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Preface

This volume contains the papers accepted at TRI 2015, the Second Workshop on
Interfaces between Multiagent Systems, Machine Learning and Complex Systems
held on July 26 2015 in Buenos Aires.

This second edition of the TRI workshop was co-located with the Interna-
tional Joint Conference on Artificial Intelligence 2015 (IJCAI-15).

The TRI workshop series aims at investigating the existing and further syn-
ergies between the Multi-agent Systems (MAS), Machine Learning (ML) and
Complex System (CS) disciplines. MAS can efficiently manage domains with
distributed data and expertise. Also, they have the ability to solve large and com-
plex problems. The expertise of each agent can focus on specific computational
intelligence models such as learning classifiers, evolutionary algorithms, swarm
intelligence techniques, or other specific optimization/learning algorithms. Ap-
plications range from bioinformatics and traffic networks to information retrieval
and text classification. Broadly speaking, the area of CS is grounded on similar
ideas: complex systems investigate how relationships between components of a
system give rise to emerging collective behaviors and how the system as a whole
and its components interact with an environment. ML has being used both in
MAS as well as in CS when the agents or components of the system need to learn
to make decisions. Moreover, since MAS and CS are becoming large and more
and more complex, ML is key to improve performance. Here, not only the tradi-
tionally applied method of reinforcement learning shall be studied, but there is
potential for using supervised and non-supervised ML techniques as well. Since
these synergies among the three areas are not well studied, we see room for such
a workshop where researchers and practitioners from the three areas could come
together, as currently these three communities do not meet often.

The main goals of the TRI 2015 workshop series are:

1. To bring together researchers working on Multi-agent Systems, Machine
Learning, and Complex Systems

2. To explore the bridges among these disciplines in order to create new holistic
knowledge from their interactions.

3. To produce contributions that allow the research community to create new
challenging results and real world applications.

In particular, this workshop edition aimed at addressing the following topics:

– Adaptation and distributed learning of MAS in complex networks
– MAS Adaptability to cooperate and collaborate in the Internet of Things
– MAS and learning applied to Big Data
– Adaptive agents and MAS applied to Cloud Computing
– Emergent behavior in adaptive multi-agent systems
– Adaptive agents and MAS for self-organizing complex systems
– Bio-inspired multi-agent systems
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– MAS and learning applied to Bioinformatics
– Adaptive MAS for simulating real world complex scenarios
– Adaptive agents and e-commerce: negotiation, trust models, reputation, co-

ordination, etc.
– Game theoretical analysis of adaptive multi-agent systems over complex net-

works
– Adaptive MAS in Economics: microeconomics, macroeconomics, global mar-

kets, etc.
– Adaptive Multi-agent Systems for Smart Grids and Smart Cities
– Adaptive MAS for Urban Transport Control and Transportation
– Application of supervised and non-supervised Machine Learning in MAS
– Application of supervised and non-supervised Machine Learning in complex

systems
– Learning for mechanism design in complex systems
– Community detection in MAS
– Learning in the context of social networks
– Microscopic and agent-based simulation of complex systems (e.g. using cel-

lular automata and other techniques)

This volume includes the six papers accepted for oral presentation. Each
submission was reviewed by at least three members of the program committee.

The program also includes two invited talks given by Prof. Sarvapali Ram-
churn (University of Southampton) and Dr. Yair Zick (Carnegie Mellon).

The organising committee would like to thank all the authors of submitted
papers for their submissions and all the reviewers for the quality of their reviews.

We would also like to thank the IJCAI 2015 organisers for hosting the TRI
workshop, and particularly Jerôme Lang, the IJCAI 2015 workshop chair.

July 8, 2015
Vigo

Ana L. C. Bazzan
Juan Carlos Burguillo

Juan Antonio Rodriguez
Aguilar
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Artificial Prediction Markets for Online Prediction of

Continuous Variables

Fatemeh Jahedpari1, Marina De Vos1, Sattar Hashemi2, Benjamin Hirsch3, Julian

Padget1

1 Department of Computer Science, University of Bath, UK
2 Computer Science and Engineering Department, Shiraz University, Iran

3 EBTIC, Khalifa University, United Arab Emirates

Abstract. We propose the Artificial Continuous Prediction Market (ACPM) as a

means to predict a continuous real value, by integrating a range of data sources

and aggregating the results of different machine learning (ML) algorithms. ACPM

adapts the concept of the (physical) prediction market to address the prediction of

real values instead of discrete events. Each ACPM participant has a data source,

a ML algorithm and a local decision-making procedure that determines what to

bid on what value. The contributions of ACPM are: (i) adaptation to changes in

data quality by the use of learning in: (a) the market, which weights each market

participant to adjust the influence of each on the market prediction and (b) the

participants, which use a Q-learning based trading strategy to incorporate the

market prediction into their subsequent predictions, (ii) resilience to a changing

population of low- and high-performing participants. We demonstrate the effec-

tiveness of ACPM by application to an influenza-like illnesses data set, showing

ACPM out-performs a range of well-known regression models and is resilient to

variation in data source quality.

1 Introduction

Physical world prediction markets aim to utilise the aggregated “wisdom of the crowd”

to predict the outcome of a future event [13], such as who will win an election. In these

markets, participants buy and sell instruments, called securities, whose payoffs are tied

to the occurrence of the specified future event. A prediction market is run by a market-

maker who interacts with traders to buy and sell the securities. Artificial Continuous

Prediction Market (ACPM) adapts the concept for the purpose of predicting a real value

in a continuous domain. Our motivation in developing ACPM is to use online learning

in situations in which it is desirable to integrate data dynamically from a variety of

sources whose data quality is (time-)variable, using a variety of analysis algorithms.

A prediction market is created for each prediction that a participant can make based

on the data in their streams. All the data needed for this, including the correct prediction,

is referred to as record in accordance with the ML literature. The participants, which we

refer to as agents, predict the value of the record using data from their assigned source

and their analysis algorithm. Subsequently, the market maker calculates the market pre-

diction by combining all the individual predictions. Once the true value of the record is

known, the market maker computes the reward for each agent and informs the agents
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about the outcome so they can update their analysis algorithm and their trading strategy,

with the aim of improving future market predictions.

We use a series of experiments over an influenza-Like Illness (ILI) dataset to show

how ACPM can effectively be applied to the problem of syndromic surveillance. The

main objective and challenge of a syndromic surveillance system is the earliest possible

detection of a disease outbreak within a population. Much research has been done to

discover potential data sources and alternative analysis algorithms for each data source

in the syndromic surveillance domain [2]. An issue with syndromic surveillance data

sources is that data quality fluctuates over time. For example, Google Flu Trends may

show false alerts as a result of a sudden increase in ILI related queries due to unusual

events, such as a drug recall for a popular cold or flu remedy [5]. Therefore, integrat-

ing available data sources according to an adaptive weighting scheme over time seems

necessary. In addition, given that the quality of data changes over time, and the most

suitable algorithm for a given data source is not necessarily known a priori, a reason-

able response is to analyse each data source with a variety of algorithms and integrate

their results.

In the experiments, we predict the level of ILI activity for a specific date in a cer-

tain region using ACPM to integrate the various data sources, analysed by different

algorithms. We show that the system performs at least as well as all the market partic-

ipants and adding learning to the agents’ trading strategy improves market prediction.

