides the current and historical closing prices of all
spot assets that could possibly be included in the portfolio.

Trade Data—it defines the portfolio contents and details for each
trading contract.

Dim qHistory() As Double: ReDim qHistory(1 To 2, 1 To nd)
Dim assetPriceListNow(1 To 2) As Double, assetPriceList(1 To 2) As Double
Dim Ls As Long, m As Integer, j As Integer
For j = 1 To nd
qHistory(1, j) = Range("HS1day!C3").Offset(j - 1, 0)
qHistory(2, j) = Range("HS1day!E3").Offset(j - 1, 0)
Next j
assetPriceListNow(1) = Range("MC1day!L7").Value
assetPriceListNow(2) = Range("MC1day!M7").Value
For Ls = 1 To ns
For i = 1 To 2
assetPriceList(i) = assetPriceListNow(i)
For m = 0 To 4
assetPriceList(i) = assetPriceList(i) * (1 + qHistory(i, (Ls - 1) * 5 + m + 1))
Next m
Next i
Range("HS5day!A3").Offset(Ls - 1, 0) = assetPriceList(1)
Range("HS5day!B3").Offset(Ls - 1, 0) = assetPriceList(2)
Next Ls
End Sub

3. The same number of random portfolio returns is generated in
D3:D002.

4. The left-tail pointer corresponding to a 95 percent confidence
is given by IV ¼ (1 � 0.95)�200 ¼ 10, and the five-day 95 per-
cent VaR of the portfolio is determined to be �18.56 percent.

(Continued)
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Valuation Library—it serves as a function library that provides the
pricing formulae for different types of instruments.

Risk Engine—it works as the simulation core that generates sample
asset prices driven by the historical data in Market Data, and then
evaluates sample portfolio values according to the portfolio
contents in Trade Data with reference to the pricing functions in
the Valuation Library.

Reporting—it manages the output from the Risk Engine and generates
the risk report to be displayed.

( 1 ) Marke t Da t a

Figure 10.10 depicts the layout of the worksheet ‘‘MarketData’’ with the
historical daily closing prices of 20 major stocks on the Hong Kong Stock
Exchange during the period from June 8, 2004 to June 5, 2008.7 The
worksheet works as the database for the Market Data module that drives
the simulation. The cell A1 defines the time horizon T, in number of days,
of the historical data. Sequences of closing prices are recorded one column
per asset starting from column B onward with the corresponding timestamp
given by column A. The top two cells in each column contain, respectively,
the ticker symbol of the asset and its denominated currency. The database
can be updated by appending new closing prices to the last row of the
worksheet. It is also scalable to include more spot assets by adding new
columns of historical prices.

FIGURE 10.9 System architecture of portfolio risk simulation.
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The worksheet works in conjunction with an interface routine called
getMarketData() as given by Code 10.3. The routine grabs the following
essential information from the worksheet in order to facilitate the risk simu-
lation in Risk Engine.

& Time horizon of the historical data (T)
& Total number of assets in the database (n)
& Data length of the historical prices (nd)
& Ticker symbols of the assets
& Denominated currencies of the assets
& Historical means of the assets for Monte Carlo simulation (mi,T)
& Historical variance-covariance of the assets for Monte Carlo simulation

(sij,T)
& Historical price returns of the assets for historical simulation (qi(1),

qi(2), . . . , qi(nd))
& Current prices of the assets (Si,0).

The size parameters n and nd can be determined very easily by counting
the number of nonblank cells in row 1 and column A of the worksheet,
respectively. Ticker symbols and currencies can be read off from the first
two rows of the worksheet while current asset prices can be taken from
the last row. They are returned to the main program as a one-dimen-
sional array with asset label (i ¼ 1, 2, . . . , n). Historical price returns
are evaluated based on the closing prices, and they are collected inside a
two-dimensional array with asset label (i ¼ 1, 2, . . . , n) as well as time
label (Ld ¼ 1, 2, . . . , nd). Historical means and variance-covariance of
the assets are calculated in a straightforward way using the historical
data. They are stored in different arrays with a single asset label for the
means (i ¼ 1, 2, . . . , n) and with double asset labels (i, j ¼ 1, 2, . . . , n)
for the variance-covariance.

FIGURE 10.10 The layout of the worksheet ‘‘MarketData’’ with historical
closing prices.
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Sub getMarketData(ByRef TAs Double, ByRef n As Integer, ByRef nd As Integer,
ByRef tickerSymbol() As Variant, ByRef currencyDenom() As Variant,
ByRef mean() As Double, ByRef vc() As Double,
ByRef qHistory() As Double, ByRef assetPriceListNow() As Double)

Dim i As Integer, j As Integer, Ld As Integer
T = Range("MarketData!A1").Value
n = Worksheets("MarketData").Range("1:1").Cells.SpecialCells(xlCellTypeConstants).

Count - 1
nd = Worksheets("MarketData").Range("A:A").Cells.SpecialCells(xlCellTypeConstants).

Count - 1

For i = 1 To n: tickerSymbol(i) = Range("MarketData!A1").Offset(0, i): Next i
For i = 1 To n: currencyDenom(i) = Range("MarketData!A2").Offset(0, i): Next i

Dim assetPriceData() As Double: ReDim assetPriceData(1 To n, 1 To nd)
For i = 1 To n
For Ld = 1 To nd: assetPriceData(i, Ld) = Range("MarketData!A2").Offset(Ld, i):
Next Ld
Next i

For i = 1 To n
assetPriceListNow(i) = assetPriceData(i, nd)
For Ld = 1 To nd - 1: qHistory(i, Ld) = (assetPriceData(i, Ld + 1) - assetPriceData(i, Ld))/
assetPriceData(i, Ld): Next Ld
Next i
nd = nd - 1

Dim sumi As Double, sumj As Double, sumij As Double
For i = 1 To n
For j = 1 To i
sumi = 0
sumj = 0
sumij = 0
For Ld = 1 To nd
sumi = sumi + qHistory(i, Ld)
sumj = sumj + qHistory(j, Ld)
sumij = sumij + qHistory(i, Ld) * qHistory(j, Ld)
Next Ld
mean(i) = sumi/nd
vc(i, j) = sumij/(nd - 1) - (sumi/nd) * (sumj/nd) * nd/(nd - 1)
vc(j, i) = vc(i, j)
Next j
Next i

End Sub

Code 10.3: VBA code of the getMarketData() routine.
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In this implementation, we focus on the simulation of portfolio risk due
to the random behavior of asset prices. The exchange rates and risk-free
interest rates for different currencies are considered to be static parameters
in the simulation. Figure 10.11 depicts the layout of the worksheet ‘‘Currency-
Data’’ that keeps the latest currency information. It serves as a database
for the Market Data module in dealing with instruments denominated in
foreign currencies. The worksheet works in conjunction with a routine
called getCurrencyData() in Code 10.4 that collects the following currency
rates from the worksheet:

& Currency symbols
& Exchange rates of the currencies to HKD
& Annualized risk-free interest rates of the currencies.

Sub getCurrencyData(ByRef nCurrency As Integer, ByRef currencySymbol() As Variant,
ByRef currencyRateList() As Double, ByRef riskFreeList() As Double)

Dim i As Integer
nCurrency = Worksheets("CurrencyData").Range("1:1").Cells.SpecialCells

(xlCellTypeConstants).Count

For i = 1 To nCurrency: currencySymbol(i) = Range("CurrencyData!A1").Offset(0, i): Next i
For i = 1 To nCurrency: currencyRateList(i) = Range("CurrencyData!A2").Offset(0, i): Next i
For i = 1 To nCurrency: riskFreeList(i) = Range("CurrencyData!A3").Offset(0, i): Next i

End Sub

Code 10.4: VBA code of the getCurrencyData() routine.

( 2 ) Va l ua t i o n L i b rary

The role of the Valuation Library module in risk simulation is to enable ad
hoc valuation of financial derivatives given sample asset prices. It provides
some ready-to-use pricing formulae of derivatives written as VBA functions
that furnish the calculation of the market-to-market portfolio value. We
have included in this implementation a VBA module called ‘‘Valuation
Library’’ that includes the pricing functions for different instruments such as:

FIGURE 10.11 The layout of the worksheet ‘‘CurrencyData’’ with currency rates.
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In the simulation, the VBA functions above can be used to price different
types of contracts in the portfolio given sample asset prices together with
the trading details specified in the Trade Datamodule.

( 3 ) Trade Da t a

The Trade Data module is a database that records the contents of the port-
folio and also the trading details for each contract. It works in conjunction
with an interface routine called calContractValue() that serves to define the
data model in relation to the parameters in the pricing of a derivative con-
tract. In general, a derivative contract can be specified through its attributes
defined in Trade Data as:

Contract type: ( contractType as Text )

contractType—{ "Spot", "European Call", "European Put", "Futures"
"Up-and-In Call", "Up-and-Out Call", "Up-and-In Put", "Up-and-Out Put" "
Down-and-In Call", "Down-and-Out Call", "Down-and-In Put",
"Down-and-Out Put"
"Asian Geometric Call", "Asian Geometric Put" }

Instruments VBA Functions Function Parameters

Spot asset: SpotPrice() asset price
European option:
Call BSCallPrice() asset price, strike, risk-free

rate, volatility, maturityPut BSPutPrice()

Futures: FuturesContractPrice() asset price, delivery price,
risk-free rate, maturity

Single barrier option:
Up-and-in call UpInCallPrice() asset price, strike, upper barrier,

risk-free rate, volatility, maturityUp-and-out call UpOutCallPrice()
Up-and-in put UpInPutPrice()
Up-and-out put UpOutPutPrice()

Down-and-in call DownInCallPrice() asset price, strike, lower barrier,
risk-free rate, volatility, maturityDown-and-out call DownOutCallPrice()

Down-and-in put DownInPutPrice()
Down-and-out put DownOutPutPrice()

Asian option:
Geometric call AsianGeCallPrice() asset price, strike, risk-free rate,

volatility, number of maturities,
array of maturities

Geometric put AsianGePutPrice()
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Contract size : ( contractSize( 1: 2 ) as array of Double )

contractSize(1)—total trading units of the contract
contractSize(2)—exchange ratio to underlying asset

Asset price : ( assetPrice as Double )

assetPrice—underlying asset price

Strike price : ( strikeArray( 1: 3 ) as array of Double )

strikeArray(1)—strike price of option or delivery price of futures
strikeArray(2)—upper barrier price of option
strikeArray(3)—lower barrier price of option

Maturity : (maturityArray( ) as array of Double with dynamical size )

maturityArray(1)—last maturity in years of the contract
maturityArray(2)—second last maturity in years of the contract8

Volatility : ( volatility as Double )

volatility—annualized volatility of the underlying asset

Currency exchange rate : ( currencyRate as Double )

currencyRate—exchange rate for the denominated currency of the contract

Interest rate : ( riskFree as Double )

riskFree—annualized risk-free interest rate for the denominated currency of the contract

The VBA code of calContractValue() that incorporates such data
conversion is given by Code 10.5. It returns the mark-to-market value of a
particular contract in the portfolio by encoding its attributes from Trade
Data and then referring to the corresponding pricing function in Valuation
Library. It should be noted that the scope of the data model can be
expanded to include more instrument types by enlarging the sizes of the
attribute arrays. For instance, a basket option can be included very easily
by expanding assetPrice and volatility into arrays of double to cater for
multiple underlying assets.

Sub calContractValue(contractType As Variant, contractSize() As Double,
assetPrice As Double, strikeArray() As Double, maturityArray() As Double,
volatility As Double, currencyRate As Double, riskFree As Double,
ByRef contractValue)

If (contractType = "Spot") Then
contractValue = SpotPrice(assetPrice)
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ElseIf (contractType = "European Call") Then
contractValue = BSCallPrice(assetPrice, strikeArray(1), riskFree, volatility, maturityArray(1))
ElseIf (contractType = "European Put") Then
contractValue = BSPutPrice(assetPrice, strikeArray(1), riskFree, volatility, maturityArray(1))
ElseIf (contractType = "Futures") Then
contractValue = FuturesContractPrice(assetPrice, strikeArray(1), riskFree, maturityArray(1))
ElseIf (contractType = "Up-and-In Call") Then
contractValue = UpInCallPrice(assetPrice, strikeArray(1), strikeArray(2), riskFree, volatility,
maturityArray(1))

ElseIf (contractType = "Up-and-Out Call") Then
contractValue = UpOutCallPrice(assetPrice, strikeArray(1), strikeArray(2), riskFree,
volatility, maturityArray(1))

ElseIf (contractType = "Up-and-In Put") Then
contractValue = UpInPutPrice(assetPrice, strikeArray(1), strikeArray(2), riskFree, volatility,
maturityArray(1))

ElseIf (contractType = "Up-and-Out Put") Then
contractValue = UpOutPutPrice(assetPrice, strikeArray(1), strikeArray(2), riskFree,
volatility, maturityArray(1))

ElseIf (contractType = "Down-and-In Call") Then
contractValue = DownInCallPrice(assetPrice, strikeArray(1), strikeArray(3), riskFree,
volatility, maturityArray(1))

ElseIf (contractType = "Down-and-Out Call") Then
contractValue = DownOutCallPrice(assetPrice, strikeArray(1), strikeArray(3), riskFree,
volatility, maturityArray(1))

ElseIf (contractType = "Down-and-In Put") Then
contractValue = DownInPutPrice(assetPrice, strikeArray(1), strikeArray(3), riskFree,
volatility, maturityArray(1))

ElseIf (contractType = "Down-and-Out Put") Then
contractValue = DownOutPutPrice(assetPrice, strikeArray(1), strikeArray(3), riskFree,
volatility, maturityArray(1))

ElseIf (contractType = "Asian Geometric Call") Then
contractValue = AsianGeCallPrice(assetPrice, strikeArray(1), riskFree, volatility,
maturityArray)

ElseIf (contractType = "Asian Geometric Put") Then
contractValue = AsianGePutPrice(assetPrice, strikeArray(1), riskFree, volatility,
maturityArray)

End If

contractValue = currencyRate * contractSize(1) * contractSize(2) * contractValue

End Sub

Code 10.5: VBA code of the calContractValue() routine.

Figure 10.12 depicts the layout of the worksheet ‘‘TradeData’’ that can
be used as an interface to insert the trading details for each contract in the
portfolio. In each row, the entries in Column B to Column L record the
attributes for each contract as discussed above. The ticker symbol in
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Column E will be used later on to capture the corresponding sample asset
price from the simulation. It will also be used to identify the denominated
currency for the adopted interest rate as well as the exchange rate for the
domestic currency. The routine getTradeData() in Code 10.6 collects all
these attributes for a particular contract from the worksheet with reference
to the trade label defined in Column A.

Sub getTradeData(tradeLabel As Integer, ByRef contractType As Variant,
ByRef contractSize() As Double, ByRef contractTickerSymbol As Variant,
ByRef strikeArray() As Double, ByRef maturityArray() As Double, ByRef
volatility As Double)

Dim i As Integer
contractType = Range("TradeData!B1").Offset(tradeLabel, 0)
For i = 1 To 2: contractSize(i) = Range("TradeData!C1").Offset(tradeLabel, i - 1): Next i
contractTickerSymbol = Range("TradeData!E1").Offset(tradeLabel, 0)
For i = 1 To 3: strikeArray(i) = Range("TradeData!F1").Offset(tradeLabel, i - 1): Next i
For i = 1 To 3: maturityArray(i) = Range("TradeData!I1").Offset(tradeLabel, i - 1): Next i
volatility = Range("TradeData!L1").Offset(tradeLabel, 0)

End Sub

Code 10.6: VBA code of the getTradeData() routine.

It is straightforward to evaluate the current mark-to-market value of a
particular contract by first calling getTradeData() for the trading details and
then using calContractValue for the valuation. During the course of evalua-
tion, it will require capturing the current price and identifying the currency
rates for the underlying asset from Market Data. The following VBA proce-
dure will perform such task for the contract with tradeLabel = 1, for
example, given market and currency information.

tradeLabel = 1
Call getTradeData(tradeLabel, contractType, contractSize, contractTickerSymbol, strikeArray,

maturityArray, volatility)

For i = 1 To n
If (contractTickerSymbol = tickerSymbol(i)) Then

FIGURE 10.12 The layout of the worksheet ‘‘TradeData’’ with trading details.
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assetLabel = i
Exit For
End If
Next i
assetPrice = assetPriceListNow(assetLabel)

For i = 1 To nCurrency
If (currencyDenom(assetLabel) = currencySymbol(i)) Then
currencyRate = currencyRateList(i)
riskFree = riskFreeList(i)
Exit For
End If
Next i

Call calContractValue(contractType, contractSize, assetPrice, strikeArray, maturityArray,
volatility, currencyRate, riskFree, contractValue)

The VBA function portValue() as shown in Code 10.7 extends the
mark-to-market procedure to the case of a portfolio consisting of numerous
contracts. It works as the function F in (10.6) that evaluates the mark-to-
market value of the portfolio according to the list of asset prices {S1,0,
S2,0, . . . , Sn,0} at current time with refTime ¼ 0. The function also requires
the inputs of market and currency information as:

& Total number of assets in the database
& Ticker symbols of the assets
& Denominated currencies of the assets
& Total number of currencies in the database
& Currency symbols
& Exchange rates of the currencies
& Annualized risk-free interest rates of the currencies.

It repeatedly implements the above mark-to-market procedure one contract
at a time and accumulates the contract value to the portfolio. The looping
stops when there is a blank line in ‘‘TradeData’’ indicating the end of
the portfolio content. The mark-to-market procedure can also be
extended to forward time ref Time ¼ T using random asset prices
fŜ1;T(L); Ŝ2;T(L); . . . ; Ŝn;T(L)g. In this case, the reference forward time will
be used to adjust all relevant maturities acquired from ‘‘TradeData.’’ It
should be noted that irrelevant maturity will always be zero if it reads an
undefined blank cell in the worksheet.

Function portValue(assetPriceList() As Double, refTime As Double, n As Integer,
tickerSymbol() As Variant, currencyDenom() As Variant, nCurrency As Integer,
currencySymbol() As Variant, currencyRateList() As Double,
riskFreeList() As Double) As Double
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Dim tradeLabel As Integer: tradeLabel ¼ 0
Dim contractType As Variant
Dim contractSize(1 To attSizemax) As Double
Dim contractTickerSymbol As Variant
Dim strikeArray(1 To attSizemax) As Double
Dim maturityArray(1 To attSizemax) As Double
Dim volatility As Double

Dim i As Integer
Dim assetPrice As Double
Dim currencyRate As Double
Dim riskfree As Double
Dim assetlabel As Integer
Dim contractValue As Double

portValue = 0
nextContract: tradeLabel = tradeLabel + 1
Call getTradeData(tradeLabel, contractType, contractSize, contractTickerSymbol,
strikeArray, maturityArray, volatility)

If (contractType = "") Then Exit Function

For i = 1 To n
If (contractTickerSymbol = tickerSymbol(i)) Then
assetlabel = i
Exit For
End If
Next i
assetPrice = assetPriceList(assetlabel)

For i = 1 To nCurrency
If (currencyDenom(assetlabel) = currencySymbol(i)) Then
currencyRate = currencyRateList(i)
riskfree = riskFreeList(i)
Exit For
End If
Next i

i = 1
Do While maturityArray(i) > 0
maturityArray(i) = maturityArray(i) - refTime
i = i + 1
Loop

Call calContractValue(contractType, contractSize, assetPrice, strikeArray, maturityArray,
volatility, currencyRate, riskfree, contractValue)
portValue = portValue + contractValue
GoTo nextContract

End Function

Code 10.7: VBA code of the portValue() function.
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( 4 ) R i sk Eng i ne

The Risk Engine module is considered to be the central part of the portfolio
risk simulation. It simulates the uncertainty in the future portfolio value by
generating random samples of future asset prices. Figure 10.13 illustrates a
schematic view of the risk simulation performed by the Risk Engine module.
It contains two major components, namely the portValue() function
together with a core engine. As discussed above, the evaluation of the current
mark-to-market portfolio value can be conducted by feeding the portValue()
function with market and currency information from Market Data. The
portValue() function will then evaluate the current portfolio value according
to the portfolio contents as recorded in Trade Data. The reference forward
time is set as refTime ¼ 0 and derivative contracts are valued with reference
to the Valuation Library. The top part of the VBA routine riskEngine() in
Code 10.8 implements the mark-to-market procedure at current time.

In the same module, the core engine first acquires the essential market
information fromMarket Data and then generates random samples of future
asset prices for all assets in the database. For Monte Carlo simulation,
the random generation is driven by the historical means and variance-
covariance of the assets through the Cholesky algorithm. This refers back
to the genMC5day() routine in section 10.2 with a slight modification to

FIGURE 10.13 A schematic view of the portfolio risk simulation.
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cater for the arbitrary number of assets and time steps. In this method,
the core engine is given by the routine MCSim() in Code 10.9 capable of
generating one set of random asset prices f~S1;Th

(L); ~S2;Th
(L); . . . ; ~Sn;Th

(L)g
for every single call to the routine. For historical simulation, the random
generation is driven by historical asset price returns. In this case, the core
engine is given by the routine HistSim() in Code 10.9 that is similar to the
genHS5day() routine in section 10.3. Again, it generates one set of historical
asset prices f~S1;Th

(L); ~S2;Th
(L); . . . ; ~Sn;Th

(L)g for every single call taking the
sample number L as a reference pointer in the historical data sequence.

The simulation time horizon should be in multiple steps h of the time
horizon T as defined in Market Data. The simulation setup such as type of
simulation {Monte Carlo, Historical}, number of time steps h, and sample
size ns are all specified in the Reporting module. Remember that the sample
size is limited to ns� Int(nd / h) for historical simulation. The bottom part of
riskEngine() performs the portfolio risk simulation by feeding the portValue()
function with random samples of asset prices at a specified time horizon.
The portValue() function will evaluate the corresponding mark-to-market
portfolio values and divert these random samples to the database in the
Reportingmodule. The time horizon T inMarket Data is defined in number
of days. It should be converted into a yearly scale through the day count
factor dayCount ¼ 260 representing the number of trading days in one
year. Thus, the reference forward time should be quoted as refTime ¼ hT/
dayCount in the mark-to-market procedure. It is also useful to display the
progress of the simulation through the status bar after the completion of
every 100 samples.

Option Explicit
Public Const nmax = 100
Public Const ndmax = 3000
Public Const attSizemax = 10
Public Const nlocationmax = 100
Public Const dayCount = 260
_________________________________________________________________________

Sub riskEngine()

Dim TAs Double
Dim n As Integer, nd As Integer
Dim tickerSymbol(1 To nmax) As Variant
Dim currencyDenom(1 To nmax) As Variant
Dim mean(1 To nmax) As Double
Dim vc(1 To nmax, 1 To nmax) As Double
Dim qHistory(1 To nmax, 1 To ndmax) As Double
Dim assetPriceListNow(1 To nmax) As Double
Dim nCurrency As Integer
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Dim currencySymbol(1 To nmax) As Variant
Dim currencyRateList(1 To nmax) As Double
Dim riskFreeList(1 To nmax) As Double

' evaluate the current mark-to-market portfolio value

Call getMarketData(T, n, nd, tickerSymbol, currencyDenom, mean, vc, qHistory,
assetPriceListNow)

Call getCurrencyData(nCurrency, currencySymbol, currencyRateList, riskFreeList)

Dim refTime As Double
Dim currentValue As Double

Range("ReportingData!A:A").ClearContents
refTime = 0
currentValue = portValue(assetPriceListNow, refTime, n, tickerSymbol, currencyDenom,

nCurrency, currencySymbol, currencyRateList, riskFreeList)
Range("ReportingData!A1") = currentValue

' generate sample mark-to-market portfolio values at forward time

Dim simType As Variant: simType = Range("Reporting!simType").Text
Dim hstep As Integer: hstep = Range("Reporting!hstep").Value
Dim ns As Long: ns = Range("Reporting!ns").Value
If (simType = "Historical" And ns > Int(nd/hstep)) Then ns = Int(nd/hstep)

Dim assetPriceList(1 To nmax) As Double
Dim sampleValue As Double
Dim Ls As Long

For Ls = 1 To ns
If (simType = "Monte Carlo") Then
Call MCSim(n, mean, vc, assetPriceListNow, hstep, assetPriceList)

ElseIf (simType = "Historical") Then
Call HistSim(n, qHistory, assetPriceListNow, hstep, Ls, nd, assetPriceList)

End If
refTime = hstep * T/dayCount
sampleValue = portValue(assetPriceList, refTime, n, tickerSymbol, currencyDenom,

nCurrency, currencySymbol, currencyRateList, riskFreeList)
Range("ReportingData!A2").Offset(Ls - 1, 0) = sampleValue
If (Ls Mod 100) = 0 Then Application.StatusBar = "Done simulation sample " & Ls

Next Ls

End Sub

Code 10.8: VBA code of the riskEngine() routine.

Sub MCSim(n As Integer, mean() As Double, vc() As Double, assetPriceListNow() As Double,
hstep As Integer, ByRef assetPriceList() As Double)

Dim i As Integer, m As Integer
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Dim qvec() As Double: ReDim qvec(1 To n)
For i = 1 To n: assetPriceList(i) = assetPriceListNow(i): Next i
For m = 0 To hstep - 1
Call Cholesky(n, vc, mean, qvec)

For i = 1 To n: assetPriceList(i) = assetPriceList(i) * (1 + qvec(i)): Next i
Next m

End Sub
_________________________________________________________________________

Sub HistSim(n As Integer, qHistory() As Double, assetPriceListNow() As Double, hstep
As Integer, Ls As Long, nd As Integer, ByRef assetPriceList() As Double)
Dim i As Integer, m As Integer
Dim qvec() As Double: ReDim qvec(1 To n)
Do While Ls > Int(nd/hstep): Ls = Ls - Int(nd/hstep): Loop
For i = 1 To n: assetPriceList(i) = assetPriceListNow(i): Next i
For m = 0 To hstep - 1
For i=1Ton:assetPriceList(i)=assetPriceList(i) * (1+qHistory(i, (Ls -1) *hstep+m+1)):Next i

Nextm
EndSub

Code 10.9: VBA code of the MCSim() and HistSim() routines.

Repor t i n g

The Reporting module is a user-defined interface that analyzes the outputs
from Risk Engine. In general, it contains a reporting interface together with
a database. In this implementation, the worksheet ‘‘ReportingData’’ works
as the database that keeps all raw outputs from the simulation. The work-
sheet ‘‘Reporting’’ demonstrates, for example, a minimal layout of the
reporting interface as depicted in Figure 10.14. It defines the simulation

FIGURE 10.14 The layout of the worksheet ‘‘Reporting.’’
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setup in B6:B8 (named as simType, hstep, and ns) and displays the portfolio
VaR in B14 by extracting the relevant information from the database
through a reporting tool called getVaR(). The confidence level of the VaR
number is defined in B13 (confLevel). The VBA code of getVaR() is given
by Code 10.10. The reporting interface can also be expanded to include
more reporting tools such as a graphic routine that plots the probability
distribution of the future portfolio return. The VBA code of this routine is
given by Code 10.11.

Sub getVaR()
Dim ns As Integer: ns = Worksheets("ReportingData").Range("A:A").Cells.SpecialCells

(xlCellTypeConstants).Count - 1
Dim currentValue As Double: currentValue = Range("ReportingData!A1").Value
Dim sampleValue As Double
Dim sampleReturn() As Double: ReDim sampleReturn(1 To ns)
Dim i As Integer
For i = 1 To ns
sampleValue = Range("ReportingData!A2").Offset(i - 1, 0)
sampleReturn(i) = (sampleValue - currentValue)/Abs(currentValue)

Next i

Dim simType As Variant: simType = Range("Reporting!simType").Text
Dim confLevel As Double: confLevel = Range("Reporting!confLevel").Value
If (simType = "Monte Carlo") Then
With WorksheetFunction
Range("Reporting!B14") = .Average(sampleReturn) - .NormSInv(confLevel/100) *
.StDev(sampleReturn)

End With
ElseIf (simType = "Historical") Then
Range("Reporting!B14") = Application.WorksheetFunction.Small(sampleReturn,
Int((1 - confLevel/100) * ns))

End If

End Sub

Code 10.10: VBA code of the getVaR() routine.

Sub genPlot()
Dim ns As Integer: ns = Worksheets("ReportingData").Range("A:A").Cells.SpecialCells

(xlCellTypeConstants).Count - 1
Dim currentValue As Double: currentValue = Range("ReportingData!A1").Value
Dim sampleValue As Double
Dim sampleReturn() As Double: ReDim sampleReturn(1 To ns)

Dim i As Integer
For i = 1 To ns
sampleValue = Range("ReportingData!A2").Offset(i - 1, 0)
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sampleReturn(i) = (sampleValue - currentValue)/Abs(currentValue)
Next i

Dim meanReturn As Double: meanReturn = WorksheetFunction.Average(sampleReturn)
Dim sdReturn As Double: sdReturn = WorksheetFunction.StDev(sampleReturn)

Dim zMax As Double: zMax = Range("Reporting!zMax")
Dim zMin As Double: zMin = Range("Reporting!zMin")
Dim npoint As Integer: npoint = Range("Reporting!npoint")
Dim inc As Double: inc = (zMax - zMin)/(npoint - 1)

Dim upper As Double, lower As Double
Dim j As Integer, sum As Integer

For j = 1 To npoint
Range("Reporting!M1").Offset( j - 1, 0) = meanReturn + (zMin + (j - 1) * inc) * sdReturn
upper = meanReturn + (zMin + ( j - 1 + 0.5) * inc) * sdReturn
lower = meanReturn + (zMin + ( j - 1 - 0.5) * inc) * sdReturn
sum = 0
For i = 1 To ns
If sampleReturn(i) >= lower And sampleReturn(i) < upper Then sum = sum + 1

Next i
Range("Reporting!N1").Offset(j - 1, 0) = sum * 1#/ns

Next j
Charts.Add
ActiveChart.ChartType = xlXYScatterLines
ActiveChart.SetSourceData Source:=Sheets("Reporting").Range("M1:N100")
ActiveChart.Location Where:=xlLocationAsObject, Name:="Reporting"

End Sub

Code 10.11: VBA code of the genPlot() routine.

10 .5 DR I L L DOWN OF PORTFOL I O R I SK

It is useful to separate the total portfolio risk into different components with
respect to the corporate hierarchy. In this way, the risk contribution from
each contract owner can be clearly identified and the risk diversification
within the hierarchy will also be transparent. Suppose, the corporate hierar-
chy can be defined as:

Corporate! Divisions! Trading Desks! Traders:

The contract owners are the individual traders. Each of them holds a sub-
portfolio that is presumably well diversified among different contracts. The
trading desk, on the other hand, holds a larger sub-portfolio combining all
contracts from its traders, and the risk diversification now appears among
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different traders. This works all the way up to the single corporate portfolio
at the top of the hierarchy where the risk diversification is considered to be
an aggregated effect from many sub-portfolios. Thus, the risk separation
enables an important feature of drilling down to the components of the
portfolio risk at different locations in the hierarchy.

The risk separation can be achieved by extending the attributes of each
contract in Trade Data to include the owner’s location in the hierarchy.
Suppose, for example, that the contracts as inserted in worksheet ‘‘Trade-
Data’’ are held by different traders under the corporate hierarchy as shown
in Figure 10.15. Figure 10.16 depicts the extended layout of the worksheet
‘‘TradeData’’ that records the trading details as well as the owner’s location
for each contract.

A drill-down location of interest in the risk separation can be defined
using any array of characters such as (Hong Kong: A: Tom) that aims, for
example, at the sub-portfolio held by Tom in Desk A of the Hong Kong
division. It can also be defined at a higher level such as (Hong Kong: A) that

FIGURE 10.16 The extended layout of the worksheet ‘‘TradeData’’ with trading
details and owner’s location.

FIGURE 10.15 The Corporate hierarchy inserted in Figure 10.16.
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aims at a larger sub-portfolio held byDesk A in the same division. Thus, the
depth of a drill-down location is determined by the first time we see a blank
in the array. The VBA function subPortValue() as shown in Code 10.12
extends the mark-to-market procedure to the case of a sub-portfolio speci-
fied by a drill-down array. It differs from the portValue() function by adding
a routine called checkDrill() that filters out irrelevant contracts. As shown
in Code 10.13, the routine checkDrill() returns a flag that confirms whether
the owner’s location for a particular contract belongs to a drill-down.
Hence, the sub-portfolio value is only accumulated from those relevant con-
tracts under the drill-down location.

The full corporate hierarchy is defined in the extended layout of work-
sheet ‘‘Reporting’’ as shown in Figure 10.17. The array of characters from
each row inside the box D23:H33 represents a possible drill-down location
in the hierarchy. Altogether, there are nlocation ¼ 11 locations in the corpo-
rate hierarchy as depicted in B22 (nlocation). The routine getHierarchy() in
Code 10.14 collects all these drill-down locations into a two-dimensional
character array with two indices given by:

hierarchy( lptr = 1, 1 ) = Hong Kong
hierarchy( lptr = 2, 1 ) = Singapore
hierarchy( lptr = 3, 1 ) = Hong Kong, hierarchy( lptr = 3, 2 ) = A

. . . . . . . . .
hierarchy( lptr = 11, 1 ) = Singapore, hierarchy( lptr = 11, 2 ) = B, hierarchy( lptr = 11, 3 ) = Bill

The routine riskEngineDrill() in Code 10.15 modifies the routine riskEngine
() in Code 10.8 so as to perform the risk separation. It reads off the corpo-
rate hierarchy through getHierarchy() and evaluates the mark-to-market
sub-portfolio values for every drill-down locations labeled by lptr. The
sample sub-portfolio values are again diverted to the worksheet

FIGURE 10.17 The extended layout of the worksheet ‘‘Reporting’’ with full
corporate hierarchy.
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‘‘ReportingData’’ and organized in different columns with respect to lptr.
The VaR numbers at different drill-down locations are determined by
calling a routine named getVaRDrill(). The routine getVaRDrill() in Code
10.16 is very similar to getVaR() in Code 10.10 except it looks at the
column specified by the pointer lptr.

Function subPortValue(assetPriceList() As Double, refTime As Double, n As Integer,
tickerSymbol() As Variant, currencyDenom() As Variant, nCurrency As Integer,
currencySymbol() As Variant, currencyRateList() As Double,
riskFreeList() As Double, drillDown() As Variant) As Double

Dim tradeLabel As Integer: tradeLabel = 0
Dim contractType As Variant
Dim contractSize(1 To attSizemax) As Double
Dim contractTickerSymbol As Variant
Dim strikeArray(1 To attSizemax) As Double
Dim maturityArray(1 To attSizemax) As Double
Dim volatility As Double

Dim i As Integer
Dim assetPrice As Double
Dim currencyRate As Double
Dim riskfree As Double
Dim assetlabel As Integer
Dim contractValue As Double
Dim flag As Boolean

subPortValue = 0
nextContract: tradeLabel = tradeLabel + 1
Call getTradeData(tradeLabel, contractType, contractSize, contractTickerSymbol,

strikeArray, maturityArray, volatility)
If (contractType = "") Then Exit Function
Call checkDrill(tradeLabel, drillDown, flag)
If (Not flag) Then GoTo nextContract

For i = 1 To n
If (contractTickerSymbol = tickerSymbol(i)) Then
assetlabel = i
Exit For

End If
Next i
assetPrice = assetPriceList(assetlabel)

For i = 1 To nCurrency
If (currencyDenom(assetlabel) = currencySymbol(i)) Then
currencyRate = currencyRateList(i)
riskfree = riskFreeList(i)
Exit For

End If
Next i
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i = 1
Do While maturityArray(i) > 0
maturityArray(i) = maturityArray(i) - refTime
i = i + 1

Loop

Call calContractValue(contractType, contractSize, assetPrice, strikeArray, maturityArray,
volatility, currencyRate, riskfree, contractValue)

subPortValue = subPortValue + contractValue
GoTo nextContract

End Function

Code 10.12: VBA code of the subPortValue() function.

Sub checkDrill(tradeLabel As Integer, drillDown() As Variant, ByRef flag As Boolean)

Dim i As Integer
For i = 1 To 3
If (drillDown(i) = "") Then GoTo exiti
If (drillDown(i) < > Range("TradeData!refOffsetCell").Offset(tradeLabel, i - 1)) Then

flag = False
Exit Sub

End If
Next i
exiti: flag = True

End Sub

Code 10.13: VBA code of the checkDrill() routine.

Sub getHierarchy(ByRef nlocation As Integer, ByRef hierarchy() As Variant)

Dim lptr As Integer, i As Integer
nlocation = Range("reporting!nlocation").Value
For lptr = 1 To nlocation
For i = 1 To attSizemax: hierarchy(lptr, i) = Range("Reporting!D23").Offset(lptr - 1, i - 1).
Text: Next i

Next lptr

End Sub

Code 10.14: VBA code of the getHierarchy() routine.

Sub riskEngineDrill()

Dim TAs Double
Dim n As Integer, nd As Integer
Dim tickerSymbol(1 To nmax) As Variant
Dim currencyDenom(1 To nmax) As Variant
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Dim mean(1 To nmax) As Double
Dim vc(1 To nmax, 1 To nmax) As Double
Dim qHistory(1 To nmax, 1 To ndmax) As Double
Dim assetPriceListNow(1 To nmax) As Double

Dim nCurrency As Integer
Dim currencySymbol(1 To nmax) As Variant
Dim currencyRateList(1 To nmax) As Double
Dim riskFreeList(1 To nmax) As Double

Dim hierarchy(1 To nlocationmax, 1 To attSizemax)
Dim drillDown(1 To attSizemax) As Variant
Dim nlocation As Integer, lptr As Integer, i As Integer

Call getHierarchy(nlocation, hierarchy)

' evaluate the current mark-to-market portfolio value

Call getMarketData(T, n, nd, tickerSymbol, currencyDenom, mean, vc, qHistory,
assetPriceListNow)

Call getCurrencyData(nCurrency, currencySymbol, currencyRateList, riskFreeList)

Dim refTime As Double
Dim currentValue As Double

For lptr = 1 To nlocation
For i = 1 To attSizemax: drillDown(i) = hierarchy(lptr, i): Next i
Range("ReportingData!A:A").Offset(0, lptr).ClearContents
refTime = 0
currentValue = subPortValue(assetPriceListNow, refTime, n, tickerSymbol, currencyDe-

nom, nCurrency, currencySymbol, currencyRateList, riskFreeList, drillDown)
Range("ReportingData!A1").Offset(0, lptr) = currentValue

Next lptr

' generate sample mark-to-market portfolio values at forward time

Dim simType As Variant: simType = Range("Reporting!simType").Text
Dim hstep As Integer: hstep = Range("Reporting!hstep").Value
Dim ns As Long: ns = Range("Reporting!ns").Value
If (simType = "Historical" And ns > Int(nd / hstep)) Then ns = Int(nd / hstep)

Dim assetPriceList(1 To nmax) As Double
Dim sampleValue As Double
Dim Ls As Long

For Ls = 1 To ns
If (simType = "Monte Carlo") Then
Call MCSim(n, mean, vc, assetPriceListNow, hstep, assetPriceList)

ElseIf (simType = "Historical") Then
Call HistSim(n, qHistory, assetPriceListNow, hstep, Ls, nd, assetPriceList)

End If
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For lptr = 1 To nlocation
For i = 1 To attSizemax: drillDown(i) = hierarchy(lptr, i): Next i
refTime = hstep * T / dayCount
sampleValue = subPortValue(assetPriceList, refTime, n, tickerSymbol, currencyDenom,
nCurrency, currencySymbol, currencyRateList, riskFreeList, drillDown)

Range("ReportingData!A2").Offset(Ls - 1, lptr) = sampleValue
Next lptr
If (Ls Mod 100) = 0 Then Application.StatusBar = "Done simulation sample " & Ls

Next Ls

For lptr = 1 To nlocation: Call getVaRDrill(lptr): Next lptr

End Sub

Code 10.15: VBA code of the riskEngineDrill() routine.

