Product Design Specification for an Autonomous Robot

For: Axiom Electronics

Due 2/4/2014

By Team 1:
Tyler Cone
Kenneth Hangartner
Ngan Nguyen
Hoang Huy
Richard Eisenblatter

Portland State University

Contents

Introduction to the Project	2
Purpose of this PDS Document	
Mission Statement	
Project Plan	2
dentification of Customers	
Customer Interview and Feedback Summary	4
PDS Table	4
House of Quality	6
Conclusion	7
Appendix 1 – Gantt Chart	8

Introduction to the Project

Axiom Electronics (AE) is a leading high end circuit board production company. Part of their employee's current tasks is to maneuver circuit board loaded totes around their factory floor from station to station. The company has determined that the man power and the time spent moving their product around their floor is increasing their overhead and reducing the company's net gain. Engineers at Axiom have decided that the company would like to purchase an autonomous robot capable of carrying eighty pounds and moving at a rate of fifty feet per minute. However, the cost of the robot technology that meets AE's criteria lies above their preferred price range. Axiom Electronics expressed interest in a Portland State University capstone team to design, build, program, and implement an autonomous robot to their production floor by June 16th 2014.

Purpose of this PDS Document

This Product Design Specification document includes a project mission statement which summarizes what needs to be designed, customer base, expected completion date, and robot performance requirements and constraints. Furthermore, it contains a Top-level project plan which outlines major design milestones based on design research and discussion in design reviews, prototyping and evaluation. Attachments to this document contain a more in-depth project plan than the text body. Included is a section on identification of customers as well as their feedback and the results of interviews. The PDS table contains the customer needs, priority, engineering metrics, targets, basis for target selection, and verification methods. The House of quality connects important customer requirements with measurable characteristics of the product. This document concludes with a summary of the issues addressed and some of the important specifications and obstacles needed to be overcome.

Mission Statement

To develop an autonomous robot that is capable of transporting electrical circuit boards inside Axiom Electronics' manufacturing site. The robot must carry at least 80 pounds at a speed of 50 feet per min. Its loading platform will consist of two 22.5"x17.5" rectangular bins for holding the components needed to be moved. The robot must travel between specified point while avoiding humans and other various obstacles.

Project Plan

The plan of this project is to design and manufacture a tote transportation robot that has the ability of self-navigation inside Axiom's manufacturing floor. The major design milestones for the project is listed below. A Gantt chart is provided in appendix 1 It will be updated as the project progresses. In addition, milestone deadlines are subject to change depends on the project requirements. The following table shows the major milestones along with the related dates.

TASKS	START DATE	END DATE	DEADLINE
WEEKLY MEETING			
Weekly Progress Report (to advisors and Axiom contact)	1/6/2014	6/2/2014	
PRODUCT DESIGN SPECIFICATIONS			
PDS Document	1/6/2014	1/25/2014	2/4/2014
EXTERNAL AND INTERNAL RESEARCH			
Brainstorming	1/13/2014	1/31/2014	
Study existing solutions	1/20/2014	2/6/2014	
CONCEPT EVALUATION AND SELECTION			
Initial Design	2/3/2014	2/27/2014	
Selection of Mechanical Design parts	2/10/2014	3/7/2014	
Selection of Electrical Design parts	2/10/2014	3/7/2014	
Selection of Control Design parts (microcontroller, software)	2/10/2014	3/7/2014	
Progress Report	2/10/2014	2/27/2014	3/13/2014
Progress Report Presentation			2/25/2014
DETAIL DESIGN			
Model the design on computer	2/24/2014	4/3/2014	
PROTOTYPE AND TEST			
Manufacture	3/10/2014	4/24/2014	
Test	3/17/2014	5/3/2014	
Redesign as needed	3/31/2014	5/10/2014	
DOCUMENTATION			
Deliver product to customer	5/5/2014	5/29/2014	
Final Report	5/12/2014	5/29/2014	
Final Presentation	6/2/2014	6/6/2014	6/5/2014

Identification of Customers

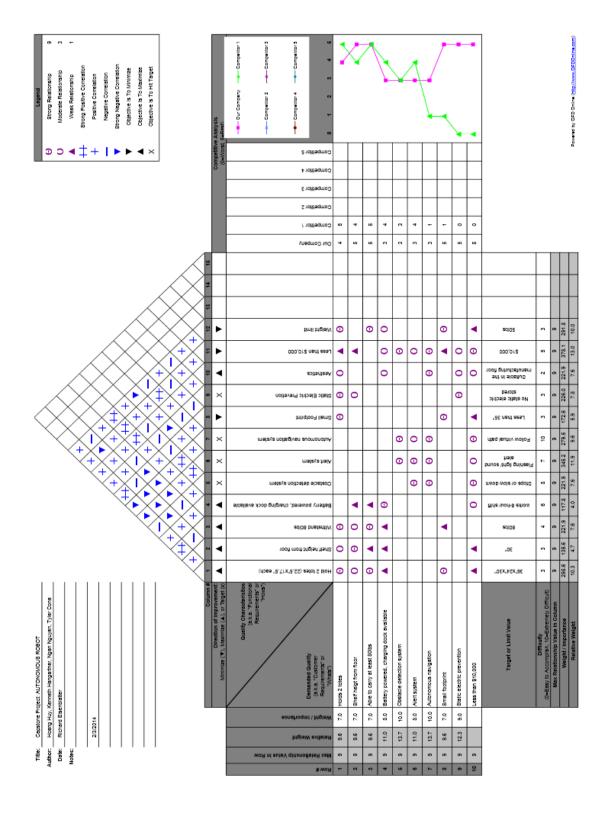
Customers are defined as either a person, group, or entity that sets requirements for a project. They have been identified by the Capstone team as:

- 1. Axiom Electronics (AE) is the main customer and most performance metrics will be done for them.
- 2. Dr Yi is the professor who will be grading our progress. Most documentation will be oriented towards him.
- 3. The Capstone Team The Capstone team is a customer since they will be the ones working on the project and assembling it.