The results also highlight that ACPM outperforms well-known regression models and

ensembles, that are commonly used for this type of reasoning. The rest of the paper is

organised as follows. Section 2 explains the details of ACPM. Section 3 evaluates our

model and analyses the results. Section 4 covers related work and concludes.

2 ACPM Description

2.1 Overview

ACPM is an online machine learning technique which adapts the concept of a (physi-

cal) prediction market to populate it with artificial agents as market participants4. We

assume participants are benevolent and self-interest is not an issue, which means they

are not competitive and they work together to get the best outcome of the system. Each

participating agent receives information from its designated data source and analyses its

data with its given analysis algorithm. Each ACPM also includes a market maker who

runs the market, deals with agent transactions and establishes the market prediction.

The market maker instantiates a prediction market for each record with the purpose

of predicting its true value. Each market comprises a number of rounds, where each

agent sends its bids to the market maker. Each bid comprises: (i) a prediction value

which, in our case study would be the number of cases of flu in the USA for a certain

week of the year and (ii) the amount the agent is betting on its prediction. Each agent,

using the data for that record and its accumulated knowledge, analyses the data and

predicts the true value of the record. Then, based on its trading strategy and its (avail-

able) capital, it determines how much to invest. Once a round is completed, the market

4 The terms participating agent and agent are used interchangeably.
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maker announces the market prediction based on bids received and an agent can use this

information to update its bid via its trading strategy in subsequent rounds. The market

maker then seals the bid in the last round, i.e deducts capital from the agent according

to its bid, rewards agents and reports the final market prediction. In this way, the period

between the first round and the last round can be used to train the agents to increase

their prediction accuracy based on the integrated predictions of other participants.

Once the market is over, agents are notified of the correct answer (the true value of

the record) and receive an amount of revenue as determined by a reward function. Each

agent learns from each market, based on the revenue they receive and the losses they

make, in addition to finding out the correct answer. Consequently, they can, if desired,

update their strategy, analysis algorithm and beliefs for future markets. Agents learn by

updating their analysis algorithm with the correct answer for the record and updating

their trading strategy based on how much they could earn if behaving differently (as ex-

plained in Section 2.5). The market maker learns indirectly through updating the agents’

capital. Their capitals determine their bidding power and hence the weight of their pre-

diction. The market maker integrates agent predictions using an integration function

and rewards agents based on a reward function. In our continuous variable prediction

setting, the existing discrete existing Market Scoring Rule (MSR) technique [6] is not

suitable for our system. In the next sections, we propose our continuous versions.

2.2 Integration Function

At the end of each round, the market maker uses an integration function to decide the

market prediction, based on the received bids. We use the following formula:

Market Prediction =

∑
n

b=1
Predictionb ∗ Investb∑

n

b=1
Investb

(1)

where n is the number of bids

This formula assigns more weight to predictions backed by higher investments. Par-

ticipants who accrue more capital, due to their success in earlier markets, have the

opportunity to invest more and so get greater influence in the market.

2.3 Reward Function

At the last round, agents are notified of the correct answer and receive revenue as deter-

mined by a reward function. These revenues are added to their capital. The reward an

agent receives is inversely proportional to the agent’s prediction error, thus incentivis-

ing accurate prediction, making our reward function incentive compatible. Equation 2

describes a family of reward functions, where different values of P ∈ R
+, β ∈ R

+

and C ∈ R
+ result in the curves shown in Figure 1, in which P ≥ 1 generates con-

vex functions (above diagonal) and 0 < P < 1 generates concave functions (below

diagonal).

Reward = max(β ∗
−1

CP
∗ errorP + β, 0) (2)
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where error = abs(TrueV alue − AgentPrediction). The actual revenue accrued

by an agent is the product of its reward and the amount invested on its prediction.

Thus, the more an agent invests, the more revenue it receives. Consequently, agents with

higher confidence are incentivised to invest more and hence have a greater influence on

the market. In addition, the agents with low capital (indicating low past performance)

cannot invest and influence the market prediction as much as high performing agents,

who acquire more capital over time.

Coefficient C determines the reward cut-off, above which agents receive zero. As

can be seen in Figure 1, the reward function is flat and equal to zero after the cut-off

(C = 1). The slope of the reward function differentiates between the participating agent

rewards in proportion to the error in their predictions. Increasing C, while keeping the

other parameters fixed, decreases the slope of the reward function, and consequently

decreases differentiation. Conversely, increasing C increases the number of agents that

receive rewards. An agent’s error is computed relative to the correct answer for a given

market. As the range of an agent’s error may change from market to market (as they

learn) and from domain to domain, the cut off cannot be a fixed value, but rather be cal-

culated for each market so that a specific percentage of agents receive positive rewards.

For example, C can be calculated for each market to be equal to the maximum error of

all agents in that market. Intuitively, a certain amount of differentiation is desirable and

lower or higher values of that could harm the performance of the system. For example,

high differentiation means that a few high quality agents lead the market and predic-

tions of the majority of agents, including good quality ones, can be under-weighted. On

the other hand, low differentiation narrows the gap between the influence of high and

low quality agents, so that insufficient account is taken of the more accurate agents.

Coefficients P and β shrink (or enlarge) the function horizontally and vertically

respectively. Increasing P increases the degree of curvature of the reward function,

and consequently, decreases the differentiation among agents especially those with low

errors. Increasing β has the effect of a linear increase in both agent revenue and in

differentiation between participants. With β = 1, an agent loses a fraction of its money

according to the error they make and only in the best case, where the error is zero, do

they neither earn nor lose. This value disincentives participation, since return is less
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than investment and the steady depletion of capital leads to their holding very little in

later markets. The default values of P=1 and β = 2 generate a simple linear reward

function which has the property of being incentive compatible.

2.4 Rate Per Transaction

The system has two other parameters: Maximum Rate Per Transaction (MaxRPT) and

Minimum Rate Per Transaction (MinRPT), which specify the maximum and minimum

percentage of the capital that each participant can invest. The purpose of the MaxRPT

parameter is to prevent unsuccessful agents bankrupting themselves and being elimi-

nated from the market. It is not desirable to reduce the population, because that leads

to the loss of a data feed or the loss of an analysis algorithm: while qualitatively low

at some point, the combination might improve again over time. The MaxRPT param-

eter can be used to tune system response to the degree of environment volatility. For

example, in situations where the quality of agents’ data fluctuates frequently, MaxRPT

should be high so that an affluent agent loses most of its capital if its error is high for a

few successive markets. On the other hand, MaxRPT should be low in situations where

we expect that the quality of good agents remains good even though they may make

occasional mistakes. If MaxRPT < 1, an agent’s capital may get very small but is

not used up entirely. Hence it can invest and recover at any time, albeit slowly!. The

purpose of MinRPT is to prevent the system from being unresponsive in cases where

none of the participating agents have enough incentive to invest.

2.5 Agent Trading Strategy

As mentioned earlier, agents can use the market prediction, received from the market

maker at the end of each round, to update their bids for subsequent rounds. In this paper,

we examine two strategies: a constant one and a Q-Learning based one.

Constant Strategy: Agents simply dedicate a fixed ratio of their capital to bid in each

round. In this paper, this percentage is equal to MaxRPT. This naı̈ve strategy ignores

the advantage of updating the prediction on the basis of the market prediction of the

previous round.