Sub getVaRDrill(lptr As Integer)

Dim ns As Integer: ns = Worksheets("ReportingData").Range("A:A").Cells.SpecialCells
(xlCellTypeConstants).Count - 1

Dim currentValue As Double: currentValue = Range("ReportingData!A1").Offset(0, lptr).
Value

Dim sampleValue As Double
Dim sampleReturn() As Double: ReDim sampleReturn(1 To ns)

Dim i As Integer
For i = 1 To ns
sampleValue = Range("ReportingData!A2").Offset(i - 1, lptr)
sampleReturn(i) = (sampleValue - currentValue) / Abs(currentValue)

Next i

Dim simType As Variant: simType = Range("Reporting!simType").Text
Dim confLevel As Double: confLevel = Range("Reporting!confLevel").Value
If (simType = "Monte Carlo") Then
With WorksheetFunction
Range("Reporting!B23").Offset(lptr - 1, 0) = .Average(sampleReturn) - .NormSInv
(confLevel / 100) * .StDev(sampleReturn)

End With
ElseIf (simType = "Historical") Then
Range("Reporting!B23").Offset(lptr - 1, 0) = Application.WorksheetFunction.Small
(sampleReturn, Int((1 - confLevel / 100) * ns))

End If

End Sub

Code 10.16: VBA code of the getVaRDrill() routine.
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REV I EW QUEST I ON

1. How would you include exchange rate risk in the portfolio risk simulation?

ENDNOTES

1. The p% VaR corresponds to the value at (100 � p)% tail on the left side of the
probability distribution.

2. We define asset price return at time t over the time horizon T as qt¼ (St+T� St)/St .
3. Strictly speaking, it should be taken as Q ¼ (Fnew � Fold)/jFold j since portfolio

value can be negative.
4. Refer to HSI_Historical_daily.xls.
5. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, ‘‘Solution

of Linear Algebraic Equations,’’ in Numerical Recipes in C : The Art of
Scientific Computing, 2nd Edition, (Cambridge: Cambridge University
Press, 1997), 32–104.

6. Refer to HSI_HSBC_Historical_daily.xls
7. Refer to risk.xls
8. Consider, for example, a one-year Asian option with averaging times at 6

months, 9 months, and 1 year. In this case, we set maturityArray(1) ¼ 1 year,
maturityArray(2) ¼ 0.75 year, andmaturityArray(3) ¼ 0.50 year.
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CHAPTER 11
The Hull–White Model

11 .1 HUL L–WH I T E TR INOM IA L TRE E

In this chapter, we extend the numerical procedures discussed in Chapter 8
and consider a generalized formulation of a stochastic interest rate. This is
known as the Hull–White model1 of instantaneous short rate constructed
under the no arbitrage assumption. A particular form of the model is
referred to as the extended Vasicek model in which risk-neutral short rate rt
as seen at time t is assumed to follow a mean reverting stochastic process
given by:

Drt ¼ f(rt; t)Dt þ s
ffiffiffiffi
D

p
te(0; 1); f(rt; t) ¼ u(t)� art: ð11:1Þ

It has adopted a non-stochastic volatility structure for zero-coupon bond
price Pt(T), as seen at time t with maturity at T, as:2

st(T) ¼ s

a
1� e�aðT�tÞ
h i

ð11:2Þ

with two parameters s and a. The function u(t) in (11.1) can be related to
the current yield curve as:

u(t) ¼ 2R00(t)þ tR000(t)þ a[R0(t)þ tR00(t)]þ
s2

2a
(1� e�2at) ð11:3Þ

where R0(t) is the current interest rate with maturity term t. In its simple
form, the risk-neutral short rate process can be constructed based on the
current yield curve together with a two-factor parameterization of the bond
price volatilities in (11.2).

The Black–Scholes differential equation for derivative f(rt, t) written
on short rate can be solved by iterating the explicit finite difference
equation3 backward in time along a two-dimensional grid with sizes Dr
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and Dt as shown in Figure 11.1. In the figure, we have denoted fi,j and
fi,j as the values of f(rt, t) and f(rt, t), respectively, at node (i,j) on the
grid. It is important to ensure the convergence of the estimated value to
its true value as Dt and Dr ! 0. A sufficient condition for convergence
of the iteration is that the coefficients {c1, c2, c3} are all positive in this
limit. This can be satisfied if both s2Dt/Dr2 < 1 and jf(rt, t)jDr < s2.
Thus, it is necessary for the drift f(rt, t) to be a bounded function, and
the ratio Dt/Dr2 should remain finite and less than 1/s2 as Dt and Dr !
0. In (11.1), the drift f(rt, t) in the Hull–White model is not bounded.
It follows that the convergence of the explicit finite difference method
cannot be ensured.

It can be shown that the explicit finite difference method is equivalent
to a trinomial tree approach that utilizes the risk-neutral pricing with move-
ment of risk-neutral short rate on the same grid. To overcome the conver-
gence problem, we may consider a general formulation of a trinomial tree
with branching process from node (i,j) to one of (i þ 1, k þ 1), (i þ 1, k), or
(i þ 1, k � 1) for some middle value of k as shown in Figure 11.2. The
branching probabilities {pui; j; p

m
i; j; p

d
i; j} at node (i,j) can be determined by

FIGURE 11.1 A two-dimensional grid for the explicit finite difference equation.

FIGURE 11.2 A trinomial tree with generalized branching process on the grid.
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matching the first and second moments of Drt given by (11.1). This gives:

pui;j ¼
1

2
s2 Dt

Dr2
þ 1

2
hþ 1

2
h2

pmi;j ¼ 1� s2 Dt

Dr2
� h2

pdi;j ¼
1

2
s2 Dt

Dr2
� 1

2
hþ 1

2
h2; h ¼ j� kþ fi;j

Dt

Dr
:

ð11:4Þ

Convergence requires the branching probabilities in (11.4) to be positive as
Dt and Dr ! 0. This can be satisfied if we impose the constraint such that
0.25 < s2Dt/Dr2 < 0.75 and fix k to be the nearest integer to j + fi, j Dt/Dr.
This means that if Dr is chosen within the range of s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(4=3)D

p
t to

s
ffiffiffiffiffiffi
4D

p
t, it is always possible to find a k such that the branching probabilities

are all positive. An optimal choice of Dr as suggested by Hull and White in
endnote 3 is that Dr ¼ s

ffiffiffiffiffiffi
3D

p
t. It then follows that the chosen value of k will

always be finite even though f(rt, t) is not bounded in the model. The
current value of derivative can be determined by iterating backward along
the tree through risk-neutral pricing as:

f i; j ¼ e�(r0þjDr)Dt(pui; j f iþ1; kþ1 þ pmi; j f iþ1; k þ pdi; j f iþ1; k�1): ð11:5Þ

The generalized trinomial tree can be considered a modification of the
explicit finite difference method to ensure convergence of the iteration.

The risk-neutral drift f(rt, t) in (11.1) can be evaluated at each node on
the trinomial tree given the current yield curve together with the parameters s
and a for the bond price volatilities. However, it is clear that the terms R00(t)
and R000(t) in (11.3) cannot be calculated accurately under a finite set of zero
rates. In a numerical approach, it is sufficient to construct a tree that is
consistent with the current yield curve. The time-dependent function u(t) in
(11.3) can be calibrated at every time step ti ¼ iDt on the tree using zero rates
R0(ti) with maturity terms that coincide with the tree structure. Accordingly,
the risk-neutral drift f(rt, t) at every tree node can be evaluated as:

fi;j ¼ u(ti)� a(r0 þ jDr) ð11:6Þ
Define Q(i,j) as the current value of a security that pays $1 at node (i,j) and
zero elsewhere. The value of Q(i,j) for every tree node can be generated
using the relationship given by:

Q(iþ 1; h) ¼
XUðiÞ

j¼LðiÞQ(i; j) prob(i; j; h)e�ðr0þjDrÞDt: ð11:7Þ

where L(i) and U(i) denote the labels of the bottom and top nodes, respec-
tively, at time i. The term prob(i, j, h) is the probability in going from node
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(i,j) to node (i + 1, h). For any given j, it is clear that prob(i, j, h) is zero for
all h except when h equals one of the {k + 1, k, k � 1} for which it becomes
the three branching probabilities {pui;j; p

m
i;j; p

d
i;j} in (11.4). A trinomial tree

is said to be consistent with the current yield curve if the values of Q(i,j)
satisfy the condition:

e�R0(ti)ti ¼
XUðiÞ

j¼LðiÞQ(i; j): ð11:8Þ

At every time step, the function u(ti) can be calibrated to the zero rates using
the above condition to give:4

u(ti) ¼ 1

Dt2
R0ðtiþ2Þ(tiþ2)þ 1

2
s2Dt

þ 1

Dt2
ln

XU(i)
j¼L(i)Q(i; j)e�2(r0þjDr)Dtþa(r0þjDr)Dt

2

� �
:

ð11:9Þ

A trinomial tree for the short rate in (11.1) with time interval Dt and
horizon Ttree ¼ NtreeDt can be constructed by calibrating with the current
term structure of zero rates {R0(t1), R0(t2), . . . ,R0(tNtree+1

)} where ti ¼ iDt.
Equations (11.4), (11.6), (11.7), and (11.9) can be used iteratively to con-
struct the trinomial tree with initial conditions L(0) ¼ U(0) ¼ 0, Q(0, 0) ¼
1, and r0 ¼ R0(t1). Suppose at any time ti that we have already determined
L(i), U(i), andQ(i,j) for all j from L(i) to U(i).

1. Determine u(ti) from (11.9) using R0(tiþ2) and then evaluate fi,j from
(11.6) for all j.

2. For all j, determine the branching probabilities {pui;j; p
m
i;j; p

d
i;j} from

(11.4) with the value of k in the middle branch taken to be:5

ki;j ¼ jþ CINT(fi;jDt=Dr)

where the function CINT(x) returns the nearest integer to the real
argument x.

3. Use ki,L(i) and ki,U(i) to update L(i þ 1) ¼ ki,L(i) � 1 and U(i þ 1) ¼
ki,U(i) þ 1.

4. Except at tNtree�1, update also Q(i þ 1, h) from (11.7) for all h from L
(i þ 1) to U(i þ 1).

To generate a trinomial tree with time interval Dt and horizon Ttree ¼
NtreeDt, we should repeat steps (1) to (4) for ti from t0 to tNtree�1. It would
require the current term structure of zero rates {R0(t1), R0(t2), . . . ,
R0(tNtreeþ1)} according to (11.9).
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EXAMPLE 11.1

Consider a two-step trinomial tree for the Hull–White model with
yearly time interval Dt ¼ 1.00 andNtree ¼ 2. We assume that the bond
price volatility structure is parameterized using (11.2) with factors s
¼ 0.01 and a ¼ 0.1. The trinomial tree can be constructed using zero
rates with maturity terms that coincide with the tree structure as given
by Table 11.1.

In the table, zero rates are calculated from the zero-coupon bond
prices with a $1 par value as:

R0(ti) ¼ �(1=ti)ln(P0(ti)=$1):

Choose Dr ¼ s
ffiffiffiffiffiffi
3D

p
t ¼ 0:01732 and assign r0 ¼ R0(t1) ¼ 0.04783.

When i ¼ 0, we have L(0) ¼ U(0) ¼ 0, and Q(0, 0) ¼ 1. We can
first evaluate u(t0) as:

u(t0) ¼ (1=Dt2)R0(t2)t2 þ 1
2s

2Dt þ (1=Dt2)ln(Q(0; 0)e�2r0Dtþar0Dt
2

)

¼ 0:00843:

For j ¼ L(0) ¼ U(0) ¼ 0, the branching probabilities at node (0, 0) can
be determined as:

f0;0 ¼ u(t0)� ar0 ¼ 0:00365

k0;0 ¼ 0þ CINT(f0;0Dt=Dr) ¼ 0

pu0;0 ¼ 1
2s

2Dt=Dr2 þ 1
2(0� 0þ f0;0Dt=Dr)þ 1

2(0� 0þ f0;0Dt=Dr)
2

¼ 0:2942

pm0;0 ¼ 1� s2Dt=Dr2 � (0� 0þ f0;0Dt=Dr)
2 ¼ 0:6223

pd0;0 ¼ 1� pu0;0 � pm0;0 ¼ 0:0835

(continued )

TABLE 11.1 The current term structure of zero rates.

Maturity Terms
(years)

Bond Prices P0(ti)
($1 par value)

Zero Rates R0(ti)
(annual)

t1 ¼ 1.00 $0.9533 4.783%
t2 ¼ 2.00 $0.9055 4.963%
t3 ¼ 3.00 $0.8525 5.319%
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(continued )

Then update L(1) ¼ k0,L(0) � 1 ¼ �1, U(1) ¼ k0,U(0) þ 1 ¼ 1

Q(1; 1) ¼ Q(0; 0)prob(0; 0; 1)e�r0Dt ¼ Q(0; 0)pu0;0e
�r0Dt ¼ 0:2805

Q(1; 0) ¼ Q(0; 0)prob(0; 0; 0)e�r0Dt ¼ Q(0; 0)pm0;0e
�r0Dt ¼ 0:5932

Q(1;�1) ¼ Q(0; 0)prob(0; 0; � 1)e�r0Dt ¼ Q(0; 0)pd0;0e
�r0Dt ¼ 0:0796

When i ¼ 1, we can evaluate u(t1) using the updated values of
L(1), U(1), andQ(1, j) as:

u(t1) ¼ (1=Dt2)R0(t3)t3 þ 1
2s

2Dt

þ (1=Dt2)ln(Q(1;�1)e�2(r0�Dr)Dtþa(r0�Dr)Dt2

þQ(1; 0)e�2r0Dtþar0Dt
2 þQ(1; 1)e�2(r0þDr)Dtþa(r0þDr)Dt

2

)

¼ 0:01416

For j ¼ L(1) to j ¼ U(1), the branching probabilities at nodes (1, �1),
(1, 0), and (1, 1) can be determined as:

j ¼ �1 : f1;�1 ¼ f(t1)� a(r0 � Dr) ¼ 0:0111

k1;�1 ¼ �1þ CINT(f1;�1Dt=Dr) ¼ 0

pu1;�1 ¼ 1
2s

2Dt=Dr2 þ 1
2(� 1� 0þ f1;�1Dt=Dr)

þ 1
2(� 1� 0þ f1;�1Dt=Dr)

2

¼ 0:0516

pm1;�1 ¼ 1� s2Dt=Dr2 � (� 1� 0þ f1;�1Dt=Dr)
2 ¼ 0:5380

pd1;�1 ¼ 1� pu1;�1 � pm1;�1 ¼ 0:4104

j ¼ 0 : f1;0 ¼ u(t1)� ar0 ¼ 0:00938

k1;0 ¼ 0þ CINT(f1;0Dt=Dr) ¼ 1

pu1;0 ¼ 1
2s

2Dt=Dr2 þ 1
2(0� 1þ f1;0Dt=Dr)

þ 1
2(0� 1þ f1;0Dt=Dr)

2

¼ 0:0425

pm1;0 ¼ 1� s2Dt=Dr2 � (0� 1þ f1;0Dt=Dr)
2 ¼ 0:4563

pd1;0 ¼ 1� pu1;0 � pm1;0 ¼ 0:5012

j ¼ 1 : f1;1 ¼ u(t1)� a(r0 þ Dr) ¼ 0:00764

k1;1 ¼ 1þ CINT(f1;1Dt=Dr) ¼ 1

pu1;1 ¼ 1
2s

2Dt=Dr2 þ 1
2(1� 1þ f1;1Dt=Dr)

þ 1
2(1� 1þ f1;1Dt=Dr)

2

¼ 0:4847

pm1;1 ¼ 1� s2Dt=Dr2 � (1� 1þ f1;1Dt=Dr)
2 ¼ 0:4719

pd1;1 ¼ 1� pu1;1 � pm1;1 ¼ 0:0434
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A Hull–White trinomial tree can easily be applied to price interest rate
derivatives based on the risk-neutral pricing in (11.5). Consider again
a European call option with strike price K and maturity T written on a
coupon-bearing bond that matures at later time t. The bond has a face
value of Lpar and pays regular coupons of value C under the time schedule
{s1, s2, . . . , snc

}. Similar to the discussion in section 8.2, we need to
construct a trinomial tree with a time horizon that covers the entire life of
the underlying bond. The size of the time interval Dt must be chosen very
close to the shortest maturity term of the available bond prices while it
could also reach t with discrete time steps. Again, market term structures
with maturities that coincide with such time increments can be constructed
through cubic spline interpolation. In this case, the trinomial tree should be
constructed up to the maturity of the underlying bond. The total time horizon
is thus given by Ttree ¼ t with Ntree ¼ t/Dt time steps.6 Suppose the option
matures at time step H on the tree for which T ¼ HDt. The maturity payoff
of the option c(rHj) is evaluated according to the forward price of the under-
lying bond on the tree node (H, j) given by:

f H;j ¼ maxfK� BHj(t); 0g; j ¼ L(H); . . . ; U(H): ð11:10Þ

The forward bond prices in (11.10) can be determined by iterating (11.5)
for the underlying bond utilizing the branching probabilities and short rates

Then update L(2) ¼ k1,L(1) � 1 ¼ �1 and U(2) ¼ k1,U(1) þ 1 ¼ 2.
As t1 already reaches tNtree�1, there is no need to update Q for t2. The
two-step trinomial tree is constructed as shown in Figure 11.3.

FIGURE 11.3 The two-step trinomial tree constructed using the zero rates in
Table 11.1.
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on the trinomial tree. The iteration starts off from the bond’s maturity at
time step Ntree with face value Lpar and works backward to the option’s
maturity at time stepH as:

Bi; j(t) ¼ e�(r0þjDr)Dt(pui;jBiþ1;kþ1(t)þ pmi;jBiþ1;k(t)þ pdi;jBiþ1;k�1(t))

þ ri(s1; s2; . . . ; snc )C; j ¼ L(i); . . . ;U(i) and k ¼ ki;j:
ð11:11Þ

The term ri(s1, s2, . . . , snc
) in (11.11) counts the total number of coupon

payments during the time interval (i � 1
2)Dt < t � (i + 1

2)Dt. The current price
of the option can be determined by iterating (11.5) backward again for the
option from time stepH to 0 along the tree as:

f i; j ¼ e�(r0þjDr)Dt(pui;jf iþ1;kþ1 þ pmi;jf iþ1;k þ pdi;jf iþ1;k�1);

j ¼ L(i); . . . ;U(i) and k ¼ ki;j
ð11:12Þ

where time label i is running fromH � 1 to 0.

11 .2 EXCE L PLUS VBA IMPLEMENTAT I ON

We first develop a routine called GenHullWhiteTree() that generates the
Hull–White trinomial tree for the short rate in (11.1) given current term
structures of bond prices and their volatilities. The pseudo code of GenHull-
WhiteTree() is given by Code 11.1. It requires the input of tree configura-
tion (Ttree,Ntree), current zero-coupon bond prices P0(ti) with maturities {t1,
t2, . . . , tNtreeþ1}, and the parameters s and a for their volatilities. The rou-
tine returns the labels of the bottom and top nodes L(i) and U(i), respec-
tively, at every time step of the tree with i runs from 0 to Ntree. It also
returns the branching probabilities {pui;j; p

m
i;j; p

d
i;j} and the corresponding

values of ki,j at every tree node with time label i runs from 0 to Ntree � 1
and node label j runs from L(i) to U(i). For completeness, short rates
ri,j ¼ r0 þ jDr at every node are also returned with i runs from 0 toNtree and
j runs again from L(i) to U(i). The time interval of the tree is defined to be
Dt ¼ Ttree/Ntree, and the rate interval is optimally chosen as Dr ¼ s

ffiffiffiffiffiffi
3D

p
t.

The zero rates R0(ti) with maturities {t1, t2, . . . , tNtreeþ1} are first calculated
from the zero-coupon bond prices. The initial values of the arrays (L(0),
U(0), Q(0,0), r0,0) are defined at t0 with the use of R0(t1) prior to the itera-
tion. It will run from t0 to tNtree�1 taking the zero rates and the volatility
parameters as calibration data. At time ti, the arrays (L(i), U(i), Q(i,j), rij)
should presumably be determined up to the same time. Together with the
zero rate R0(tiþ2) and the volatility parameters, there is enough information
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to determine the arrays {pui;j; p
m
i;j; p

d
i;j; ki;j} at time ti following the procedures

(1) and (2) in section 11.1. Subsequently, the arrays (L(i),U(i),Q(i,j), rij) are
updated to time tiþ1 through (3) and (4) before the iteration proceeds to
tiþ1. It should be noted that the last update for Q(i,j) at tNtree�1 is not neces-
sary in the construction. In (11.7), the term prob(i, j, h) is nonzero only
when h equals one of the {ki,j þ 1, ki,j, ki,j þ 1}. Thus, it can be implemented
very easily using an ‘‘If’’ condition and identifying the corresponding
branching probabilities at node (i,j).

The VBA code of GenHullWhiteTree() is given by Code 11.2. It is kept
under the module called HWtree7 and can be used to price the European call
option written on a coupon-bearing bond. Similar to the implementation
in the BDT tree, we develop a routine called GenHWBondOptionTree()
capable of generating the option prices along the Hull–White trinomial tree.
The pseudo code of GenHWBondOptionTree() is given by Code 11.3. The
routine requires the same input of option parameters (T, K, t, Lpar, C, nc,
{s1, s2, . . . , snc }). It returns the number of time steps H to option maturity
together with the bottom and top-node labels L(i) and U(i) at each step. It
also returns the option prices fi,j as well as the short rates ri,j at every tree
node prior to the option maturity with time label i runs from 0 to H and
node label j runs from L(i) toU(i). The routine first constructs the term struc-
tures of bond prices and volatilities with maturities {t1, t2, . . . , tNtermþ1},
where ti ¼ iDt, using the GenTermStructures() routine in Code 8.5. The size
of the time interval Dt is taken to be the closest to the shortest market term
where tNterm

¼ Nterm Dt exactly matches the maturity of the underlying bond
t. The trinomial tree should be constructed up to the maturity of the under-
lying bond. Thus, we define the tree configuration to be Ntree ¼ Nterm and
Ttree ¼ t. In the current implementation, the term structure of volatilities is
not required as it is parameterized by (11.2) in the model. Instead, the
parameters s and a are directly inputted from the Excel worksheet. The cor-
responding trinomial tree of short rates can be constructed very easily by
calling the GenHullWhiteTree() routine. It is then straightforward to use
(11.11) and generate the forward prices of the underlying bond for the entire
trinomial tree. As discussed in (8.9) and Code 8.3, the external function
CouponCount() counts the number of coupons being paid at each time step
in the iteration and updates the risk-neutral pricing. In particular, the forward
bond prices BH,j(t) can be used to evaluate the option payoffs fH,j at maturity
and the option prices fi,j at every other tree node can be generated by iterating
(11.12) backward in time. The VBA code of GenHWBondOptionTree() is
given by Code 11.4.

Figure 11.4 depicts the spreadsheet design for this VBA implementa-
tion. For the input of market bond data and option parameters, we
have adopted the same design as in the implementation for the BDT tree in
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Figure 8.2. The Hull–White parameters s and a for the volatility structure
are given by the named cells K10(hwsigma) and K11(hwa), respectively.
They are estimated through least squares fitting of (11.2) to the volatility
data in B7:L7. Given s and a, the sums of squared error in the fitting are
calculated through an external routine ErrSum2(). Their best fit values can
be estimated using Solver by minimizing the squared-error sum under the
non-negative constraints for the parameters. The market bond data are
inputted into the GenTermStructures() routine through the named cell B4
(nbond) and the entries in rows 5, 6, and 7. The button labeled ‘‘Hull–
White Pricing’’ will trigger the main VBA routine called HWPricing() with
the VBA code given by Code 11.5. The option parameters are inputted into
this routine through the named cells B12(optionMaturity), B13(strike), B14
(bondMaturity), B15(par), B16(coupon), B17(nCoupon), and the entries in
row 18. It will call GenHWBondOptionTree() for the arrays of option
prices and short rates. The current option price f0,0 will be outputted to cell
B20. By selecting ‘‘Yes’’ in cell E13, the entire option tree will be displayed
in the spreadsheet. It should be noted that the row number for the zero
offset of the trinomial tree can be fixed based on its largest top node label
‘‘zeroptr.’’ As a reference, the corresponding short rates will also be
displayed in column B from B24 onward.

FIGURE 11.4 Spreadsheet design of Hull–White option pricing.
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GenHullWhiteTree( Ttree, Ntree , BondPrice( 1 : Ntree + 1 ) ,s , a , k( 0 : Ntree � 1 , L : U ) ,
pu( 0 : Ntree� 1 , L : U ) , pm( 0 : Ntree� 1 , L : U ) , pd( 0 : Ntree� 1 , L : U ) ,
L( 0 : Ntree ) , U( 0 : Ntree ) , r( 0 : Ntree , L : U ) )

# define the size of Dt and the optimal choice of Dr
Dt = Ttree / Ntree , Dr = s

ffiffiffiffiffiffiffi
3D

p
t

# convert the zero-coupon bond prices to zero rates with maturities t1, t2, . . . , and tNtree+1

For( i = 1 to Ntree + 1 ) { R(i) = � log( BondPrice(i) )/(iDt) }

# define the initial values of { L , U , Q , r } at t0
L(0) = 0 , U(0) = 0 , Q( 0 , 0 ) = 1 , r( 0 , 0 ) = R(1)

For( i = 0 to Ntree � 1 ) {

# At time step i in the following loop, { L , U , Q , r } have presumably been determined up to ti
# determine u at ti

Qsum = 0
For( j = L(i) to U(i) ) { Qsum = Qsum + Q( i , j ) exp( � 2 r( i , j ) Dt + ar( i , j ) Dt2 ) }
u = (1/Dt) ( i + 2 ) R( i + 2 ) + 1

2s
2Dt + (1/Dt2) ln( Qsum )

# determine { pu, pm , pd , k } for all nodes at ti
For( j = L(i) to U(i) ) { f = u � ar( i , j )

k( i , j ) = j + CINT( f (Dt/Dr) )
h = j � k( i , j ) + f (Dt/Dr)
pu( i , j ) = 1

2s
2(Dt/Dr2) + 1

2h +
1
2h
2

pm( i , j ) = 1 � s2(Dt/Dr2) � h2

pd( i , j ) = 1 � pu( i , j ) � pm( i , j ) }

# update { L , U , Q , r } to ti+1
L(i + 1) = k( i , L(i) ) � 1
U(i + 1) = k( i , U(i) ) + 1
For( h = L(i + 1) to U(i + 1) ) {

r( i + 1 , h ) = r( 0 , 0 ) + hDr
If ( i = Ntree � 1 ) then Next h
Qsum = 0
For( j = L(i) to U(i) ) {
If ( h = k( i , j ) + 1 ) then
Qsum = Qsum + Q( i , j ) p

u( i , j ) exp( � r( i , j ) Dt )
Elseif ( h = k( i , j ) ) then
Qsum = Qsum + Q( i , j ) p

m( i , j ) exp( � r( i , j ) Dt )
Elseif ( h = k( i , j ) � 1 ) then
Qsum = Qsum + Q( i , j ) p

d( i , j ) exp( � r( i , j ) Dt )
Endif }

Q( i + 1 , h ) = Qsum }
}

Code 11.1: Pseudo code of the GenHullWhiteTree() routine.

Sub GenHullWhiteTree(Ttree As Double, Ntree As Integer, bondPrice() As Double, sigma As
Double, a As Double, ByRef kmat() As Integer, ByRef pu() As Double,
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ByRef pm() As Double, ByRef pd() As Double, ByRef Lower() As Integer,
ByRef Upper() As Integer, ByRef rshort() As Double)

Dim dtime As Double: dtime = Ttree / Ntree
Dim dr As Double: dr = sigma * Sqr(3 * dtime)
Dim i As Integer, j As Integer, h As Integer
Dim Qsum As Double, theta As Double, phi As Double, eta As Double
Dim Q() As Double: ReDim Q(0 To Ntree, - 5 * Ntree To 5 * Ntree)
Dim zeroRate() As Double: ReDim zeroRate(1 To Ntree + 1)

For i = 1 To Ntree + 1: zeroRate(i) = -Log(bondPrice(i)) / (i * dtime): Next i

Lower(0) = 0
Upper(0) = 0
Q(0, 0) = 1
rshort(0, 0) = zeroRate(1)
For i = 0 To Ntree - 1
Qsum = 0
For j = Lower(i) To Upper(i)
Qsum = Qsum + Q(i, j) * Exp(- 2 * rshort(i, j) * dtime + a * rshort(i, j) * dtime ^ 2)

Next j
theta = (i + 2) * zeroRate(i + 2) / dtime + 0.5 * sigma ^ 2 * dtime + Log(Qsum) / dtime ^ 2

For j = Lower(i) To Upper(i)
phi = theta - a * rshort(i, j)
kmat(i, j) = j + CInt(phi * (dtime / dr))
eta = j - kmat(i, j) + phi * (dtime / dr)
pu(i, j) = 0.5 * sigma ^ 2 * (dtime / dr ^ 2) + 0.5 * eta + 0.5 * eta ^ 2
pm(i, j) = 1 - sigma ^ 2 * (dtime / dr ^ 2) - eta ^ 2
pd(i, j) = 1 - pu(i, j) - pm(i, j)

Next j

Lower(i + 1) = kmat(i, Lower(i)) - 1
Upper(i + 1) = kmat(i, Upper(i)) + 1

For h = Lower(i + 1) To Upper(i + 1)
rshort(i + 1, h) = rshort(0, 0) + h * dr
If (i = Ntree - 1) Then GoTo Nexth
Qsum = 0
For j = Lower(i) To Upper(i)
If (h = kmat(i, j) + 1) Then
Qsum = Qsum + Q(i, j) * pu(i, j) * Exp(- rshort(i, j) * dtime)

ElseIf (h = kmat(i, j)) Then
Qsum = Qsum + Q(i, j) * pm(i, j) * Exp(- rshort(i, j) * dtime)

ElseIf (h = kmat(i, j) - 1) Then
Qsum = Qsum + Q(i, j) * pd(i, j) * Exp(- rshort(i, j) * dtime)

End If
Next j
Q(i + 1, h) = Qsum

Nexth: Next h
Next i

End Sub

Code 11.2: VBA code of the GenHullWhiteTree() routine.
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GenHWBondOptionTree( T , K , t , Lpar , C , nc , s( 1 : nc ) , H , L( 0 : H) , U( 0 : H ) ,
r( 0 : H, 0 : H ) , f( 0 : H, 0 : H ) )

# generate the market term structures with horizon t + Dt
Call GenTermStructures( t , 1 , Nterm , Dt , BondPrice( 1 : Nterm + 1 ) , BondVol( 1 : Nterm + 1 ) )

# input from EXCEL the parameters s and a
Read s and a

# define BDT tree configuration
Ntree = Nterm , Ttree = t

# generate the Hull-White tree with Ntree steps and horizon Ttree

Call GenHullWhiteTree( Ttree , Ntree , BondPrice( 1 : Ntree + 1 ) , s , a , k( 0 : Ntree � 1 , L : U ) ,
pu( 0 : Ntree� 1 , L : U ) , pm( 0 : Ntree� 1 , L : U ) , pd( 0 : Ntree� 1 , L : U ) ,
L( 0 : Ntree ) , U( 0 : Ntree ) , r( 0 : Ntree , L : U ) )

# define the time label at option maturity
H = Int( T / Dt )

# generate the forward prices of the underlying bond

r = CouponCount( ( Ntree � 1
2 )Dt , ( Ntree + 12 )Dt , nc , s( 1 : nc ) )

For( j = L(Ntree ) to U(Ntree ) ) { Bforward( Ntree , j ) = Lpar + rC }

For( i = Ntree � 1 to 0 , � 1 ) {
r = CouponCount( ( i � 1

2 )Dt , ( i +
1
2 )Dt , nc , s( 1 : nc ) )

For( j = L(i) to U(i) ) { Bforward( i , j ) = e
�r(i , j) Dt [ pu( i , j ) Bforward( i + 1 , k( i , j ) + 1)

+ pm( i , j ) Bforward( i + 1 , k( i , j ) )
+ pd( i , j ) Bforward( i + 1 , k( i , j )�1) ] + rC }

}

# generate the option prices

For( j = L(H) to U(H) ) { f( H , j ) = Payoff( K , Bforward( H , j ) ) }

For( i = H � 1 to 0, � 1 ) {
For( j = L(i) to U(i) ) { f( i , j ) = e�r(i , j) Dt [ pu( i , j ) f( i + 1 , k( i , j ) + 1)

+ pm( i , j ) f( i + 1 , k( i , j ) )
+ pd( i , j ) f( i + 1 , k( i , j ) � 1) ] }

}

Code 11.3: Pseudo code of the GenHWBondOptionTree() routine.

Sub GenHWBondOptionTree(optionMaturity As Double, strike As Double,
bondMaturity As Double, par As Double, coupon As Double, nCoupon As Integer,
paymentSchedule() As Double, ByRef Hf As Integer, ByRef Lower() As Integer,
ByRef Upper() As Integer, ByRef rshort() As Double, ByRef fTree() As Double)

Dim bondPrice(1 To nTreeMax + 1) As Double
Dim bondVol(1 To nTreeMax + 1) As Double
Dim i As Integer, j As Integer, k As Integer
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Dim Nterm As Integer, dtime As Double

Call GenTermStructures(bondMaturity, 1, Nterm, dtime, bondPrice, bondVol)

Dim sigma As Double: sigma = Range("hwsigma").Value
Dim a As Double: a = Range("hwa").Value

Dim Ntree As Integer: Ntree = Nterm
Dim Ttree As Double: Ttree = bondMaturity
Dim kmat() As Integer: ReDim kmat(0 To Ntree - 1, - 5 * Ntree To 5 * Ntree)
Dim pu() As Double: ReDim pu(0 To Ntree - 1, - 5 * Ntree To 5 * Ntree)
Dim pm() As Double: ReDim pm(0 To Ntree - 1, - 5 * Ntree To 5 * Ntree)
Dim pd() As Double: ReDim pd(0 To Ntree - 1, - 5 * Ntree To 5 * Ntree)
Dim Bf() As Double: ReDim Bf(0 To Ntree, - 5 * Ntree To 5 * Ntree)

Call GenHullWhiteTree(Ttree, Ntree, bondPrice, sigma, a, kmat, pu, pm, pd, Lower, Upper,
rshort)

Hf = Int(optionMaturity / dtime)

i = Ntree
Dim rho As Integer
rho = CouponCount((i - 0.5) * dtime, (i + 0.5) * dtime, nCoupon, paymentSchedule)
For j = Lower(i) To Upper(i): Bf(i, j) = par + rho * coupon: Next j

For i = Ntree - 1 To 0 Step - 1
rho = CouponCount((i - 0.5) * dtime, (i + 0.5) * dtime, nCoupon, paymentSchedule)
For j = Lower(i) To Upper(i)
k = kmat(i, j)
Bf(i, j) = Exp(-rshort(i, j) * dtime) * (pu(i, j) * Bf(i + 1, k + 1) + pm(i, j) * Bf(i + 1, k) + pd(i, j)
* Bf(i + 1, k - 1)) + rho * coupon

Next j
Next i

For j = Lower(Hf) To Upper(Hf): fTree(Hf, j) = Payoff(strike, Bf(Hf, j)): Next j

For i = Hf - 1 To 0 Step -1
For j = Lower(i) To Upper(i)
k = kmat(i, j)
fTree(i, j) = Exp(-rshort(i, j) * dtime) * (pu(i, j) * fTree(i + 1, k + 1) + pm(i, j) * fTree(i + 1, k)
+ pd(i, j) * fTree(i + 1, k - 1))

Next j
Next i

End Sub

Code 11.4: VBA code of the GenHWBondOptionTree() routine.

Sub HWPricing()
Dim i As Integer, j As Integer
Dim rshort(0 To nTreeMax, � 5 * nTreeMax To 5 * nTreeMax) As Double
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Dim fTree(0 To nTreeMax,� 5 * nTreeMax To 5 * nTreeMax) As Double
Dim Lower(0 To nTreeMax) As Integer
Dim Upper(0 To nTreeMax) As Integer
Dim Hf As Integer, zeroptr As Integer

Dim optionMaturity As Double: optionMaturity = Range("optionMaturity").Value
Dim strike As Double: strike = Range("strike").Value
Dim bondMaturity As Double: bondMaturity = Range("bondMaturity").Value
Dim par As Double: par = Range("par").Value
Dim coupon As Double: coupon = Range("coupon").Value
Dim nCoupon As Integer: nCoupon = Range("nCoupon").Value
Dim paymentSchedule() As Double: ReDim paymentSchedule(0 To nCoupon)

For i = 1 To nCoupon: paymentSchedule(i) = Range("A18").Offset(0, i): Next i

Call GenHWBondOptionTree(optionMaturity, strike, bondMaturity, par, coupon, nCoupon,
paymentSchedule, Hf, Lower(), Upper(), rshort(), fTree())

Range("B20").Value = fTree(0, 0)

Range("B23:IV150").ClearContents

zeroptr = 0
For i = 0 To Hf
If (Upper(i) > Upper(zeroptr)) Then zeroptr = i

Next i

If (Range("E13").Text = "Yes") Then
For i = 0 To Hf
Range("B23").Offset(0, i + 1) = i * (optionMaturity / Hf)
For j = Lower(i) To Upper(i)
Range("B23").Offset(Upper(zeroptr) - j + 1, i + 1) = fTree(i, j)
Range("B23").Offset(Upper(zeroptr) - j + 1, 0) = rshort(i, j)

Next j
Next i

End If

End Sub

Code 11.5: VBA code of the HWPricing() routine.