Customer Interview and Feedback Summary

All Axiom Electronics requests were made in writing or vocalized in the initial meeting with our contact, Dolly Blanda. The performance requirements can be found in the Robot Specifications page they provided us. Work for Dr. Yi is done per instructions given in ME-492 lecture or Syllabus. Project Requirements set by the Capstone Team are self-imposed metrics that were decided on to make assembly easier.

PDS Table

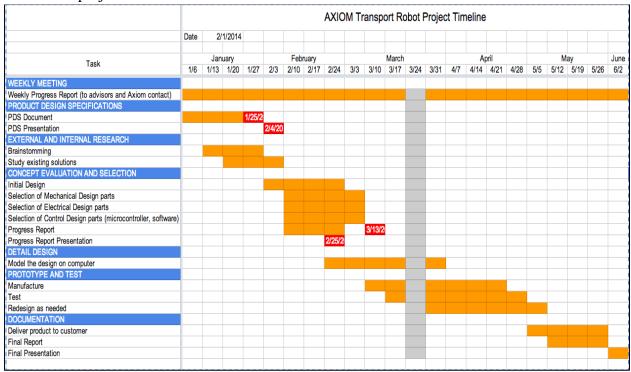

The following is the Product Design Specification for this product. It has been sorted by priority from highest priority to lowest priority.

Criteria	Requirement	Customer	Metrics	Target	Basis	Verification	Priority
Environment (navigation)	Ability to Navigate around obstacles	Axiom Electronics	Collisions and accidents	No Collisions or accidents	Customer Interview	Testing and Validation	High
Processes	Ensure that the process is correct	Capstone Group	Not Applicable	Not Applicable	Capstone Decision	Testing and Validation	High
Laws, Codes, and Standards	The robot be legal	State	Doesn't violate laws	Zero infractions	Regulations	Careful study	High
Documentation (customer)	A User's Manual	Axiom Electronics	Instructions	Well Written	Capstone Decision	Careful Validation	High
Time Scale	Finish work based on the timeline given	Capstone Group	Date	Finish before June 10.	Project Requirements	Gantt Chart	High
Performance (battery)	The battery lasts for a work period	Axiom Electronics	hours	8	Customer Interview	Testing	High

Criteria	Requirement	Customer	Metrics	Target	Basis	Verification	Priority
Performance (speed)	Speed Requirements	Axiom Electronics	inches per minute	50	Customer Interview	Testing	High
Testing	The robot works to specifications	Capstone Group	Robot	Carries weight	Capstone Decision	Testing and Validation	High
Safety	Does not harm anyone	Axiom Electronics	Injuries	No Injuries	Customer Interview	Testing and Validation	High
Size and Shape	Follow prescribed dimensions	Axiom Electronics	Inch	36" x 24" x 30"	Customer Interview	Measurement and Design	High
Retail and production costs	Remain within Budget	Axiom Electronics	Dollars	\$10,000	Customer Interview	Budget	High
Environment (floor)	Ability to work in factory setting	Axiom Electronics	Have grip on floor surface	Be able to turn & stop	Customer Interview	Testing and Validation	Medium
Legal	Not conflict with existing patents	Axiom Electronics	NA	NA	Capstone Decision	Careful Study	Medium
Documentation (university)	PDS Document, House of Quality	Capstone Group, Dr. Yi	Reports	2	Project Requirements	Not Applicable	Medium
Quality and Reliability	Fulfills product expectations	Capstone Group	Not Applicable	Not Applicable	Capstone Decision	Testing	Medium
Maintenance	Should be easy to maintained	Axiom Electronics	times per year	2	Customer Interview	Checking performance twice a year	Medium
Materials	Be easy to assembly	Capstone Group	Not Applicable	Not Applicable	Capstone Decision	Testing and Validation	Low
Weight	Be transportable	Capstone Group	Pounds	Less than 50	Capstone Decision	Testing	Low
Aesthetics	Worthy of showcasing	Axiom Electronics	Looks Good	Customer Feedback	Capstone Decision	Visual Inspection	Low
Manufacturing Facility	A place with enough tools and machines to manufacture	Capstone Group	A clean Room	The capstone lab	Capstone Decision	Visual Inspection	Low

House of Quality

The following is the house of quality for the Autonomous Robot. The highest quality parameters are shown below, along with some of the main competitors.



Conclusion

This project consists of many complex issues including design of the robot chassis, selection of the sensors, motors, other important components, and programming the microcontrollers. Initially, the team's main concern was about the programming of the robot since few members have any programming expertise. However, we have since been assigned a graduate student to handle the various programming challenges ahead. Our customer is helpful both in design considerations as well as providing any supplies/materials needed. We are currently in the brainstorming and concept design stage, and are on track with our project timeline. We are optimistic that we can complete this project by our deadline.

Appendix 1 – Gantt Chart

Here is the project timeline for the robot.