Q-Learning Trading Strategy: In reinforcement learning, agents explore their environ-

ment and learn to choose actions that maximise their rewards. Agents are seen as finite

state machines. They receive a reward for the action they take to reach another state. In

the Q-learning algorithm [17], agents have a state action value function Q(s, a) which

estimates the expected reward for performing an action a in state s. A greedy policy

suggests choosing the action that gives the highest expected reward in the given state.

In our Q-learning based trading strategy, agents recognise their state by (i) measur-

ing the difference between their prediction and the market prediction of the previous

round, (ii) the current round number. Here, we have just two actions. The difference

between these two actions is whether the agent use the market prediction as another

source of information or not to change its prediction. While the first action (PreservePr)

suggests the agent ignores the market prediction of the previous round, the second one
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(ChangePr) suggests the agent shifts its prediction linearly by a percentage, called δ,

towards the market prediction.

In both actions, the agent uses a simple betting strategy which assumes that the

correct answer is equal to the market prediction of the previous round. Based on this

assumption and its prediction value, as calculated by its analysis algorithm, the agent

estimates its error which is absolute difference of agent prediction and market predic-

tion. Then, the agent uses the estimated error and the reward function setting, which

was used by the market maker in the previous market, to estimate its expected reward.

If the expected reward is less than one, which means that the agent earns less than what

it invests, then the betting strategy suggests the agent invests MinRPT percentage of its

capital, and otherwise MaxRPT of the capital5.

Agents update their state action value function once the market is over and the

correct answer is revealed. Each agent revises all States s, which it was confronted with

during the market period. The agent assigns the state action values for each Action a

in State s equal to the the amount of net revenue – its revenue minus the investment

amount – it could obtain by performing Action a in State s. The agent also calculates

and stores what was the best value of δ for state s. Formula 3 linearly calculates the

percentage the agent should shift its prediction towards the market prediction, with a

limit of 100 percent.

δ = min(abs(
correct answer − agent prediction

market prediction − agent prediction
), 1) ∗ 100% (3)

In the first market, as the agent’s knowledge is void, the agent just bids the MinRPT

percentage of its capital. In all other markets, the agents have no information about the

market prediction in the first round, therefore they use the constant strategy. In all other

rounds, agents use a greedy strategy which means they refer to their state action value

function and choose the action with the highest state action value.

3 Evaluation

We evaluate the performance of ACPM by applying it to syndromic surveillance in

the USA. In this context, the system predicts the disease activity level of influenza-

like illnesses (ILI) in a given week in the whole of the USA using publicly available

data sources. The data used here contains more than 100 real data streams covering the

period 4th January 2004 to 27th April 2014, from a variety of sources including Google

Flu Trends (GFT), Centers for Disease Control and Prevention (CDC), Google Trend.

We have used weekly Google Flu Prediction for different areas of the United States

including states, cities and regions for which GFT data is available since 2004. Google

Trend statistics for different terms such as “flu”, “fever cough sore throat”, “flu symp-

toms” and CDC statistics6 including CDC ILI rate for different age groups, USA na-

5 Two other models of betting strategy were tried, but this one both maximises system perfor-

mance and agent utility.
6 CDC reports ILI rates with a two-week time lag. Therefore, in order to align CDC data with

the other data streams used, we take the ILI rate from two weeks earlier for each week of the

experiment period.
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tional ILI rate, total number of patients and total number of outpatient healthcare providers

in ILI network are used7. The ACPM prediction is compared against the CDC ILI rate.

We refer to data streams as having low, medium or high quality, based on their mean

absolute error (MAE) as reported by several regression models. These categories are not

absolute judgements, but relative ones confirmed through the use of several classifiers

in order to cluster the data streams according to their mean absolute error (MAE) and

hence identify threshold values that fall between the clusters.

3.1 Hypotheses

Using two sets of experiments, we evaluate ACPM against the following hypotheses:

H1: ACPM performance is higher than its best performing agent.

H2: ACPM is resilient to different proportions of low- and high-performing partici-

pants.

H3: Adopting the Q-learning trading strategy, compared to the constant strategy, im-

proves ACPM performance.

H4: The Q-learning trading strategy encourages low quality agents to change their pre-

diction based on aggregated prediction of other agents.

H5: The Q-learning trading strategy encourages high quality agents to ignore market

prediction as another source of information.

H6: ACPM outperforms well-known regression models

and ensembles.

H7: Adopting Q-learning based trading strategy improves each participating agent’s

performance.

3.2 Set 1

The first group of experiments explores the impact of data quality on ACPM’s predictive

capability.

Settings For these experiments we look at four different market types (Table 1) with

different proportions of participant data stream quality. Market type 1 comprises only

agents with medium quality data. In order to investigate how the presence of a small

number of low and high quality agents affect ACPM performance, market type 2 com-

prises mostly medium and a few high quality data agents and market type 3 contains

mostly medium and several low quality data agents. Market type 4 contains all three

kinds (a small number of low and high quality and many medium quality data agents).

Each market type has 100 agents.

In these experiments, all agents use the Q-learning trading strategy and, randomly

selected, analysis algorithm, namely SGD 8 algorithm. There is no specific reason for

the use of SGD: it is just one of the several used for the initial clustering. The effective

values of market parameters, as discussed in Section 2, can experimentally be chosen

by measuring the performance of the system on historical records. Experiments gave

7 These data can be accessed from http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
8 SGD loss function is set to Squared Loss function for the purpose of performing regression.
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Low Data Quality Agents Medium Data Quality Agents High Data Quality Agents

Market Type
Average Error

(Variance)
Quantity

Average Error

( Variance)
Quantity

Average Error

(Variance)
Quantity

Average Error

(Variance)

Type 1
0.6043

(0.0007)
0 - 100

0.6042

(0.0007)
0 -

Type 2
0.6009

(0.0009)
0 - 97

0.6033

(0.0008)
3

0.5243

(4.79002E-05)

Type 3
0.6214

(0.0030)
12

0.7423

(0.0020)
88

0.6048

(0.0008)
0 -

Type 4
0.6198

(0.0033)
13

0.7406

(0.0019)
84

0.6044

(0.0008)
3

0.5243

(4.79002E-05)

Table 1. Our four market types.

us: (i) number of rounds = 2, (ii) MaxRPT= 0.9, (iii) MinRPT= 0.001, (iv) P = 7,

(v) β = 4, and (vi) C is chosen so that 60% of agents receive positive rewards.

Experiments The first experiment (Figure 2), compares the MAEs of the system and

the best performing participant for each market type. Next, (Figure 3), we compare,

for each market type, the MAE of ACPM where participants use Q-learning with one

where participants do not. In the last experiment of this set, as displayed in Figure 4,

we compare the use of the Q-learning actions for each agent-type in a type 4 market.

Results These experiments indicate that, as shown in Figure 2, the system’s MAE is

less than the best agent’s MAE, without manipulating its prediction using Q-learning

strategy, for every market type. The error bars show the standard error when calculating

the mean absolute error. Experiments are run once as they are deterministic. Figure 3

shows that adopting the Q-learning reduces the MAE compared to the constant trading

strategy in each market type (P-value 9 < 0.05 for all market types except Type 3).

As can be seen from Figure 4, Action PreservePr which suggests the agent not

change its prediction, based on the previous round market prediction (as discussed in

Section 2.5), is the most popular action in agents with high quality data and the least

popular action in agents with low quality data. Conversely, Action ChangePr which

suggests the agent change its prediction by rate δ, based on the previous round market

prediction, is the most popular action in agents accessing low quality data and the least

popular action in agents accessing high quality data.