11 .3 THE GENERAL HUL L–WH I T E MODE L

In this section, we consider a general Hull–White model for the risk-neutral
short rate that involves two time-dependent functions in the drift term
given by:

Drt ¼ f(rt; t)Dt þ s
ffiffiffiffi
D

p
te(0; 1); f(rt; t) ¼ u(t)� c(t)rt: ð11:13Þ
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In this model, the volatility function in endnote 2 is again taken to be a constant
factor s. It can be shown that the functions u(t) and c(t) can be related to
the current yield curve and the current bond price volatility structure.8

Thus, the risk-neutral short rate process in (11.13) can be constructed using
the two market term structures. The extension to construct a trinomial tree
that is consistent with yield and volatility data requires a change to the
geometry of the trinomial tree. The tree is made binomial during the first
time step t1 ¼ Dt with equal probabilities for the up and down scenarios,
and is reverting to trinomial thereafter as shown in Figure 11.5. This is
analogous to the case of a BDT tree for which the forward zero-coupon
bond prices P1,U(t) and P1,D(t), with maturity at t > t1, on the binomial
tree can be related to the market term structures as:9

P1;U(t) ¼ 2er0Dte�R0(t)t

1þ exp(2s0(t)
ffiffiffiffiffi
Dt

p
)
; P1;D(t) ¼ 2er0Dte�R0(t)t

1þ exp(� 2s0(t)
ffiffiffiffiffi
Dt

p
)
: ð11:14Þ

The trinomial tree from t1 onward to tNtree
can be constructed using a

procedure similar to that in Section 11.1 by calibrating with the forward
zero rates at the binomial nodes (1, U) and (1, D). The zero rates {R1,U(t2),
R1,U(t3), . . . , R1,U(tNtreeþ1)} and {R1,D(t2), R1,D(t3), . . . , R1,D(tNtreeþ1)} can
be determined from (11.14) as:

R1; j(ti) ¼ � 1

ti � t1
lnP1; j(ti); J ¼ D;U ð11:15Þ

using the market term structures {R0(t1), R0(t2), . . . , R0(tNtreeþ1)} and
{s0(t1), s0(t2), . . . , s0(tNtreeþ1)}. The short rates at the leading binomial
nodes are given by r0 ¼ R0(t1), r1,U ¼ R1,U(t2), and r1,D ¼ R1,D(t2). For ti �
t2, the trinomial nodes are equally spaced with ri,j ¼ r0 + jDr where again
Dr ¼ s

ffiffiffiffiffiffi
3D

p
t, and the factor s is estimated to be s ¼ s00(0) ¼ (1/Dt)s0(t1) as

s0(0) ¼ 0. It should be noted that r1,U and r1,D are not necessarily fitted into
a trinomial lattice with grid size Dr. In fact, it can be shown that10 the size of
the interval between r1,U and r1,D is approximately given by (4/

ffiffiffi
3

p
)Dr. The

branching process from t1 to t2 requires a slight modification in describing

FIGURE 11.5 The leading binomial step in a Hull–White tree.
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the transitions from r1,U and r1,D into the trinomial lattice. The branching
probabilities at nodes (1, U) and (1,D) are given by:

pu1;j ¼
1

2
s2 Dt

Dr2
þ 1

2
z þ 1

2
z2

pm1;j ¼ 1� s2 Dt

Dr2
� z2

pd1;j ¼
1

2
s2 Dt

Dr2
� 1

2
z þ 1

2
z2; z ¼ (r1;j � r0)

Dr
� kþ f1;j

Dt

Dr
; j ¼ D; U

ð11:16Þ

with the values of k in the middle branches taken to be:

k1;j ¼ CINT
(r1;j � r0)

Dr
þ f1;j

Dt

Dr

� �
; j ¼ D; U: ð11:17Þ

The node label at time t1 is running over the binomial cases L(1) ¼ D
and U(1) ¼ U. At time t2, it can be shown that the branching rule will
never skip any internal point between k1,D þ 1 and k1,U � 1 on the
lattice.11 The node label at t2 is then running from L(2) ¼ k1,L(1) � 1
to U(2) ¼ k1,U(1)þ1.

The risk-neutral drift f(rt, t) at every tree node can be evaluated as:

fi; j ¼ u(ti)� c(ti)ri; j: ð11:18Þ

The time-dependent functions u(t) and c(t) in (11.18) can be calibrated at
every time step on the tree except t0 using the forward zero rates at nodes
(1, U) and (1,D).

Define:

QU(i,j) as the value of a security as seen at node (1, U) that pays $1 at
node (i,j) and zero elsewhere.

QD(i,j) as the value of a security as seen at node (1, D) that pays $1 at
node (i,j) and zero elsewhere.

The values of QU(i,j) and QD(i,j) for every tree node can be generated using
the relationship given by:

QU(iþ 1; h) ¼
XU(i)

j¼L(i)QU(i; j)prob(i; j; h)e
�ri;jDt ð11:19Þ

QD(iþ 1; h) ¼
XU(i)

j¼L(i)QD(i; j)prob(i; j; h)e
�ri;jDt ð11:20Þ

The initial conditions for QU(i,j) and QD(i,j) in (11.19) and (11.20) are
given by QU(1, U) ¼ 1, QU(1, D) ¼ 0, QD(1, D) ¼ 1, and QD(1, U) ¼ 0. At
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every time step, the functions u(ti) and c(ti) can be calibrated to the forward
zero rates as:12

u(ti) ¼ 1

2
s2Dt þ 1

Dt2
ln

BD(i)AU(i)� BU(i)AD(i)

AU(i)e�R1;D(tiþ2)(tiþ2�t1) � AD(i)e�R1;U(tiþ2)(tiþ2�t1)

 !

ð11:21Þ

c(ti) ¼ 1

Dt2
BD(i)e

�R1;U(tiþ2)(tiþ2�t1) � BU(i)e
�R1;D(tiþ2)(tiþ2�t1)

AU(i)e�R1;D(tiþ2)(tiþ2�t1) � AD(i)e�R1;U(tiþ2)(tiþ2�t1)
ð11:22Þ

where

AU(i) ¼
XU(i)

j¼L(i)QU(i; j)e
�2ri;jDtri;j and BU(i) ¼

XU(i)
j¼L(i)QU(i; j)e

�2ri;jDt

AD(i) ¼
XU(i)

j¼L(i)QD(i; j)e
�2ri;jDtri;j and BD(i) ¼

XU(i)
j¼L(i)QD(i; j)e

�2ri;jDt:

At time t1, we can determine u(t1) and c(t1) from above using the for-
ward rates R1,U(t3) and R1,D(t3) together with the initial conditions.
The risk-neutral drifts f1,U and f1,D at the binomial nodes can then be
evaluated from (11.18) with the corresponding short rates r1,U and r1,D,

respectively. The branching rules k1,U, k1,D, {pu1;U; p
m
1 ;U; p

d
1;U}, and

{pu1;D; p
m
1;D; p

d
1;D} from the binomial nodes back to the trinomial tree can be

determined using (11.16) and (11.17). To proceed, we need to first update
the labels of the bottom and top nodes at t2 as L(2) ¼ k1,D � 1 and U(2) ¼
k1,U + 1. We also need to update QU(2, h) and QD(2, h) from (11.19) and
(11.20) for all h from L(2) to U(2). Steps (1) to (4) below will be repeated
for ti running from t2 to tNtree�1. Suppose at any time ti � t2 that we
have already determined L(i), U(i), QU(i,j), and QU(i,j) for all j from L(i)
to U(i).

1. Determine u(ti) and c(ti) from (11.21) and (11.22) using R1,U(tiþ2) and
R1,D(tiþ2). Then, evaluate fi,j from (11.18) for all j.

2. For all j, determine the branching probabilities {pui; j; p
m
i; j; p

d
i; j} from

(11.4) with the value of k in the middle branch taken to be ki,j ¼
j þ CINT(fi,j Dt/Dr).

3. Use ki,L(i) and ki,U(i) to update L(i þ 1) ¼ ki,L(i) � 1 and U(i þ 1) ¼
ki,U(i) þ 1.

4. Except at tNtree�1, update also QU(i þ 1, h) and QD(i þ 1, h) from
(11.19) and (11.20) for all h from L(i þ 1) to U(i þ 1).
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Again, the current value of an interest rate option can be determined by iterat-
ing backward the risk-neutral pricing of the option starting from its maturity
to the binomial nodes (1, U) and (1, D) along the trinomial tree as in (11.12),
and then carrying on the iteration to node (0, 0) along the binomial tree as:

f 0;0 ¼ e�r0Dt(12 f 1;U þ 1
2 f 1;D): ð11:23Þ

EXAMPLE 11.2

Consider a three-step tree for the general Hull–White model with
yearly time interval Dt ¼ 1.00 and Ntree ¼ 3. It can be constructed
using the market term structures with maturity terms that coincide
with the tree structure given by Table 11.2.

Take r0 ¼ R0(t1) ¼ 0.04783 and s ¼ (1/Dt)s0(t1) ¼ 0.0076.
Evaluate the forward zero rates at the binomial nodes (1, U) and
(1,D) as:

fR1;U(t2) ¼ 6:271%; R1;U(t3) ¼ 6:252%; R1;U(t4) ¼ 6:262%g
fR1;D(t2) ¼ 4:031%; R1;D(t3) ¼ 4:932%; R1;D(t4) ¼ 5:308%g

Choose Dr ¼ s
ffiffiffiffiffiffi
3D

p
t ¼ 0.01316. Assign r1,U ¼ R1,U(t2) ¼ 0.06271

and r1,D ¼ R1,D(t2) ¼ 0.04031.
When i ¼ 1, we have the initial conditions L(1) ¼ D, U(1) ¼ U,

QU(1, U) ¼ 1, QU(1, D) ¼ 0, QD(1, D) ¼ 1, and QD(1, U) ¼ 0. We
can first evaluate u(t1) and c(t1) as:

AU(1) ¼ QU(1; U)e�2r1;UDtr1;U ¼ 0:0553; BU(1) ¼ QU(1; U)e�2r1;UDt ¼ 0:8821

AD(1) ¼ QD(1; D)e�2r1;DDtr1;D ¼ 0:0372; BD(1) ¼ QD(1; D)e�2r1;DDt ¼ 0:9226

(continued )

TABLE 11.2 The current term structures of zero rates and bond
price volatilities.

Maturity

Terms (years)

Bond Prices P0(ti)
($1 par value)

Zero Rates

R0(ti) (annual)
Volatilities

s0(ti) (annual)

t1 ¼ 1.00 $0.9533 4.783% 0.76%
t2 ¼ 2.00 $0.9055 4.963% 1.12%
t3 ¼ 3.00 $0.8525 5.319% 1.32%
t4 ¼ 4.00 $0.8015 5.532% 1.43%
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(continued )

These give u(t1) ¼ 0.0520 and c(t1) ¼ 0.8577 with the use of the zero
rates R1,U(t3) ¼ 0.06252 and R1,D(t3) ¼ 0.04932. The branching rules
at nodes (1, U) and (1,D) can be determined as:

j ¼ D : f1;D ¼ u(t1)� c(t1)r1;D ¼ 0:0175

k1;D ¼ CINT((r1;D � r0)=Drþ f1;DDt=Dr) ¼ 1

z ¼ (r1;D � r0)=Dr� k1;D þ f1;DDt=Dr ¼ �0:2435
pu1;D ¼ 1

2s
2Dt=Dr2 þ 1

2zþ 1
2z

2 ¼ 0:0746

pm1;D ¼ 1� s2Dt=Dr2 � z2 ¼ 0:6074

pd1;D ¼ 1� pu1;D � pm1;D ¼ 0:3180

j ¼ U : f1;U ¼ u(t1)� c(t1)r1;U ¼ �0:00173
k1;U ¼ CINT((r1;U � r0)=Drþ f1;UDt=Dr) ¼ 1

z ¼ (r1;U � r0)=Dr� k1;UDt=Dr ¼ �0:00139
pu1;U ¼ 1

2s
2Dt=Dr2 þ 1

2z þ 1
2z

2 ¼ 0:1660

pm1;U ¼ 1� s2Dt=Dr2 � z2 ¼ 0:6667

pd1;U ¼ 1� pu1;D � pm1;D ¼ 0:1673

Then update L(2) ¼ k1,D � 1 ¼ 0, U(2) ¼ k1,U + 1 ¼ 2

QU(2; 2) ¼ QU(1;U)prob(1;U; 2)e�r1;UDt ¼ pu1;Ue
�r1;UDt ¼ 0:1559

QU(2; 1) ¼ QU(1;U)prob(1;U; 1)e�r1;UDt ¼ pm1;Ue
�r1;UDt ¼ 0:6261

QU(2; 0) ¼ QU(1;U)prob(1;U; 0)e�r1;UDt ¼ pd1;Ue
�r1;UDt ¼ 0:1572

QD(2; 2) ¼ QD(1;D)prob(1;D; 2)e�r1;DDt ¼ pu1;De
�r1;DDt ¼ 0:0716

QD(2; 1) ¼ QD(1;D)prob(1;D; 1)e�r1;DDt ¼ pm1;De
�r1;DDt ¼ 0:5834

QD(2; 0) ¼ QD(1;D)prob(1;D; 0)e�r1;DDt ¼ pd1;De
�r1;DDt ¼ 0:3055

When i ¼ 2, we can evaluate u(t2) and c(t2) using the updated val-
ues of L(2), U(2), QU(2, j), and QD(2, j) as (recall that r2,j ¼ r0 þ jDr
on the trinomial lattice):
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AU(2) ¼ QU(2; 2)e
�2r2;2Dtr2;2 þQU(2;1)e

�2r2;1Dtr2;1

þQU(2; 0)e
�2r2;0Dtr2;0 ¼ 0:0506

BU(2) ¼ QU(2; 2)e
�2r2;2Dt þQU(2; 1)e

�2r2;1Dt þQU(2; 0)e
�2r2;0Dt ¼ 0:8315

AD(2) ¼ QD(2; 2)e
�2r2;2Dtr2;2 þQD(2; 1)e

�2r2;1Dtr2;1

þQD(2; 0)e
�2r2;0Dtr2;0 ¼ 0:0494

BD(2) ¼ QD(2; 2)e
�2r2;2Dt þQD(2; 1)e

�2r2;1Dt þQD(2; 0)e
�2r2;0Dt ¼ 0:8558

These give u(t2)¼ 0.00670 and c(t2) ¼ 0.0552 with the use of the zero
rates R1,U(t4) ¼ 0.06262 and R1,D(t4) ¼ 0.05308. The branching rules
at nodes (2, 0), (2, 1), and (2, 2) can be determined as:

j ¼ 0 : f2;0 ¼ u(t2)� c(t2)r2;0 ¼ 0:00406

k2;0 ¼ 0þ CINT(f2;0Dt=Dr) ¼ 0

h ¼ 0� k2;0 þ f2;0Dt=Dr ¼ 0:3083

pu2;0 ¼ 1
2s

2Dt=Dr2 þ 1
2hþ 1

2h
2 ¼ 0:3683

pm2;0 ¼ 1� s2Dt=Dr2 � h2 ¼ 0:5716

pd2;0 ¼ 1� pu1;D � pm1;D ¼ 0:0601

j ¼ 1 : f2;1 ¼ u(t2)� c(t2)r2;1 ¼ 0:00333

k2;1 ¼ 1þ CINT(f2;1Dt=Dr) ¼ 1

h ¼ 1� k2;1 þ f2;1Dt=Dr ¼ 0:2531

pu2;1 ¼ 1
2s

2Dt=Dr2 þ 1
2hþ 1

2h
2 ¼ 0:3252

pm2;1 ¼ 1� s2Dt=Dr2 � h2 ¼ 0:6026

pd2;1 ¼ 1� pu1;D � pm1;D ¼ 0:0722

j ¼ 2 : f2;2 ¼ u(t2)� c(t2)r2;2 ¼ 0:00260

k2;2 ¼ 2þ CINT(f2;2Dt=Dr) ¼ 2

h ¼ 2� k2;2 þ f2;2Dt=Dr ¼ 0:1979

pu2;2 ¼ 1
2Dt=Dr

2 þ 1
2hþ 1

2h
2 ¼ 0:2852

pm2;2 ¼ 1� s2Dt=Dr2 � h2 ¼ 0:6275

pd2;2 ¼ 1� pu1;D � pm1;D ¼ 0:0873

Then update L(3) ¼ k2,L(2) � 1 ¼ �1 and U(3) ¼ k2,U(2) þ 1 ¼ 3.
(continued )
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11 .4 IMPL EMENTAT I ON OF THE GENERAL
HUL L–WH I T E MODEL

Again, we first develop a routine called GenHullWhiteTree2() that gener-
ates the Hull–White tree for the short rate in (11.13) given current term
structures of bond prices and their volatilities. The pseudo code of GenHull-
WhiteTree2() is given by Code 11.6. The routine requires the input of tree
configuration (Ttree,Ntree), current zero-coupon bond prices P0(ti), and their
volatilities s0(ti) with maturities {t1, t2, . . . , tNtreeþ1}. Similar to GenHull-
WhiteTree() in Code 11.1, it returns the bottom and top-node labels L(i)
and U(i), branching probabilities {pui;j; p

m
i;j; p

d
i;j}, middle branch labels ki,j,

and short rates ri,j at every node. As before, the time interval of the tree is
defined to be Dt ¼ Ttree/Ntree and the rate interval is optimally chosen as
Dr ¼ s

ffiffiffiffiffiffi
3D

p
t with s ¼ (1/Dt)s0(t1) in the general model. The current zero

rates R0(ti) with maturities {t1, t2, . . . , tNtreeþ1} are first calculated from the
zero-coupon bond prices. The short rate r0,0 on the tree is defined as R0(t1);
the forward zero rates R1,U(ti) and R1,D(ti) with different maturities can be

(continued )

As t2 already reaches tNtree�1, there is no need to update QU and
QD for t3. The three-step Hull–White tree is constructed as shown in
Figure 11.6.

FIGURE 11.6 The three-step Hull–White tree constructed using the zero rates
and volatilities in Table 11.2.
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evaluated from (11.14) and (11.15) using the corresponding values of R0(ti)
and s0(ti). In the general model, the iteration will run from t1 to tNtree�1
taking the forward zero rates as calibration data. For completeness, the val-
ues of (L(0), U(0), pu0;0; p

m
0;0; p

d
0;0) are trivially assigned at t0 and it is clear

that k0,0 is irrelevant for the leading binomial nodes. The initial values of
the arrays (L(1), U(1), QU(1, j), QD(1, j), r1,j) at t1 are defined prior to the
iteration with the use of the forward rates R1,U(t2) and R1,D(t2) for the two
short rates. For convenience, we have assigned the node labels for the U and
D cases as j ¼ 1 and j ¼ 0, respectively.

At time ti in the iteration, the arrays (L(i), U(i), QU(i,j), QD(i,j), rij) should
presumably be determined up to the same time. Together with the forward
zero rates R1,U(ti) and R1,D(ti), there is enough information to determine the
arrays {pui;j; p

m
i;j; p

d
i;j; ki;j} following the procedures (1) to (2) in Section 11.3.

Subsequently, the arrays (L(i), U(i), QU(i,j), QD(i,j), rij) are updated to time
tiþ1 through procedures (3) to (4) before the iteration proceeds to tiþ1. It
should be noted that the determination of {pu1;j; p

m
1;j; p

d
1;j; k1;j} in (11.16) and

(11.17) can be integrated into the same loop structure in the iteration. This
can be achieved by taking ki,j and h to be:

ki;j ¼ CINT((ri;j � r0)=Drþ fi;jDt=Dr)! jþ CINT(fi;jDt=Dr) when i � 2

h ¼ (ri;j � r0)=Dr� ki;j þ fi;jDt=Dr! j� ki;j þ fi;jDt=Dr when i � 2

that return the original expressions as (ri,j � r0)/Dr ¼ j on the trinomial lattice,
and become (11.16) and (11.17) when i¼ 1.

The VBA code of GenHullWhiteTree2() is given by Code 11.7. It is also
kept under the module called HWtree and can be used to price the European
call option written on a coupon-bearing bond. Again, we develop a routine
called GenHWBondOptionTree2() capable of generating the option prices
along the general Hull–White tree. It is similar to GenHWBondOptionTree()
in Code 11.3 except it will call GenHullWhiteTree2() taking bond price
volatilities directly as input. Also, the backward iteration of option prices
for the last binomial step (i ¼ 0) follows (11.23) with branching probabilities
pu0,0 ¼ pd0,0 ¼ 1

2 instead. The VBA code of GenHWBondOptionTree2() is
given by Code 11.8. Figure 11.7 depicts the modified spreadsheet design that
includes the choice of tree type in the named cell F20(treetype). It specifies the
use of the extended-Vasicek model (‘‘Ext Vasicek’’) or the general Hull–White
model (‘‘General HW’’) in the pricing. In the new HWPricing() routine as
given by Code 11.9, the choice of treetype will be taken as a decision flag to
call either GenHWBondOptionTree() or GenHWBondOptionTree2() in the
pricing. The current option price f0,0 will be outputted to cell B20. By selecting
‘‘Yes’’ in cell E13, the entire option tree will be displayed in the spreadsheet. It
should be noted that the option prices f1,U and f1,D on the binomial nodes will
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be displayed according to their node labels j ¼ 1 and j ¼ 0, respectively.
As before, the short rates on the trinomial tree will be displayed in column B,
and for completeness the two short rates r1,U and r1,D will also be shown in
column A.

GenHullWhiteTree2( Ttree, Ntree , BondPrice( 1 : Ntree + 1 ) , BondVol( 1 : Ntree + 1 ) ,
k( 0 : Ntree � 1 , L : U ) , pu( 0 : Ntree � 1 , L : U ) , pm( 0 : Ntree � 1 , L : U ) ,
pd( 0 : Ntree � 1 , L : U ) , L( 0 : Ntree ) , U( 0 : Ntree ) , r( 0 : Ntree , L : U ) )

# define the sizes of Dt, s, and the optimal choice of Dr
Dt = Ttree / Ntree, s = (1/Dt) BondVol(1), Dr = s

ffiffiffiffiffiffi
3D

p
t

# convert the zero-coupon bond prices to zero rates with maturities t1, t2, . . . , and tNtree + 1

For( i = 1 to Ntree + 1 ) { R(i) = � log( BondPrice(i) )/(iDt) }

# define the value of r0
r( 0 , 0 ) = R(1)

# evaluate the forward zero rates at the binomial nodes

For(i ¼ 2 toNtree þ 1) RU(i) ¼ � 1
(i � 1)Dt ln

2er(0;0)Dte�R(i)(iDt)

1þ exp(2BondVol(i)
ffiffiffiffiffiffi
Dt

p
)

 !(

FIGURE 11.7 The modified spreadsheet design of Hull–White option pricing.
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RD(i) ¼ � 1
(i � 1)Dt ln

2er(0;0)Dte�R(i)(iDt)

1þ exp(2BondVol(i)
ffiffiffiffiffiffi
Dt

p
)

 !)

# define L, U, pu, pm, and pd at t0 for completeness ( k( 0 , 0 ) is irrelevant )
L(0) = 0, U(0) = 0, pu( 0 , 0 ) = 0.5 , pm( 0 , 0 ) = 0, pd( 0 , 0 ) = 0.5

# define the initial values of { L , U , QU , QD , r } at t1
L(1) = 0, U(1) = 1, QU( 1 , 0 ) = 0, QU( 1 , 1 ) = 1, QD( 1 , 0 ) = 1, QD( 1 , 1 ) = 0
r( 1 , 0 ) = RD(2) , r( 1 , 1 ) = RU(2)

For( i = 1 to Ntree � 1 ) {

# At time step i in the following loop, { L , U , QU , QD , r } have presumably been
determined up to ti

# determine u and c at ti
AU = 0, BU = 0, AD = 0, BD = 0
For( j = L(i) to U(i) ) { AU = AU + QU( i , j ) exp(�2 r( i , j ) Dt ) r( i , j )

BU = BU + QU( i , j ) exp(�2 r( i , j ) Dt )
AD = AD + QD( i , j ) exp(�2 r( i , j ) Dt ) r( i , j )
BD = BD + QD( i , j ) exp(�2 r( i , j ) Dt ) }

c ¼ 1

Dt2
BDexp(� RU(i þ 2)(i þ 1)Dt)� BUexp(� RD(i þ 2)(i þ 1)Dt)
AUexp(� RD(i þ 2)(i þ 1)Dt)� ADexp(� RU(i þ 2)(i þ 1)Dt)

u ¼ 1
2s
2Dt þ 1

Dt2
ln

BDAU � BUAD

AUexp(� RD(i þ 2)(i þ 1)Dt)
�ADexp(� RU(i þ 2)(i þ 1)Dt)

0
B@

1
CA

# determine { pu, pm , pd , k } for all nodes at ti

For( j = L(i) to U(i) ) { f = u � cr( i , j )
k( i , j ) = CINT( ( r( i , j ) � r( 0 , 0 ) )/Dr + f (Dt/Dr) )
h = ( r( i , j ) � r( 0 , 0 ) )/Dr � k( i , j ) + f (Dt/Dr)
pu( i , j ) = 12s

2(Dt/Dr2) + 12h +
1
2h
2

pm( i , j ) = 1 � s2(Dt/Dr2) � h2

pd( i , j ) = 1 � pu( i , j ) � pm( i , j ) }

# update { L , U , QU , QD , r } to ti + 1
L(i + 1) = k( i , L(i) ) � 1
U(i + 1) = k( i , U(i) ) + 1
For( h = L(i + 1) to U(i + 1) ) {

r( i + 1 , h ) = r( 0 , 0 ) + hDr
If ( i = Ntree � 1 ) then Next h
QU

sum = 0
QD

sum = 0
For( j = L(i) to U(i) ) {If ( h = k( i , j ) + 1 ) then

QU
sum = Q

U
sum + QU( i , j ) p

u( i , j ) exp(� r( i , j ) Dt )
QD

sum = Q
D
sum + QD( i , j ) p

u( i , j ) exp(� r( i , j ) Dt )
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Elseif ( h = k( i , j ) ) then
QU

sum = Q
U
sum + QU( i , j ) p

m( i , j ) exp(� r( i , j ) Dt )
QD

sum = Q
D
sum + QD( i , j ) p

m( i , j ) exp(� r( i , j ) Dt )
Elseif ( h = k( i , j ) � 1 ) then
QU

sum = Q
U
sum + QU( i , j ) p

d( i , j ) exp(� r( i , j ) Dt )
QD

sum = Q
D
sum + QD( i , j ) p

d( i , j ) exp(� r( i , j ) Dt )
Endif }

QU( i + 1 , h ) = Q
U
sum

QD( i + 1 , h ) = Q
D
sum }

}

Code 11.6: Pseudo code of the GenHullWhiteTree2( ) routine.

Sub GenHullWhiteTree2(Ttree As Double, Ntree As Integer, bondPrice() As Double,
bondVol() As Double, ByRef kmat() As Integer, ByRef pu() As Double,
ByRef pm() As Double, ByRef pd() As Double, ByRef Lower() As Integer,
ByRef Upper() As Integer, ByRef rshort() As Double)

Dim dtime As Double: dtime = Ttree / Ntree
Dim sigma As Double: sigma = bondVol(1) / dtime
Dim dr As Double: dr = sigma * Sqr(3 * dtime)
Dim i As Integer, j As Integer, h As Integer
Dim AU As Double, BU As Double, AD As Double, BD As Double
Dim theta As Double, psi As Double, phi As Double, eta As Double, QUsum As Double,
QDsum As Double

Dim zeroRate() As Double: ReDim zeroRate(1 To Ntree + 1)
Dim QU() As Double: ReDim QU(1 To Ntree, - 5 * Ntree To 5 * Ntree)
Dim QD() As Double: ReDim QD(1 To Ntree, - 5 * Ntree To 5 * Ntree)
Dim RU() As Double: ReDim RU(2 To Ntree + 1)
Dim RD() As Double: ReDim RD(2 To Ntree + 1)

For i = 1 To Ntree + 1: zeroRate(i) = - Log(bondPrice(i)) / (i * dtime): Next i

rshort(0, 0) = zeroRate(1)

For i = 2 To Ntree + 1
RU(i) = - Log(2 * Exp(rshort(0, 0) * dtime) * Exp(-zeroRate(i) * i * dtime) / (1 + Exp(2 *
bondVol(i) * Sqr(dtime)))) / ((i - 1) * dtime)

RD(i) = - Log(2 * Exp(rshort(0, 0) * dtime) * Exp(-zeroRate(i) * i * dtime) / (1 + Exp(- 2 *
bondVol(i) * Sqr(dtime)))) / ((i - 1) * dtime)

Next i

Lower(0) = 0
Upper(0) = 0
pu(0, 0) = 0.5
pm(0, 0) = 0
pd(0, 0) = 0.5
Lower(1) = 0
Upper(1) = 1
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QU(1, 0) = 0
QU(1, 1) = 1
QD(1, 0) = 1
QD(1, 1) = 0
rshort(1, 0) = RD(2)
rshort(1, 1) = RU(2)

For i = 1 To Ntree - 1

AU = 0
BU = 0
AD = 0
BD = 0
For j = Lower(i) To Upper(i)
AU = AU + QU(i, j) * Exp(- 2 * rshort(i, j) * dtime) * rshort(i, j)
BU = BU + QU(i, j) * Exp(- 2 * rshort(i, j) * dtime)
AD = AD + QD(i, j) * Exp(- 2 * rshort(i, j) * dtime) * rshort(i, j)
BD = BD + QD(i, j) * Exp(- 2 * rshort(i, j) * dtime)

Next j
psi = (1 / dtime ^ 2) *(BD * Exp(- RU(i + 2) *(i + 1) * dtime) - BU *Exp(-RD(i + 2) *(i + 1) *

dtime)) / (AU * Exp(- RD(i + 2) * (i + 1) * dtime) - AD * Exp(- RU(i + 2) * (i + 1) *
dtime))

theta = 0.5 * sigma ^ 2 * dtime + (1 / dtime ^ 2) * Log((BD * AU - BU * AD) _
/ (AU * Exp(-RD(i + 2) * (i + 1) * dtime) - AD * Exp(- RU(i + 2) * (i + 1) * dtime)))

For j = Lower(i) To Upper(i)
phi = theta - psi * rshort(i, j)
kmat(i, j) = CInt((rshort(i, j) - rshort(0, 0)) / dr + phi * (dtime / dr))
eta = (rshort(i, j) - rshort(0, 0)) / dr - kmat(i, j) + phi * (dtime / dr)
pu(i, j) = 0.5 * sigma ^ 2 * (dtime / dr ^ 2) + 0.5 * eta + 0.5 * eta ^ 2
pm(i, j) = 1 - sigma ^ 2 * (dtime / dr ^ 2) - eta ^ 2
pd(i, j) = 1 - pu(i, j) - pm(i, j)

Next j

Lower(i + 1) = kmat(i, Lower(i)) - 1
Upper(i + 1) = kmat(i, Upper(i)) + 1

For h = Lower(i + 1) To Upper(i + 1)
rshort(i + 1, h) = rshort(0, 0) + h * dr
If (i = Ntree - 1) Then GoTo Nexth
QUsum = 0
QDsum = 0
For j = Lower(i) To Upper(i)
If (h = kmat(i, j) + 1) Then
QUsum = QUsum + QU(i, j) * pu(i, j) * Exp(- rshort(i, j) * dtime)
QDsum = QDsum + QD(i, j) * pu(i, j) * Exp(- rshort(i, j) * dtime)

ElseIf (h = kmat(i, j)) Then
QUsum = QUsum + QU(i, j) * pm(i, j) * Exp(- rshort(i, j) * dtime)
QDsum = QDsum + QD(i, j) * pm(i, j) * Exp(-rshort(i, j) * dtime)

ElseIf (h = kmat(i, j) - 1) Then
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QUsum = QUsum + QU(i, j) * pd(i, j) * Exp(-rshort(i, j) * dtime)
QDsum = QDsum + QD(i, j) * pd(i, j) * Exp(-rshort(i, j) * dtime)

End If
Next j
QU(i + 1, h) = QUsum
QD(i + 1, h) = QDsum

Nexth: Next h
Next i

End Sub

Code 11.7: VBA code of the GenHullWhiteTree2() routine.

Sub GenHWBondOptionTree2(optionMaturity As Double, strike As Double, bondMaturity
As Double, par As Double, coupon As Double, nCoupon As Integer,
paymentSchedule() As Double, ByRef Hf As Integer, ByRef Lower() As Integer,
ByRef Upper() As Integer, ByRef rshort() As Double, ByRef fTree() As Double)

Dim bondPrice(1 To nTreeMax + 1) As Double
Dim bondVol(1 To nTreeMax + 1) As Double
Dim i As Integer, j As Integer, k As Integer
Dim Nterm As Integer, dtime As Double

Call GenTermStructures(bondMaturity, 1, Nterm, dtime, bondPrice, bondVol)

Dim Ntree As Integer: Ntree = Nterm
Dim Ttree As Double: Ttree = bondMaturity

Dim kmat() As Integer: ReDim kmat(0 To Ntree - 1, -5 * Ntree To 5 * Ntree)
Dim pu() As Double: ReDim pu(0 To Ntree - 1, -5 * Ntree To 5 * Ntree)
Dim pm() As Double: ReDim pm(0 To Ntree - 1, -5 * Ntree To 5 * Ntree)
Dim pd() As Double: ReDim pd(0 To Ntree - 1, -5 * Ntree To 5 * Ntree)
Dim Bf() As Double: ReDim Bf(0 To Ntree, -5 * Ntree To 5 * Ntree)

Call GenHullWhiteTree2(Ttree, Ntree, bondPrice, bondVol, kmat, pu, pm, pd, Lower, Upper,
rshort)

Hf = Int(optionMaturity / dtime)

i = Ntree
Dim rho As Integer
rho = CouponCount((i - 0.5) * dtime, (i + 0.5) * dtime, nCoupon, paymentSchedule)
For j = Lower(i) To Upper(i): Bf(i, j) = par + rho * coupon: Next j

For i = Ntree - 1 To 0 Step -1
rho = CouponCount((i - 0.5) * dtime, (i + 0.5) * dtime, nCoupon, paymentSchedule)
For j = Lower(i) To Upper(i)
k = kmat(i, j)
Bf(i, j) = Exp(- rshort(i, j) * dtime) * (pu(i, j) * Bf(i + 1, k + 1) + pm(i, j) * Bf(i + 1, k) + pd(i, j) *
Bf(i + 1, k - 1)) + rho * coupon

Next j
Next i
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For j = Lower(Hf) To Upper(Hf): fTree(Hf, j) = Payoff(strike, Bf(Hf, j)): Next j

For i = Hf - 1 To 1 Step -1
For j = Lower(i) To Upper(i)
k = kmat(i, j)
fTree(i, j) = Exp(-rshort(i, j) * dtime) * (pu(i, j) * fTree(i + 1, k + 1) + pm(i, j) * fTree(i + 1,
k) + pd(i, j) * fTree(i + 1, k - 1))

Next j
Next i

fTree(0, 0) = Exp(-rshort(0, 0) * dtime) * (pu(0, 0) * fTree(1, 1) + pd(0, 0) * fTree(1, 0))

End Sub

Code 11.8: VBA code of the GenHWBondOptionTree2() routine.

Sub HWPricing()
Dim i As Integer, j As Integer
Dim rshort(0 To nTreeMax, -5 * nTreeMax To 5 * nTreeMax) As Double
Dim fTree(0 To nTreeMax, -5 * nTreeMax To 5 * nTreeMax) As Double
Dim Lower(0 To nTreeMax) As Integer
Dim Upper(0 To nTreeMax) As Integer
Dim Hf As Integer, zeroptr As Integer

Dim optionMaturity As Double: optionMaturity = Range("optionMaturity").Value
Dim strike As Double: strike = Range("strike").Value
Dim bondMaturity As Double: bondMaturity = Range("bondMaturity").Value
Dim par As Double: par = Range("par").Value
Dim coupon As Double: coupon = Range("coupon").Value
Dim nCoupon As Integer: nCoupon = Range("nCoupon").Value
Dim paymentSchedule() As Double: ReDim paymentSchedule(0 To nCoupon)

For i = 1 To nCoupon: paymentSchedule(i) = Range("A18").Offset(0, i): Next i

Dim treetype As Variant: treetype = Range("treetype").Text
If (treetype = "Ext Vasicek") Then
Call GenHWBondOptionTree(optionMaturity, strike, bondMaturity, par, coupon, nCoupon,
paymentSchedule, Hf, Lower(), Upper(), rshort(), fTree())

ElseIf (treetype = "General HW") Then
Call GenHWBondOptionTree2(optionMaturity, strike, bondMaturity, par, coupon,
nCoupon, paymentSchedule, Hf, Lower(), Upper(), rshort(), fTree())

End If

Range("B20").Value = fTree(0, 0)

Range("B23:IV150").ClearContents
Range("A25:A150").ClearContents
zeroptr = 0
For i = 0 To Hf

If (Upper(i) > Upper(zeroptr)) Then zeroptr = i
Next i
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If (Range("E13").Text = "Yes") Then

If (treetype = "Ext Vasicek") Then
For i = 0 To Hf
Range("B23").Offset(0, i + 1) = i * (optionMaturity / Hf)
For j = Lower(i) To Upper(i)
Range("B23").Offset(Upper(zeroptr) - j + 1, i + 1) = fTree(i, j)
Range("B23").Offset(Upper(zeroptr) - j + 1, 0) = rshort(i, j)

Next j
Next i

ElseIf (treetype = "General HW") Then
For i = 0 To Hf
Range("B23").Offset(0, i + 1) = i * (optionMaturity / Hf)
For j = Lower(i) To Upper(i)
If (i = 1) Then
Dim dr As Double: dr = rshort(2, Lower(2) + 1) - rshort(2, Lower(2))
Range("B23").Offset(Upper(zeroptr) - Int((rshort(1, j) - rshort(0, 0)) / dr)
+ 1, 2) = fTree(1, j)
Range("B23").Offset(Upper(zeroptr) - Int((rshort(1, j) - rshort(0, 0)) / dr)
+ 1, -1) = rshort(1, j)

Else
Range("B23").Offset(Upper(zeroptr) - j + 1, i + 1) = fTree(i, j)
Range("B23").Offset(Upper(zeroptr) - j + 1, 0) = rshort(i, j)

End If
Next j

Next i
End If

End If

End Sub

Code 11.9: VBA code of the new HWPricing() routine.