3.3 Set 2

The next group of experiments compares ACPM with well-known regression models

and ensembles.

Settings In this set of experiments, the market includes 14 participants, each agent has

access to all 100 data streams of type 4 market, described in Table 1. Each agent uses

one of the following regression models : SGD, IBK, LinearRegression, SMOreg, REP-

Tree, ZeroR, DecisionStump, SimpleLinearRegression, DecisionTable, LWL, Bagging,

AdditiveRegression, Stacking and Vote as its analysis algorithm. The market runs for

9 The null hypothesis is that the two accuracies compared are not significantly different.
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Fig. 2. Comparing ACPM performance

with the best performing participant perfor-

mance for each market type.

Fig. 3. Comparison of ACPM’s perfor-

mance with Q-learning and without.

Fig. 4. Popularity of each action for agents accessing different quality of data streams.

two rounds and all participants use the Q-learning trading strategy. In these experiments,

the market parameters, except C, are the same values as in the first set of experiments.

Experiments indicated that, as the number of participating agents is relatively small, C

is best set for each market to maximum error so that all agents receive positive rewards.

Then the performance of ACPM is compared with same models mentioned above as

benchmarks. They are run independently without the concept of ACPM. These models

use same data as ACPM agents do, and similar to ACPM are run incrementally10. For

each available record, they predict the true value and then are retrained again with the

correct answer and all seen records. All models, both in ACPM and benchmarks, are

implemented using Java Weka API (3-7-10) and configured with their default parame-

ters.

Experiments In our first experiment (Figure 5) we compare ACPM’s MAE with the

MAE of each of the regression models and ensemble methods by means of the MAE of

the agents that use the method as their analysis algorithm. We then go on in Figure 6 to

10 Please note that their performance should not be compared with when they are run using batch

training.
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Fig. 5. Comparing ACPM performance with well known machine learning regression models and

ensembles.

Fig. 6. How participating in ACPM and utilising Q-learning strategy improves the performance

of each classifier.

compare the difference of MAE between classifier/ensemble if the agent was employing

Q-learning or not.

Results Our experiments show (see Figure 5) that ACPM has a lower MAE than all

regression models and ensembles (P-value is less than 0.001 for all except IBK (P-

value= 0.08), SMOReg (P-value= 0.07)). They further demonstrate that an agent using

well-known regression models can reduce its MAE when it uses Q-learning.

Figure 6 demonstrates that the performance of each classifier is improved by partic-

ipating in the market and using the Q-leaning trading Strategy (highly significant for all

except IBK and SMOReg).

3.4 Analysis

A number of our hypotheses are satisfied immediately from our experiments. Given

that the MAE of ACPM is always lower than the best performing agent in any market
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type, we can safely state that it performs better (H1) and that the system is resilient to

different proportions of low- and high-performing participants (H2). Based on our first

experiment, it is not surprising that ACPM performs better than regression models or

ensemble methods (H6), as demonstrated in Figure 5.

The system attains its high performance by granting more influence to those that

have high quality data sources and effective analysis algorithms. The reward function

rewards the market participants according to their prediction accuracy and the amount

invested. Obviously, lower error and higher investment leads to higher revenue. In this

way, agents are incentivised to make accurate predictions and adjust their investment

based on their confidence in the prediction. After a few markets (records), the differ-

ences between agent capital becomes apparent as some of the agents gain revenue and

some of the agents loose a proportion of their capital as a result of their performance.

The integration function weights each prediction by the amount of investment. In this

way, higher quality agents acquire greater influence in predicting the outcome of the

event, since they gain more capital over time, and consequently can invest more in their

bids.

The other reason for the performance of the system is that the agents learn to im-

prove their prediction by considering market prediction as another source of informa-

tion. Figures 3 and 6 show that Q-learning does improve each agent’s performance and

consequently the system’s performance by adding a further reduction in prediction er-

ror; hence supporting hypotheses H3 and H7. Using the Q-learning trading strategy,

each agent learns the extent to which it should use the market prediction to update its

prediction. Therefore, while high quality agents ignore market predictions, low quality

agents learn to minimise the amount of noise (low accurate prediction) they send to the

market maker. This is demonstrated in Figure 4 and confirms H4 and H5. The validity of

the ACPM approach through its application to several of the UCI data sets is confirmed,

but cannot be presented here due to sake of space.

4 Related Work and Conclusion

We proposed an Artificial Continuous Prediction Market (ACPM) for predicting a con-

tinuous variable based on the integration of diverse data sources with different varying

quality. It acts as an adaptive ensemble algorithm which is capable of shifting focus in

response to changes in individuals’ predictions.

To our knowledge, there is relatively little research on artificial prediction markets

as a machine learning technique. Our work is different from related works in artificial

prediction markets [12, 1, 15, 11, 8], prediction with expert advice and its subfields [16,

3, 4, 7, 10, 14, 9], opinion pools and all ensemble techniques as learning happens at two

levels, i.e. market and agents. The market learns the weighting of each agent on the

market prediction dynamically while participants revise their beliefs and can retrain

themselves (i) after each round of a market by comparing their prediction with market

prediction to maximise their utility in the current market. (ii) after each market in order

to maximise their utility in future markets. Finally, we note that previous works are

designed for discrete classification and our work is designed to predict a continuous

variable.
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Our next step is to develop an intelligent market that can self-select the appropriate

parameters for the market based on the characteristics of market participants and their

data sources. We also plan to apply ACPM on different domains, such as, for example,

stock market and cancer predictions.
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Abstract.This paper shows how the traffic interactions of an intersection 
can be regulated by means of auction theory, multi-agent systems and machine 
learning techniques. In the proposed work, the intersection space is viewed as a 
spatially complex set of scarce commodities whose temporal non-overlapping 
usage is adjudicated through an interactive bidding process that involves multi-
ple agents. A machine learning technique is used to optimize the bidding strate-
gies of the agents. The multi-tiered decentralized agent-based framework pro-
posed here increases modularity by decomposing the intersection into smaller 
sub-parts, adds flexibility and effectiveness by designing it to account for varia-
ble stage sequence. Moreover, unlike most other control strategies which are ei-
ther based on delay or queue length, the proposed method is based on both of 
these traffic-related metrics. The proposed method is used to regulate the traffic 
for a network of six intersections and its results are compared with two other 
control strategies including pre-timed and fully actuated.    
 

Keywords: Multi Agent Systems, Machine Learning, Auctions, Adaptation, 
Traffic Signal  

1 Introduction  

The efficient and effective movement of people and goods is critical if society is to 
achieve economic prosperity, energy efficiency, environmental sustainability, global 
competitiveness and other objectives. Much of the transportation activity that occurs 
in urban areas is by highway, and much of that is via surface arterials. 

The single biggest impediment to efficient operation of surface arterials is signal 
timing. While traffic signals are necessary to ensure the safe movement of all vehi-
cles, their use reduces efficiency. Trips take longer than they would if the vehicle-to-
vehicle conflicts could be eliminated without signal control. Thus, optimizing the 
signal control and making it traffic adaptive is critically important. 

Off-line optimization has been standard practice for a long time. Today there are 
well-established algorithms such as TRANSYT [1], which generate optimal coordi-
nated plans for fixed-time operation. The main weakness of such methods is that their 
plans are computed for a static situation, based on historical data. But that situation 
never actually exists in the network. Other systems, like SCOOT, Split Cycle and 
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Offset Optimization Technique [2], are similar to TRANSYT but are traffic-
responsive (they use real-time data from detectors to update the signal control set-
tings). SCATS, the Sydney Coordinated Adaptive Traffic System [3], also makes 
real-time decisions about the control strategy based on detector inputs. The main dif-
ference between SCOOT and SCATS is that the latter is a hierarchical system while 
the former is not.  

The strength of systems like SCOOT and SCATS is their ability to adapt to the 
traffic flow conditions. However, these systems have limitations. They work with a 
fixed cycle length. Their coordination patterns have to repeat on a single-cycle basis, 
and their responsiveness is slow (tempered) to ensure stable operation. Their off-line 
or even on-line optimization of the signal timings has difficulty adjusting quickly to 
changing traffic patterns. And yet, traffic flows are highly dynamic. Thus, optimal 
signal timing plans are difficult to determine in advance.  

PRODYN [4], OPAC [5], and UTOPIA [6] are also examples of adaptive systems 
that are not centralized, but their relatively complex computation and communication 
schemes make their deployment costly [7]. 

Given the growth rates foreseen for urban traffic in the future, more flexible and 
robust approaches are necessary. Hence, making signals smarter is the objective of 
this paper. The intent is to make signal control more sensitive to the evolving traffic 
streams and more intelligent about coordination. This will produce savings in energy 
consumption, pollutant emissions, and delays.  

During the last few years, multi-agent systems (MAS) have become a promising 
application domain within artificial intelligence (AI) for optimizing traffic signal 
control. MAS techniques can be applied to situations where the conditions evolve 
dynamically. They can capture the important details at the level of individual entities 
and produce useful control results. They can be used in a variety of ways to emulate 
system behavior. They can be active, heterogeneous participants in an environment 
representing the system of interest and engage in information processing and decision 
making. Their behavior can be visualized, monitored, and validated at individual 
agent level, leading to new possibilities for analyzing, debugging, and developing 
signal control strategies. 

This paper shows how the traffic interactions of an intersection can be regulated by 
means of auction theory, MAS, and machine learning (ML) techniques. In the pro-
posed work, the intersection space is viewed as a spatially complex set of scarce 
commodities whose temporal non-overlapping usage is to be adjudicated through an 
interactive bidding process that involves multiple agents. A ML technique is used to 
optimize the bidding strategies of the agents. The proposed method offers the follow-
ing features and characteristics: 1) decentralized design and operation, which is usual-
ly less expensive comparing to centralized approaches; 2) variable staging sequence, 
i.e., it is not hampered or constrained by a prescribed stage sequence as is common 
with all actuated, semi-actuated coordinated, and pre-timed control strategies which 
have fixed staging sequence; 3) control logic based simultaneously on queue length 
and delay (unlike most other control strategies which are either based on delay or 
queue length); 4) self-learning, i.e., decreases human intervention in the operation 
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after implementation; 5) model-free, i.e., does not need a model of traffic pattern that 
is challenging to acquire; 6) robust, i.e. with no single point of failure. 

The paper is organized as follows: Section 2 reviews some related research. There-
after, Section 3 presents the details of the proposed model. Section 4 presents the 
experimental results that have been carried out in a network of six intersections. Fi-
nally, Section 5 gives some conclusions and points out lines of future work. 

2 Related Work 

MAS involve using distributed intelligence, often autonomous, to develop problem 
solutions.  For example Choy et al. [8] present a hierarchical MAS that consist of 
three layers of agents: controller agents, zone controller agents, and regional control-
ler agents. The implementation of agents is based on feed-forward neural network and 
fuzzy logic theories. 

MAS often use ML to adapt to the evolving traffic conditions. For example, 
Steingrover et al. [9], Weiring [10] employ a reinforcement learning technique to 
minimize the overall waiting time of the vehicles. Here the learning task is represent-
ed as a feedback loop focused on the aggregated waiting times for individual vehicles. 
Another example is the work done by Tantawy et al. [11] in which a MAS is proposed 
for adaptive traffic signal control. In their proposed approach each agent (which con-
trols one intersection) plays a game with its immediate neighbors and learns and con-
verges to a response policy to all neighbors’ policies using a reinforcement learning 
technique.    

Some researchers suggested adapting market-based ideas to traffic signal control. 
Isukapti and List [12] have demonstrated that auction theory can be used as a para-
digm for modeling signal control. Vasirani and Ossowski have also demonstrated that 
a distributed, market-inspired, mechanism can be developed for the management of an 
urban road network, where drivers trade with the infrastructure agents in a virtual 
marketplace, purchasing reservations to cross intersections [13]. Carlino et.al [14] 
have shown that auctions can be run at each intersection to determine the order in 
which drivers perform conflicting movements. In their approach autonomous vehicles 
(which are considered as agents) bid on behalf of the travelers. This approach has 
been used for an isolated intersection. But how the agents (drivers) bid is not clear 
and well explained.  More importantly no strategy for optimizing the bids is proposed 
or implemented.  

A comprehensive literature review of agent-based technology for transportation 
systems can be found in [15].   

3 Methodological Approach  

Following the lead of Isukapati and List [12], the intersection space is viewed as a 
spatially complex set of scarce commodities whose temporal non-overlapping use is 
adjudicated through an interactive bidding process that involves multiple agents. To 
further ensure safety, change intervals are included (i.e., a yellow interval followed by 
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an all red) and minimum greens are used. No maximum greens are employed. FIFO-
based discharge strategy is employed to ensure that realistic separations are main-
tained between vehicles as they are discharged from the stopbar.  

Each movement is managed by an agent called “movement manager”. In a typical 
intersection this means there are eight movement managers operating in parallel as 
shown in Fig. 1. There is another agent called “intersection manager” that control the 
behavior of movement managers.   

Bids occur each time the use of the intersection is contested. This arises when 
agents for conflicting movements have non-zero queues and transitioning to a new 
stage is possible. Transitions are possible at the end of the minimum green for the 
current stage or at the end of every ensuing discharge headway or at the end of each 
maximum gap time if there is no discharge headway.  

Stages (phases) are formed by combinations of winning bidders. Eight stages 
(movement combinations) are possible for the intersection shown in Fig. 1. The stages 
are shown in the table in the left-hand bottom corner of the Fig. 1. First column shows 
the stages, and the second column shows the movement combinations. For example, 
stage 3 is formed by combining movement 1 and 5. 

 

 

Fig. 1.  Structure of the agent based modeling approach 

The bidding process is as follows. Each movement manager (with a non-zero 
queue) submits a bid and the intersection manager sums these bids for all possible, 
safe, movement combinations (eight in this case). The pair of movements with the 
highest combined bid win. For example, if the bids are 1, 6, 2, 5, 3, 2, 4, 5 respective-
ly for movements 0, 1, 2, 3, 4, 5, 6, 7, the combined bids would be 4 (04), 3 (05), 9 
(14), 8 (15), 6 (26), 7 (27), 9 (36), 10 (37). Movements 3 and 7 would win and pays 
the intersection manager what was bid (first-price bidding).  
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To minimize the vehicle to infrastructure (V2I) dependence, consistent with the 
current state of the practice in rich intelligent transportation systems (ITS), movement 
managers receive tokens when vehicles join their queues. They use these tokens as the 
basis for submitting their bids and they “pay” tokens to the intersection manager when 
they win bids.  In the simulation-based realizations presented here, the movement 
managers have access to information about their respective movements and limited 
information about the other movement managers. They know how many drivers are in 
queue, how many tokens they have, the bid that they submit, and what the winning 
bid was.  