REV I EW QUEST I ON

1. Given current bond prices and volatilities with different maturities as,

Maturity

(years)
Current Bond Prices

(par ¼ $1)

Current Bond Price

Vol (%)

0.5 $0.9830 0.08
1.0 $0.9625 0.20
1.5 $0.9392 0.40
2.0 $0.9137 0.70
2.5 $0.8867 1.05
3.0 $0.8585 1.26
3.5 $0.8358 1.40
4.0 $0.8127 1.50
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Use VBA to implement the construction of the general Hull-White trinomial
tree and determine the current value of a three-year caplet written on a 6-month
LIBOR with caplet rate of 4.5 percent and notion principal of $10,000.

An interest rate caplet provides a ceiling of Rcap on LIBOR rate at future
time T with borrowing term d and notional principle M. The caplet payoff is
made at the beginning of the rate period as

f T ¼ dMmax LT(T; d)� Rcap; 0
� �

where LT(T,d) is the discrete compounding LIBOR rate as seen at time T for the
borrowing period between T and T þ d.

ENDNOTES

1. J. Hull and A. White, ‘‘One-Factor Interest-Rate Models and the Valuation of
Interest-Rate Derivative Securities,’’ Journal of Financial and Quantitative
Analysis 28, No. 2 (1993): 235–254.

2. In general, if bond price volatility is non-stochastic and has adopted the
functional form as:

st(T) ¼ g(t)[h(T)� h(t)]

it can be shown that the risk-neutral short rate is then a Markov process given
by:

Drt ¼ [u(t)� c(t)rt]Dt þ n(t)
ffiffiffiffi
D

p
te(0; 1)

where c(t) ¼ � h00(t)/h0(t),
u(t) ¼ 2R00(t) þ tR000(t) þ c(t)[R0(t) þ tR00(t)] þ h0(t)2

R t
0 g(u)

2 du,
and n(t) ¼ g(t)h0(t).

3. J. Hull and A. White, ‘‘Valuing Derivative Securities Using the Explicit Finite
difference Method,’’ Journal of Financial and Quantitative Analysis 25, No. 1
(1990): 87–100.

4. It is easy to rewrite (11.8) as:

e�R0(tiþ2)tiþ2 ¼
X

j¼L(i);...;U(i)Q(i; j)e�(r0þjDr)DtÊ(exp(� rtiþ1Dt)jrti ¼ r0 þ jDr)

¼
X

j¼L(i);...;U(i)Q(i; j)e�(r0þjDr)Dte�(r0þjDr)Dt�[u(ti)�a(r0þjDr)�
1
2s

2
Dt]Dt2

¼ e�u(ti)Dt
2þ 1

2s
2
Dt3
X

j¼L(i);...;U(i)Q(i; j)e�2(r0þjDr)Dtþa(r0þjDr)Dt
2
:

:

The time-dependent function u(ti) is factorized out of summation operation
over j to become (11.9).

5. It can be shown that ki, j�1 þ 1 ¼ j þ CINT(fi,j Dt/Dr þ aDt) � ki, j . Thus, the
branching rule will never skip any internal points on the lattice.

6. Recall that branching probabilities are determined up to the time labelNtree � 1
on the trinomial tree.
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7. Refer to HWtree_ebc.xls.
8. From Endnote 2, current bond price volatility is given by s0(T) ¼ g(0)[h(T) �

h(0)]. Suppose the volatility function n(t) ¼ g(t)h0(t) ¼ s, it is then straight
forward to show that s ¼ s00(0),

c(t) ¼ �s000(t)=s00(t) and
u(t) ¼ 2R00(t)þ tR000(t)þ c(t)[R0(t)þ tR00(t)]þ s2

R t
0 [s

0
0(t)=s

0
0(u)]

2du:

9. From (8.5) and (8.6), we have e�R0(t)t ¼ P0,0(t) and s0(t)
ffiffiffiffi
D

p
t ¼ 1

2ln[P1,D(t)/P1,

U(t)] for the bond prices on the binomial tree. The expressions for P1,U(t) and
P1,D(t) in (11.14) can be obtained by imposing the risk-neutral pricing P0,0(t) ¼
e�r0Dt

�
1
2 P1,U(t) þ 1

2 P1,D(t)
�
.

10. It is easy to check that s0(t2) ¼ (s/h0(0))[h(t2) � h(0)] 
 2sDt. From (11.14) and
(11.15), the interval size between r1,U and r1,D can be estimated as:

r1;U � r1;D ¼ (1=Dt)(2s0(t2)
ffiffiffiffi
D

p
t þ . . . ) 
 4s

ffiffiffiffi
D

p
t or (4=

ffiffiffi
3

p
)Dr:

11. From (11.17), we can rewrite k1,D as:

k1;D ¼ CINT((r1;U � r0)=Drþ f1;U(Dt=Dr)� (r1;U � r1;D)=Dr

þ c(t1)(r1;U � r1;D)(Dt=Dr))

� k1;U � 3

where c(t)> 0 for the mean reverting process and with the use of Endnote 10.
12. Refer to Endnote node 4. For (1, U) we have:

e�R1;U(tiþ2)(tiþ2�t1)

¼
X

j¼L(i);...;U(i)QU(i; j)e
�ri;jDtÊ(exp(� rtiþ1Dt)jrti¼ri;j)

¼
X

j¼L(i);...;U(i)QU(i; j)e
�ri;jDte�ri;jDt�[u(ti)�c(ti)ri;j�

1
2s

2
Dt]Dt2

¼ e
�u(ti)Dt2þ 1

2s
2
Dt3
P

j¼L(i);...;U(i)QU(i;j)e
�2ri;jDt(1þc(ti)ri;jDt2þ			)

¼ e�u(ti)Dt
2þ 1

2s
2
Dt3
�X

j¼L(i);...;U(i)QU(i; j)e
�2ri;jDt

þ c(ti)Dt
2
X

j¼L(i);...;U(i)QU(i; j)e
�2ri;jDtri;j þ 	 	 	



In the Taylor expansion, the time-dependent function c(ti) is factorized out of
the summation operation over j. There exists a similar expression for node
(1, D) with R1,D(ti+2), and QD(i,j) in the equation instead. Together, these
give (11.21) and (11.22) by solving two linear equations.
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CHAPTER 12
CreditMetrics Model

12 .1 THE CRED I TMETR I CS MODEL

CreditMetrics was published by J.P. Morgan in 1997. It is a scheme to
address market risk due to changes in fixed income value. Its methodology
is based not only on the probability of defaults, but also on the probability
of upgrades and downgrades in credit quality within a given time horizon.
More importantly, the risk is evaluated on a portfolio basis, rather than on
an individual asset basis. Thus, the correlation of credit quality among firms
is the key element in the model as diversification benefits or concentration
risks can be assessed across the portfolio. Since there is much material to be
discussed within the CreditMetrics framework,1 the core of this chapter
concentrates on:

1. Individual (Segregate) Asset Valuation Framework
2. Monte Carlo Simulation in Detail.

12 .2 IND I V I DUAL (S EGREGATE ) ASSET
VALUAT I ON FRAMEWORK

For an individual bond, risk comes not only when its obligor defaults, but
also when its credit rating is upgraded or downgraded by credit rating agen-
cies such as Standard and Poor’s, Moody’s, and Fitch. Therefore, it is criti-
cal to approximate the chance of migrating from one credit rating to any
possible credit quality state within a given horizon. A default scenario is
just one of several credit quality states. In general, the probabilities of credit
rating migration for each credit rating are summarized in a transition
matrix. Throughout this chapter, a time horizon of one year is used so the
transition matrix is commonly called a one-year transition matrix as shown
in Figure 12.1.2
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Based on the structural model developed by Robert C. Merton,3 the
CreditMetrics model relates changes in asset value to changes in credit
ratings. It is apparent that the asset value of an obligor determines its ability
to pay its debt owners. If the asset value falls underneath the debt value in
the future, the obligor will go into default. Since default is just one of the
scenarios in the transition matrix, a series of asset values are required in
order to decide a credit rating of an obligor in the future.

The CreditMetrics model proposes that the change in asset value of an
obligor is directly related to its credit rating migration. The model assumes
the changes in asset value are normally distributed and parameterized by
mean m and standard deviation s. With this parameterization of the asset
value process, a link is established between the asset return thresholds and
the transition probabilities. Since there are asset return thresholds, ZDef,
ZCCC, ZBB, ZAA,and so on such that when r, an asset return, is less than
ZDef, then the obligor is in default. When r is between ZDef and ZCCC, then
the credit rating of the obligor is set to CCC and so on until r is between
ZAA and ZAAA, then the credit rating of the obligor is set to AAA. With the
assumption that r is normally distributed, the probability of each credit
event is stated as:

Prob(Default) ¼ Prob(r < ZDef ) ¼ N
ZDef

s

� �
ð12:1Þ

Prob(CCC) ¼ Prob(ZDef < r < ZCCC) ¼ N
ZCCC

s

� �
�N

ZDef

s

� �
ð12:2Þ

and continues until:

Prob(AAA) ¼ Prob(ZAA < r < ZAAA) ¼ 1�N
ZAA

s

� �
: ð12:3Þ

FIGURE 12.1 One-year transition matrix in percentages.
Source: Standard & Poor’s CreditWeek, 1996.

222 PROFESSIONAL FINANCIAL COMPUTING USING EXCEL AND VBA



Once all the asset return thresholds are calculated, the transition proba-
bilities and the values of the asset return threshold can be aligned for each
credit rating. Let’s use a senior unsecured bond with a credit rating of single
A, coupon of 5 percent, and maturity of four years to illustrate the concept.
From Figure 12.1, the probability of a single A rated obligor to migrate to
default is 0.06 percent. Then N(ZDef=s) has to equal 0.06 percent using
(12.1). Therefore:

ZDef ¼ N�1(0:06%)� s ¼ �3:24s
where N�1(p) yields the level below a standard normal distributed variable
with probability p. In Excel, it is given by the NORMSINV() function.
Utilizing this method, ZCCC to ZAA can be calculated respectively. For
instance, the probability of the same obligor to migrate to CCC is 0.01
percent. Using (12.2), we have:

N
ZCCC

s

� �
¼ Prob(CCC)þ Prob(Default) ¼ 0:01%þ 0:06% ¼ 0:07%

ZCCC ¼ N�1(0:07%)� s ¼ �3:19s:
The transition probabilities and asset return thresholds for the single A
rated obligor are summarized in Table 12.1.

The next step is to calculate the bond value corresponding to each
credit rating migration within a given time horizon. A one-year horizon is
chosen in order to match the one-year transition matrix. Moreover, one
year forward zero curves for each credit rating category are obtained to
perform a present value bond evaluation as shown in Figure 12.2.

Let’s re-evaluate the senior unsecured bond with credit rating of single
A, coupon of 5 percent, and maturity of four years at the end of one year
assuming the credit rating has not changed.

BV ¼ $5þ $5

(1þ 0:0372)
þ $5

(1þ 0:0432)2
þ $105

(1þ 0:0493)3
¼ $105:30

ð12:4Þ

TABLE 12.1 Transition probabilities and asset return thresholds for a single A
rated obligor.

Threshold

ZAAA ZAA ZA ZBBB ZBB ZB ZCCC ZDef

Probability 0.09% 2.27% 91.05% 5.52% 0.74% 0.26% 0.01% 0.06%
Threshold value � 3.12s 1.98s �1.51s �2.30s �2.72s �3.19s �3.24s
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The remaining bond values for other credit ratings are calculated
respectively. Table 12.2 below shows the possible values at the end of one
year. In regard to the default value for a senior unsecured bond, a recovery
rate of 51.13 percent is used. This static value is used for illustrative
purposes and it will be elaborated on during the implementation of the
Monte Carlo simulation approach in Section 12.3.

At this stage, the mean m and the standard deviation s of the above
bond can be calculated by applying a probability-weighted approach using
the data in Table 12.2. Thus, the stand-alone risk can be deduced. However,
it is preferable not to calculate the stand-alone risk at this stage because:

1. When using the Monte Carlo method to simulate the portfolio values,
each of the underlying bond values is simulated first before aggregating
to the overall portfolio values. Therefore, it is preferred to estimate the
stand-alone risk of each bond from the simulation approach rather than
the analytical approach.

2. In case of a default scenario, it is recommended to use a random
number instead of a static number for the recovery rate. This will be
discussed further in the next section.

FIGURE 12.2 Arbitrary instance of one year forward zero curves for each
credit rating.

TABLE 12.2 List of bond values of a single A bond in one year.

Year End Rating

AAA AA A BBB BB B CCC Default

Probability 0.09% 2.27% 91.05% 5.52% 0.74% 0.26% 0.01% 0.06%
Bond
value ($)

105.84 105.70 105.30 104.43 100.43 97.36 83.94 51.13
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12 .3 MONTE CARLO S IMULAT I ON IN DETA I L

The computation of asset return thresholds and one year forward values
have established the building block for applying the Monte Carlo simula-
tion to a portfolio level. Let’s use a sample portfolio of four bonds detailed
in Figure 12.3.

Based on the methodology of calculating the asset return threshold for
the single A obligor, the asset return threshold4 of each obligor within the
portfolio is summarized in Table 12.3 below.

With the aim of describing how the asset values of the four obligors
move jointly, it is assumed that the asset returns for each firm are normally
distributed and the correlation for each pair of firms are specified.5 When
estimating asset return correlations, there are various alternatives to estimate
them. The CreditMetrics model uses the correlation between obligors’
equity returns as a proxy for the correlation of asset returns. Specifically, an
obligor’s volatility of the weighted index along with its country-industry
pairs is used to compute the correlations. Once the correlation matrix is
defined, generating random scenarios for the asset return of the four obligors
is a matter of generating correlated, normally distributed variates. Cholesky

FIGURE 12.3 Basic characteristics of the sample portfolio of four bonds.

TABLE 12.3 Asset return thresholds (in units of s) of the sample portfolio of
four obligors.

Threshold

ZAA ZA ZBBB ZBB ZB ZCCC ZDef

AAObligor 2.46 �1.36 �2.38 �2.85 �2.95 �3.54 �6.36
AObligor 3.12 1.98 �1.51 �2.30 �2.72 �3.19 �3.24
BObligor 8.16 3.06 2.70 2.42 1.46 �1.32 �1.63
CCCObligor 2.85 2.85 2.62 2.11 1.74 1.02 �0.85
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factorization, singular value decomposition, and so on are just a number of
methods to accomplish this.

The next step is to generate random variables in order to create differ-
ent scenarios for standardized asset returns. For each scenario, a new ‘‘state
of the world’’6 is revealed. Since each obligor is mapped to a new credit
rating, this new credit rating can directly map to a new bond value in a way
similar to Table 12.2.

For default scenarios, the valuation is somewhat different. When an
obligor is in default, its recovery rate does not follow a deterministic
process. Instead, it follows a stochastic process, so the recovery rate presents
a huge amount of variation. To model this variation, the mean and standard
deviation of the recovery rate are collected for each obligor’s seniority; then,
a random recovery rate is generated according to a beta distribution7 with
these two input parameters.

Let’s use the sample portfolio to calculate the possible portfolio values
with a horizon of one year. As shown in Table 12.4, the sample portfolio
with five correlated random scenarios is used with the purpose of illustrat-
ing the same concept. It is important to keep in mind that the value is the
same in scenarios with the same credit rating, except for default scenarios.
The recovery value is different in each default scenario because each default
scenario requires a randomly generated recovery rate.8

So far, five scenarios of future possible portfolio values have been
generated. Once the simulation is extended to 10,000 scenarios, a number
of descriptive statistics can be concluded. Some of the main descriptive
statistics are:

1. the mean
2. the standard deviation
3. the 5th percentile
4. the 1st percentile.

Once the stand-alone risk of each bond can be derived from the simula-
tion process, the marginal risk of each bond can also be derived. A marginal
risk is the difference between the standard deviation of the portfolio and
the standard deviation of the portfolio excluding the specific bond. First,
each bond’s individual (stand-alone) standard deviation of value is
estimated excluding other bonds in the portfolio. Second, the individual
percent standard deviation is computed, which is just the individual standard
deviation expressed as a percentage of the mean value for the given bond.
Third, each bond’s marginal standard deviation is computed. Last, this
number is expressed in percent terms, providing the percent marginal standard
deviation.
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12 .4 EXCE L AND VBA IMPLEMENTAT I ON

Before applying the Monte Carlo simulation approach to fully evaluate the
future possible portfolio values in one year’s time, there are many initial
steps to be taken. Based on the one-year transition matrix from Figure 12.1,
the asset return threshold matrix can be derived. Each credit rating has its own
threshold values and they are combined to form the matrix in Figure 12.4.

In the following VBA routine called calAssetThreshold(),ZDef is computed
first. Then ZDef is used in order to compute ZCCC to ZAA respectively.
The routine returns the threshold matrix as depicted in Figure 12.4 with
two labels (LInitRating, LThreshold). The first label LInitRating is running from 1
to 7 referring to the initial ratings from AAA to CCC. The second label

TABLE 12.4 Mapping among return scenarios, rating scenarios and
valuation scenarios.

Asset Return Thresholds

Scenario AAObligor AObligor BObligor CCCObligor

1 1.20864 0.31811 � 0.39797 � 0.89260
2 � 0.98732 0.25956 � 0.71610 1.12732
3 � 1.50742 � 2.08923 0.15314 0.18177
4 � 0.09141 � 1.06525 � 1.46234 � 1.56301
5 � 0.25611 0.99727 0.93067 � 0.55134

New Credit Ratings

AAObligor AObligor BObligor CCCObligor

1 AA A B Def
2 AA A B B
3 A BBB B CCC
4 AA A CCC Def
5 AA A B CCC

Asset Values

AAObligor AObligor BObligor CCCObligor Portfolio

1 $4,092,567 $3,158,992 $2,048,324 $381,938 $9,681,821
2 $4,092,567 $3,158,992 $2,048,324 $1,154,719 $10,454,602
3 $4,072,039 $3,132,750 $2,048,324 $1,018,388 $10,271,501
4 $4,092,567 $3,158,992 $1,750,549 $436,871 $9,438,979
5 $4,092,567 $3,158,992 $2,048,324 $1,018,388 $10,318,270
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LThreshold is also running from 1 to 7 referring to the threshold values from
ZAA to ZDef.

Sub calAssetThreshold(ByRef assetThresholdMatrix() As Double)

Dim tranMatrix(1 To 7, 1 To 8) As Double
Dim LInitRating As Integer
Dim LEndRating As Integer
Dim LThreshold As Integer
Dim k As Integer
Dim tempProb As Double

'reading in the one year transition matrix

For LInitRating = 1 To 7
For LEndRating = 1 To 8
tranMatrix(LInitRating, LEndRating) = Worksheets("Reference").Range("B4").
Offset(LInitRating - 1, LEndRating - 1).Value / 100

Next LEndRating
Next LInitRating

'evaluating the asset return threshold matrix

For LInitRating = 1 To 7
For LThreshold = 7 To 1 Step -1
tempProb = 0
For k = 7 To LThreshold Step -1
tempProb = tempProb + WorksheetFunction.Max(tranMatrix(LInitRating, k + 1),
0.0000000001) `1E-10 is used to avoid zero

Next k
assetThresholdMatrix(LInitRating, LThreshold) = WorksheetFunction.NormSInv
(tempProb)

Next LThreshold
Next LInitRating

End Sub

FIGURE 12.4 Asset return threshold matrix (in units of s).
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Recall the sample portfolio from Figure 12.3, the VBA routine, calFor-
wardBondValues(), is called to compute the year-end values of each bond
for each credit rating based on the same logic from Equation (12.4). The
result is summarized in Figure 12.5. The default values are missing (and
temporarily assigned to be zero) because the random recovery rate needs to
be generated each time the asset threshold value falls below its respective
value of ZDef. The label LEndRating runs eight times (from 1 to 8) referring to
the credit ratings from AAA toDefault.

Sub calForwardBondValues(couponRate As Double, yearToMaturity As Integer,
oneYearForwardBondValues() As Double)

Dim oneYearForwardCurves(1 To 7, 1 To 4) As Double
Dim LEndRating As Integer
Dim LYear As Integer
Dim k As Integer
Dim sum As Double

'reading in the one year forward zero curve for different year end non-default ratings

For LEndRating = 1 To 7
For LYear = 1 To 4
oneYearForwardCurves(LEndRating, LYear) = Worksheets("Reference").Range
("B17").Offset(LEndRating - 1, LYear - 1).Value / 100

Next LYear
Next LEndRating

'evaluating the one year bond values for different year end ratings

For LEndRating = 1 To 7
sum = couponRate * 100
For k = 1 To yearToMaturity - 1
sum = sum + couponRate * 100 / ((1 + oneYearForwardCurves(LEndRating, k)) ^ k)
If k = yearToMaturity - 1 Then
sum = sum + 100 / ((1 + oneYearForwardCurves(LEndRating, k)) ^ k)

End If
Next k

FIGURE 12.5 List of bond values of AA bond, single A bond, single B bond, and
CCC bond in one year.
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oneYearForwardBondValues(LEndRating) = sum
Next LEndRating

oneYearForwardBondValues(8) = 0

End Sub

In addition to the computation of the year-end values for each bond
under different credit ratings, the asset return threshold for each bond in
the portfolio also has to be set up. A ‘‘Select Case’’ statement is used to per-
form this task.

Select Case portHldg(LBond, 2)
Case "AAA"
LInitRating = 1

Case "AA"
LInitRating = 2

Case "A"
LInitRating = 3

Case "BBB"
LInitRating = 4

Case "BB"
LInitRating = 5

Case "B"
LInitRating = 6

Case "CCC"
LInitRating = 7

End Select
For LThreshold = 1 To 7
portAssetThreshold(LBond, LThreshold) = assetThresholdMatrix(LInitRating, LThreshold)

Next LThreshold

Let’s suppose the correlation of the sample portfolio has been arbitrar-
ily estimated.9 Then the Cholesky decomposition is applied to produce a
lower triangular matrix with strictly positive diagonal entries. After that, an
array of random variables is created, and is multiplied by the Cholesky
decomposed matrix in order to generate an array of correlated random
variables. A list of functions is designed to facilitate this calculation and
their VBA codes are given by Code 12.1:

CholeskyDecom()

invStdNorRandomArray()

corInvStdNorRandomArray().

The next step is to compare each correlated random variable with its
asset threshold value, and thus to map to its respective bond values. This is

230 PROFESSIONAL FINANCIAL COMPUTING USING EXCEL AND VBA



performed through the VBA routine called simPortValue() as given by Code
12.2. In the case of default, a predefined function, randomInvBetaDist(), is
called to randomly produce a recovery value based on the seniority of the
specific bond.10 The VBA codes of the randomInvBetaDist() function is also
given by Code 12.1. Again, a ‘‘For Loop’’ is used to compute the asset
values of the bonds and the portfolio.

The stand-alone risk is simply the standard deviation of the simulated
asset values for each individual bond. It can be determined through the
procedure given by:

For LBond = 1 To nbond
Worksheets("OutputResult").Range("D4").Offset(LBond - 1, 0) = portHldg(LBond, 1)
Worksheets("OutputResult").Range("E4").Offset(LBond - 1, 0) = portHldg(LBond, 2)
For Ls = 1 To numOfIterations
tempArray(Ls) = simulatedPortValue(Ls, LBond)

Next Ls
mean = WorksheetFunction.Average(tempArray)
stdev = WorksheetFunction.stdev(tempArray)
Worksheets("OutputResult").Range("F4").Offset(LBond - 1, 0) = stdev
If mean <> 0 Then
Worksheets("OutputResult").Range("G4").Offset(LBond - 1, 0) = stdev / mean

End If
Next LBond

On the other hand, the overall portfolio risk can be determined in both
dollar and percentage terms as:

For Ls = 1 To numOfIterations
tempArray(Ls) = 0
For LBond = 1 To nbond
tempArray(Ls) = tempArray(Ls) + simulatedPortValue(Ls, LBond)

Next LBond
Next Ls

mean = WorksheetFunction.Average(tempArray)
stdev = WorksheetFunction.stdev(tempArray)
Worksheets("OutputResult").Range("B4").Value = mean
Worksheets("OutputResult").Range("B5").Value = stdev
Worksheets("OutputResult").Range("B6").Value = stdev / mean
Worksheets("OutputResult").Range("B7").Value = WorksheetFunction.Percentile(tempArray,
0.05)

Worksheets("OutputResult").Range("B8").Value = WorksheetFunction.Percentile(tempArray,
0.01)

In terms of calculating the marginal risk of each bond, the holding of
each bond is set to be zero, respectively. A full evaluation of the portfolio
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standard deviation is calculated from the above procedure. Hence the
marginal risk is the difference between the resulting portfolio standard
deviation and the original portfolio standard deviation.

For Lptr = 1 To nbond
tempsave = portHldg(Lptr, 6)
portHldg(Lptr, 6) = 0
Call simPortValue(numOfIterations, corRandomArray, nbond, portHldg,
portAssetThreshold, oneYearForwardPortValues, simulatedPortValue)

For Ls = 1 To numOfIterations
tempArray(Ls) = 0
For LBond = 1 To nbond
tempArray(Ls) = tempArray(Ls) + simulatedPortValue(Ls, LBond)

Next LBond
Next Ls
stdev = WorksheetFunction.stdev(tempArray)
Worksheets("OutputResult").Range("H4").Offset(Lptr - 1, 0) = Worksheets("OutputResult").
Range("B5").Value - stdev

Worksheets("OutputResult").Range("I4").Offset(Lptr - 1, 0) = (Worksheets("OutputResult").
Range("B5").Value - stdev) / Worksheets("OutputResult").Range("B4").Value

portHldg(Lptr, 6) = tempsave
Next Lptr

The final result is summarized in Figure 12.6. The VBA routine called
creditEngine(), which implements all of the above procedures, is given by
Code 12.3.

On a separate note, the sample portfolio consists of four bonds, but the
program can easily handle more than four bonds as long as ‘‘Number of
bonds,’’ ‘‘Correlation matrix range,’’ and the actual correlation matrix are
specified correctly as shown in Figure 12.7.

FIGURE 12.6 Output of portfolio risk, stand-alone risk, and marginal risk of the
bond portfolio.
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Function CholeskyDecom(ByRef sigma As Object)

Dim n As Integer: n = sigma.Columns.Count
Dim X As Double
Dim a() As Double: ReDim a(1 To n, 1 To n)
Dim M() As Double: ReDim M(1 To n, 1 To n)
Dim i As Integer, j As Integer, k As Integer

For i = 1 To n
For j = 1 To n
a(i, j) = sigma.Cells(i, j).Value
M(i, j) = 0

Next j
Next i

For i = 1 To n
For j = i To n
X = a(i, j)
For k = 1 To (i - 1)
X = X - M(i, k) * M(j, k)

Next k
If j = i Then
M(i, i) = Sqr(X)

Else
M(j, i) = X / M(i, i)

End If
Next j

Next i

CholeskyDecom = M

End Function
_________________________________________________________________________

Function invStdNorRandomArray(numOfRows As Integer, numOfColumns As Integer)
Dim i As Integer, j As Integer
Dim anArray() As Double: ReDim anArray(1 To numOfRows, 1 To numOfColumns)

FIGURE 12.7 Specification of correlation matrix, its range, and number of bonds.
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For i = 1 To numOfRows
For j = 1 To numOfColumns
anArray(i, j) = StdNormNum()

Next j
Next i
invStdNorRandomArray = anArray

End Function

_________________________________________________________________________

Function corInvStdNorRandomArray(ByRef randomArray() As Double, ByRef choleskyMatrix
() As Double)

Dim i As Integer, j As Integer, k As Integer
Dim numOfRows As Integer: numOfRows = UBound(randomArray, 1)
Dim numOfColumns As Integer: numOfColumns = UBound(randomArray, 2)
Dim anArray() As Double: ReDim anArray(1 To numOfRows, 1 To numOfColumns)
For i = 1 To numOfRows
For j = 1 To numOfColumns
anArray(i, j) = 0
For k = 1 To numOfColumns
anArray(i, j) = anArray(i, j) + randomArray(i, k) * choleskyMatrix(j, k)

Next k
Next j

Next i
corInvStdNorRandomArray = anArray

End Function

_________________________________________________________________________

Function randomInvBetaDist(mean As Double, stdDev As Double) As Double
randomInvBetaDist = WorksheetFunction.BetaInv(Rnd(), mean * (mean * (1 - mean) /
(stdDev ^ 2) - 1), (1 - mean) * (mean * (1 - mean) / (stdDev ^ 2) - 1))

End Function

Code 12.1: VBA codes of user functions.

Sub simPortValue(numOfIterations As Integer, corRandomArray() As Double, nbond As
Integer, portHldg() As Variant, portAssetThreshold() As Double,
oneYearForwardPortValues() As Double, ByRef simulatedPortValue() As Double)

Dim Ls As Integer
Dim LBond As Integer
Dim LEndRating As Integer
Dim recoveryMean As Double
Dim recoveryStdDev As Double

For Ls = 1 To numOfIterations
For LBond = 1 To nbond

234 PROFESSIONAL FINANCIAL COMPUTING USING EXCEL AND VBA



If corRandomArray(Ls, LBond) > portAssetThreshold(LBond, 1) Then
LEndRating = 1

ElseIf corRandomArray(Ls, LBond) > portAssetThreshold(LBond, 2) Then
LEndRating = 2

ElseIf corRandomArray(Ls, LBond) > portAssetThreshold(LBond, 3) Then
LEndRating = 3

ElseIf corRandomArray(Ls, LBond) > portAssetThreshold(LBond, 4) Then
LEndRating = 4

ElseIf corRandomArray(Ls, LBond) > portAssetThreshold(LBond, 5) Then
LEndRating = 5

ElseIf corRandomArray(Ls, LBond) > portAssetThreshold(LBond, 6) Then
LEndRating = 6

ElseIf corRandomArray(Ls, LBond) > portAssetThreshold(LBond, 7) Then
LEndRating = 7

Else
LEndRating = 8

End If

If LEndRating <> 8 Then
simulatedPortValue(Ls, LBond) = oneYearForwardPortValues(LBond, LEndRating) /
100 * portHldg(LBond, 6)

Else
Select Case portHldg(LBond, 3)
Case "Senior Secured"
recoveryMean = 0.538
recoveryStdDev = 0.2686
simulatedPortValue(Ls, LBond) = randomInvBetaDist(recoveryMean,
recoveryStdDev) * portHldg(LBond, 6)

Case "Senior Unsecured"
recoveryMean = 0.5113
recoveryStdDev = 0.2545
simulatedPortValue(Ls, LBond) = randomInvBetaDist(recoveryMean,
recoveryStdDev) * portHldg(LBond, 6)

Case "Senior Subordinated"
recoveryMean = 0.3852
recoveryStdDev = 0.2381
simulatedPortValue(Ls, LBond) = randomInvBetaDist(recoveryMean,
recoveryStdDev) * portHldg(LBond, 6)

Case "Subordinated"
recoveryMean = 0.3274
recoveryStdDev = 0.2018
simulatedPortValue(Ls, LBond) = randomInvBetaDist(recoveryMean,
recoveryStdDev) * portHldg(LBond, 6)

Case "Junior Subordinated"
recoveryMean = 0.1709
recoveryStdDev = 0.109
simulatedPortValue(Ls, LBond) = randomInvBetaDist(recoveryMean,
recoveryStdDev) * portHldg(LBond, 6)

End Select
End If
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Next LBond

Next Ls

End Sub

Code 12.2: VBA codes of the simPortValue() routine.

Sub CreditEngine()

Dim assetThresholdMatrix(1 To 7, 1 To 7) As Double
Dim LInitRating As Integer
Dim LThreshold As Integer
Dim LEndRating As Integer

Call calAssetThreshold(assetThresholdMatrix)

For LThreshold = 1 To 7
For LInitRating = 1 To 7
Worksheets("Reference").Range("L4").Offset(LInitRating - 1, LThreshold - 1).Value =
assetThresholdMatrix(LInitRating, LThreshold)

Next LInitRating
Next LThreshold

'- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Dim nbond As Integer: nbond = Worksheets("InputParameters").Range("B2").Value
Dim portHldg() As Variant: ReDim portHldg(1 To nbond, 1 To 6)
Dim oneYearForwardPortValues() As Double: ReDim oneYearForwardPortValues(1 To
nbond, 1 To 8)

Dim oneYearForwardBondValues(1 To 8) As Double
Dim portAssetThreshold() As Double: ReDim portAssetThreshold(1 To nbond, 1 To 7)
Dim couponRate As Double
Dim yearToMaturity As Integer
Dim LBond As Integer
Dim k As Integer

For LBond = 1 To nbond

'reading in the content of the bond portfolio

For k = 1 To 6
portHldg(LBond, k) = Worksheets("InputParameters").Range("D4").Offset(LBond - 1,
k - 1).Value

Next k

'evaluating the one year bond values for each bond in the portfolio

couponRate = portHldg(LBond, 4)
yearToMaturity = portHldg(LBond, 5)

236 PROFESSIONAL FINANCIAL COMPUTING USING EXCEL AND VBA



Call calForwardBondValues(couponRate, yearToMaturity, oneYearForwardBondValues)
For LEndRating = 1 To 8
oneYearForwardPortValues(LBond, LEndRating) = oneYearForwardBondValues
(LEndRating)

Worksheets("InputParameters").Range("K4").Offset(LBond - 1, LEndRating - 1) =
oneYearForwardPortValues(LBond, LEndRating)

Next LEndRating

'setting up the asset return threshold for each bond in the portfolio

Select Case portHldg(LBond, 2)
Case "AAA"
LInitRating = 1

Case "AA"
LInitRating = 2

Case "A"
LInitRating = 3

Case "BBB"
LInitRating = 4

Case "BB"
LInitRating = 5

Case "B"
LInitRating = 6

Case "CCC"
LInitRating = 7

End Select
For LThreshold = 1 To 7
portAssetThreshold(LBond, LThreshold) = assetThresholdMatrix(LInitRating,
LThreshold)

Next LThreshold

Next LBond

'- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
'generating an array of correlated random variables

Dim numOfIterations As Integer: numOfIterations = Worksheets("OutputResult").Range
("B2").Value

Dim choleskyMatrix() As Double: choleskyMatrix() = CholeskyDecom(Worksheets
("InputParameters").Range(Worksheets("InputParameters").Range("B5").Value))

Dim numOfFactors As Integer: numOfFactors = UBound(choleskyMatrix(), 1)
Dim randomArray() As Double: ReDim randomArray(1 To numOfIterations, 1 To
numOfFactors)

Dim corRandomArray() As Double: ReDim corRandomArray(1 To numOfIterations, 1 To
numOfFactors)

seed = 5678

randomArray() = invStdNorRandomArray(numOfIterations, numOfFactors)

corRandomArray() = corInvStdNorRandomArray(randomArray, choleskyMatrix)
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'- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
'mapping of scenarios

Dim simulatedPortValue() As Double: ReDim simulatedPortValue(1 To numOfIterations, 1
To nbond)

Call simPortValue(numOfIterations, corRandomArray, nbond, portHldg,
portAssetThreshold, oneYearForwardPortValues, simulatedPortValue)

'- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
'writing out the standalone risk number

Dim tempArray() As Variant: ReDim tempArray(1 To numOfIterations)
Dim Ls As Integer
Dim mean As Double, stdev As Double

For LBond = 1 To nbond
Worksheets("OutputResult").Range("D4").Offset(LBond - 1, 0) = portHldg(LBond, 1)
Worksheets("OutputResult").Range("E4").Offset(LBond - 1, 0) = portHldg(LBond, 2)
For Ls = 1 To numOfIterations
tempArray(Ls) = simulatedPortValue(Ls, LBond)

Next Ls
mean = WorksheetFunction.Average(tempArray)
stdev = WorksheetFunction.stdev(tempArray)
Worksheets("OutputResult").Range("F4").Offset(LBond - 1, 0) = stdev
If mean <> 0 Then
Worksheets("OutputResult").Range("G4").Offset(LBond - 1, 0) = stdev / mean

End If
Next LBond

'- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
'writing out the overall risk number

For Ls = 1 To numOfIterations
tempArray(Ls) = 0
For LBond = 1 To nbond
tempArray(Ls) = tempArray(Ls) + simulatedPortValue(Ls, LBond)

Next LBond
Next Ls

mean = WorksheetFunction.Average(tempArray)
stdev = WorksheetFunction.stdev(tempArray)
Worksheets("OutputResult").Range("B4").Value = mean
Worksheets("OutputResult").Range("B5").Value = stdev
Worksheets("OutputResult").Range("B6").Value = stdev / mean
Worksheets("OutputResult").Range("B7").Value = WorksheetFunction.Percentile
(tempArray, 0.05)

Worksheets("OutputResult").Range("B8").Value = WorksheetFunction.Percentile
(tempArray, 0.01)
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'- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
'writing out the marginal risk number

Dim tempsave As Double
Dim Lptr As Integer

For Lptr = 1 To nbond
tempsave = portHldg(Lptr, 6)
portHldg(Lptr, 6) = 0
Call simPortValue(numOfIterations, corRandomArray, nbond, portHldg,
portAssetThreshold, oneYearForwardPortValues, simulatedPortValue)

For Ls = 1 To numOfIterations
tempArray(Ls) = 0
For LBond = 1 To nbond
tempArray(Ls) = tempArray(Ls) + simulatedPortValue(Ls, LBond)

Next LBond
Next Ls
stdev = WorksheetFunction.stdev(tempArray)
Worksheets("OutputResult").Range("H4").Offset(Lptr - 1, 0) = Worksheets
("OutputResult").Range("B5").Value - stdev

Worksheets("OutputResult").Range("I4").Offset(Lptr - 1, 0) = (Worksheets
("OutputResult").Range("B5").Value - stdev) _ / Worksheets("OutputResult")

.Range("B4").Value
portHldg(Lptr, 6) = tempsave

Next Lptr

End Sub

Code 12.3: VBA codes of the creditEngine() routine.