As indicated, when movement managers win following one or more prior losses, 
they receive use of the intersection for a minimum green. When the minimum green 
expires, they have to bid again to retain control at the end of each discharge headway 
(assuming they have a queue) or minimum gap time to see if they can continue to 
retain control of the green. When bids are to be submitted, those movement managers 
with non-zero queues are allowed to do so. Those without queues are excluded. If the 
movement managers currently holding control of the intersection submit winning 
bids, they are allowed to continue discharging vehicles for one more discharge head-
way or the minimum gap time (i.e., 3 seconds), whichever is smaller. If they lose 
control, then, then a clearance interval is imposed and control shifts to the new win-
ners for a minimum green.  

Reinforcement learning has been used to help the movement managers improve 
their bidding strategy based only on the knowledge of their own past received pay-
offs. Specifically, a Q-learning approach is used to create an optimal bidding strategy 
for each movement manager. 

The core of the Q-learning algorithm is a Q-table and an algorithm for updating the 
Q-table and choosing actions. A Q-table Q(s, a) is a matrix indexed by state s and 
action a, which is the expected discounted reinforcement of taking action a in state s. 
At each time, an agent is assumed to be in a certain state s, and it chooses an action a 
according to the Q-table and other algorithms to interact with the environment. Then 
the agent receives a reward r from performing action a and observes a new state s'. 
After that, the Q-table is updated by the following equation: 

 

'

' '( , ) (1 ) ( , ) (r max(s ,a ))
a

Q s a Q s a                                                      (1)         

Where α is the learning rate, and γ is the discounting factor. Q-Learning can be 
summarized in following steps:  
1. Let the current state be s 
2. Choose an action a to perform 
3. Receive a reward r from performing action a and the resulting state s'.  
4. Update Q(s,a) using equation (1). 
5. Go to step 1). 

The design elements of the Q-learning in terms of the typical structure of it for 
each movement agent are: 

 State: The current queue  Action: the bid amount to submit 
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 Reward: the immediate reward is composed of two terms. The first term is a 
function of the delay and is defined as the change (saving) in the total cumulative 
delay, i.e., the difference between the total cumulative delays of two successive 
decision points (bidding cycles). The second term is a function of winning the 
bid. It is zero if the movement agent loses the bid.  On the other hand, if the 
movement agent wins the bid, the reward is based on the difference between the 
number of vehicles discharged and the submitted bid. For example, if the move-
ment agent wins the bid and receives a minimum green (e.g., 6 seconds), the av-
erage headway is 2 seconds, and the submitted bid was 1.5 tokens, then the 
movement agent is able to discharge 3 vehicles (6/2) and the reward would be 1.5 
(3-1.5).  

Movement managers use an ϵ-greedy selection approach in order to explore the 
state and action environment. That is, random actions are selected with probability ϵ 
and the actions with the highest Q-values are chosen with a probability of (1-ϵ). The 
exponential function (e-En) is used for ϵ-greedy approach in which E is a constant and 
n is the number of iteration. The exponential function is a simple ϵ-greedy exploration 
approach with a gradually decreasing rate of exploration. By using this approach, at 
the starting the agent mainly explores, as it has no previous information to exploit, 
and the agent moderately increases the degree of exploitation towards the end of the 
learning process. Gradual shifting is necessary to ensure that the entire state space is 
covered during the learning process. As suggested in the literature [16] the learning 
rate is considered as follows: 

 
( , )

k
k

E

v s a
                                                                                                       (2) 

Where αk is the learning rate at time k, E is a constant, and v k(s, a) is the number of 
visits to a particular state-action pair (s, a). This learning rate allows to start with high 
learning rate at first to allow for fast modifications then use lower rates as time pro-
gresses. 

The overall pseudo code for the model is summarized in Fig. 2.  
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Fig. 2.  Pseudo Code for control structure of simulation 

 

Input: 
    - δt =  0.1 (initialize time step) 
    - t =  0 (simulation clock) 
    - gmin = 6.0 (minimum green) 
    - c = 4.0 (change interval, i.e., yellow and all red intervals) 
    - hd= 2.0 (headway) 
    - fmin = 1.0 token (initial fee for each vehicle) 
Initialize: for each movement manager initialize Q values as zeros 
The algorithm: 
   while t < T (simulation time period):  
      t =  t+  δt 

 for each movement manager  
      if  <new arrivals = True> 
         collect  fmin  
         add new arrivals to service queue 
 if the use of intersection is contested 
     for each movement manager who submitted bid in previous bidding cycle 
          compute the total cumulative delay 
          compute the reward 
          update the Q values 
     for each movement manager with non-zero queues 
           if explore (ϵ) then  
               submit random bid (action) for the current queue (state) 

               (bid is subject to { min
min *0.5

d

g

h
bid  , min

max *
d

gbankBalance

queueLength h
bid  })  

           else 
               submit bid according to the policy   
     intersection manager sums submitted bids for all possible, safe, movement combinations (eight) 
     the pair of movements with the highest combined bid will be selected 
     wining movement managers pays the intersection agent amount equal to winning bid 
     if < current winner = previous winner > 
           intersection manager extend green by 3 seconds 
     else:  
           intersection manager impose a clearance time of 4 seconds 
           intersection manager allocate intersection control to new winners for t = t + gmin 
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4 Case Study 

Fig. 2 shows the network of intersections which has been modeled (each intersection 
simply applies the control strategy presented in the previous section). The east-west 
arterial has four intersections (0, 1, 2, and 3) while the north-south arterial has three 
(4, 2, and 5).  Intersection 2 is common between them.  Left turn bays exist every-
where. The figure also shows the travel distances between the intersections.  The 
longest distance is 800 feet and the shortest is 550 feet with the nominal travel speed 
at 30 mph. 

  

Fig. 3.  Modeled network of intersections 

Two different combinations of traffic volume shown in Table 1 are considered in 
this paper. Case 1 represents a “nominal” or baseline condition for the network.  The 
heavier flows are east-west, with 600 vehicles per hour (vph) entering the network in 
these two directions.  Side street volumes along the east-west arterial are 200 vph.  
The north-south arterial has slightly less traffic, with main flows at 400vph, both 
north and southbound.  The side street volumes are 150 vph.  In all cases, for simplici-
ty, the turning percentages are 15% left turns and 10% right turns. 

The other case makes adjustments to the baseline values.  All of the volumes in-
crease by 25%.  Thus, the street volumes grow to 750 vph east-west and 500 vph 
north-south.   
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Table 1.  Volume combination for each intersection. 

Approach 

  Intersection    

0 1 2 3 4 5 

Case 1 

North 200 200 - 200 - 400 

South 200 200 - 200 400 - 

East 600 - - - 150 150 

West - - - 600 150 150 

Case 2 

North 250 250 - 250 - 500 

South 250 250 - 250 500 - 

East 750 - - - 188 188 

West - - - 750 188 188 

 
Three signal control strategies are explored.  These are: pre-timed, fully actuated, 

and the proposed control strategy. The three of these control strategies are implement-
ed in the custom-built traffic simulator developed by the authors.   