Sub calAssetThreshold(ByRef assetThresholdMatrix() As Double)

Dim tranMatrix(1 To 7, 1 To 8) As Double
Dim LInitRating As Integer
Dim LEndRating As Integer
Dim LThreshold As Integer
Dim k As Integer
Dim tempProb As Double

'reading in the one year transition matrix

For LInitRating = 1 To 7
For LEndRating = 1 To 8
tranMatrix(LInitRating, LEndRating) = Worksheets("Reference").Range("B4").Offset
(LInitRating - 1, LEndRating - 1).Value / 100

Next LEndRating
Next LInitRating

'evaluating the asset return threshold matrix
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For LInitRating = 1 To 7
For LThreshold = 7 To 1 Step -1
tempProb = 0
For k = 7 To LThreshold Step -1
tempProb = tempProb + WorksheetFunction.Max(tranMatrix(LInitRating, k + 1),
0.0000000001) `1E-10 is used to avoid zero

Next k
assetThresholdMatrix(LInitRating, LThreshold) = WorksheetFunction.NormSInv
(tempProb)

Next LThreshold
Next LInitRating

End Sub
_________________________________________________________________________

Sub calForwardBondValues(couponRate As Double, yearToMaturity As Integer,
oneYearForwardBondValues() As Double)

Dim oneYearForwardCurves(1 To 7, 1 To 4) As Double
Dim LEndRating As Integer
Dim LYear As Integer
Dim k As Integer
Dim sum As Double

'reading in the one year forward zero curve for different year end non-default ratings

For LEndRating = 1 To 7
For LYear = 1 To 4
oneYearForwardCurves(LEndRating, LYear) = Worksheets("Reference").Range
("B17").Offset(LEndRating - 1, LYear - 1).Value / 100

Next LYear
Next LEndRating

'evaluating the one year bond values for different year end ratings

For LEndRating = 1 To 7
sum = couponRate * 100
For k = 1 To yearToMaturity - 1
sum = sum + couponRate * 100 / ((1 + oneYearForwardCurves(LEndRating, k)) ^ k)
If k = yearToMaturity - 1 Then
sum = sum + 100 / ((1 + oneYearForwardCurves(LEndRating, k)) ^ k)

End If
Next k
oneYearForwardBondValues(LEndRating) = sum

Next LEndRating

oneYearForwardBondValues(8) = 0

End Sub

Code 12.4: VBA codes of the calAssetThreshold() and
calForwardBondValues() routines.
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REV I EW QUEST I ONS

1. The CreditMetrics model uses the correlation between firms’ equity returns as a
proxy for the correlation of asset returns. In the implementation of the model,
the correlation used was arbitrary. Select three to five large cap firms, preferred
in different countries and industries, compute their correlations using their
equity data; then implement the CreditMetrics model with their underlying
bond data.

2. Select a global benchmark index such as the MSCI All Country World Index
(ACWI) or the Global Dow index (GDOW); then apply the firms’ volatilities of
the chosen index with their country-industry pairs to compute the correlations,
and implement the CreditMetrics model. Contrast the result against that of
Question 1.

ENDNOTES

1. ‘‘CreditMetricsTM – Technical Document,’’ J.P. Morgan & Co., 1997.
2. Refer to CreditMetrics.xls.
3. Robert C. Merton, ‘‘On the Pricing of Corporate Debt: The Risk Structure of

Interest Rates,’’ Journal of Finance 29, No. 2 (1974): 449–470.
4. Because the volatility of an asset return does not affect the joint probabilities of

credit rating changes, so the asset return threshold values can be applied.
5. The joint distribution of the asset returns is assumed to be multivariate normal.
6. It is referred to as a credit rating migration outcome where a new credit rating

reaches the risk horizon.
7. Since the beta distribution produces numbers between zero and one, so mean-

ingful recovery rates would be chosen.
8. The recovery rate of a given obligor is independent of all other asset values

within the portfolio.
9. Refer to Section 8.5 of ‘‘CreditMetricsTM – Technical Document,’’ J.P. Morgan

& Co., 1997.
10. Carty & Lieberman [96a] —Moody’s Investors Service.
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CHAPTER 13
KMV–Merton Model

13 .1 KMV–MERTON MODEL OF CRED I T R I SK

Credit risk is the risk that a debtor fails to meet its repayments according to
a pre-determined schedule, either incapably or unwillingly. In this chapter,
the main focus is on the credit risk of a publicly traded firm. Many practi-
tioners and academics have carried out research in forecasting the credit
default of a firm. One key model that has been broadly applied is the struc-
tural model developed by Merton.1 The model uses a firm’s structural
variables such as liability and equity to determine its default probability. A
firm is considered to be in default when its assets are not sufficient to cover
its debt at maturity. When the value of assets is greater than the value of
debt, the firm should be able to make the debt repayment and the value of
equity at this time is positive given by the accounting relationship:

Asset� Liability ¼ Equity:

On the other hand, when the value of assets is less than the value of debt,
the firm will default on the debt and the value of equity is zero as all assets
are claimed by the bond owners as shown in Figure 13.1. The Merton
model suggests that equity can be considered a call option on the value of
the assets with strike price equal to the firm’s debt. Assume that the value
of assets follows a random log-normal process. It appears that the process
is not directly observable. However, the value of assets and its volatility
can be inferred from the market value of equity utilizing the Black–
Scholes pricing of call options. Consequently, the probability of default can
be calculated.

The crucial assumption of the Merton model is that the value of assets
follows a random log-normal process given by:

DAt=At ¼ e(mADt; sA

ffiffiffiffiffi
Dt

p
) ð13:1Þ
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where mA and sA are respectively the expected return and the volatility of
assets. They are considered to be constant parameters. It is clear that neither
of these parameters nor the value of assets are directly observable. Suppose
that the firm has issued one zero-coupon bond that matures at time T.
The value of equity can be considered a call option on the value of the
assets with strike price equal to the notional value of the firm’s debt L and
maturity at time T. The payoff to equity owners at maturity is therefore
equivalent to:

ET ¼ maxfAT � L; 0g: ð13:2Þ
Consequently, the value of equity at any time t prior to the maturity can be
calculated through the Black–Scholes pricing of call options as:

Et ¼ At N(d1)� L e�r(T�t) N(d2) ð13:3Þ
where r is the risk-free interest rate. The terms d1 and d2 are given by:

d1 ¼
ln(At=L)þ (rþ 1

2 s
2
A)(T � t)

sA

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t

p ð13:4Þ

d2 ¼ d1 � sA

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t

p
: ð13:5Þ

The Black-Scholes pricing in (13.3) describes the value of equity as a func-
tion of the value of assets if the firm’s debt at time T is L. It also generates
the relationship between the volatility of equity and the volatility of assets
through Ito’s lemma as:2

sE ¼ At

Et

� �
N(d1)sA: ð13:6Þ

FIGURE 13.1 Pay-off to bond and equity owners.
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For a publicly traded firm, the current value of equity is easily obtained
from the market by calculating the market cap of the firm. Likewise, the
current volatility of equity can also be estimated using a historical dataset
of stock returns. The Merton model suggests that the current value of assets
A0 and its volatility sA can be inferred from the market data of equity using
the two non-linear equations in (13.3) and (13.6) with t ¼ 0. The probabil-
ity that the firm will default on its debt L that matures at later time T can be
calculated as:3

Pdefault ¼ N(�D) ð13:7Þ

where D is regarded as the distance to default from the mean value of assets
in number of standard deviations given by:

D ¼ ln(A0=L)þ (mA � 1
2 s

2
A)T

sA

ffiffiffiffi
T

p : ð13:8Þ

The expected return of assets mA in (13.8) remains to be determined by
some other procedure.

EXAMPLE 13.1

Suppose we have collected the up-to-date monthly stock prices of a
firm for the previous year. The current stock price of the firm is given
in cell E14 (see Figure 13.2) with outstanding shares in cell F14. The
current value of equity E0 is then calculated to be E14�F14 ¼
$52,000.00. The current volatility of equity sE can be estimated

FIGURE 13.2 A simple implementation of the KMV–Merton model.
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through the standard deviation of monthly historical returns on equity
in cells H3:H14 as:

STDEV(H3 : H14)� SQRT(12) ¼ 29:65 percentper year:

The debt L that will have to be paid in T = 1 year is $102,304.00. The
risk-free interest rate r is 1.34 percent per year.

The inferred value of assets A0 and its volatility sA from (13.3)
and (13.6) can be determined by calling the Newton–Raphson proce-
dure with two variables given by:

g1(A0; sA) ¼ E0 � [A0N(d1)� L e�rT N(d2)]
g2(A0; sA) ¼ sE � (A0=E0)N(d1) sA

where d1 ¼
ln(A0=L)þ (rþ 1

2 s
2
A)T

sA

ffiffiffiffi
T

p and d2 ¼ d1 � sA

ffiffiffiffi
T

p
:

The search can be initiated from the point where A0 is much
greater than L such that both d1 and d2 are large. This gives the initial
point of the search as A0 ¼ E0 þ L and sA ¼ sEE0/(E0 þ L). The VBA
coding for this routine is given as follows:

Sub CalAssetVol()
Dim x(1 To 2) As Double, n As Integer, prec As Double, precFlag As Boolean,
maxDev As Double

n = 2
x(1) = Range("debt").Value + Range("equity").Value
x(2) = Range("sigmaEquity").Value * Range("equity").Value / x(1)
prec = Range("prec").Value
Call NewtonRaphson(n, prec, x, precFlag, maxDev)
Range("B7") = x(1)
Range("B8") = x(2)
Range("B11") = precFlag
Range("B12") = maxDev

End Sub

Sub FunctionArray(n As Integer, x() As Double, ByRef g() As Double)
Dim maturity As Double: maturity = Range("maturity").Value
Dim debt As Double: debt = Range("debt").Value
Dim equity As Double: equity = Range("equity").Value
Dim sigmaEquity As Double: sigmaEquity = Range("sigmaEquity").Value
Dim riskFree As Double: riskFree = Range("riskFree").Value
Dim d1 As Double, d2 As Double
d1 = (Log(x(1) / debt) + (riskFree + x(2) ^ 2 / 2) * maturity) / (x(2) * Sqr(maturity))
d2 = d1 - x(2) * Sqr(maturity)
With Application.WorksheetFunction
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KMV Corporation has developed a practical application of Merton’s
model in predicting the default of a firm.4 The goal of the KMV�Merton
model is to generate the probability of default, referred to as the Expected
Default Frequency (EDF), for the firm at any given time in the future. KMV
claims that solving both equations (13.3) and (13.6) simultaneously for the
current value of assets and its volatility will give bad results in practice. In
particular, the linkage between equity volatility and asset volatility in (13.6)
holds only instantaneously. The market leverage moves around far too much
for (13.6) to provide reasonable results according to endnote 4. KMV suspends
the full use of equation (13.6) and formulates an iterative procedure that
simultaneously estimates all three parametersA0, sA, and mA using (13.3).

In implementing the KMV–Merton model, the first step is to choose a
forecasting horizon. It is common to consider a forecasting period of one
year with T ¼ 1. Next collect the up-to-date historical stock prices of the
firm and calculate the values of equity {E(1), E(2), . . . , E(m)} for each day
in the previous year. It should be noted that the last entry E(m) in the series
is presumably the current value of equity E0 of the firm. Then gather the
book values of the firm’s aggregate liabilities as the notional values of the
firm’s debt {L(1), L(2), . . . , L(m)} in the same period. After that, gather
the information about the risk-free interest rates {r(1), r(2), . . . , r(m)}
with the same maturity term of T. The fifth step is to perform the following
iterative procedure that simultaneously estimates all three parameters A0,
sA, and mA.

1. Take the initial guess of sA ¼ sEE(m)/[E(m) þ L(m)] as in Exam-
ple 13.1. The current volatility of equity sE can be estimated through
the standard deviation of daily historical returns on equity {rE(2),
rE(3), . . . , rE(m)}, where rE(i) ¼ ln[E(i)/E(i � 1)], scaled up by a factor
of

ffiffiffiffiffiffiffiffi
260

p
for 260 trading days per year.

g(1) = equity - x(1) * .NormSDist(d1) + debt * Exp(-riskFree * maturity) * .
NormSDist(d2)

g(2) = sigmaEquity - (x(1) / equity) * .NormSDist(d1) * x(2)
End With

End Sub

The resulting values of A0 = $152,942.22 and sA = 10.08 percent
per year are respectively displayed in cells B7 and B8. Suppose the
expected return of asset is estimated to be mA = 2.50 percent per year.
The distance to default is calculated to beD = 4.19 and the probability
of default Pdefault in T = 1 year is determined to be 1.42 � 10�5.
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2. Since Equation (13.3) must be true at any time in the past, we have:

E(i) ¼ A(i)N(d1)� L(i)e�r(i)TN(d2); d1 ¼
ln[A(i)=L(i)]þ (r(i)þ 1

2s
2
A)T

sA

ffiffiffiffi
T

p
d2 ¼ d1 � sA

ffiffiffiffi
T

p

ð13:9Þ
for i ¼ 1, 2, . . . , m. Given the trial estimate of sA, use (13.9) to gener-
ate a sequence of inferred asset values {A(1), A(2), . . . , A(m)} for each
day in the previous year. Again, the term A(m) represents the current
value of assets A0.

3. Calculate the daily returns on assets {rA(2), rA(3), . . . , rA(m)}, where
rA(i) ¼ ln[A(i)/A(i � 1)], for each day in the previous year. Update the
estimates of sA and mA through the standard deviation and mean,
respectively, of the return series.

4. Repeat (2) and (3) until the value of sA converges for which the abso-
lute difference in adjacent estimates is less than the required precision.

The final step is to calculate the default probability or the EDF measure in
(13.7) using L(m) together with the estimated values of A(m), sA and mA.

It should be noted that the procedure used in this chapter illustrates
only the structure of the KMV�Merton model. A commercial implementa-
tion of the model is far more sophisticated with five major differences:

& Five classes of liabilities are used.
& Cash payouts are incorporated in the model.
& Default can take place at or before horizon.
& Equity is a perpetual call option on the underlying assets.
& Default barrier and distance to default in EDF mapping are empirically

determined.

13 .2 EXCE L AND VBA IMPLEMENTAT I ON

The KMV�Merton model of credit risk can be implemented very easily in
VBA. We first develop a routine called CalDefProb() that performs the
above iteration and estimates the parameters A(m), sA, and mA in the
calculation of the default probability. The pseudo code of CalDefProb() is
given by Code 13.1. It requires the input of the forecasting horizon T
together with the market data {E(1), . . . , E(m)}, {L(1), . . . , L(m)}, and {r
(1), . . . , r(m)}. They are kept as common data at the module scope that
can be accessed by other routines within the module. In Code 13.1, the
iterative procedure that simultaneously estimates all three parameters A
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(m), sA, and mA can be illustrated by the following flow diagram.

The volatility of equity sE is first estimated through the standard devia-
tion of daily returns on equity {rE(2), rE(3), . . . , rE(m)}, for which the
initial guess for the volatility of assets sA can accordingly be defined. In an
iterative procedure, it is useful to store the latest estimate of sA using
another variable called slast

A such that the new estimate of sA can easily be
compared for convergence. The latest slast

A will be used to generate a
sequence of inferred asset values {A(1), A(2), . . . , A(m)} from (13.9). This
can be achieved by calling the Newton-Raphson procedure successively for
each iptr, running from 1 to m, with one variable x taken to be the inferred
asset value. In generating A(iptr), the search can be initiated by setting
x ¼E(iptr) þ L(iptr) with required precision of prec ¼ 1 � 10�8. The routine
FunctionArray() evaluates the discrepancy in (13.9) with respect to the time
pointer iptr by taking in the corresponding market data E(iptr), L(iptr), and
r(iptr) together with the latest slast

A and maturity T. Both slast
A and iptr are

kept as common data so that they can be accessed by FunctionArray()
within the same module. It is then possible to update the estimates of sA
and mA through the standard deviation and mean, respectively, of the daily
returns on assets {rA(2), rA(3), . . . , rA(m)} relative to the generated asset
values. The new estimate of sA can be checked for convergence by compar-
ing it with slast

A based on the same precision as adopted in the Newton–
Raphson procedure. If the convergence condition has been satisfied, it will
be taken as the final result of sA together with the new mA and A(m).
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Otherwise, repeat the procedure by going back to the statement where we
assign slast

A to be the latest sA. It is then straightforward to evaluate the dis-
tance to default and default probability using (13.8) and (13.7) respectively
once all three parameters have been estimated.

Figures 13.3 and 13.4 depict the spreadsheet design for the VBA imple-
mentation5 of the KMV�Merton model. In Figure 13.3, market data are
kept under the worksheet ‘‘Data’’ where we have collected the up-to-date
(as of the date shown in A251) stock prices in column B, outstanding shares
in column C, and aggregate liabilities in column E of the firm for each day in
the previous year. Risk-free interest rates within the same time period are
also collected in column F. The firm’s equity for each day in column D can
be calculated as the product of the corresponding entries in column B and
column C in the same row. Figure 13.4 depicts the worksheet ‘‘KMV–
Merton’’ that serves as the output interface of this implementation. The

FIGURE 13.3 The layout of the worksheet ‘‘Data.’’

FIGURE 13.4 The layout of the worksheet ‘‘KMV–Merton.’’
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VBA code of CalDefProb() that incorporates the above spreadsheet design is
given by Code 13.2.

# define the following module-level variables
T , E(1 :m) , L(1 :m) , r(1 :m) , iptr , slast

A
_________________________________________________________________________

CalDefProb( )

# input market data from Excel
Read T ,m , E(1 :m) , L(1 :m) , r(1 :m)

# estimate sE
For( i = 2 tom ){ rE(i) = ln( E(i) / E(i � 1) ) }
sE = STDEV( rE(2 :m) ) �

ffiffiffiffiffiffiffiffiffiffiffi
260

p

# define the initial guess for sA
sA = sE E(m)/[ E(m) + L(m) ]

# save latest estimate of sA for comparison
# label this statement as the beginning of the iteration
nextItr : slast

A ¼ sA

# use slast
A to generate { A(1), A(2), ..., A(m) } through the Newton-Raphson procedure

For( iptr = 1 tom ){ x = E(iptr) + L(iptr)
prec = 1 �10�8
Call NewtonRaphson( 1 , prec , x , precflag ,maxdev )
A(iptr) = x

}

# update the estimates of sA and mA

For( i = 2 tom ){ rA(i) = ln ( A(i) / A(i � 1) ) }
sA = STDEV( rA(2 :m) ) �

ffiffiffiffiffiffiffiffiffiffiffi
260

p
mA = AVERAGE( rA(2 :m) ) � 260

# check convergence
If ( | slast

A � sA | > prec ) { Go back to the statement labeled as nextItr }

# if convergence condition has been satisfied, evaluate distance to default and default
probability

D ¼ ln[(A(m)=L(m))]þ (mA � 1
2 s

2
A)T

sA

ffiffiffiffi
T

p

Pdefault = NORMSDIST( � D )
_________________________________________________________________________

FunctionArray( n = 1 , x , g )

# use market data according to the time pointer iptr
Take Tuse = T
Take Euse = E(iptr)
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Take Luse = L(iptr)
Take ruse = r(iptr)

# use latest estimate of sA
Take sA,use = slast

A

# evaluate the discrepancy in (13.9)

d1 ¼
ln(x=Luse)þ (ruse þ 1

2 s
2
A;use)Tuse

sA;use
ffiffiffiffiffiffiffiffiffiffi
Tuse

p

d2 ¼ d1 � sA;use

ffiffiffiffiffiffiffiffiffiffi
Tuse

p
g ¼ E � [xN(d1)� Luse e

�ruse TuseN(d2)]

Code 13.1: Pseudo code of the CalDefProb() routine.

Option Explicit
Private Const mMax = 1000
Private maturity As Double
Private equity(1 To mMax) As Double
Private debt(1 To mMax) As Double
Private riskFree(1 To mMax) As Double
Private iptr As Integer
Private sigmaAssetLast As Double
_________________________________________________________________________

Sub CalDefProb()
maturity = Worksheets("KMV-Merton").Range("maturity").Value
Dim m As Integer: m = WorksheetFunction.CountA(Worksheets("Data").Range("A:A")) - 1
Dim i As Integer
For i = 1 To m
equity(i) = Worksheets("Data").Range("D2").Offset(i - 1, 0)
debt(i) = Worksheets("Data").Range("E2").Offset(i - 1, 0)
riskFree(i) = Worksheets("Data").Range("F2").Offset(i - 1, 0)

Next i

Dim equityReturn As Variant: ReDim equityReturn(2 To m)
Dim sigmaEquity As Double
Dim asset() As Double: ReDim asset(1 To m)
Dim assetReturn As Variant: ReDim assetReturn(2 To m)
Dim sigmaAsset As Double, meanAsset As Double
Dim x(1 To 1) As Double, n As Integer, prec As Double, precFlag As Boolean, maxDev As
Double

For i = 2 To m: equityReturn(i) = Log(equity(i) / equity(i - 1)): Next i
sigmaEquity = WorksheetFunction.StDev(equityReturn) * Sqr(260)

sigmaAsset = sigmaEquity * equity(m) / (equity(m) + debt(m))
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nextItr: sigmaAssetLast = sigmaAsset
For iptr = 1 To m
x(1) = equity(iptr) + debt(iptr)
n = 1
prec = 0.00000001
Call NewtonRaphson(n, prec, x, precFlag, maxDev)
asset(iptr) = x(1)

Next iptr

For i = 2 To m: assetReturn(i) = Log(asset(i) / asset(i - 1)): Next i
sigmaAsset = WorksheetFunction.StDev(assetReturn) * Sqr(260)
meanAsset = WorksheetFunction.Average(assetReturn) * 260

If (Abs(sigmaAssetLast - sigmaAsset)> prec) Then GoTo nextItr

Dim disToDef As Double: disToDef = (Log(asset(m) / debt(m)) + (meanAsset - sigmaAsset
^ 2 / 2) * maturity) / (sigmaAsset * Sqr(maturity))

Dim defProb As Double: defProb = WorksheetFunction.NormSDist(-disToDef)

Worksheets("KMV-Merton").Range("B3").Value = riskFree(m)
Worksheets("KMV-Merton").Range("B4").Value = debt(m)
Worksheets("KMV-Merton").Range("B5").Value = equity(m)
Worksheets("KMV-Merton").Range("B6").Value = sigmaEquity
Worksheets("KMV-Merton").Range("B7").Value = asset(m)
Worksheets("KMV-Merton").Range("B8").Value = sigmaAsset
Worksheets("KMV-Merton").Range("B9").Value = meanAsset
Worksheets("KMV-Merton").Range("B11").Value = disToDef
Worksheets("KMV-Merton").Range("B12").Value = defProb

End Sub
_________________________________________________________________________

Sub FunctionArray(n As Integer, x() As Double, ByRef g() As Double)
Dim maturityUse As Double: maturityUse = maturity
Dim equityUse As Double: equityUse = equity(iptr)
Dim debtUse As Double: debtUse = debt(iptr)
Dim riskFreeUse As Double: riskFreeUse = riskFree(iptr)
Dim sigmaAssetUse As Double: sigmaAssetUse = sigmaAssetLast
Dim d1 As Double, d2 As Double
d1 = (Log(x(1) / debtUse) + (riskFreeUse + sigmaAssetUse ^ 2 / 2) * maturityUse) /
(sigmaAssetUse * Sqr(maturityUse))

d2 = d1 - sigmaAssetUse * Sqr(maturityUse)
With Application.WorksheetFunction
g(1) = equityUse - x(1) * .NormSDist(d1) + debtUse * Exp(-riskFreeUse * maturityUse)
* .NormSDist(d2)

End With
End Sub

Code 13.2: VBA code of the CalDefProb() routine.
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REV I EW QUEST I ON

1. Throughout the chapter, a time horizon of one year is assumed. Therefore, the
default probability is computed, looking forward one year time. The KMV–
Merton model is so robust that it can straightforwardly compute the default
probability of a five year time horizon. Select a publicly traded firm; adjust the
necessary parameters in order to obtain the default probability of a five year
time horizon. Compare the result again that of a one year time horizon.

ENDNOTES

1. Robert C. Merton, ‘‘On the Pricing of Corporate Debt: The Risk Structure of
Interest Rates,’’ Journal of Finance 29, No. 2 (1974): 449-470.

2. Consider Et to be a function of At in (13.3). It follows from Ito’s lemma
that DEt=Et ¼ e(mEDt; sE

ffiffiffiffiffi
Dt

p
) with volatility sE ¼ (At/Et)(@E/@A)sA and

@E/@A ¼N(d1).
3. It can be shown that ln(AT) ¼ e(r, n) is random normal with r ¼ ln(A0)þ (mA �

1
2 s

2
A)T and n ¼ sA

ffiffiffiffi
T

p
. The probability that AT � L given A0 at current time is

given by

Prob(AT � L) ¼ N(�D); D ¼ [P� ln(L)]=n:

4. P. Crosbie and J. Bohn, ‘‘Modeling Default Risk,’’ Moody’s KMV (2003).
5. Refer to KMVMerton.xls.
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APPENDIX A
VBA Programming

A.1 INTRODUCTION

Excel is the most admired tool for financial planning, modeling, analysis,
and forecasting. VBA (Visual Basic for Applications) is the programming
language and environment for advanced users of Excel and other Microsoft
Office products to automate computing operations and extend Excel func-
tionalities. Users with the knowledge of Excel and VBA programming can
establish and formulate complicated financial engineering models. Although
there have been many books written about the usage of Excel and the basic
skills of spreadsheet modeling, this book is written about the practical
knowledge for constructing financial engineering models effectively with
VBA programs. This appendix explains the key knowledge of VBA pro-
gramming, as well as the essential components and structure of VBA
programs. It also discusses advanced VBA techniques, including the usage
of arrays and matrix computing. When you finish reading this appendix,
you are ready to learn the practical knowledge and techniques of VBA
programming required for financial engineering. To learn more, you may
apply the VBA programming knowledge to establish professional financial
models by going through the examples discussed in this book.

A.2 A BRIEF HISTORY OF VBA

VBA is a companion tool of Excel and other Microsoft Office products.
Excel is a de facto computing tool for financial analysts, engineers, and
practitioners. The first Excel release accompanied by VBA was Excel 5,
which was released in 1993. It introduced the macro features in the form of
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VBA programs. Macro can be considered a sequence of recorded keyboard
and mouse actions. Running a macro is equivalent to reapplying the sequence
of recorded actions on the underlying application. It can eliminate repetitive
actions and automate the application.

In 1999, Excel 2000 introduced the important sixth version of VBA
(VBA6), which incorporated some new language functions and object-
oriented programming (OOP) features. OOP is a paradigm of modern
programming languages that makes program development and maintenance
easier by abstracting software components to objects and programming to
object interactions. In this section of the book, there is a brief discussion of
OOP and the important Excel Object Model. VBA6 continues to be the VBA
version for Excel 2003 and the recent 2007 version. Although VBA6 is very
robust, macro viruses written in VBA are still a serious security risk in Micro-
soft Office documents. The problem is due to the evolving architecture design
of the script-based VBA languages. Therefore, newer versions of Excel
always come with more and newer VBA security settings in order to fight
against the potential attachment and risk of the macro virus.

Excel with VBA6 has proved to be quite successful due to the huge VBA
adoption of Excel users. However, the VBA6 language and the integrated
development environment (IDE) had only a few enhancements in later Excel
versions. The enhancements were chiefly applied on the Excel object model
for VBA in order to coordinate with the enhanced Excel features. Since
2000, Microsoft has been aggressively developing the .Net software tech-
nology and incorporating the technology into the new Microsoft applica-
tions so as to address the critical software issues of interoperability, Internet
advancement, platform independence, simplified deployment, portability,
and security. Microsoft intended to promote the new VB.Net alternatives,
including Visual Studio Tools for Office (VSTO) and Visual Studio Tools
for Applications (VSTA), in order to replace the old script-based VBA, but
they did not offer the ease of development and deployment for ad hoc and
tightly integrated solutions of the existing VBA. VBA users were reluctant
to adopt and upgrade to the newer .Net alternatives because the efforts of
intensive reprogramming for converting VBA programs into VB.Net
programs overshadowed the .Net benefits. This appendix includes some
suggestions regarding the programming practice that make VBA programs
convertible to future releases.

A.3 ESSENTIAL EXCEL ELEMENTS FOR VBA

Spreadsheet modeling is a programming activity that includes the setting of
formulas into the cells of spreadsheets. The automation through formulas in
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the cells can only satisfy the general needs of spreadsheet models. The flexi-
bility is actually restricted by the static formulas written in the cells. With
VBA programs, you can construct more powerful and dynamic spreadsheet
models by programmatically accessing and altering the contents and properties
of all Excel elements, including setting dynamic formulas for the cells. For
example, users can use a VBA program to generate formulas inside the cells
of a worksheet according to user inputs and build a dynamic binomial tree
for projecting interest rates. In fact, the strength of VBA programs is the ability
to dynamically interact with and manipulate the contents and properties of
cells and all objects of Excel. Therefore, it is essential to firstly understand
the ways to interact with the contents and properties of cells and ranges in
VBA programs so as to program the dynamic behavior of sophisticated
spreadsheet models. Here, we will review three key elements in Excel that
are essential to VBA programs. They are cell references, named cells/ranges,
and functions. In Excel, a cell reference is used for formulas to address the
content of cells or ranges. A named cell/range is used for indirectly addressing
a cell or a range. Worksheet Functions are used in formulas to perform some
preset computing.

A .3 . 1 Exce l Ce l l Re f erence

You may be experienced in working with Excel, but you may not be aware
of all the important elements stored in a cell. In Excel, a cell may contain
many elements including:

& a cell reference (we use the reference to address a cell or a range),
& a formula (a valid spreadsheet formula),
& a value (a constant, an element of an Excel array, or the computed value

of the cell formula),
& a comment (which can be displayed in a comment box),
& cell formats or display formats (such as font, color, alignment, style,

and so on),
& conditional rules and formats (for formatting cell display according to

some rules),
& data validation rules (for validating user inputs filling into the cell),
& and so on.

The address of a cell in a worksheet is called a cell reference. We com-
monly use the cell references to address the content of cells or ranges as the
operands or function arguments in Excel formulas. In VBA programs, we
also need to use cell references to address the cells and ranges in Excel in
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order to programmatically access and alter their content and properties.
There are two styles of cell reference. The commonly used reference style is
the A1 notation, in which we use an English letter (or two/three letters) to
represent the column of a cell and follow with a number to represent the
row. For example, ‘‘D12’’ means the cell in the column D and the twelfth
row of the working worksheet. The cell reference can be relative or abso-
lute. For a relative reference, Excel will automatically shift the relative row
and/or column when it copies a cell formula. For an absolute reference,
Excel will always maintain the same row and/or column when it copies a
cell formula. The prefix of the ‘‘$’’ sign is used to denote an absolute refer-
ence. Thus, there are four combinations of cell references:

& Relative reference (e.g. D12)
& Column absolute reference (e.g. $D12)
& Row absolute reference (e.g. D$12)
& (Full) Absolute reference (e.g. $D$12).

The second reference style is the R1C1 notation. The R1C1 notation
uses a row number and a column number to represent the location of a cell.
The number after the letter R refers to the row, and the number after the
letter C refers to the column. For an absolute reference, R1C1 refers to the
cell A1, R2C1 to the cell A2, R3C1 to the cell A3, R1C2 to the cell B1,
R1C3 to the cell C1, and so on. For relative reference, a square bracket
with an enclosed number specifies the relative position. For example, RC
refers to the cell itself, R[1]C to the cell in the next row, R[-1]C to the cell
in the previous row, RC[1] to the cell in the next column, RC[-1] to the cell
in the previous column, and so on.

Usually, Excel displays formulas in the A1 style. To change the style
to R1C1 notation, click the Office button, click the Excel Options button,
select Formulas, and select the R1C1 reference style option. The location
of the R1C1 reference style option in the Excel Options window is shown
in Figure A.1. Then, Excel will present all formulas in the R1C1 style.
When the worksheet is in the R1C1 style, you may notice that the top
column of the worksheet shows the column numbers instead of the column
letters. When you copy a cell with a cell formula to another cell, the copied
formula in the R1C1 style will not have any changes. This is actually the
copy mechanism of Excel that can maintain the correct cell references of the
copied formulas.

Considering the example in Figure A.2, you may notice that the three
formulas of Price x Qty in the R1C1 style are the same. In VBA programs,
you may enter formulas into Excel cells using any reference style. Although
it is common and intuitive to use the A1 style in Excel formulas, you will
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sometimes find it easier to enter formulas into Excel cells using the R1C1
style in VBA programs.

In VBA programming, there are several ways to refer to a cell or a
range. The most common way is to use the Range object. To define a cell or
range reference through the Range object, the syntax is similar to calling a
function with arguments. By specifying the value of a cell or range as a
string argument in the Range object, it can establish a link to the specified
cells or ranges in VBA programs. Here are some examples:

FIGURE A.1 Switch to the R1C1 reference style.

FIGURE A.2 An example of Excel formulas shown in different styles.
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Range("A3") refers to the cell A3 of the active worksheet
Range("B12:C22") refers to the range B12:C22 of the active worksheet
Range("B12","C22") refers to the same range B12:C22 of the active

worksheet
Range("A:C") refers to columns A through C
Range("10:12") refers to rows 10 to 12
Range("B12:C22,F12:G22") refers to the multiple ranges B12:C22 and F12:G22
Worksheets(1).Range("B20:D30") refers to the range B20:D30 of the first worksheet
Worksheets("Sheet2").Range("C2") refers to the cell C2 of the worksheet "Sheet2"

VBA objects can contain collections of objects. For example, a work-
book can contain multiple worksheets. Any object with a plural name
generally means that it is a collection of objects of the same type. Thus,
Worksheets means a collection of worksheets in a workbook. To address a
specific item in a collection, we can use an index number or the exact item
name as shown in the last two examples above. The index numbers of Excel
objects usually begin from one onward.

The Range object includes many useful properties and methods. The
comprehensive list of the properties and methods of the range can be found
in Excel Help by searching ‘‘Range object members.’’ Since VBA programs
often access and alter the properties of ranges, it is necessary to be familiar
with the usage of the available properties and methods of the range object.
Some useful properties and methods are listed below:

Range("B3").Value refers to the value of the cell/range
Range("B3").Font refers to the font object of the cell/range
Range("B3").Column refers to the number of the first column of the range (i.e. 2)
Range("B3:F30").Columns.Count returns the number of the column collection in the range
Range("B3:F30").Columns(2) refers to the second column of the range
Range("B3").Row refers to the number of the first row of the range (i.e. 3)
Range("B3:F30").Rows.Count returns the number of the row collection in the range
Range("B3:F30").Rows(2) refers to the second row of the range
Range("B3").Formula refers to the A1-styled formula of the cell/range
Range("B3").FormulaR1C1 refers to the R1C1-styled formula of the cell/range
Range("B3:F30").FormulaArray refers to the array formula in the range B3:F30
Range("B3:F30").HasFormula returns True if all cells in the range contain formulas
Range("B3:F30").HasArray returns True if all cells in the range are part of an array

formula
Range("B3:F30").Clear clears the entire object of the range B3:F30
Range("B3:F30").ClearFormats clears the formats of the range B3:F30
Range("B3:F30").ClearContents clears the values & formulas of the range B3:F30
Range("B3:F30").Cells refers to the range object of all cells in the range B3:F30
Range("B3:F30").Select selects the range B3:F30
Selection.Copy copies the range to the Clipboard
Selection.Copy(Range("H3:J30"))
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copies the content in the selected range to the range
H3:J30

Selection.Cells.Clear clears the entire object of all cells of the selected range
Selection.Cells.ClearContents clears the values & formulas of all cells of the selected

range

An alternative approach to access the cells of Excel is to use the Cells
property of the range object. Cells(row, column) can refer to a single cell
using a pair of row and column index numbers. Although the usage is
similar to the Range object, using the Cells property with index numbers
is sometimes more convenient than using a string argument to specify a
cell reference in VBA programs. Here are some examples that compare
the usage of the Range object against the Cells(row, column) property:

The use of the Range object: The equivalent use of the Cells(row,column) property:
Range("A3") Cells(3,1)
Range("B12:C22") Range(Cells(12,2), Cells(22,3))
Range("B12","C22") Range(Cells(12,2), Cells(22,3))
Worksheets("Sheet2").Range("C2") Worksheets("Sheet2").Cells(2,3)
Worksheets(1).Range("B20:D30") Worksheets(1).Range(Worksheets(1).Cells(20,2),

Worksheets(1).Cells(30,4))

In order to illustrate the usage of the Cells property with a pair of row
and column index numbers, the following is a good VBA sample func-
tion that sums up all the values of a range of cells. The syntax and
meaning of the program codes will be explained in A.5 ‘‘Basic VBA
Programming Concepts.’’

Function SumOfRange(inRange As Range) As Double
Dim rowcnt As Integer: rowcnt = inRange.Rows.Count
Dim colcnt As Integer: colcnt = inRange.Columns.Count
Dim sum As Integer, row As Integer, col As Integer
For row = 1 To rowcnt
For col = 1 To colcnt
sum = sum + inRange.Cells(row, col).Value

Next col, row
SumOfRange = sum

End Function

A .3 . 2 Exce l Defined Names

In Excel, a name can be defined to refer to a cell/range of a worksheet, a
constant value, or a constant array. It is a good practice to define names for
ranges and use the defined names in formulas, because it allows us to flexi-
bly redefine the referred content of defined names without affecting the
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formulas. For example, as shown in Figure A.3, you may define a named
range of C3:C5 as ‘‘ItemTotal’’ and set the formula of cell C8 as ‘‘=SUM
(ItemTotal).’’ Then, the formula appears to be more meaningful. It is obvi-
ous that it means the sum of a list of item totals. The formula is always
correct if the named range ‘‘ItemTotal’’ refers to the correct range of all
item totals. There are four main ways to define names. The first way is to
simply override the Name Box with a name once a cell or a range is selected.
The second way is to use the Name Manager for manually creating, editing,
and deleting names. The third way is to pop up the ‘‘Define Name’’ dialog
to create a new name for a cell or range. The last way is to ‘‘Create from
Selection’’ when a table range is selected. Figure A.3 shows the available
functions for creating names under the Formulas tab in the ribbon.

The following steps demonstrate the use of ‘‘Create from Selection’’ for
a table range:

1. Select a table range.
2. Click ‘‘Create from Selection’’ from the Defined Names group in the

Formula tab.
3. Click ‘‘OK’’ with the options of ‘‘Top row’’ and ‘‘Left column’’ selected

(or checked).
4. Then, nine defined names will be created automatically and accordingly

as shown in Figure A.4.
5. Click ‘‘Name Manager’’ to check the defined names (as shown in

Figure A.5).

FIGURE A.3 An example of using defined names in a formula.
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In VBA programs, the Range object can take defined names as the argu-
ment besides a reference of ranges. Using the defined names in the above
example, we can refer to those named ranges as follows:

Range("Jan") refers to the range C3:E3
Range("Mary") refers to the range D3:D7
Range("All") refers to the range C3:E7

In Excel, intersections and unions of ranges are applicable for the work-
sheet functions and formulas. They are workable as the argument of the
Range object as well. The intersection is the common range covered by

FIGURE A.4 Create named ranges from selection.

FIGURE A.5 Named ranges are shown in the Name Manager.
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ranges. A space between two ranges or named ranges means intersection. For
example, the formula ‘‘TomAprþMary Apr’’ means the intersection of Tom
(in column C) and Apr (in row 6) plus the intersection of Mary (in column D)
and Apr (in row 6). The intersection of Tom and Apr is 33 (i.e. cell C6).
The intersection of Mary and Apr is 25 (i.e. cell D6). Therefore, the addition
of these two intersection cells is 58. The union is the combination of ranges.
A comma between two ranges or named ranges means union. For example,
the formula ‘‘SUM(Jan,Mar,May)’’ means the union of the named ranges
Jan, Mar, andMay (i.e. the row 3, 5, and 7). The sum is 302.

Here are some examples that use intersections and unions of named
ranges in the Range object:

Range("Jan Apr") refers to the range C6:C6 (i.e. the cell C6)
Range("Mary Apr") refers to the range D6:D6 (i.e. the cell D6)
Range("Jan, Peter") refers to the union ranges C3:E3 and E3:E7
Range("Mar, Mary") refers to the union ranges C5:E5 and D3:D7
Range("Feb, Mar, Apr") refers to the range C4:E6

It is a good practice to use defined names in Excel models, because the
formulas are more meaningful than using symbolic cell references. Besides,
we get the flexibility to redefine the referred ranges of the named ranges
without affecting the formulas with those named ranges. It is also a good
practice for VBA programs to refer to defined names instead of using
static and symbolic reference cells or ranges. Thus, the same flexibility and
readability can be applied to the VBA programs as well. The financial
models discussed in this book will demonstrate the use of defined names in
VBA programs.

A .3 . 3 Exce l Workshee t F unc t i o ns

Excel 2007 includes about 350 worksheet functions grouped into twelve
main categories. Excel Help contains excellent information about the usage
of the worksheet functions, including examples and cross-references to the
related functions. Moreover, the Insert function dialog can guide users to
fill in arguments into the required functions. Figure A.6 shows the Help
window and the location of the Insert function button.

To build sophisticated financial models, it is necessary to understand
the information functions, reference functions, and the functions related to
matrix computing. The information functions allow users to query informa-
tion of a cell and check the cell properties. The reference functions, such as
Address, Areas, Column, Columns, Row, Rows, Indirect, and Offset, are
useful for users to query the information of a range, and assign ranges with
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dynamic sizes based on the reference of some cells or ranges. They are
helpful in building dynamic spreadsheet models. Users should look at the
functions and learn their usages.

The functions related to matrix computing, including MDeterm,
MInverse, MMult, and Transpose, are useful in financial engineering.
Although VBA includes some set of VBA functions equivalent to the Excel
worksheet functions, the equivalent VBA functions for matrix computing are
missing. However, users can use the worksheet functions in VBA programs
with the help of theWorksheetFunction object of the Application object. For
example, to call the MMult function to compute the matrix multiplication
of two VBA matrices (i.e. VBA two-dimensional arrays) in a VBA program
and return the result in the form of a matrix will look like the following:

Dimmatrix Result() as Double ’define a variable to contain the returned value
matrix Result ¼ Application:Worksheet Function:MMult(matrix1;matrix2)

Worksheet functions can flexibly accept either Excel cells/ranges, VBA
variables, or some VBA object properties as arguments. After computation,
they can return a value or an array back to VBA. However, the interaction
between VBA and Excel takes more resources and it is slow. Therefore, if
intensive computation is required through the use of worksheet functions,
users are advised to develop the equivalent user-defined functions (UDF) in
VBA code instead of invoking the Excel worksheet functions through
the WorksheetFunction object in VBA programs. This will avoid the slow
interaction between Excel and VBA. The topic of UDF will be explained in
A.4.6 ‘‘The Procedure to Create a VBA Function.’’

A.4 THE VBA DEVELOPMENT ENVIRONMENT (VBE)

The VBA Development Environment or Visual Basic Editor (VBE) is an
integrated tool of Excel and Microsoft Office products. It is a separate tool
for creating, maintaining, testing, and debugging VBA programs. VBE can
be invoked through the Developer tab of the ribbon. However, the Developer
tab is by default disabled and hidden, because general Excel users need
not write VBA programs. In order to make the Developer tab appear in the
ribbon, users need to enable the option ‘‘Show Developer Tab in the Ribbon’’
in the ‘‘Popular’’ pane of ‘‘Excel Options.’’ Figure A.7 shows the steps to
enable the Developer tab option in Excel 2007.

A .4 . 1 The Deve l oper Tab i n t he R i bbon

Inside the Developer tab, you may find several groups of features. The Code
group and the Controls group are important for developing VBA programs.
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The Code group includes five buttons for users to invoke and manage VBA
programs. The first button is for launching the Visual Basic editor (VBE).
The second button is for opening the Macros dialog. A macro is a VBA sub-
routine that performs a sequence of recorded commands. Users can create,
edit, and run macros through the Macros dialog. The Record Macro button
is for recording mouse clicks and keystrokes to macros, so that we can
replay the same sequence of commands later. The Use Relative References
button is a switch to select whether macros should record the affected cells
or range using absolute or relative references. Usually, we use relative refer-
ences because the recorded macros can be more flexible for extension.
Finally, the Macro Security button can open the Trust Center dialog for
users to manage the Macro security settings. There are four macro settings
as shown in Figure A.8. We usually select the ‘‘Enable all macros’’ option
only during the development of VBA programs. It is necessary to select
either the ‘‘Disable all macros with notification’’ option or the ‘‘Disable all
macros except digitally signed macros’’ option in order to protect users
from the attack of macro viruses. The screen of the Trust Center dialog
showing the available options of Macro Settings can be seen in Figure A.8.

If the Macro Settings disable all macros, whenever an Excel file contain-
ing macros is opened, a security warning will be displayed in the line behind
the ribbon as shown in Figure A.9. Users may click the Options button and

FIGURE A.7 The procedure to enable the Developer tab.
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select ‘‘Enable this content’’ of the Options dialog to allow the macros to
be executed.

The Controls Group in the Developer tab contains buttons for inserting
and managing user interface (UI) controls, such as buttons, combo boxes,
check boxes, spin buttons, and so on, into a worksheet. There are two types
of UI controls: Form controls and ActiveX controls. For the newly devel-
oped Excel applications, the Form controls should be used because they are
the native components built into Excel 2007. ActiveX controls are compo-
nents of external add-in modules, which are not part of Excel. ActiveX
controls were the software component technology developed by Microsoft
in 1996. The technology can extend the features of the Office products by
adding in interoperable external modules. For general spreadsheet models,
the native Form controls are sufficient and simple enough for designing in-
put forms; it is not necessary to use the ActiveX controls and custom dialog
boxes. Therefore, the spreadsheet models explained in this book use the
Form controls only. You will learn how to use the Form controls with finan-
cial models in this book. To manage the inserted Form controls, users may
right click on the Form control to choose the option ‘‘Assign Macro’’ or
‘‘Format Control,’’ which can change the properties of the control. Figure
A.10 is a simple example showing how to insert a button control into a
worksheet and pop up the menu to assign a macro into the button control.

A .4 . 2 The W indows o f VBE

As mentioned, the VBE is a programming environment for creating, main-
taining, testing, and debugging VBA programs. To start the VBE, click the

FIGURE A.8 The Trust Center.
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‘‘Visual Basic’’ button in the Code group of the Developer tab. You may
notice that the invoked VBE application has a different look and style.
The VBE with the old-fashioned look and style was designed for Excel
2000 and is still being used for Excel 2007. Although Microsoft is promot-
ing the newer .Net software technologies and tools in order to purposefully
replace the traditional VBA programming tool, VBE and VBA are provided
with Excel 2007 for current Excel users due to the overwhelming adoption
of VBA programs in spreadsheet models and the strong demand by existing
Excel users.

The VBE, as shown in Figure A.11, has the traditional menu bar, button
bar, and several windows inside the workspace. The View menu item of the
menu bar contains a list of available windows. Users may arrange the loca-
tion and display of the windows just like the general Windows applications.
Four main windows are important for the development of VBA programs.
The Project Explorer window, which is usually located in the top left region
of the workspace, contains the structure and the components of the inte-
grated VBA projects of the Excel application. Users can insert new
programs (or modules) and organize the project structure in the Project
Explorer. The Properties window, which is usually located directly below
the Property Explorer, contains the properties of the active component of
the VBA project. Users can directly rename the components and modify the
properties of the component shown in the Properties window. The propert-
ies can determine the behaviors of the Excel application, such as the appear-
ance of worksheets and the enablement of some spreadsheet features. The
Code window displays the VBA source code of a program. Users create and
maintain a VBA program in the Code window. Several Code windows can
be opened simultaneously. A Code window is equivalent to the view of a
program in the VBA project. The Immediate window is quite useful for test-
ing and debugging programs. The Immediate window allows users to enter
and execute simple VBA commands in order to test and investigate the

FIGURE A.10 Insert a button control into a worksheet.
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program logic. Users can also insert debugging codes into programs so as to
display and investigate debugging information in the Immediate window
during program execution. Please read Appendix C on VBA debugging for
more information on this topic.

Besides the explained four main windows, the Object Browser, the
Locals window, and the Watch window are also useful in testing and debug-
ging VBA programs. The Object Browser allows users to browse through the
Excel Object Model. The Locals window and the Watch window can display
the changing values of local or watched variables or expressions during
program execution. More information can be found in Appendix B on the
Excel Object Model and in Appendix C on VBA Debugging.

A .4 . 3 The Pro j ec t E xp l o rer

The Project Explorer presents all open projects and the objects (programs
and modules) of the Excel application in a hierarchical structure, organized
like folders and files. The root or base objects in the project tree are the
workbooks being worked on and the attached add-ins. Double-clicking a
tree folder can expand or collapse the folder. Double-clicking a worksheet
item can open the Code window to display the VBA source codes. Right-
clicking any item can trigger the pop-up menu for opening the project prop-
erties window, inserting new modules, importing, exporting, removing, or
printing the file as shown in Figure A.12.

The project properties window contains two tab pages as shown in
Figure A.13. The General tab allows users to change the project name (but
it is usually not necessary and meaningful), add project description, attach a

FIGURE A.12 A VBA Project structure.
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help file, and specify compilation arguments (only for very advanced users).
The Protection tab allows users to apply a password to protect the project
properties from viewing, or lock the whole project. Once the project is
locked, a correct password must be provided in order to expand the project
tree and access the written VBA programs.

In the pop-up menu of the project, you may find the Insert menu item
pointing to three types of program modules. They are User Form, Module,
and Class Module. A User Form is a custom VBA dialog box. It contains
user-defined VBA codes for handling form-based activities. Users can create
User Forms for acquiring user input and presenting computing output.
Inside User Forms, users can freely design the screen layout and insert any
available form controls, such as buttons, text boxes, spin buttons, and so
on. A Module contains user-defined VBA functions, subroutines, and macros.
We will demonstrate the procedures to create new modules containing
functions and subroutines in A.4.5 and A.4.6. A Class Module contains
user-defined classes. A class defines a group of properties and methods
of the same type of objects. Programmers with competent knowledge of
object-oriented programming will define classes in the Class Modules and
create objects from the defined classes for handling reusable objects and
complex models.

A .4 . 4 The VBA Pro j ec t S t ruc t ure

In the project window, each VBA project can have four folders to hold
different types of user-developed VBA programs. The four folders are
named Microsoft Excel Objects, Modules, Forms, and Class Modules. We

FIGURE A.13 VBA Project Properties.

VBA Programming 273



can extend the features and functionalities of Excel by writing VBA pro-
grams in the project and linking the VBA programs with Excel objects. The
developed programs are automatically stored and grouped into the corre-
sponding folders according to their program types. However, the folders
will be hidden if no files are stored in them. The Microsoft Excel Objects
folder stores the VBA programs linked with and owned by the worksheet or
chart objects. Each worksheet or chart object can have only one corre-
sponding VBA program linked with it. The Modules folder keeps user-
defined functions (UDF), macros, and VBA subroutines that are available
to all worksheets, charts, and Excel objects, as well as the workbook. The
Forms folder holds user-defined forms, also called User Forms. User Forms
are user-defined dialog boxes for capturing inputs and presenting computa-
tion outputs. The advantages of using User Forms over the worksheets and
charts are the highly customizable user interface and the independence from
the Excel objects. However, it is simpler and more common to use and
attach Form controls into worksheets instead of using User Forms. The last
folder holds Class Modules. Creating user-defined classes can promote
code reusability, but the usage of Class Modules requires developers with
advanced programming knowledge and skills. Since program modules are
good enough to satisfy the needs of the discussed financial engineering
model, this book will not cover the topics of User Forms and Classes.

The only default folder available in the VBA project is the Microsoft
Excel Objects folder, because there is a workbook and at least one work-
sheet defined in an Excel file and the corresponding program files will be
automatically shown in the folder. Figure A.14 shows the Excel file ‘‘Test.
xls’’ containing a workbook and three worksheets. Each worksheet or chart
object will automatically have the corresponding program file attached to
the Excel file. The program file of the workbook object has the default
name of ‘‘ThisWorkbook.’’ The default names of the worksheet program
files are Sheet1, Sheet2, and onward, which correspond to the default names
of the newly inserted worksheets. The program files allow developers to
write VBA procedures into them and attach the subroutines with the pre-
defined events in order to alter the behaviors of the Excel objects, including
the workbook, worksheets, and charts. For example, there is a pre-defined
Open event for the workbook object, which will be triggered whenever the
Excel file is opened. If you would like to display a message dialog, such as
showing the message ‘‘Good Morning,’’ whenever the Excel file is opened,
you may write a subroutine with the procedure name of ‘‘Workbook_
Open’’ in the program file of ‘‘ThisWorkbook’’ and include a MsgBox()
statement in the subroutine. Then, the greeting message will be shown due
to the automatic execution of the Workbook_Open subroutine whenever
the Excel file is opened. The source code is shown in Figure A.14.
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A .4 . 5 The Procedure t o Crea t e a VBA Subrou t i n e

There are two main types of procedures in a VBA program. They are VBA
functions and subroutines. A function is a set of program statements that
accepts arguments, performs some computing, and returns a computed
result to the calling program statement. A subroutine contains program
statements that execute in sequence and according to the flow control state-
ments. Unlike functions, subroutines do not have any return value. Both
functions and subroutines can define some input arguments, but it is not
compulsory. Subroutines may invoke other subroutines or functions. Func-
tions usually invoke other functions only. Table A.1 summarizes the main
differences of functions and subroutines.

The syntax of calling procedures is similar to using worksheet functions
in Excel formulas. Arguments are enclosed in parentheses. To use the return
value of a function, assign the function to a defined variable and enclose
the arguments in parentheses. Figure A.15 utilizes the popular and useful
function ofMsgBox to illustrate the syntax of calling procedures.

Subroutines without any input arguments are also treated as ‘‘macros’’
and can be invoked in the macro function of Excel. To demonstrate how to
call a macro in Excel, we insert a button control in a worksheet and link it

FIGURE A.14 Events of the Workbook.

TABLE A.1 Differences between functions and subroutines.

Functions Subroutines

Require arguments Optional, but usually required Optional
Return values to the caller Only one return value Nil
Invoke other procedures Usually other functions only Subroutines

and functions
Modify Excel properties Not allowed Allowed
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to a macro. When users press the button, it will trigger the execution of the
macro. As an example, let us go through the following basic steps to write a
macro (i.e. an argument-less VBA subroutine) and invoke the macro by
clicking on the button control attached in a worksheet.

1. Start an Excel application and Start the VBE by clicking the Visual
Basic button in the Developer tab in the ribbon.

2. Expand the VBAProject folder shown in the Project Explorer.
3. Insert a new Module through the Insert item of the menu bar and use

the default ‘‘Module1’’ as the module name. If the insertion is success-
ful, Module1 should appear in the Modules folder.

4. Double-click Module1 to open the Code window of Module1 in
the workspace.

5. Inside the Code window, type the following three VBA statements:
Public Sub SayHello()

MsgBox("Hello")
End Sub

6. Now we have a macro (or an argument-less subroutine) with the name
SayHello ready to be invoked. Before we link the macro with a button-
control in the worksheet, we need to test the macro inside the VBE first
in order to ensure the macro can execute correctly.

7. To test the SayHello macro, press the button with a green arrow icon as
shown in Figure A.16. The VBE will execute the macro and, as a result,
a message dialog with the message ‘‘Hello’’ will pop up as shown in the
figure above because of the execution of the MsgBox statement.

8. To call the SayHello macro in Excel, go back to Excel and press the
Macros button in the Developer tab. In the Macro window, you can
find the SayHello macro shown in the list of Macro names.

9. Click the line SayHello, and press the Run button as shown in Figure A.17.
If you get the same message pop-up, it indicates that you can successfully
invoke the SayHello macro in Excel.

FIGURE A.15 A sample subroutine.
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10. To link the SayHello macro with a button control, we need to insert
a button control into a worksheet. Press the Insert button in the
Developer tab. A list of available Form controls will be shown. There
are 10 form controls as shown in Figure A.18. The first one is a
button control.

FIGURE A.16 Execute a macro in VBE.

FIGURE A.17 Execute a macro in the Macro window.

FIGURE A.18 Form Controls.
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11. Click the Button icon under Form Controls and use the mouse cursor to
draw the region of the button in the worksheet.

12. Then, the Assign Macro window will pop up as shown in Figure A.19.
Select SayHello and press OK.

13. Now, the button control labeled ‘‘Button 1’’ has been put on a work-
sheet and linked to the SayHello macro. Press the button and have the
message dialog with ‘‘Hello’’ pop up. The ‘‘Hello’’ message window
will pop up as in Figure A.20.

A .4 . 6 The Procedure t o Crea t e a VBA Func t i o n

Although Excel provides many built-in functions, they may not satisfy all
requirements. VBA functions are also called user-defined functions (UDF)

FIGURE A.19 Assign a macro to a button control.

FIGURE A.20 Invoke a macro by pressing the button control.
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because they are callable in Excel formulas. Now, let us create a UDF in a
VBA module. The example function Triple will accept a number and calcu-
late the tripled value of the input number as the return value. Then, we can
call the Triple function in an Excel formula. Here are the basic steps of
creating VBA functions:

1. Start an Excel application and start the VBE by clicking the Visual Basic
button in the Developer tab.

2. Expand the VBAProject folder shown in the Project Explorer.
3. Insert a new Module and use the default ‘‘Module1’’ as the module

name. If the insertion is successful, Module1 should appear under the
Modules folder.

4. Double-click Module1 to open the Code window of Module1 in
the workspace.

5. Inside the Code window, type the VBA statements as shown in
Figure A.21.

6. To test the Triple function, open the Immediate window through the
View menu item.

7. Type ‘‘? Triple(1.23)’’ in the Immediate window and press Enter. The
‘‘?’’ mark shows the execution result of the command in the Immediate
window immediately. You should get a result similar to Figure A.22.

8. To verify if the answer is correct, type ‘‘? 1.23 � 1.23 � 1.23’’. The ‘‘�’’
mark means multiplication. The Immediate window allows you to enter
VBA commands and execute the commands immediately. You should
get the same calculated result as shown in Figure A.23.

9. Touse theTriple function in anExcel formula, activate the Excel application.
10. Select any cell, enter the formula ‘‘¼Triple(1.23)’’, and you should get

the same answer as in Figure A.24.
11. Now, let us check if the Triple function can accept a cell reference as

the argument just like the common usage of the worksheet functions.

FIGURE A.21 A VBA function that can be used in Excel formulas.
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Select the cell B1 and enter ‘‘1.23’’. Select another cell and enter
‘‘¼Triple(B1)’’. Figure A.25 shows the same calculation results.

A.5 BASIC VBA PROGRAMMING CONCEPTS

VBA, extended from Visual Basic, is a high-level programming language.
In computing, a high-level programming language means that it includes
many humanly-recognizable words, such as ‘‘if,’’ ‘‘else,’’ ‘‘for,’’ ‘‘while,’’
‘‘do,’’ and so on, as the constructs of program commands and statements.
The reserved English words for program commands and statements are
called keywords. They are used to hide the details of the internal processing,
such as the operations of the central operation unit (CPU) and the access of
computer components. Microsoft designed VBA to be friendlier than other

FIGURE A.22 Test a VBA function in the Immediate window.

FIGURE A.23 Verify the function result in the Immediate window.

FIGURE A.24 Invoke the VBA function in an Excel formula.

FIGURE A.25 Pass an Excel cell value to the VBA function.
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popular languages, such as Java and C, because VBA adopts more English
keywords instead of using symbols. For example, you may find many curly
brackets {} in Java or C languages, but not in VBA programs. Yet, many
skillful programmers prefer the symbol-rich Java or C-like languages
because they consider typing and reading symbols instead of English words
quicker and more intuitive.

VBA programs, or program modules as they can be called, are com-
posed of VBA program statements. Program statements are instructions
to manipulate the content of variables or object properties, perform some
sort of mathematical calculation, make conditional decisions, recursively
execute a sequence of statements, invoke other procedures, and so on. In
English, a statement is delimited by a full stop or period. In VBA, each
program statement should occupy a single line. No delimiter is required
to denote the end of a statement. For multiple short statements, program-
mers may use a colon (:) to concatenate multiple statements into a single
line. For a long statement, programmers may apply underscores (_)
at the end of lines to split a statement into multiple lines. You may find
examples of statement concatenation and statement continuation in
Appendix C.

There are two levels of program statements: module-level and procedure-
level. Module-level program statements are mainly declaration statements,
which declare module-level variables and procedures of the module. Varia-
bles store constant values or computed results. Procedures define dedicated
tasks to be performed and can contain any type of program statements.
Procedures can be subroutines or functions. The declarative statements of
procedures can declare procedure-level (local) variables only. Module-level
variables are basically available for use by all procedures declared within
the module. Procedure-level variables are available for use by the procedure
only. When a procedure is called or invoked, the program statements will be
executed in the defined sequence in order to achieve the dedicated task of
the procedure.

Inside a program module, users may make explanatory remarks or
comments anywhere. Since it is difficult to understand the purpose and
design of a program by solely reading the program statements, comments
are useful plain descriptions that explain the purpose of the program and
the design of the program logic. VBA supports comments in English or
other languages. Comments are useful for programmers to maintain and
extend the programs. Any text after a single quotation mark (’) or the REM
keyword are considered VBA remarks or comments. The VBA editor will
show the text comments in green to indicate that those comments will be
ignored during program compilation and execution. In summary, a VBA
program module will have the following structure:
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Inside a Program Module, it includes:

& Declaration statements of module-level variables
& Declaration statements of procedures (i.e. subroutines or functions)

’ Comments or remarks are used to explain the program design and logic

Inside a procedure (i.e. subroutine or function), it includes:

& Declaration statements of procedure-level (or local) variables
& Other program statements that

& manipulate the content of variables or object properties
& perform some sorts of calculation and decision analysis
& control the sequence of program execution
& invoke other procedures (subroutines or functions).

The program structure represents the logic and sequence of computing.
There are no fixed pattern and style of program structure. The general struc-
ture of a procedure may include analyzing inputs, performing some
computing based on the inputs in order to achieve the dedicate goal of the
procedure, and finally presenting outputs. Shown in Figure A.26 below is
an example of a factorial function, which illustrates the general structure
and logic of a function.

The screen shown in Figure A.26 can be divided into three sections.
The left side illustrates the project structure of the Excel application.
Module1 in the Modules folder is the program module created for this

FIGURE A.26 A VBA function to calculate the factorial of a number.
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example. The right side has two windows. The top window displays the
VBA source code of the Factorial function written in Module1. The bottom
window is called the Immediate window, which allows users to enter VBA
commands for program testing. Here a VBA command is entered to test the
calculation of Factorial(10). The answer 362,800 is immediately shown be-
neath the command.

Let us analyze the statements inside the Factorial function. It starts with
some comments, which explain the design and logic of the function. It is a
good programming practice to write comments in a consistent format and
style. The Factorial function contains a block of program statements. The
first statement is a Function declaration statement and the last statement is
an End Function statement. They define the boundary of the function.
Words that turn blue in VBE are keywords of VBA. The keywords have
particular meanings in VBA. The processing logic of the function can be
divided into four sections, which declare variables, analyze inputs, compute,
and finally return an answer. Each section is annotated with some comments.
The syntax of the program statements will be explained in this section later.
Besides writing remarks or comments inside programs, program indentations
are important because the space introduced at the beginning of statements
can express the hierarchical levels or nested relationship of the statements.
Each sub-level should have an additional indentation of four spaces. A
consistent style of indented program statements is essential to facilitate the
readability of the program.

Now, let us see an example of a subroutine with a similar program
structure. The source code of the subroutine is shown in Figure A.27.

A module named LoanCalc is created in the Modules folder. A sub-
routine of CalculatePayment is written in the LoanCalc module. To test the
subroutine, the example uses a worksheet with some defined names and
then invokes the subroutine for calculation. The result of $18,871.23 is

FIGURE A.27 A subroutine written in VBE.
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displayed in the named cell Payment. The worksheet for the test looks like
Figure A.28.

Let us analyze the statements inside the subroutine. The Calculate
Payment subroutine starts with some comments briefly explaining the
source of inputs and the destination of the output. The subroutine accesses
the content of worksheets through some defined names instead of specifying
the exact cell references. It reads the values of the named cells Loan, APR,
and Years, calculates the monthly payment, and finally assigns the calculated
monthly payment to the value of the named cell Payment. Similar to a
function, the first statement declares the beginning of the subroutine and the
last statement of End Sub declares the ending boundary of the subroutine.
Green words are comments and blue words are keywords. There are also
four sections of program statements for declaring variables, reading inputs
from Excel ranges, computing, and writing the output to a named cell. By
following the same programming practices, explanatory comments, indented
statements, and meaningful variable names are essential to facilitate the read-
ability of the program.

By going through the above examples, we have briefly explained the
basic program structure of a function and a subroutine. A good func-
tion should accept inputs only from the procedure arguments enclosed
in parentheses and return a single result to the function caller. How-
ever, a subroutine may accept inputs from many different sources, such
as the procedure arguments enclosed in parentheses, direct access of cell
values of worksheets, inputs from dialog input boxes, or the content of
an external file. Outputs of a subroutine are more versatile, such as writing
to a cell, building a new worksheet, creating a new chart, displaying
the result in a dialog box, printing out a report, or outputting a file. Only
subroutines can have the access rights to write or override the values
and properties of Excel elements, such as cells and ranges. We will
demonstrate the usage of subroutines for various tasks in the discussed
financial models of this book.

FIGURE A.28 The subroutine writes the payment value in the worksheet.
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A . 5 . 1 Var i ab l es and Da t a Types

When we build spreadsheet models, we use cells to store data and formulas.
It is easy to read, write, and modify data and formulas in the cells. Cells can
automatically provide enough storage for data and formulas. In VBA, we
can still read, write, and modify data and formulas stored in the cells of
Excel worksheets by means of the Range object, but it is more convenient
to have native storage in VBA for storing data. VBA does not provide similar
flexible storage as the cells in Excel. We need to declare variables to store and
manipulate data in VBA programs. When a variable is declared, you need to
provide a meaningful name and the data type to the variable. The variable
name is the label used and referred to by the subsequent program statements
to address the stored data. It is similar to the defined names in Excel. The
name must begin with a letter and can be as many as 255 characters,
although it is usually less than 20 characters. The characters can be letters,
digits, and underscores. We often follow some naming convention for variables
in order to maintain good programming discipline. For example, CamelCase
is a common naming convention that combines words without spaces and
capitalizes the first character of each word. For variable names, it is common
to use a lowercase letter for the first character, such as interestRate, annual
Rate, and costOfFund. For procedure names, it is advisable to keep the first
character a capital letter and the first word as a verb so as to describe the
functions of the procedures from the names, such as PrintTable, CalcInterest,
and ReadFromSheet.

The data type of a variable describes the type of content and the preset
usage of the data so that VBA can prepare and reserve enough memory
storage for the data according to the data type. Besides, VBA can check the
syntax and consistency of program statements according to the data types
of the included variables. VBA supports eleven intrinsic data types. They
are byte, boolean, currency, date, double, integer, long, object, single,
string, and variant. Boolean variables can store the logic value of True or
False only. Date variables can store dates ranging from January 1, 100 to
December 31, 9999 with the time from 0:00:00 to 23:59:59. String variables
can store strings with up to 64,000 characters.

There are several numeric types including Byte (from 0 to 255), Integer
(from �32,768 to 32,767), Long (from �2,147,483,468 to 2,147,483,467),
Single (single-precision, floating-point numbers that can record around
eight digits of a number), Double (double-precision, floating-point numbers
that can record around 16 digits of a number), and Currency (a large num-
ber but with maximum four decimals only). For financial engineering and
computing, we should always use Integer for integer numbers and Double
for decimal numbers. You will find our examples mainly use Integers and
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Doubles. Occasionally, we need to use Long for storing larger integers that
are larger than 32,767 or smaller than -32,767.

To declare a variable, we use the Dim keyword for procedure-level
variables. For module-level variables, we can use the keywords Dim, Private,
or Public. Although Dim and Private are the same, using the Private keyword
to declare module-level variables can explicitly specify that the defined varia-
bles are privately available for all procedures within the same module only.
They are protected from being used by the external procedures. The Public
keyword is used to define public module-level variables. The public module-
level variables are accessible by any procedure of any modules. Usually, we
should consider that module-level variables are private, because public module-
level variables can be accessed and modified by any procedures external to
the module. In case there are errors, it will be difficult to debug and trace the
changes of the public variables that are modified by external procedures.
In fact, it is a poor programming practice to define and use variables with
such broad and global scope. Programs with public variables are considered
to be poor in software quality. To facilitate the use of private module-level
variables, we should make use of public functions so that any changes can
be managed by those functions instead of allowing any direct change of the
values of module-level variables.

Here are some examples of variable declarations. Their data types are
specified after the As keyword and commas are used to delimit the declara-
tions of multiple variables within one program statement:

Dim numPeriods As Integer 'declare a variable and it is an integer
Dim isAnnuityDue As Boolean 'declare a variable and it is either TRUE or FALSE
'declare four variables and they are decimal numbers
Dim presentValue As Double, futureValue As Double
Dim constantPayment As Double, interestRate As Double

The data type of Object is a reference of any object. All objects in Excel
are derived from and belong to the type of Object. All derived objects
have their own properties and methods. In order to utilize those specific
properties and methods, it is necessary to declare variables with specific
class names (i.e. the type of the specific object group) instead of declaring
them as the Object data type. The example shown in Figure A.29 declares
a variable with the name currentRange as an object of the class Range,
so that we can use currentRange to refer to a range in an Excel worksheet.
The program sets currentRange referring to the current selected range of the
active worksheet. It also means that the properties and methods of Range
are applicable to currentRange. Thus, the subsequent statements can set
the properties and invoke the methods of currentRange, which clear the
formats of all cells of the range, turn on the bold style of the font, set the
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font color to red, add a comment at the first cell of the range, and make the
comment visible.

Variant is a special data type for storing data with any data type. Simi-
lar to the data stored in the cells of Excel, variant can store data of any data
type including integer, decimal number, string, date, and so on. Although it
seems simple to declare all variables as variant and let VBA handle the
different types of data during program execution, programs will suffer from
the poor performance since extra computing is required for checking,
extracting, and converting the data type of the variant variables every time
they are accessed. Moreover, VBA cannot check any syntax errors of the
program statements with variant variables during compilation. As a result,
data with incorrect data type stored in the variant variables can cause
runtime errors during program execution. Therefore, we need to be cau-
tious if we consider using the variant data type. However, when you call the
Excel matrix functions in VBA programs, it is necessary to declare variant
variables to store the output arrays of the matrix functions, such as Transpose,
Mmult, and MInverse, in which the returned results are actually a two-
dimensional array of decimal numbers. The example shown in Figure A.30
demonstrates how to call the MInverse function of Excel in VBA and assign
the returned value to a variable with the variant type. We will discuss the
issues of Matrix functions in the VBA Arrays section in this appendix.

A . 5 . 2 Dec l ara t i o n and Ass i gnmen t S t a t emen ts

In this section, we briefly describe the usage and syntax of the VBA declara-
tion statements. Declaration statements are used to declare procedures,

FIGURE A.29 The subroutine demonstrates the use of the object type.

FIGURE A.30 The subroutine demonstrates the use of the Variant type.
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variables, enumerations, and user-defined data types of a program. First, let
us talk about the declaration statements Function and Subroutine.

Function
. . .
End
Function

It declares the name, arguments, and code that form the body of a Function
procedure. The processing logic of the function is the VBA statements
embedded inside the function construct. Arguments must be declared inside the
parentheses so that they can be treated as the inputs to the function. All
functions must return a value. Assigning a value to the name of a function is
equivalent to setting the return value of the function. If the data type of the
returned value is numeric, the default return value is zero. In the example
function CalcSquareRoot, as shown in Figure A.31, if you pass a negative
number to the function, the "Exit Function" statement will cause the immediate
exit of the function and return a zero to the caller.

Statement Syntax:
[Public j Private] [Static] Function FunctionName [(arg1[, arg2] . . . )] [As type]

[statements] . . .
[FunctionName = expression]

[Exit Function]
[statements] . . .
[FunctionName = expression]

End Function

Sub
. . .
End Sub

It declares the name, arguments, and code that form the body of a Sub
procedure. The processing logic of the subroutine is the VBA statements
embedded inside the Sub construct. Arguments must be declared inside the
parentheses so that they can be treated as the inputs to the subroutine. The
structure is similar to the function statement, but there is no return value. A
sample subroutine is shown in Figure A.32.

Statement Syntax:
[Private j Public] [Static] Sub SubName [(arg1[, arg2] . . . )]

[statements] . . .
[Exit Sub]

FIGURE A.31 A Function sample code.
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[statements] . . .

End Sub

As shown above, both Function and Sub can be prefixed with the key-
word Private or Public. It declares the scope of the procedure available for
being invoked by other procedures. Private procedures are available only to
all procedures of the module in which they are declared. Public procedures
are available to all procedures of all modules in the application. It also
means that public procedures are available to all procedures that can access
the module. If a procedure is static, the local (procedure-level) variables of
the static procedure are preserved between calls. It also means that all local
variables of static procedures are automatically static. The Exit statements
inside the body of the procedures can cause the immediate break and exit of
the procedure.

The following summarizes the general declaration statements of variables:

Option
Explicit

It is used at module-level to force explicit declaration of all variables in that
module. Without the option explicit statement, variables are automatically
created when they are assigned with values the first time.
It should be the first statement in all VBA programs.
Even without this statement, we should maintain the good practice to declare
all variables explicitly. Automatic creation of variables may cause confusion.
Syntax: Option Explicit

Dim j Static Procedure level variables are declared with either Dim or Static.
Storage space is allocated according to the declared data types.
Procedure level variables are accessible within the procedure only.

FIGURE A.32 A Subroutine sample code.
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Procedure level variables declared with Dim will be cleared when the
execution of the procedure is terminated with the End or Exit command.
Only Static variables are retained between procedure calls.
Syntax: Dim j Static varName As type [, varName As type] . . .
Example: Dim numOfPeriods as Integer, strikePrice as Double

Static totalProcCalls as Integer, totalProcSum as Double
For the declaration of arrays, the dimensions should be declared within the
parentheses after the variable name:
Examples: Dim costs(7) as Double, prices(8, 9) as Double

Static cost(7) as Double, prices(8, 9) as Double

Private j Module-level variables are declared with either Private or Public.
Public Storage space is allocated according to the declared data type.

Private variables are available only to the module in which they are declared.
Although the Dim keyword is equivalent to the Private keyword, which can be
used to declare private module-level variables, it is suggested to explicitly
use the Private keyword.
Variables declared using the Public keyword are available to all procedures
in all modules in all applications. However, we should consider declaring
module-level variables as private variables first in order to protect them from
any unexpected access by external programs.
Syntax: Public j Private varName As type [, varName As type] . . .

Example: Public grossIncome as Double, grossProfit as Double
Private totalCost as Double, totalIncome as Double
For the declaration of arrays, the dimensions should be declared within the
parentheses after the variable name:
Examples: Private costs(7) as Double, prices(8, 9) as Double
Public costs(7) as Double, prices(8, 9) as Double

Const It declares constants for use in place of literal values.
Constants are variables that cannot be altered once they have been defined.
At module level, constants can be private or public. Constant is private
by default.
Syntax: [Public j Private] Const constName [As type] = expression
Example: Public Const PI = 3.14159

Enum . . .
. . .
End Enum

Enumeration is a related set of constants. They are used when working
with many constants of the same type. It is declared in the Enum
statement construct.
Enumerations are declared at module level only.
The use of enumerations can make program codes easier to read.

Enumerations can be private or public and are private by default.
Syntax:
[Public j Private] Enum EnumName

memberName [= constantExpression]

[memberName [= constantExpression]]
. . .

End Enum
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Example 1:

Enum Prompts
No = -1: Maybe = 0: Yes = 1
End Enum
. . .

If userPreference = Prompts.Yes Then . . .

Example 2 - Enumeration Concatenation:
Enum FileRights

Create = 1: Read = 2
Write = 4: Delete = 8
End Enum
. . .

Dim filePermission As FileRights
filePermission = FileRights.Read Or FileRights.Write
Example 3 - By default, the constants are automatically assigned numerical
values in order, starting with 0, then 1, and so on:
Enum BlackLevels
Light: Normal: Dark
End Enum

. . .
Dim tvBlacklevel As BlackLevels
tvBlacklevel = BlackLevels.Dark

Type . . .
. . .

User-defined Type (UDT) groups related data elements together so that the
elements can be declared with a single declaration statement of the UDT.

End Type The use of UDTcan make programs easier to read.
The Type statement is used to define a UDTcontaining one or more
elements. It can only be declared at module level.
UDTs are public by default. Since a UDT does not contain any data, it is
harmless to let it be public and accessible by all modules.
UDT variables are declared with the Dim or Static statements at procedure
level and the Public or Private statements at module level.