For the pre-timed control strategy, Synchro7 [17] which is an analysis and optimi-
zation program for optimizing signal timing for arterials, was used to develop optimal 
signal timings. The obtained signal timing plans including cycle lengths, splits, phase 
sequences and offsets for each intersection and in each case were implemented in the 
custom-built traffic simulator.  

For fully actuated control strategy, the implemented logic is as follows. Normal 
stage rotation is followed including the feature that in the absence of any requests for 
service, the controller returns to the main street stage.  This means the user needs to 
specify a main street stage and minimum and maximum greens for each movement. In 
the implemented logic here, for intersections 0, 1, 2, and 3, stage 3 is considered the 
main street stage, and for intersections 4 and 5, stage 7 is considered as the main 
street stage. Minimum green is 5 seconds and maximum green is 40 seconds.   

Fig. 3 and Fig. 4 show the results of the simulation for two traffic volume cases. As 
can be seen from the figures, the proposed control strategy improves as time passes 
which make sense. Initially the proposed control strategy does a lot of exploration and 
as the time passes it learns the best control policy and does more exploitation.  

In case 1 (Fig. 3) which represents a low traffic volume, pre-timed control strategy 
is the poorest and the proposed control strategy is the best and actuated control strate-
gy performs in the middle. Again, the results make sense, imposing a pre-defined 
control strategy (pre-timed) when the traffic volume is low is not a good strategy.  

In case 2 (Fig. 4) which represent a heavy volume of traffic, pre-timed control 
strategy is performing better than the other two control strategies, the proposed strate-
gy is the second and fully actuated has the poorest performance. Again, the results 
make sense since when there are heavy traffic, it is better to impose some pre-defined 
timing plan to regulate the traffic.    
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Fig. 4.  Results of case 1 

 

Fig. 5.  Results of case 2 
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5 Conclusion and Recommendation 

In this paper a new control strategy is presented which integrates MAS, ML tech-
nique, and auction theory to regulate the movement of cars at an intersection. This 
multi-tiered agent-based framework provides a way to decompose the intersection 
into smaller sub-parts. It increases the efficiency of the model, provide a way to create 
a parallel computing realization, and enhance scalability.  

The authors believe that this area of research is one that has significant promise for 
the future, especially in light of the increasing demands for more features and capabil-
ities, especially real-time control, being placed on advanced traffic management sys-
tems.  

There are various venues for further research. Our own future research will con-
centrate on:  

 applying other exploration functions other than ϵ-greedy such as softmax and ϵ-
softmax  second-price bidding is another area of future research. In this bidding strategy, 
truthful bidding is a dominant strategy. The fact that truthfulness is a dominant 
strategy also makes second-price auctions conceptually very attractive.    in the current model, the intersection managers are not cooperating, so the other 
area of future research is to make intersection mangers cooperative and see how 
it affects the performance of the whole network.   linkage of the developed signal control logic to a commercially available traffic 
simulator (e.g., VISSIM [18], Paramics [19]) to test the performance of the de-
veloped control logic for traffic scenarios similar to real world cases and compare 
its results with other adaptive controller such as SCOOT and SCATS.  
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Abstract Complex, real-world domains such as Smart Grid scenar-
ios require the optimization of multiple, and often conflicting, objec-
tives. Several works proposed solutions in this area using Distributed
W-Learning (DWL), a multi-agent and multi-objective algorithm able
to deliver a good performance. However, these works rely on an assump-
tion that the rewards for all objectives can be extracted in the same
temporal frequency. When the reward functions have different time fre-
quencies, DWL prioritizes the objective that gives the most frequent
feedback, which is not always the most important objective. In order to
solve this problem, we here propose the Single Policy Distributed W-
Learning (SP-DWL) algorithm, an extension of the DWL algorithm that
relies on a reward weighting function to deal with multiple objectives,
without losing the ability of agent cooperation. Our experiments show
that SP-DWL is able to balance conflicting objectives even when reward
functions are defined in different time frequencies.

Keywords: Reinforcement Learning, Multi-Agent Systems, Smart Grid,
Distributed W-Learning

1 Introduction

Modern computing systems try to solve problems with an ever increasing com-
plexity. In past years, Machine Learning solved many complex problems for
which the traditional programming approach was unable to provide feasible so-
lutions. Reinforcement Learning (RL) [10] is an area of Machine Learning in
which an agent observes the environment, chooses and executes an action to
affect the environment and to see how good that action was. RL has been suc-
cessfully applied in many domains, since it does not require much built-in domain
knowledge and achieves good results after the agent training.

However, in complex domains (where there are too many states to be consid-
ered), learning the optimal behavior of an agent can be too slow or too difficult

1 The authors are grateful to CNPq (grant 311608/2014-0) and to Fundação para o
Desenvolvimento Tecnológico da Engenharia (FDTE) for the financial support.
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Figure 1: The Smart Grid scenario used in this paper (image modified from
[11]). There are a certain number of houses in a neighborhood, each with an
electric vehicle (EV). Each EV has a communication link with the next and
the previous car, and EVs need to coordinate their charging to prevent the
transformer overload.

for many applications, in which RL with a single agent becomes computationally
expensive. For this kind of problems, multiple agents acting in one system can
share workloads, be robust to individual failures, and scale well with the addi-
tion of extra agents [14]. Thus, Multi-Agent Systems (MAS) can benefit from
cooperation between agents, and how this cooperation will occur depends on
how the agents can exchange information [8].

One of such real world complex domains is the Smart Grid, for which some
multi-agent approaches have been proposed in various scenarios [4,5,11,12,13].The
scenario here considered consists in a neighborhood of houses connected to a
transformer, and each of the houses has an Electric Vehicle (EV), as illustrated
in Figure 1. Each EV must charge its battery to allow the user’s daily travel,
while avoiding the transformer overload (which happens when a large number
of EVs is charging at the same time).

This problem can be modeled as a Multi-Objective System, in which each EV
tries to optimize two conflicting objectives: Charging the battery; and avoiding
the transformer overload. Several works have been published with proposals for
this scenario [5,11,12]. All these works used Distributed W-Learning (DWL)[4]
as the basis for their proposals. However, one problem that was not addressed
in any of these works is that, in the reward scheme published in [5], every EV
knows beforehand how much battery is needed to successfully accomplish its
daily journey. However, this is a strong assumption, since it is usually not possible
to know exactly how much battery is needed before the user tries to use it: The
battery consumption can change due to traffic conditions or to unpredictable
route and destination changes, for example. A more realistic reward function
would evaluate if the battery was sufficient only after the user performs his
daily journey. However, this approach would result in reward functions that give
feedbacks on different temporal frequencies. The transformer load can be verified
in a window of minutes, whereas the battery policy can give just one feedback
per day (after the journey).

In this situation, the DWL ability to balancing the objectives is hampered,
and the goal that provides the most frequent feedback is prioritized over the
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other. Since for many domains the goal with higher temporal frequency is not the
most important objective, the agent actuation may be unsatisfactory. In order to
solve this problem, we propose a modification in DWL, here called Single-Policy
Distributed W-Learning (SP-DWL), where all objectives are solved through a
single policy and the multi-objectives are weighted through Reward Weighting.
In our framework, “weighting” rewards consist in applying a weighting function
to encapsulate multiple reward signals as: R = F (r), where R is the resulting
reward function, F is a reward weighting function, and r is a vector of multiple
reward signals. A well-designed Reward Weighting function leads DWL to pri-
oritize a desired objective, even if its feedback’s temporal frequency is not the
higher one.