Syntax:
[Public j Private] Type TypeName
elementName [(subscripts)] As type
[elementName [(subscripts)] As type]

. . .

End Type

Example:
Type StockOption
CurrentPrice as Double

StrikePrice as Double
ExpiryDate as Date
End Type

. . .
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Dim euroOption As StockOption

euroOption.CurrentPrice = 10.12
euroOption.StrikePrice = 9.88
euroOption.ExpiryDate = #15 Jan 2009#

ReDim It is only used at procedure level to reallocate storage space for dynamic
array variables that are declared at the module or procedure level.
The Preserve keyword is used to preserve the data in an existing array when
the dimension sizes are redefined.

Syntax:
ReDim [Preserve] varName(subscripts) [As type] [, varname(subscripts) As
[type]] . . .
Example: Dim myArray() as Integer 'Declare a dynamic array

ReDim myArray(4, 5) 'Allocate 4 x 5 elements

Once we have declared variables, we can assign and save data to the vari-
ables. Two assignment statements are available in VBA. One is for the assign-
ment of any basic data type and the other one is for object assignment.
Assignment statements can be used at the procedure level only. The equal op-
erator (¼) is used to assign data into variables with any basic data type or
properties of any objects. The left side of the equal operator is the variable
name that will contain the computing result. The right side can be any nu-
meric or string literal, constant, or formula-like expression. In programming,
an operator is a code unit that performs an operation or evaluation on one or
more value-returning code elements, such as literals, variables, constants, and
so on. Such an operation can be an arithmetic operation; a string concatena-
tion; a comparison that determines which of two values is greater; or a logical
operation evaluating whether two expressions are both true. Please find more
information in Appendix C, which includes a summary of VBA operators.

For assigning objects, we need to add the Set keyword in front of the
assignment statement. The syntax of the Set statement also includes the equal
operator. The right side of the equal operator should return an object reference
with the class equal to the assigned object specified in the left side of the equal
operator. It is remarkable that the Set keyword is omitted in the new VB.Net
programming language in order to standardize and simplify the syntax of the
assignment statements. As a result, VB.Net has only one type of assignment
statement. Here are some examples of VBA assignment statements:

Dim int1 as Integer, int2 as integer, _
num1 as Double, num 2 as Double ' Declare four numeric variables, 'and it is split into two

lines by the underscore.
int1 = 101 ' Assign and store 101 into the variable int1
num1 = 123.45 ' Assign and store 123.45 into the variable num1
int2 = 100 � int2 ' Compute 100 x 101 and store the result 10100 into int2
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num2 = num1 + 5.5 ' Compute 123.45 + 5.5 and store the result 128.95 into
num2

Const PI as Double = 3.1416 ' PI is a read-only constant with the value of 3.1416
num2 = PI + 5.5 + num1 ' PI can be used for computation
Dim costRange As Range ' Declare a range object
Set costRange = Range("A10:B20") 'Assign the costRange equivalent to the range

' from A10 to B20 of the active worksheet
costRange.Value = 10 ' Assign the value 10 to all cells from A10 to B20

The following is an example of a VBA program with variables declared
in the two different levels. There are module-level and procedure-
level variables.

' declare public module variables: accessible by external modules
Public varInt2 as Integer ' varInt2 is a public integer number
Public varNum2 as Double ' varNum2 is a public decimal number

' declare private module variables: accessible inside the Module only
Private varInt1 as Integer ' varInt1 is a private integer number
Private varNum1 as Double ' varNum1 is a private decimal number
Const PI as Double = 3.14159 ' PI is a constant (read only) and private by default

Function Test(input Int as Integer, input Num as Double) as Integer
' declare local variables: accessible inside the Test() Function only
Dim int1 as Integer ' int1 is a local integer number of the function
Dim num1 as Double ' num1 is a local decimal number of the function
' program statements may be placed here . . .
' program statements can access varInt1, varNum1, varInt2, and varNum2

End Function

Sub CallMe()

' declare local variables: accessible inside the CallMe() Subroutine only
Dim int2 as Integer ' int2 is a local integer number of the subroutine
Dim num2 as Double ' num2 is a local decimal number of the subroutine
' program statements may be placed here . . .
' program statements can access varInt1, varNum1, varInt2, and varNum2

End Sub

A .5 . 3 F l ow Con t ro l S t a t emen t s

Program statements are normally executed in sequence. However, there are
flow control statements that allow programmers to determine and change
the order of execution from the standard sequential flow of program execu-
tion. Flow control statements implement the core processing logic of a
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program. The flow control statements can be further divided into proce-
dure-calling statements, conditional statements, and looping statements.
The procedure-calling statement invokes the execution of other procedures.
Once the execution of the called procedure is completed, it returns back
the calling statement and the program continues the execution from the
statement just below the calling statement. The syntax of the procedure-
calling statement is simply the procedure name with arguments enclosed
in parentheses. If the invoked procedure is a function, users may use the
assignment statement to store the return value into a variable.

The conditional statements ‘‘If’’ and ‘‘Select Case’’ manage the execu-
tion of a set of statements that execute only if some condition is met. The
looping statements ‘‘Do,’’ ‘‘For,’’ and ‘‘For Each’’ manage the recursive
execution of a set of statements that will repeat or end when some condition
is met. Besides, there are Exit statements that may break the execution of
the looping statements and continue the execution from the statement just
below the looping statement.

Conditional statements are useful for performing some actions based on
some decisions. The If statement can be a single line statement or in the
form of a construct with multiple lines of statements. All If statements need
a condition that can be evaluated as either True or False. The condition
specified in the If statement can be a complex expression with several com-
parison operators and/or logical operators. Please read Appendix C on the
summary of VBA operators for more information. Here are some examples:

Examples of the single line If statement:
If Range("A10").Value = "HK" Then interestRate = 0.05
If Range("A10").Value = "HK" Then interestRate = 0.05 Else interestRate = 0.03
If interestRate > 0.05 And interestRate < 0.03 Then isValidRate = False
If Range("A10").Value = "HK" Or interestRate > 0.05 Then Range("C10").Value = "OK"

Examples of the If...Then...Else construct with multiple lines of statements:
If Range("A10").Value = "HK" Then ' Simple If..Then construct

interestRate = 0.05
calcMethod = "Gauss"

End If

If interestRate > 0.05 And interestRate < 0.03 Then ' If...Then...Else construct
interestRate = 0.05
calcMethod = "Gauss"

Else
interestRate = 0.03
calcMethod = "Standard"

End If
If interestRate < 0.03 Then ' If...Then...ElseIf..Else construct

marginRate = 0.02
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ElseIf interestRate < 0.04 Then
marginRate = 0.04

ElseIf interestRate < 0.05 Then
marginRate = 0.06

Else
marginRate = interestRate * 1.5

End If

All statement blocks can contain other statement blocks. We call these
nested statements. Here is an example of a nested If statement.

If interestRate > 0.05 And interestRate < 0.03 Then ' Nested If..Then...Else constructs
If calcMethod = "Standard" Then

marginRate = interestRate * 2.2
Else

marginRate = interestRate * 1.5
End If

Else
If calcMethod = "Standard" Then

marginRate = interestRate * 5.6
Else

marginRate = interestRate * 7.8
End If

End If

When there are many different conditions depending on the evaluation
of the value of a variable or an expression, it becomes cumbersome to use
numerous ElseIf statements in an If statement construct. VBA offers the
Select Case statement construct to handle such situations. The Case state-
ments inside the Select Case statement construct provide flexible and simple
syntax to express conditions. Here are some examples:

Examples of the Select Case construct with multiple lines of statements:
Select Case interestCode ' Decision on the numeric value of interestCode
Case 1, 2, 3, 4, 5 ' Case expression can be a constant or multiple constants

interestRate = 0.02
Case 11 to 15 ' Case expression can be a range using the keyword "to"
interestRate = 0.03

Case 6 to 10, 16 to 20 ' Case expression can be multiple ranges delimited by a
comma

interestRate = 0.04
Case Is < 30 ' Case expression using the Is keyword and a logical operator
interestRate = 0.05

Case Else ' The case beyond the above case expressions
interestRate = 0.06

End Select
Select Case interestType ' Decision on the string value of interestType
Case "A", "B", "C" ' Case expression can be a constant or multiple constants
interestRate = 0.02
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Case "D" to "F" ' Case expression can be a range using the keyword "to"
interestRate = 0.03

Case "G", "H", "L" to "N" ' Case expression can be multiple ranges delimited by a
comma

interestRate = 0.04
Case Is < "X" ' Case expression using the Is keyword and a logical operator
interestRate = 0.05

Case Else ' The case beyond the above case expressions
interestRate = 0.06

End Select

Looping allows recursive executions of a block of program statements.
There are three basic looping statements. They are the Do . . . Loop state-
ment, the For . . . Next statement, and the For Each . . . Next statement. In
the construct of the Do . . . Loop statement, a condition can be applied at
the beginning or the end of a loop in order to determine the exit point of the
loop and proceed to the next line just below the loop. There are four
approaches to apply condition checking to the Do . . . Loop. The examples
shown in Figure A.33 demonstrate the four approaches by using four facto-
rial functions. The factorial functions return exactly the same results and
have similar processing logic but are different in syntax.

The While condition is equivalent to the opposite result of the Until
condition. Thus, in the above example, While (nextNum <= endNum) is
equivalent to Until Not (nextNum <= endNum), which is also equivalent to
Until (nextNum > endNum). While is more often used than Until. As a
guideline, it is better to avoid using negative operators, including Not and
< >, in the condition expression because the negative logic is generally difficult
to understand.

The While and Until condition checking can be placed after either the
Do keyword or the Loop keyword. If the condition checking is placed after
the Do keyword, the exit condition is checked first before going into the

FIGURE A.33 The Factorial functions coded in different looping
program statements.
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loop and executing any statements inside the loop. If the exit condition
checking is placed after the Loop keyword, the loop will be executed once
before the exit condition is checked. Therefore, in the example functions
of Factorial3 and Factorial4, you may find that the initial value of nextNum
is 1 instead of 2. If the nextNum is initialized as 2, Factorial3(1) or
Factorial4(1) will return a wrong answer of 2 instead of the expected
answer of 1, because the unconditional execution of the loop will take place
in the first iteration. Since the first iteration of the loop will be executed
unconditionally, the statement of ‘‘factorial ¼ factorial � 1’’ will be executed
once before any condition checking takes place. During the execution of the
statements inside the loop, placing an Exit Loop statement inside the loop
can cause the immediate exit of the loop and the continued program execu-
tion from the next statement just below the Loop statement. Among the
four styles of loops, the Do While . . . Loop as illustrated in the Factorial1
function of Figure A.33 is most commonly used.

It is quite common to repeat a block of statements a specific number of
times in a loop. It needs a variable to act as a counter and the counter will
increase by 1 with each repetition of the loop. The For . . . Next statement
block is designed for such a condition. Although the same goal can be
achieved by using the Do While . . . Loop statement block, the For . . .
Next statement construct will be simpler. As shown in Figure A.34, the
example function of Factorial5 using the For . . . Next statement structure
is functionally equal to the example function of Factorial1 using the Do
While . . . Loop.

You may find it more intuitive to read the For . . . Next statement than
the relatively cumbersome Do While . . . Loop statement. The single state-
ment of ‘‘For (counter) ¼ (the initial value) To (the final value) Step (the
incremental amount)’’ already contains the set up of the initial value of the

FIGURE A.34 Two Factorial functions coded in a For loop and a Do loop.
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counter, the exit condition in which the counter must be less than or equal
to the final value, and the automatic increment of the counter with each
repetition of the loop. The Step keyword is optional and equal to one by
default. It specifies the incremental amount, which can be any positive or
negative number. A negative Step amount actually specifies the decrement
of the counter with each repetition of the loop. The final statement of the
For loop is the Next statement. You may omit the counter variable after the
Next keyword, but it is a better practice to explicitly specify the correspond-
ing counter variable of the Next statement. This is because there may be
several nested For loops with multiple Next statements. You will see this in
the examples of this book.

The final looping statement is the ‘‘For Each’’ statement. It is used to
handle the object items of an object collection. The syntax is similar to the
‘‘For . . . Next’’ statement, which repeats the execution of a set of state-
ments for each object in an object collection instead of a counter. The ad-
vantage of using the ‘‘For Each’’ statement is that we do not have a variable
for counting the current number of iterations. In programming, it is common
to have a counter to keep track of the current number of iterations so that it
can be used for calculating the index numbers pointing to the right elements
of arrays. Thus, the statement is useful for looping through a single object
collection only. If we need to use a loop counter for multiple objects or arrays
during each iteration, we need to use the ‘‘For . . . Next’’ statement and refer
to the objects or arrays by an index number, which is usually calculated from
a loop counter. Let’s use the example shown in Figure A.35 to explain the
usage of the ‘‘For Each’’ statement.

The SumOfSelection subroutine can sum the valid numeric values of all
cells of the currently selected range. The result will be displayed in a message
box. The ‘‘cell’’ is a defined variable in the For Each looping statement
referring to an individual cell in the cell collection of Selection.Cells during
the repetitive execution of the loop. To test and use the SumOfSelection
subroutine, users may select a range in a worksheet first, click the Macros
button in the Developer tab of the ribbon, click SumOfSelction shown in

FIGURE A.35 A subroutine with a For-Each loop.
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the macro list, and press the Run button to invoke the SumOfSelection
subroutine. Then the message box containing the summation result will pop
up. Figure A.36 shows an example of the described operations.

Furthermore, it is common to have multiple levels of statements in pro-
grams. We call those embedded statements nested statements. As a guide-
line, the number of nested levels should not be more than five. Otherwise,
it will be difficult to understand the program code and hard to maintain
the program. If you write a program with many nested levels, a common
solution is to create a function to contain a group of some inner statements
so that the inner loops can be replaced by a function call. You will find
many examples of nested statements in the financial models of this book.
Figure A.37 is an example of nested statements with two levels of For loops
and one level of Do loop.

The flow control statements are the important elements for implement-
ing program logic. The combination of those statements can construct very
complicated processing logic and fulfill the computation of very compli-
cated mathematical functions and formulas. Understanding the introduced
declaration, assignment, and flow control statements is just the initial stage

FIGURE A.36 A subroutine to sum up of the values of the current range.
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of learning programming. Reading good programs and practicing program-
ming can help you to grasp the programming techniques for the construc-
tion of complicated financial models with VBA programs.

A.6 VBA ARRAYS

Arrays are important elements for VBA programming. An array is a data
structure that consists of a series of elements of the same data type, such as
integers, doubles, strings, objects, and so on. For example, suppose you
need to store the monthly interest rates of a year in a variable. You could
declare an array variable of 12 numeric elements to hold the 12 interest
rates. The array structure helps us to group related elements together so
that it is easy to address an individual element with the same variable name
and an integer value as the index. In Excel, an array is equivalent to the
stored values in a range of cells. Excel arrays are either one or two dimen-
sions. A one-dimensional array is equivalent to a series of cells in a row or a
column. A two-dimensional array is actually a range of cells arranged as a
set of rows and columns. VBA supports arrays with more than one dimen-
sion. Although VBA arrays can be up to 60 dimensions, we often use one- or
two-dimensional arrays only. Occasionally, we may use three- or four-
dimensional arrays for rather complicated data structures.

There are two types of arrays in VBA: fixed-size arrays and
dynamic arrays. A fixed-size array has a fixed number of elements when
it is declared. A dynamic array has an unknown number of elements
when it is declared. We can store data into the declared elements of the
fixed-size arrays. We cannot store any data into the dynamic arrays because
the number of elements is unknown. There are two ways to use dynamic
arrays. First, we may use the ReDim statement to convert a dynamic array
into a fixed-size array, and then we can store data into the declared
elements of the converted array. The syntax of the ReDim statement is

FIGURE A.37 An example of nested program statements.
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similar to the Dim statement. We will explain and demonstrate the use of
the ReDim statement with examples. Second, the dynamic array can accept
the array returned from a function. For example, we can declare a dy-
namic array to receive the array returned from the matrix functions MIn-
verse or MMult.

All array dimensions have specified boundaries. The lower bound is
zero by default, but can be preset by the Option Base statement or specified
in the declaration statements. The Option Base statement is used only at the
module level to declare the lower bound for array dimensions. The syntax
of the statement is ‘‘Option Base 1.’’ This means users can preset the index
base of all arrays declared in the module to be 1 instead of the default 0.
However, it is recommended not to override the default index base with the
Option Base statement and to let the index base have the default value of 0.
This is because the feature has been deprecated in the newer VB.Net
language and all common program languages enforce the index base to be
zero only. Therefore, you should avoid changing the index base.

As explained, we use the Dim statement to define variables. VBA uses
the same Dim statement to define arrays. The dimensions of arrays are
declared in a set of parentheses. The module-level arrays are declared with
the same syntax, but we may use the keywords Private or Public instead of
Dim to explicitly specify the scope of the arrays. Here are some examples
of array declarations:

Dim interestRates(1 to 12) as Double It declares interestRates as an array of 12 numbers.
The index of the first element is 1 and the index of
the last element is 12.

Dim rates2(0 to 11) as Double It declares rates2 as an array of 12 numbers. The
index of the first element is 0 and the index of the
last element is 11.

Dim rates3(3 to 14) as Double It declares rates3 as an array of 12 numbers. The
index of the first element is 3 and the index of the
last element is 14.

Dim rates4(1 to 4, 1 to 12) as Double It declares rates4 as a two-dimensional array of 4 x 12
numbers. The index base of all dimensions is 1.

Dim rates5(0 to 4, 0 to 12) as Double It declares rates5 as a two-dimensional array of 5 x
13 numbers. The index base of all dimensions is 0.

Dim rates6(5,6,7) as Double It declares rates6 as a three-dimensional array. The
index base is either equal to the default 0 or based
on the Option Base statement.

Dim rates7() as Double It declares rates7 as a dynamic array with unknown
number of elements and dimensions. It should be
redefined or resized later.

ReDim rates7(0 to 5, 0 to 6) as Double It re-declares rates7 as a two-dimensional array of 6
x 7 numbers. The index base of all dimensions is
0. The previous dimensions of rates7 are ignored.

VBA Programming 301



As shown in the above examples, the number of dimensions and
the dimension sizes are declared inside the parentheses. A comma is the
delimiter of the dimensions. We can use the keyword ‘‘to’’ to specify the
first index number and the last index number (or the lower bound and
the upper bound) of dimensions. If you omit the first index number and the
keyword ‘‘to,’’ the first index will be equal to the default 0 or based on the
Option Base statement. VBA allows users to set the index base as one with
the Option Base statement because all Excel object collections are indexed
from one and Microsoft considers that it is more natural to use one as the
first index. However, it is an interesting and confusing feature of VBA to
allow programmers to determine the index base of arrays, because the
common practice of modern programming languages restricts the index
base of arrays to zero. Moreover, if you read a program with arrays of
different index bases, you will get confused and find it difficult to maintain
the program. It is a controversial topic whether it is essential to allow arrays
with different index bases in a program and whether one is the better index
base than zero. Microsoft concluded the arguments in the new VB.Net
programming language (the next generation of VB) and decided to follow
the general practice of modern programming languages that all indexes
should be zero-based only. In the new VB.Net, the index base of all arrays
is only zero. The Option Base statement has been removed because it is not
allowed to change the index base. If the first index of the dimension is specified
in the array declaration statement, it should be declared as zero although it
is redundant. In order to ensure all new written VBA programs are easily
upgradeable to the later versions of VB, it is better to follow the new syntax of
the array declaration and the management of arrays in VB.Net. Two
approaches are proposed. First, we take the default zero and should not use
the Option Base statement in any modules so that it is not necessary to specify
the initial indexes of arrays. Second, we always specify the first index of
dimensions as zero in order to eliminate the confusion that may lead from the
Option Base statement. Here are examples:

'First Approach (use the default 0): 'Second Approach:
Dim array1(12) as Double Dim array1(0 to 12) as Double
Dim array2(3,4,5) as Double Dim array2(0 to 3, 0 to 4, 0 to 5) as Double

The following two procedures are good examples to demonstrate the
manipulation of array-related statements with VBA statements. The first
procedure is the CloneMatrix() function that accepts a two-dimensional
Double array, makes a clone of the input array, and returns the created
clone array to the caller. The second procedure is a subroutine for testing
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the CloneMatrix() function. It creates a two-dimensional Double array with
3 � 4 elements, fills the elements of the array with some numeric values,
calls the CloneMatrix() function to make a clone of the array, and finally
prints out the elements of the clone in order to verify if the generated clone
array is exactly equal to the original array.

'The function will accept an input array and return a Double array
Function CloneMatrix(matrix() As Double) As Double()
Dim clone() As Double 'define a dynamic double array
Dim rowLowBound As Integer: rowLowBound = LBound(matrix, 1) 'get the lower bound of 1st dim.
Dim rowUpBound As Integer: rowUpBound = UBound(matrix, 1) 'get the upper bound of 1st dim.
Dim colLowBound As Integer: colLowBound = LBound(matrix, 2) 'get the lower bound of 2nd dim.
Dim colUpBound As Integer: colUpBound = UBound(matrix, 2) 'get the upper bound of 2nd dim.

`Redefine the dynamic double array according to the dimensions of the input array
ReDim clone(rowLowBound To rowUpBound, colLowBound To colUpBound)
Dim x As Integer, y As Integer
For x = rowLowBound To rowUpBound 'loop for each row (1st dimension) of the input array
For y = colLowBound To colUpBound 'loop for each column (2nd dimension) of the input array
clone(x, y) = matrix(x, y) 'copy each element value into the clone array

Next y, x
CloneMatrix = clone 'return the created clone to the caller

End Function

The CloneMatrix() function accepts a dynamic array of Doubles
because it can flexibly accept an input array with any dimensions and any
sizes. The syntax of ‘‘As Double()’’ specifies the return value of the function
is a dynamic array of Doubles. Here, the function treats the input array as a
two-dimensional array. For convenience, it also treats the first dimension as
a row and the second dimension as a column. The first statement in the
function defines ‘‘clone’’ as a dynamic array of Doubles because the sizes of
‘‘clone’’ are unknown when the function is written. ‘‘Clone’’ will be the
return value of the function. In order to get the boundary information of
the dimensions of the input array, the two useful VBA functions of LBound
() and UBound() are used to examine the lower and the upper boundary of
each dimension. Once the sizes of the input array are found, ‘‘clone’’ can be
redefined to be a fix-sized array. Since the input array has two dimensions,
the function uses two for-loops to iterate through all elements of the input
array and copy the element values of the input array into the cloned array.
Finally, the function sets the cloned array as the return value.

The TestClone() subroutine creates a fixed-size, two-dimensional array
with 3� 4 elements named ‘‘matrix.’’ Then two for-loops are used to gener-
ate numbers and store the numbers into the elements of ‘‘matrix.’’ The formula
for the generated numbers is not important. It only aims at generating different
numbers for elements with different rows and columns only. Then a new
dynamic array named ‘‘newMatrix’’ is defined and a cloned array generated
from the CloneMatrix() function is assigned to ‘‘newMatrix.’’ Finally, the
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debug.print() function is used to print out the values inside the cloned array in
order to ensure the input array can be successfully copied into the clone.

The above examples summarize the basic coding techniques of defining
arrays, redefining dynamic arrays, assigning values into the elements of
arrays, extracting the element values from arrays, examining the sizes
of arrays, defining an array as the input parameter of a function, defining
an array as the return value of a function, and invoking a function with
arguments of arrays. Those are the common manipulations of arrays in VBA.

A.7 USING WORKSHEET MATRIX FUNCTIONS IN VBA

There are four matrix functions in Excel. In Excel, a matrix is equal to a
range of cells with rows and columns. The MDeterm function returns
the determinant of a matrix, which is a decimal number. The other three
functions return a new matrix. The Transpose function returns a transposed
matrix. The MInverse function returns a new matrix, which is the inverse of
the input matrix. The MMult function returns a new matrix, which is the
multiplication of two input matrices. In VBA, it is easy to use those matrix
functions by means of the WorksheetFunction object. Those matrix functions
are smart enough to accept either Excel ranges or VBA arrays with any index
base. The following example uses a function to demonstrate how to call
worksheet matrix functions in VBA:

Function TestMatrix(xlRange As Range) As Double
Dim rowCount As Integer: rowCount = xlRange.Rows.Count
Dim colCount As Integer: colCount = xlRange.Columns.Count
'Define a VBA array depending on the dimensions of the input Excel Range
Dim vbArray() As Double: ReDim vbArray(0 To colCount - 1, 0 To rowCount - 1)
Dim row As Integer, col As Integer
For row = 1 To rowCount
For col = 1 To colCount
vbArray(col - 1, row - 1) = Math.Sqr(xlRange(row, col).Value)

Next col, row
Dim newMatrix As Variant
With Application.WorksheetFunction
'newMatrix will be a symmetric matrix (i.e. Rows.Count = Columns.Count)
newMatrix = .MMult(xlRange, vbArray)
newMatrix = .Transpose(newMatrix)
newMatrix = .MInverse(newMatrix) 'Minverse only works with a symmetric matrix
TestMatrix = .MDeterm(newMatrix) 'MDeterm will return a decimal number only

End With
End Function
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‘‘TestMatrix’’ is just a function to demonstrate how to call the four
worksheet matrix functions in VBA. The computations of this example are
for demonstration only and have no real application. The function accepts a
range as the argument. The first statement defines the rowCount variable to
record the number of rows in the input range. The second statement defines
the colCount variable to record the number of columns in the input range.
Since the function will call the MMult function to multiply two matrices
with the first argument being the input range and the second argument being
a VBA array, the third statement creates a VBA array with appropriate
dimensions that make the matrix multiplication applicable. The fourth state-
ment defines the vbArray variable (a VBA array) with the row dimension
equal to the number of columns in the input range and the column dimension
equal to the number of rows in the input range. The fifth to ninth statements
use two nested For loops to assign some values into the VBA array. The 10th
statement prepares the newMatrix variant to store the return matrix from
the worksheet matrix functions. The rest of the statements demonstrate
the invocation of the four worksheet matrix statements. The final result
comes from the return decimal number of the MDeterm function. To test the
function, users may randomly assign numbers into a range of cells. The range
can be any number of rows and columns. In Figure A.38, we generated a set
of numbers into the range B2:B5. Then, users may select a cell and enter the
formula ‘‘=TestMatrix(B2:D5)’’. The computed result of the TestMatrix
function is a large negative number, which is shown in the cell B7.

Furthermore, we designed a function that can generate random num-
bers into a range of cells instead of a single value, which is similar to the
return array of MMult, MInverse, and MTranpose. The function is named
GenRandomMatrix, as can be seen in Figure A.38. The output of the func-
tion is a two-dimensional array of numbers instead of a single value. In
order to put the array of numbers into a range of cells, we need to apply the
function in an array formula. In our example, we select the range B2:D5,
enter the formula ‘‘=GenRandomMatrix()’’, and press CTRL-ALT-Enter in

FIGURE A.38 Two user-define matrix functions: TestMatrix() and
GenRandomMatrix().
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order to define the formula as an array formula. The source code of the
function is as follows:

Function GenRandomMatrix() As Double()
'Application.Caller is equivalent to the range applying the function
Dim rowCount As Integer: rowCount = Application.Caller.Rows.Count
Dim colCount As Integer: colCount = Application.Caller.Columns.Count
Dim vbArray() As Double: ReDim vbArray(0 To rowCount - 1, 0 To colCount - 1)
Dim row As Integer, col As Integer
For row = 0 To rowCount - 1
For col = 0 To colCount - 1
'Generate a random number between 0 to 100
vbArray(row, col) = Int(Math.Rnd() * 100)

Next col, row
GenRandomMatrix = vbArray 'The return result is a two-dimensional array of numbers

End Function

‘‘GenRandomMatrix’’ is a function to generate random numbers and
return a two-dimensional array of random numbers. Therefore, the return
value of the function is defined as Double(). The function needs not accept
any argument. The second statement defines the rowCount variable to
record the number of rows in the range that is selected to contain the gener-
ated random number. The range is defined in Application.Caller. The third
statement defines the colCount variable to record the number of columns
in the range of the Application.Caller. The fourth statement defines the
vbArray variable (a VBA array) with the same dimensions as the Application.
Caller. The fifth to ninth statements use two nested for loops to assign
generated random numbers into the VBA array. The final statement assigns
the VBA array of random numbers as the return values. By using the Excel
array formula, the array of numbers can be assigned to the range of cells
accordingly.

Although we may call worksheet functions in VBA programs, the
new matrices returned from those matrix functions are all with index
base one instead of zero, because the index base of all Excel collections
and ranges start from one instead of zero. It would be very confusing
and lead to many mistakes if VBA programs mixed different index-
based arrays. To solve this problem, it is necessary to ensure the index-
base of all arrays is zero. For any non-zero based arrays, we need a
function to convert them into zero-based arrays. For any matrix functions,
we need alternative functions to perform the same operations but the
return arrays are all zero-based. We have created a module with the name
‘‘Matrix.’’ The Matrix module includes five functions that can satisfy
the described requirements. The function structure and the purpose of the
functions are as follows:
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Function Structure Function Description

Convert(matrix1 As Variant) As
Double()

Convert an input array with any index base into a zero-
based array

Transpose(matrix1 As Variant) As
Double()

Transpose an input array with any index base into a
transposed zero-based array

Inverse(matrix1 As Variant) As
Double()

Inverse an input array with any index base into an
inverse zero-based array

Multiply(matrix1 As Variant,
matrix2 As Variant) As Double()

Multiply two input arrays with any index base and
return a new zero-based array

Determinant(matrix1 As Variant)
As Double

Calculate the determinant of an input array with any
index base and return a decimal number

The following shows the source code of the Convert function:

'All variant inputs can be Range().value of Excel or a VBA two-dimensional double array
Public Function Convert(matrix1 As Variant) As Double()
Dim rowLBound As Integer, colLBound As Integer
Dim rowUBound As Integer, colUBound As Integer
rowLBound = LBound(matrix1, 1)
colLBound = LBound(matrix1, 2)
rowUBound = UBound(matrix1, 1) - rowLBound
colUBound = UBound(matrix1, 2) - colLBound
Dim newMatrix() As Double
ReDim newMatrix(0 To rowUBound, 0 To colUBound)
Dim row As Integer, col As Integer
For row = 0 To rowUBound
For col = 0 To colUBound
newMatrix(row, col) = matrix1(row + rowLBound, col + colLBound)

Next col, row
Convert = newMatrix

End Function

Let’s go through the Convert function. The function is declared as Pub-
lic so that it is available for use by any procedure. Only one input is declared
as Variant and is named ‘‘matrix1.’’ It must be a Variant, so that it can refer
to the Value of an Excel range or a VBA two-dimensional array. We will
have a subroutine to test the function and demonstrate that the function
can flexibly accept an Excel range or a VBA two-dimensional array as the
input argument. As we treat those functions as matrix functions, we treat
the dimensions of the matrices as rows and columns. The first statement of
the Convert function declares variables to contain the lower bounds of
matrix1. The second statement declares variables to store the upper bounds
of the result matrix. The third to sixth statements get and calculate
the bound values. The seventh statement declares ‘‘newMatrix’’ to be
the matrix to contain the converted matrix. The eighth statement redefines
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the dimensions of ‘‘newMatrix’’ so that it can match the size of ‘‘matrix1’’
and be zero-based. The ninth to 13th statements use two nested For loops to
copy the content of the items from ‘‘matrix1’’ to ‘‘newMatrix.’’ The final
statement simply sets the return value equal to ‘‘newMatrix.’’ To test the
Convert function, we designed a Private subroutine named ‘‘TestConvert,’’
which is written in the same module. It is private because the subroutine is
just for testing purposes and it should not be available for other procedures.
The source code of the subroutine is as follows:

'This tests the Matrix.Convert() function
Private Sub TestConvert()
'Input array in the range(B2:D4)
Dim matrix1() As Double, matrix2() As Double
'Accept input as Range(:).Value
matrix1 = matrix.Convert(Range("B2:D4").Value)
Range("F1").Value = "Output of Matrix.Convert(Range(""B2:D4"").Value)"
Range("F2:H4").Value = matrix1
'Accept input as Double(,) array
matrix2 = matrix.Convert(matrix1)
Range("K1").Value = "Output of Matrix.Convert(Double(,))"
Range("K2:M4").Value = matrix2
'Show the output dimensions
Debug.Print ("Row: " & LBound(matrix2, 1) & " to " & UBound(matrix2, 1))
Debug.Print ("Col: " & LBound(matrix2, 2) & " to " & UBound(matrix2, 2))

End Sub

We will not describe the design of the testing subroutine, but it is
remarkable to take a look at the fourth, eighth, and tenth statements. They
demonstrate the usage of the Convert function. The third statement,
‘‘matrix.Convert(Range("B2:D4").Value),’’ returns a zero-based array
from an Excel range. The sixth statement, ‘‘matrix.Convert(matrix1),’’
returns a zero-based array from a VBA two-dimensional array. The tenth
statement demonstrates that the return array of the Convert function can be
assigned to an Excel range. Thus, the flexibility of the function is similar to
the usage of the Excel matrix functions.

Now, let us take a look at the source code of the Transpose function
and the TestTranspose subroutine:

Public Function Transpose(matrix1 As Variant) As Double()
Dim rowLBound As Integer, colLBound As Integer
Dim rowUBound As Integer, colUBound As Integer
rowLBound = LBound(matrix1, 2)
colLBound = LBound(matrix1, 1)
rowUBound = UBound(matrix1, 2) - rowLBound
colUBound = UBound(matrix1, 1) - colLBound
Dim newMatrix() As Double
ReDim newMatrix(0 To rowUBound, 0 To colUBound)
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Dim row As Integer, col As Integer
For row = 0 To rowUBound
For col = 0 To colUBound
newMatrix(row, col) = matrix1(col + colLBound, row + rowLBound)

Next col, row
Transpose = newMatrix

End Function
_________________________________________________________________________

'This tests the Matrix.Transpose() function
Private Sub TestTranspose()
Range("B5").Value = "Excel Formula: {Transpose(B2:D4)}"
Range("B6:D8").Select
Selection.FormulaArray = "=TRANSPOSE(B2:D4)"
Dim matrix1() As Double, matrix2() As Double
'Accept input as Range(:).Value
matrix1 = matrix.Transpose(Range("B2:D4").Value)
Range("F5").Value = "Output of Matrix.Transpose(Range(""B2:D4"").Value)"
Range("F6:H8").Value = matrix1
'Accept input as Double(,) array
matrix2 = matrix.Transpose(matrix1)
Range("K5").Value = "Output of Matrix.Transpose(Double(,))"
Range("K6:M8").Value = matrix2
'Show the output dimensions
Debug.Print ("Row: " & LBound(matrix2, 1) & " to " & UBound(matrix2, 1))
Debug.Print ("Col: " & LBound(matrix2, 2) & " to " & UBound(matrix2, 2))

End Sub

You may notice that the statements of the Transpose function are simi-
lar to the statements of the Convert function. Actually, their processing
logic is similar. The main differences are simply the transposed dimensions
and the transposed placement of the copied values. Since the usage of the
Transpose function is similar to the Convert function as well, the Test-
Transpose subroutine also looks similar to the TestConvert subroutine.
‘‘matrix.Transpose(Range("B2:D4").Value)’’ returns a zero-based trans-
posed array from an Excel range. ‘‘matrix.Transpose (matrix1)’’ returns a
zero-based transposed array from a VBA two-dimensional array. ‘‘Range
("K6:M8").Value ¼ matrix2’’ demonstrates that the returned array of the
Tranpose function can be assigned into an Excel range.

Corresponding to the MInverse, MMult, and MDeterm functions in
Excel, the Matrix module includes the Inverse, Mulitply, and Determinant
functions. They simply invoke the equivalent worksheet functions and use
the Convert function of the Matrix module to convert the returned array
into a zero-based array. Here is the source code of these functions:

Public Function Inverse(matrix1 As Variant) As Double()
Dim newMatrix As Variant
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newMatrix = Excel.WorksheetFunction.MInverse(matrix1)
Inverse = Convert(newMatrix)

End Function

Public Function Multiply(matrix1 As Variant, matrix2 As Variant) As Double()
Dim newMatrix As Variant
newMatrix = Excel.WorksheetFunction.MMult(matrix1, matrix2)
Multiply = Convert(newMatrix)

End Function

Public Function Determinant(matrix1 As Variant) As Double
Determinant = Excel.WorksheetFunction.MDeterm(matrix1)

End Function

It is remarkable that the Multiply function accepts two arguments and
both of them must be declared Variant so that the function applies a matrix
multiplication to both matrices. The Matrix module also includes several
private subroutines for testing those matrix functions. Here is the source
code of those functions:

'This tests the Matrix.Inverse() function
Private Sub TestInverse()
Range("B9").Value = "Excel Formula: {MInverse(B2:D4)}"
Range("B10:D12").Select
Selection.FormulaArray = "=MINVERSE(B2:D4)"
Dim matrix1() As Double, matrix2() As Double
'Accept input as Range(:).Value
matrix1 = matrix.Inverse(Range("B2:D4").Value)
Range("F9").Value = "Output of Matrix.Inverse(Range(""B2:D4"").Value)"
Range("F10:H12").Value = matrix1
'Accept input as Double(,) array
matrix2 = matrix.Inverse(matrix1)
Range("K9").Value = "Output of Matrix.Inverse(Double(,))"
Range("K10:M12").Value = matrix2
'Show the output dimensions
Debug.Print ("Row: " & LBound(matrix2, 1) & " to " & UBound(matrix2, 1))
Debug.Print ("Col: " & LBound(matrix2, 2) & " to " & UBound(matrix2, 2))

End Sub

'This tests the Matrix.Multiply() function
Private Sub TestMultiply()
Range("B14:H21").Clear
Range("B14").Value = "Excel Formula: {MMult(B2:D4,B6:D8)}"
Range("B15:D17").Select
Selection.FormulaArray = "=MMult(B2:D4,B6:D8)"
Range("B18").Value = "Excel Formula: {MMult(B15:D17,B10:D12)}"
Range("B19:D21").Select
Selection.FormulaArray = "=MMult(B15:D17,B10:D12)"
Dim matrix1() As Double, matrix2() As Double
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'Accept input as Range(:).Value
matrix1 = matrix.Multiply(Range("B2:D4").Value, Range("B6:D8").Value)
Range("F14").Value = "Output of Matrix.Multiply(Range(""B2:D4"").Value,Range(""B6:
D8"").Value)"

Range("F15:H17").Value = matrix1
'Accept input as Double(,) array
matrix2 = matrix.Multiply(matrix1, Range("B10:D12").Value)
Range("F18").Value = "Output of Matrix.Multiply(Double(,),Range(""B10:D12"").Value)"
Range("F19:H21").Value = matrix2
'Show the output dimensions
Debug.Print ("Row: " & LBound(matrix2, 1) & " to " & UBound(matrix2, 1))
Debug.Print ("Col: " & LBound(matrix2, 2) & " to " & UBound(matrix2, 2))
Debug.Print ("Row: " & LBound(matrix1, 1) & " to " & UBound(matrix1, 1))
Debug.Print ("Col: " & LBound(matrix1, 2) & " to " & UBound(matrix1, 2))

End Sub

Private Sub TestAll()
Range("A1:M21").Clear
Range("B1").Value = "Input Range(B2:D4):"
Dim inputArray(0 To 2, 0 To 2) As Double
inputArray(0, 0) = 1
inputArray(0, 1) = 2
inputArray(0, 2) = 4
inputArray(1, 0) = 3
inputArray(1, 1) = 5
inputArray(1, 2) = 7
inputArray(2, 0) = 6
inputArray(2, 1) = 8
inputArray(2, 2) = 9
Range("B2:D4").Value = inputArray
Call TestConvert
Call TestTranspose
Call TestInverse
Call TestMultiply
Range("B2:D4").Select

End Sub

There is a TestAll subroutine that is usable for testing all matrix func-
tions in the Matrix module. It creates a 3 x 3 array with assigned values
from one to nine, and then calls the testing subroutines of TestConvert,
TestTranspose, TestInverse, and TestMultiply. The testing results are
displayed in a worksheet for verification. Figure A.39 shows the worksheet
containing the testing results of all matrix functions.

A.8 SUMMARY

In this appendix, we have reviewed three important elements in Excel that
are essential in VBA programs. Cell references can be in the A1 style or the

VBA Programming 311



FI
GU

RE
A.
39

T
h
e
te
st
o
u
tp
u
t
o
f
a
ll
m
a
tr
ix

fu
n
ct
io
n
s.

312



R1C1 style. Both styles are useful when we insert formulas into Excel cells
with VBA programs. Using defined names is a good programming practice
because it makes formulas readable and meaningful. It is more dynamic and
flexible to change the referenced cells and ranges of the defined names.
Excel includes comprehensive worksheet functions that we can invoke
in VBA programs. The matrix functions are especially useful in financial
models. VBA programs are developed in the VBA development environment
(VBE). There are many features and windows for programmers to manage
their projects and programs.

Modules, procedures, variables, and program statements are the
constructs of VBA programs. Generally, there are two types of procedures
in modules. They are subroutines and functions. Variables can be module-
level or procedure-level. There are many data types of variables. For numeric
data types, we should define variables as Integer for integer numbers and
Double for decimal numbers. If we need to use large integer numbers, we may
define those variables as Long.

Declaration statements are used to declare procedures and variables.
Variables can be declared with different scopes. Constant variables are
declared as read only. Static variables are declared to store and retain values
between procedure calls. Use of enumerations and types can gather related
variables and make programs more readable. Assignment statements are
used to assign values into variables of any basic data type and set object
references into object variables. There are two main types of flow control
statements. Conditional statements include the ‘‘If’’ and ‘‘Select’’ statements
that execute a block of statements based on some conditions. The main
looping statements are ‘‘Do . . . Loop’’, ‘‘For . . . Next’’, and ‘‘For Each . . .
Next’’ statement constructs that manage the recursive execution of a set
of statements that will repeat or end when some condition is met. The
program logic of a program is mainly constructed by those declaration,
assignment, and flow control statements.

Finally, VBA arrays are complicated components of a program. We
have discussed and introduced the basic techniques of utilizing the arrays.
Matrix functions are important for financial computing. Although there are
some discrepancies in Excel arrays and VBA arrays, we have proposed a
solution for several VBA matrix functions and grouped them into a single
module for your reference.

This appendix briefly explains the main VBA programming knowledge
and techniques for beginners so that they may understand VBA programs
and read the VBA programs of this book. More summarized information
regarding VBA features can be found in the following appendices
(Appendices B to G).
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APPENDIX B
The Excel Object Model

In early software languages such as the influential C language, functions
and variables are the basic building blocks of a program. Functions

contain the computing logic of a program. Variables contain data and
computing results. It is not easy for programmers to manage hundreds and
thousands of functions and variables in a large program. In modern object-
oriented programming (OOP), such as VBA, a computer program is made
up of a collection of objects that interact with each other. The object
concept is borrowed from our experience in the real world, in which activi-
ties are regarded as the interaction between objects. The object abstraction
in software can help programmers to better organize and manage a large
amount of software components in programs including functions and varia-
bles. Besides, the new features in OOP facilitate the reusability of program
codes. In OOP, related functions grouped inside an object are called object
methods; while variables of an object are called object properties. The object
methods and properties determine the behavior and capability of the object.
For example, an open Excel file is treated as a workbook object in VBA
programs. There are hundreds of properties in a workbook object that deter-
mine its behavior and capability. ‘‘Password’’ is one of the properties of a
workbook object. Setting a value into the password property can protect the
workbook from being viewed. A valid password must be provided in order
to view the content of the workbook. There are also hundreds of methods
in a workbook object. ‘‘Close’’ is a method available in a workbook object.
Calling the Close method can close the open Excel file immediately.

Objects may contain other objects. Their relationships are organized
in the form of a tree-structured model. In Excel, the whole application is
organized and presented as a large set of Excel objects. The Excel operation
is carried out by the interactions of these Excel objects. The Excel Object
Model is the reference model of the Excel objects that describes the
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characteristics of the objects and represents the hierarchical relationships
of the objects. The object acts like a container holding properties, methods,
and even other objects. In order to control the Excel operations and manage
the behaviors, we write VBA programs to access, examine, and manipulate
the Excel Object Model. For example, the Application object represents the
entire Excel application that contains many objects including a collection of
workbook objects. A workbook object represents an open Excel file that
contains many objects including a collection of worksheet objects. A work-
sheet object contains the columns, rows, names, cells, ranges, and so on.
Their relationships are formulated as a hierarchical structure in the Excel
Object Model. In VBA programs, we examine an object by traversing and
specifying its hierarchical position using a dot (a full-stop) as a separator.
The following code example is a recorded macro. All VBA statements in the
macro refer to the properties or methods of some objects, which use some
dots to express the hierarchical relationship from the higher level to the
lower level of the addressed objects:

The objects of the Excel Object Model are organized in multiple levels.
To access the right object, we usually need to traverse from a higher level
object down to the objects in the lower levels. For example, the VBA code
to assign a value into the content of the range B3:D6 in the second work-
sheet of the workbook ‘‘book1.xls’’ is as follows:

Application.Workbooks("book1.xls").Worksheets(2).Range("B3:D6").Value ¼ 123.

There is a With statement in VBA that lets us specify an object or user-
defined type once for the entire series of statements. The With statement
makes your procedures run faster and helps you avoid repetitive typing.
The following works on the range B3:D6.

Sub Macro1() Explanation:
Application.Calculation = xlManual Set the Calculation property as Manual
Range("data").Select Select the range named data
Selection.Font.Bold = True Turn on the Bold property of the Selection
Selection.Font.Underline =
xlUnderlineStyleSingle

Set the Underline property as a single line

Range("total").Select Select the cell named total
ActiveCell.FormulaR1C1 = "=SUM(data)" Define the formula equal to the sum of a range
Application.Calculate Call the method Calculate to compute

immediately
Application.Calculation = xlAutomatic Set the Calculation property back to Automatic

End Sub
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Sub FormatRange()
With Workbooks("book1.xls").Worksheets(2).Range("B3:D6")
.Value = 30
.Font.Bold = True
.Font.Underline = xlUnderlineStyleSingle

End With
End Sub

Acquiring the knowledge of the available objects, object collections,
methods, and properties of the Excel Object Model is the key to control
and master the Excel application with VBA programs. Since the Excel
Object Model is huge in scope, it is not possible to memorize all of them.
There are three common ways to get the information and help of the Excel
Object Model during VBA programming. Firstly, in the VBA program
editor, the intelligent pop-up list box of object members can give users
some hints about available properties and methods regarding the object
they are editing as shown in Figure B.1. The intelligent pop-up hint is a
handy aid and must-have feature of OOP program editors.

Secondly, users may use Excel Help. Excel Help includes comprehen-
sive documentation of the Excel Object Model. It illustrates the objects and
their relationships in a clear hierarchical structure. It describes the available
objects, their properties, methods, and collections of objects, as well as
some helpful sample codes to illustrate their functions and usages. It is
recommended to check the object information with Excel Help in order to
facilitate your VBA program development. Please try to browse Excel Help
for some important objects, such as Application, Workbook, and Work-
sheet, and the useful properties of Range, Cells, and so on. Figure B.2 shows
a section of the hierarchy of the Excel Object Model in Excel Help. Users

FIGURE B.1 VBA Editor.
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can search and browse the help page of any Excel object in Excel Help. For
example, Figure B.3 shows the help page of the Range object.

Finally, users can use the Macro recorder to record Excel operations
and examine the generated Macros (i.e. VBA argument-less subroutines) in
order to understand the properties and methods used for the recorded oper-
ations. Figure B.4 shows the button location of Record Macro in the

FIGURE B.2 The illustrated hierarchy of the Excel Object Model in Excel Help.

FIGURE B.3 Excel Help for the Range Object.
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Developer tab. The Macro recorder can automatically generate VBA code
containing the affected object properties and invoked object methods corre-
sponding to the manual operations of the user. Learning from the generated
VBA code, users may modify the generated VBA code and copy the code
into other programs. Some examples are shown in appendix A.

In conclusion, Excel represents all software components as objects and
the object relationship in the form of the Excel Object Model. Programmers
with the knowledge of how to access the objects, invoke the methods, and
set the properties can effectively and fully control the Excel application.

FIGURE B.4 The Developer tab.
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APPENDIX C
VBA Debugging Tools

When writing VBA programs, it is necessary to ensure all written codes
can be executed as expected and no side operations or effects will be

generated. The VBA editor can help you with code editing, syntax checking,
and program compiling. Even if the written programs can achieve clean
compilations without errors, it is necessary to conduct comprehensive test-
ing and debugging in order to ensure the program logic is accurate. This
section will briefly introduce and describe two debugging commands and
three basic diagnostic tools available in the VBE that can help programmers
in testing and debugging.

The Immediate Window in the VBE allows programmers to enter
commands and display debug information. During program execution,
programmers can set break points at program statements. When an executing
VBA program reaches a break point, the program will pause, and we call
the state of the paused program break mode. Figure C.1 shows that the
sample function has entered the break mode before the execution of the
statement ‘‘sum ¼ sum � count’’ and the programmer has just entered
several ad-hoc comments in the Immediate Window in order to examine
the present values of the variables.

In break mode, the question mark (?) command in the Immediate
Window allows programmers to examine the values of variables or object
properties. Simply type a question mark followed by a variable name or
an object property in the Immediate Window and press Enter. VBA will
display the latest contents of the variable or the object property in the next
line. Figure C.2 illustrates three examples.

You can also execute VBA commands in the Immediate Window,
but each VBA statement will be executed once you press the Enter key
at the end of the VBA statement. Simply type a VBA command and
press Enter. No question mark (?) is necessary to prefix the command.
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Figure C.3 demonstrates how to set a property and invoke a method in
the Immediate Window.

If you want to execute multiple VBA statements, you can combine the
statements with colons ‘‘:’’. Figure C.4 concatenates five statements includ-
ing a recursive ‘‘For’’ loop.

Debug.Print() is a very useful VBA command to display messages or
variable values in the Immediate Window. The Debug.Print() command
works without affecting other operations in the program, even though the

FIGURE C.1 Program pauses in a break point.

FIGURE C.2 Debug with the Immediate Window.

FIGURE C.3 Execute VBA statements in the Immediate Window.

322 PROFESSIONAL FINANCIAL COMPUTING USING EXCEL AND VBA



VBE is not executing. You may include as many Debug.Print() commands
as required in programs so as to display enough data and messages in the
Immediate Window for tracking the program progress and value changes of
variables. By examining the displayed values and the display sequence, you
may track the execution of programs and the change of variables during
program execution. Figure C.5 prints out the values of ‘‘sum’’ to the Imme-
diate Window during the execution of the For loop.

Debug.Assert() is another useful VBA command that can pause the exe-
cution of a program when the specified condition is evaluated as False. For
example, Debug.Assert(ActiveSheet.Name="Sheet1") can cause a pause of the
program if the active worksheet is not ‘‘Sheet1.’’ However, unlike the
Debug.Print() command, this command should be used during program
testing and debugging only. All Debug.Assert() statements should be
removed or disabled when the program is released for production or to
end users. This is because end users will not know how to respond in case

FIGURE C.4 Execute multiple VBA statements.

FIGURE C.5 Use Debug.Print for debugging.
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the program is paused by a Debug.Assert() statement and waits for user
instructions in the VBE.

User-defined Break Points can be set at any line of VBA statements.
They tell VBA to pause execution immediately before the VBA statement
containing the break point. To put or remove a break point in a line of
code, place the cursor on that line and press F9 or choose "Toggle Break-
point" from the Debug menu. The lines with a brick colored background
are lines with break points. A line with a break point will appear with a
yellow background immediately before the line of code is executed. In the
break mode, users can resume program execution by pressing F5, or choos-
ing ‘‘Continue’’ from the Run menu, or stepping through the code line by
line by pressing F8, or Shift-F8 to ‘‘Step Over’’ the procedure call. In
contrast to Debug.Assert() break commands, user-defined break points are
not saved in the workbook file. Break points are preserved as long as the file
is opened. They are removed when the file is closed.

The Locals Window is a useful tool for displaying the latest values of
the executing procedure’s local variables and the global variables declared
at the module/program level. This makes it easy for programmers to exam-
ine the changes in local variables when they are stepping through the
program line by line. Variables in the Locals Windows are read-only. If
programmers want to alter the values of any variables for testing, they can
enter commands in the Immediate Window and alter the values. Figure C.6
demonstrates a user stepping through the Test() subroutine, reading the
debug output in the Immediate Window, and checking the variables in the
Locals Window.

Finally, if users want to watch only a specific variable or expression,
and cause program execution to pause when the value being watched is
True or changes, the Watches Window allows users to add ‘‘Watches’’ of
variables or expressions. The Watches Window can be invoked through the
Debug item of the menu as shown in Figure C.7.

FIGURE C.6 The Locals Window.
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Right-click the Watches Window to edit, add, and delete watches.
For example, there are two variables and one expression being watched in
Figure C.8.

FIGURE C.7 Debug menu items.

FIGURE C.8 The Watches Window.
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APPENDIX D
Summary of VBA Operators

An operator is a symbol or code element that performs an operation
on one or more code elements that hold values. Value elements include

variables, constants, literals, properties, and expressions. An expression is
a series of value elements combined with operators, which yields a new
value. The operators act on the value elements by performing calculations,
comparisons, or other operations. VBA operators can be classified into
five main categories: arithmetic operators, comparison operators, logical
operators, assignment operators, and miscellaneous operators.

Arithmetic Operators (the result is either a decimal number or an integer):

In the following examples, x and y
can be any numeric value, variable,
or expression

+ Addition x + y (e.g. 13.5 + 5 returns 18.5)
� Subtraction x � y (e.g. 13.5 – 5 returns 8.5)
� Multiplication x � y (e.g. 13.5 � 5 returns 67.5)
/ Division

(returns a numeric value)
‘‘x / y’’ (e.g. 13.5/5 returns 2.7)

\ Integer Division
(returns an integer quotient)

‘‘x \ y’’ (e.g. 13.5\5 returns 2)

mod Modulus Arithmetic
(returns an integer remainder)

x mod y (e.g. 13.5 mod 5 returns 4)

^ Exponentiation x ^ y (e.g. 2 ^ 3 returns 8)
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Comparison Operators (the result is either True or False):

In the following examples, x and y can be any

boolean/logical value, variable, or expression.

= Equal to If x = y Then . . .
< > Not equal to If x < > y Then . . .
> Greater than If x > y Then . . .
> = Greater than or

equal to
If x > = y Then . . .

< Less than If x < y Then . . .
< = Less than or equal to If x < = y Then . . .

Is Object Reference
Comparison

If object1 Is object2 Then . . .
returns True if object1 and object2 both refer
to the same object, otherwise returns False.

Like String Pattern
Comparison

If string Like pattern Then . . .
e.g. ‘‘Visual Basic’’ Like ‘‘Visual�’’returns True
because the string ‘‘Visual Basic’’ can match
with the pattern of ‘‘Visual�’’ where the pattern
symbol of ‘‘�’’ means any characters.

The pattern symbols can be:
? Any single character.
� Zero or more characters.
# Any single digit (0–9).
[charlist] Any single character in charlist.
[!charlist] Any single character not in

charlist.

Logical Operators (the result is either True or False):

In the following examples, x and y can be any boolean/

logical value, variable, or expression.

Not Negation If Not x Then . . . Not is a unary operator. It returns
the opposite logical result of the
evaluated expression.

And Conjunction If x And y Then . . . Returns True if both expressions are
evaluated to be True, otherwise
returns False.

Or Disjunction If x Or y Then . . . Returns False if both expressions are
evaluated to be False, otherwise
returns True.
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Xor Exclusion If x Xor y Then . . . Returns True if both expressions are
evaluated to be different,
otherwise returns False.

Eqv Equivalence If x Eqv y Then . . . Returns True if both expressions are
evaluated to be the same,
otherwise returns False.

Imp Implication If x Imp y Then . . . Returns False only if “True Imp
False,” otherwise returns True.
(It is rarely used.)

Assignment Operators (there is only one assignment operator in VBA):

= Assignment e.g. x = y
where x is a variable or a writable property and y can be any
numeric, logical, string literal, constant, or expression.

x and y must be with the same data type.

Miscellaneous Operators:

& String
Concatenation

e.g. ‘‘Good’’ & ‘‘Morning’’ returns ‘‘Good
Morning’’

: Statement
Concatenation

e.g. For x = 1 to 10: y = y � x: Next x
where the two colon characters concatenate
three VBA statements into one single line.

_ Statement
Continuation

e.g. WorkBooks(‘‘MyBook.xls’’)_
.Worksheets(‘‘Sheet1’’)_
.Range(‘‘B10:B20’’)_
.Value ¼ 100
where the three underscore characters indicate
the VBA statement continues on the next lines.

' Remark or
Comment

e.g. Range("loan").Value = var1 'To assign the
loan value
where the single quote character indicates that
the content after the single quote contains
explanatory remarks or comments only. The
VBA compiler should ignore the comments.

AddressOf It is a unary operator that causes the address of the procedure it
precedes to be passed to an API procedure that expects a function
pointer at that position in the argument list. It can be used for the
integration with other Dynamic Load Libraries (DLLs) compiled
with Microsoft Visual C++ (or similar tools).
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APPENDIX E
Summary of VBA Functions

Date and Time Functions:
Date to string
conversion

Format FormatDateTime MonthName WeekdayName

Current date or time Date Now Time Timer
Date calculation DateAdd DateDiff
Date or time
generation

DateSerial DateValue TimeSerial TimeValue

Part of a date or
time

DatePart Day Hour Minute Month Second Weekday Year

Data Type Functions:
Data type CBool CByte CCur CDate CDbl CDec
conversion CInt CLng CSng CStr CVar CVErr
Data type IsArray IsDate IsEmpty IsError
information IsMissing IsNull IsNumeric IsObject

LBound RBound TypeName VarType

Directory and File
Functions:
Directory functions CurDir Dir
File attributes FileAttr FileDateTime FileLen GetAttr
File operations EOF FreeFile Input Loc LOF Seek Spc Tab

Financial Functions:
Depreciation
calculation

DDB SLN SYD

Investment
calculation

FV IPmt IRR MIRR NPer NPV Pmt PPmt PV Rate

Numeric to strings Format FormatCurrency FormatNumber FormatPercent
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Mathematical Functions:
General functions Exp Log Sqr
Numeric conversion Abs Fix Int Round Sgn
Trigonometric
functions

Atn Cos Sin Tan

Miscellaneous Functions:
ActiveX objects CreateObject GetObject
Array functions IsArray Array Filter Split
Execution CallByName Shell
Logical functions Choose IIf Switch
Random numbers Randomize Rnd
Registry
manipulation

DeleteSetting GetAllSettings GetSetting SaveSetting

Screen I/O InputBox MsgBox
System color code QBColor RGB
System information Environ

String Functions:
String creation Format Chr Hex Join Oct Space Str String
String comparison InStr InStrRev StrComp
String conversion Asc LCase Len StrConv UCase Val
String manipulation Left LTrim Mid Replace Right RTrim StrReverse Trim
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APPENDIX F
Summary of VBA Statements

The following table summarizes the VBA statements and their categories.
The statements with the underlined category are important for new learners.

Statement Category Description

AppActivate System Activates an application window.

Beep Miscellaneous Generates a beep sound.

Call Flow Control Invokes an internal Sub procedure or
a Function.

Call System Invokes an external procedure in a
dynamic-link library (DLL).

ChDir File Operation Changes the current directory
or folder.

ChDrive File Operation Changes the current drive.

Close File Operation Concludes input/output to an
open file.

Const Declaration Declares constants. Constants can
retain their values throughout the
execution of a program. Constants
can be public or private.

Date System Sets the current system date.

Declare System Used at module level to declare
reference to external procedures
(Sub or Function) in a dynamic-link
library (DLL).

(Continued )
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Statement Category Description

Deftype Declaration Used at module level to set the default
data type for variables according to
the names (not advised to use).

DeleteSetting System Deletes a section or key setting from
an application's entry in the
Windows registry.

Dim Declaration Declares variables and allocates
storage space.

Do {While j
Until} condition . . .
Loop
Do . . .

Loop {While j
Until} condition

Flow Control Conditionally repeats a block of
statements.
Uses Exit Do to exit a Do loop.

End Flow Control Ends a procedure or block; which
includes End (terminates execution
immediately—it closes any files and
clears variables), End Function,
End If, End Property, End Select,
End Sub, End Type, and End With.

Enum Declaration Declares a type for an enumeration.

Erase Assignment Reinitializes the elements of fixed-
sized arrays.

Error Error Handling Simulates the occurrence of an error.

Event Declaration Declares a user-defined event.

Exit Flow Control Exits a block of statements, which
includes Exit Do, Exit For, Exit
Function, Exit Property, and
Exit Sub.

FileCopy File Operation Copies a file.

For Each . . . Next Flow Control Repeats a group of statements
for each element in an array
or collection.
Uses Exit For to exit a For loop.

(Continued )
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For . . . Next Flow Control Repeats a group of statements a
specified number of times.
Uses Exit For to exit a For loop.

Function . . .
. . .
End Function

Declaration Declares the name, arguments and
code that form the body of a
function procedure.
Uses Exit Function to exit a function.

Get File Operation Reads data from an open file into
a variable.

GoSub label
. . .
label:
. . . Return

Flow Control Branches to and returns from a
subroutine within a procedure.
GoSub is not a well structured flow
control statement. If possible,
consider using other flow
control statements.

GoTo label
. . .
label: . . .

Flow Control Branches unconditionally to a
specified (labeled) line within a
procedure. GoTo is not a well
structured flow control statement. If
possible, consider using other flow
control statements.

If . . . Then . . . Else
If . . . Then
. . .
ElseIf . . . Then
. . .
Else
. . . End If

Flow Control Conditionally executes a group of
statements, depending on the
evaluated condition.

Implements Class Specifies an interface or class that will
be implemented in the class module
in which it appears.

Input # File Operation Reads data from an open sequential
file and assigns the data
to variables.

Kill File Operation Deletes files.

Let Assignment Assigns the value of an expression to
a variable or property. Explicit use
of the Let keyword is a matter of
style, but it is usually omitted.

(Continued )
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Statement Category Description

Line Input # File Operation Reads a single line from an open file
and assigns it to a string variable.

Load Class Loads an object into memory.

Lock File Operation Controls access by other processes to
all or part of a file opened using the
Open statement.

LSet Assignment Left aligns a string within a string
variable. LSet replaces any leftover
characters in the string variable
with spaces.

Mid Assignment Replaces a specified number of
characters in a string variable with
characters from another string. Use
the MidB statement with byte data
contained in a string.

MkDir File Operation Creates a new directory or folder.

Name File Operation Renames a disk file, directory,
or folder.

On Error GoTo label
. . .
label:
. . .
Resume [Next]

Error Handling Enables an error-handling routine and
specifies the location of the routine
within a procedure.
On Error GoTo 0—Disables any
enabled error handler.
On Error Resume Next—Defers
error trapping.

On . . . GoSub
On . . . GoTo

Flow Control Branches to one of several specified
(labeled) lines, depending on the
value of an expression.

Open File Operation Enables input/output to a file.

Option Base {0j1} Declaration Used at module level to declare the
default lower bound for array
subscripts. It is advisable to use
Option Base 0.

Option Compare Declaration Used at module level to declare the
default comparison method to use
when string data is compared.

(Continued )
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Option Explicit Declaration Used at module level to force explicit
declaration of all variables in
that module.

Option Private Declaration Prevents a module's contents from
being referenced outside its project.

Print # File Operation Writes display-formatted data to an
open file.

Private Declaration Used at module level to declare
private variables and allocate
storage space.

Property Get Class Declares the name, arguments, and
code that form the body of a
Property procedure, which gets the
value of a property.

Property Let Class Declares the name, arguments, and
code that form the body of a
Property Let procedure, which
assigns a value to a property.

Property Set Class Declares the name, arguments, and
code that form the body of a
Property procedure, which sets a
reference to an object.

Public Declaration Used at module level to declare
public variables and allocate
storage space.

Put File Operation Writes data from a variable to a
disk file.

RaiseEvent Class Fires an event declared at module
level within a class, form,
or document.

Randomize Miscellaneous Initializes the random-
number generator.

ReDim Declaration Used at procedure level to reallocate
storage space for dynamic
array variables.

Rem Miscellaneous Used to include explanatory remarks
in a program.

(Continued )
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Statement Category Description

Reset File Operation Closes all disk files opened using the
Open statement.

Resume Error Handling Resumes execution after an error-
handling routine is finished.
Resume—resumes with the error
statement.
Resume Next—resumes with the
statement immediately following the
error statement.

RmDir File Operation Removes an existing directory
or folder.

RSet Assignment Right aligns a string within a
string variable.

SaveSetting System Saves or creates an application entry
in the application's entry in the
Windows registry.

Seek File Operation Sets the position for the next read/
write operation within an open file.

Select Case . . .
Case . . .
Case Else . . .
End Select

Flow Control Conditionally executes one of several
groups of statements.

SendKeys System Sends one or more keystrokes to
the active window as if typed at
the keyboard.

Set Assignment Assigns an object reference to a
variable or property.

SetAttr File Operation Sets attribute information for a file.

Static Declaration Used at procedure level to
declare variables and allocate
storage space. Variables declared
with the Static statement retain
their values as long as the code
is running.

Stop Flow Control Suspends execution. (It doesn't close
any files or clear variables.)

(Continued )
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Sub
. . .
End Sub

Declaration Declares the name, arguments,
and code that form the body of
a Sub procedure.

Time System Sets the system time.

Type Declaration Used at module level to define a user-
defined data type containing one or
more elements.

Unload Class Removes an object from memory.

Unlock File Operation Controls access by other processes to
all or part of a file opened using the
Open statement.

While . . . Wend Flow Control Same as Do While . . . Loop.
(This is the old syntax of the Do
While . . . Loop.)

Width # File Operation Assigns an output line width to an
open file.

With . . .
. . .
End With

Miscellaneous Executes a series of statements on a
single object or a user-defined type.

Write # File Operation Writes data to an open file.

The following table explains the eight main categories of VBA statements.

Category of VBA
statements

Description

Assignment This category relates to the assignment of variables,
strings, arrays, and objects. It is remarkable that the
string-related assignment statements can be replaced
by the VBA string functions. The Let keyword is
optional and can be omitted in the assignment
statement. Erase is only for reinitializing the elements
of fixed-size arrays and releasing dynamic-array
storage space. The "Set'' statement, which assigns an
object reference to a variable or property, should be
used for object assignment.

(Continued )
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Category of VBA
statements

Description

Class This category relates to the object-oriented statements
for declaring classes, properties, interfaces, and
events, as well as the loading and unloading of
objects. Since the construction of user-defined classes
is an advanced topic for general users, it is not
covered in this book.

Declaration It is an important category, which relates to the
declaration of variables, procedures, enumerations,
types, arrays, and all Option statements.

Error Handling This category relates to the main error handling
statements.

File Operation File operation statements are not covered in this book.

Miscellaneous There are only four statements in this category:
Beep is used to generate a beep sound to alert a user.
Rem is used to include explanatory remarks and is
equivalent to the single quote (') command.
Randomize initializes the random-number generator
with an optional number argument.
With . . . End With lets an object or user-defined type
be specified once for a series of statements. With
statements make procedures run faster and eliminate
the repetitive typing of the object/type name inside the
With block.

Flow Control This is an important category, which relates to the
statements of program flow control. However, users
should avoid using the Goto or GoSub related
statements, because a program with many Goto/
GoSub statements is difficult to read and follow.

System The System category contains system-related
statements. Additional knowledge of system functions
and integration with external libraries is required to
understand the usage of the system statements.

(Continued )
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APPENDIX G
Excel Array Formula

The Excel array formula is a powerful feature that many users may not be
aware of. An array formula is an Excel formula that works with a series

of data values, including a range of cells, an array constant, a named range,
or a named array constant, rather than a single data value. The series of
data is treated as a two-dimensional array with the dimensions of rows and
columns. Effective use of array formulas can simplify some repetitive
formulas. Figure G.1 illustrates the use of array formulas in the ranges K2:
L6 and N2:O6.

The simple Excel formulas in the range E2:F6 are shown in the range
H2:I6. They are the simple calculations of the Sine function. We can use the
single array formula {¼SIN(B2:C6)} in the range K2:L6 to replace the 10
formulas used in the range E2:F6 and get the same result set. The curly
bracket enclosing the Excel formula indicates that the formulas in the range
are treated as an array formula. Any changes in the range B2:C6 can trigger
the automatic recalculation of the array formula for the range K2:L6, which
is equivalent to using multiple simple formulas. The array formula in
the range N2:O6 uses an array constant as the argument for the Sine func-
tion, instead of referring to the values in the range B2:C6. The array
constant should be enclosed within the curly bracket. Columns in the
array constant are delimited by commas, for example {01, 0.2}. Rows in the

FIGURE G.1 Sample array formulas.
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array constant are delimited by semi-colons, for example {0.1; 0.3; 0.5; 0.7;
0.9} represents an array of five rows in one column. Columns are specified
with each row, for example {0.1, 0.2; 0.3, 0.4; 0.5, 0.6; 0.7, 0.8; 0.9, 1}
represents an array of five rows in two columns. Users may name an array
constant and use the named array constant in array formulas, which is
similar to the usage of named cells or named ranges.

An array formula can perform multiple and iterative calculations based
on the number of items in an array. The operation is similar to an automati-
cally established loop of ‘‘For each item in array . . . Next’’ inside an array
formula. There are two common usages of array formulas. First, as demon-
strated in the previous example, the array formula can return an array of
values as the result set and display the result set in multiple cells accord-
ingly. Second, there are some functions, typically using SUM, AVERAGE,
or COUNT, that work with an array or series of data, aggregate them, and
return a single aggregated value to a single cell. We can apply an array formula
to a single cell with those aggregation functions. In this type of single-cell
array formula, the result calculated from the arrays is just a single value.
The following example illustrates the usage of both multi-cell and single-cell
array formulas (see Figure G.2). Consider there are two columns of data.
Column one contains a list of prices stored in the range A2:A6 and column
two contains the corresponding quantities of item sold stored in the range
B2:B6. To calculate the item total or row total, we generally multiply the
first price with the first quantity (A2�B2) and then copy the formula into all
the rest of the rows as shown in column C. The total amount in C7 is equal
to the sum of all item totals, in which the formula is simply ¼SUM(C2:C6).

Alternatively, you can use multi-cell array formulas to calculate the
item totals by selecting D2:D6, entering the formula ¼A2:A6�B2:B6,
then pressing ControlþShiftþEnter. If you want to alter the multi-cell array
formula, you must select the entire range of the array formula again so
that you may apply changes to the range. The individual cells within an
array formula are protected against modification. To calculate the sum
of the price and quantity pair products, you can use a single-cell array
formula by entering the formula ¼SUM(A2:A6�B2:B6) in cell D7, then
pressing ControlþShiftþEnter. You may notice a curly bracket is added
automatically to illustrate the entered formula is treated as an array for-
mula (see Figure G.3).

The single-cell array formula {¼SUM(A2:A6�B2:B6)} indeed calculates
the result in a single step only without the need to calculate each individual
result ahead. The formula is actually equivalent to ‘‘¼SUM(A2�B2, A3�B3,
A4�B4, A5�B5, A6�B6).’’ The single-step operation of the single-cell array
formula is equivalent to iterating the calculation of each item of the arrays
in the array formula, saving the calculated values in some temporary
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FIGURE G.2 Use of array formulas.
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memory, and calculating the sum of the values stored in the memory. You
can use named ranges and named array constants in array formulas to make
them more readable and meaningful. Let’s name A2:A6 price and B2:B6
quantity. Then change the multi-cell array formulas in the range D2:D6
to ¼{price�quantity} and the single-cell array formula in D7 to ¼SUM
(price�quantity). You will get the same results as in Figure G.3.

Although both approaches can achieve the same results, array formulas
have both benefits and drawbacks. The advantages and disadvantages of
using array formulas can be summarized in the following points:

Advantages of using array formulas:

Consistency—If you click any of the cells within a multi-cell array
formula, you see the same formula. That consistency can help
ensure greater accuracy.

Safety—You cannot overwrite part of a multi-cell array formula. You
have to either select the entire range of cells and change the formula
for the entire array, or leave it as is.

Simplicity—A single-cell array formula can be equivalent to several
intermediate formulas.

Disadvantages of using array formulas:

Error-prone—If you forget to use ControlþShiftþEnter for array
formulas, Excel will miscalculate. Moreover, debugging an array
formula is difficult.

Complexity—Array formulas are powerful, but they are one of the least
documented features of Excel. Other users may not understand
your array formulas. If other people need to modify your work-
books, you should include enough documentation of your array
formulas and make sure they understand how to change them.

FIGURE G.3 Array formulas with named ranges.
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Now, let’s use the following four examples to illustrate the powerful
usage of array formulas:

Finding the top and bottom numbers of a range: In the worksheet
shown in Figure G.4, there are three sets of quantities listed in column A, B,
and C. To find the top five numbers inside the range A2:C9 and display the
answers vertically, we need to apply an array formula with a range and an
array constant as the arguments. Let us select the vertical range E2:E6 and
enter the array formula {¼LARGE(A2:C9,{1;2;3;4;5})} into the range.
Remember to press ControlþShiftþEnter in order to apply the array formula
into the range. The outer curly bracket is added automatically to enclose the
array formula. The top five numbers will be displayed vertically. Similarly,
we may find the bottom three numbers in the range, but display the answers
horizontally. Let us select the horizontal range E9:G9 and enter the array
formula {¼SMALL(A2:C9,{1,2,3})} into the range. The bottom three num-
bers will be displayed horizontally. You may notice that the delimiters used
by the array constants are determined by the expected direction of the
displayed result. A comma is used for separating columns and displaying
the results horizontally, while a semi-colon is used for separating rows and
displaying the results vertically.

Using the IF function for conditional aggregation: In the worksheet
shown in Figure G.5, a simple array formula {¼AVERAGE (B2:B9 – C2:
C9)} is used to calculate the average difference of all rows, which is equiva-
lent to the average difference between the list price of column B and the sale

FIGURE G.4 Use of array formulas with the Small and Large functions.
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price of column C. The array formula is applied in the cell E3 and the calcu-
lated value is 11.5. Moreover, we may use the IF function to apply some
conditions to the calculation. Here, we calculate the average difference of
the category CX only. In the cell E6, the single-cell array formula is
{¼AVERAGE(IF(A2:A9¼’’CX’’,B2:B9 – C2:C9))} and the calculated value
is 17.5 (see Figure G.5). Excel is smart enough to iterate the conditions
specified inside the IF function of the array formula in order to compete
the calculation.

Using multiple IF functions for conditional aggregation: This example
applies more complicated conditions with several IF functions. Let’s say we
only want to calculate the average difference of the category CX and the
difference should be more than eight. You will probably consider using the
IF function with the AND function in the array function as shown in cell E3
of Figure G.6. The cell F3 illustrates the array formula applied in the cell E3.
The array formula will always return 0. This is because both the AND func-
tion and the OR function cannot work properly in array formulas and the
input is treated as a series of arguments instead of arrays. This also happens
in other aggregation functions, such as SUM, AVERAGE, and COUNT.
Thus, you need to consider an alternative approach. In this example, we use
multiple IF functions to work for the AND operation. In the cell E7, we use
two IF functions in the array formula {¼AVERAGE(IF(A2:A9¼"CX",IF
((B2:B9-C2:C9)>8,B2:B9-C2:C9)))} in order to handle the AND condition.
Then you can get the expected answer 21.33.

Using the AND function for a single-cell array formula: As explained,
the AND function can accept a series of arguments, which are similar to

FIGURE G.5 Use of array formulas with the Average function.
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those aggregation functions. Figure G.7 illustrates the possible usage of the
AND function in the single-cell array formula, similar to the usage of the
aggregation functions. The example intends to check the presence of speci-
fied values in E2:F6 (1 to 10) against the range A1:C6. True should be
returned only if the values in the range A1:C6 cover all numbers from 1 to 10.
The array formula used in F8 is {¼AND(COUNTIF(A1:C6,E2:F6))}. Since
the first argument of COUNTIF is a range, A1:C6 will be considered a fixed
argument for all iterations of the array formula. The second argument of
COUNTIF is a single value that specifies the criteria. Thus, each item in the

FIGURE G.6 Use of array formulas with the If function.

FIGURE G.7 Using the AND function for a single-cell array formula.
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range E2:F6 will be considered a single value of the array during the itera-
tions in the array formula. The array formula will iterate from 1 to 10 to
check against the existence of the specified number in the range A1:C6.
Countif will produce 0 (i.e. False) if the specified number cannot be found
inside A1:C6. Otherwise, the number of occurrences of the specified
number in A1:C6 will be returned. Any positive number will be considered
True. Only if all values returned from the iterations of COUNTIF are
positive integers, the AND function will produce True.
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