This paper is organized as follows: Section 2 provides a review of relevant
literature on RL, MAS, Multi-Objective Systems and DWL; Section 3 details
our proposal, outlining its strengths and weaknesses; Section 4 describes the
modeling of the Smart Grid problem we are trying to solve; Section 5 presents
our experiments and their results, along with discussions; Finally, Section 6
concludes the paper and points toward future works.

2 Background

In the basic pattern underlying Reinforcement Learning (RL), an agent has a set
of sensors to observe the state of the environment and a set of actions through
which it can act in the environment, alter the current state, and see how good
that action was [10]. This process can be repeated multiple times, and after
a number of learning steps the agent will have learned how to act optimally
given the current state. RL usually uses a Markov Decision Process (MDP) to
describe the problem and environment. In an MDP, a combination of variables
that describe the environment defines a discrete state and the MDP contains all
possible states. Each state has a set of applicable actions, and each action causes
a state transition.

The agent can assess the quality of its actions through a reward signal pro-
vided by a supervisor or the environment, and this reward will be used to update
a Value Function that is stored by the agent and represents how good a particu-
lar state is. When the Value Function converges for all states (i.e., its values no
longer change after updates), the agent will have learned how to behave optimally
for each possible state for a given objective (encoded by the reward function).
The knowledge of how to behave given a state is represented by a policy, which
is a representation of the best action for each possible state. An RL algorithm
that iteratively learns an optimal actuation policy with basis on interactions of
the agent with the environment is the Q-Learning algorithm [10], where the Q

table is updated as: Q(st, at) = (1−α)Q(st, at)+α[ri+γmax
a

Q(st+1, a)], where

ri is the received reward after executing action at on state st, α is the learning
rate (0 < α ≤ 1), and γ is the discount factor. After learning, the optimal policy
is given by: π∗(s) = argmax

a

Q(s, a).
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2.1 Multi-Agent and Multi-Objective Systems

In Multi-Agent Systems (MAS), there is more than one agent acting in the
environment at the same time, which means that the state transition no longer
depends solely on an agent’s action, but on the combination of all actions. Since,
for most domains, it is infeasible to learn a policy considering the product of
each state and each action for all agents, agents may try to learn a joint policy
representative of a Nash equilibrium (strategy where no agent would benefit from
changing their own policy assuming all agents will stick to their current policies)
or a Pareto optimal joint policy (there is no other policy that can achieve a
better reward for an agent without reducing another agent’s reward) [3]. There
are many approaches for MAS, using the RL framework or not, that are not
regarded in this paper. For more comprehensive reviews see [1,2].

Many complex domains require the ability of handling multiple objectives. A
possible approach is to define a reward for each objective [9], however, dealing
with multiple objectives remains a difficult task, in which each objective may
require conflicting actions. The domain addressed in this paper has conflicting
objectives, since one objective is to charge the battery of all cars, while the other
is to avoid the transformer overload. One trivial solution for the first objective
is to always charge all cars until the battery is full; however, this policy is likely
to overload the transformer at all time steps. The trivial solution for the second
objective is to never charge any car, which will assure no transformer overload,
but will charge no car. Therefore, a good policy for our problem must balance
between these two objectives.

2.2 Distributed W-Learning

Distributed W-Learning (DWL) [4] is a multi-agent and multi-objective RL algo-
rithm. In DWL, each agent has a communication channel with a certain number
of neighbor agents, with which this agent can communicate and collaborate. The
agent has a set of Local Policies LPi and a set of Remote Policies RPi. Each
Local Policy πl deals with a single objective and ignores all other agents and
objectives, learning only the local effect of each action. In turn, a Remote Policy
πk encodes how a particular action affects a neighbor’s reward; each agent will
thus learn how to collaborate with its neighbors through Remote Policies. Each
agent has one Remote Policy for each objective of each neighbor (see Figure 2).

As shown in Algorithm 1, at each time step, each policy (remote and local)
suggests its optimal action, and the best action for a given time step is chosen by
finding the maximumW-value associated to each policy. The W-Value represents
how important for state s the policy πi is at a given time step, and it is updated
only when the suggestion of this policy is not obeyed [4]:

Wπi
(s) = (1− α)Wπi

(s) + α(Qπi
(s, aπwin

)− (rπi
+ γmax

a
Qπi

(s′, a))), (1)

where Wπi
(s) is the W-value of the current state s for policy πi, Qπi

(s, a) is the
Q-value of the state-action suggested by policy πi, aπwin

is the action suggested
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Algorithm 1 DWL at each learning step

1: for each learning step t do

2: for each Agi in Ag do

3: //Get action suggestion by Local Policies (LP)
4: for each πl in LPi do

5: Observe πl’s current state sl.
6: Suggest action al with max Qπl

for sl
7: end for

8: WLP = max
πi∈LPi

Wπi

9: //Get action suggestion by Remote Policies (RP)
10: for each RPi,j in RPi do

11: for each πk in RPi,j do

12: Get πk’s state sj,k from Agj
13: Suggest action aj,k with max Qπk

for sj,k
14: end for

15: end for

16: WRP = max
RPi,j∈RPi

max
πi∈RPi,j

Wπi

17: Wwin = max(WLP , C ×WRP )
18: Execute winning action awin associated to Wwin

19: //Update policy values for Local Policies
20: updateLPValues(Wwin,awin,sl)
21: //Update policy values for Remote Policies
22: updateRPValues(Wwin,awin,sl)
23: end for

24: end for

25: procedure updateLPValues(Wwin,awin,sl)
26: for each πl in LPi do

27: Observe πl’s current state s′l
28: Get reward rπl

from environment
29: Update Qπl

using (sl, awin, rπl
, s′l)

30: if Wπl
6= Wwin then

31: Update Wπl
(sl) (Equation 1)

32: end if

33: end for

34: end procedure

35: procedure updateRPValues(Wwin,awin,sl)
36: for each RPi,j in RPi do

37: for each πk in RPi,j do

38: Get πk’s state s′j,k from Agj
39: Get reward rj,πk

from Agj
40: Update Qπk

using (sj,k, awin, rj,πk
, s′j,k)

41: if Wπk
6= Wwin then

42: Update Wπk
(sj,k) (Equation 1)

43: end if

44: end for

45: end for

46: end procedure
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Figure 2: DWL action selection for an agent with two neighbors and two objec-
tives. Dashed rectangles separate which policy refers to which agent (local agent
or neighbor). There are a total of 6 policies in this scenario.

by the winning policy πwin, Qπi
(s′, a) is the Q-value associated with the best

action for the next state s′, rπi
is the reward received, α is the learning rate,

and γ is the discount factor.
W-values are associated to states, rather than to state-action pairs. Q values

are updated in every decision step as in the Q-learning algorithm (Section 2). The
W-value for Remote Policies is weighted by a cooperation parameter, thus, the
winning policy at each time step is chosen according to: Wwin = max(WLP , C×
WRP ), where WLP is the highest W-value for all Local Policies, WRP is the
highest W-value for all Remote Policies, and C, 0 ≤ C ≤ 1, is a cooperation
parameter. Note that, in order to update each Remote Policy at each decision
step, a communication with each neighbor will be necessary, from which the agent
will receive its neighbor’s current state and reward. An additional communication
will be needed at the beginning of the learning process, in which each agent
informs all neighbors its state space for each Local Policy.

3 Single Policy Distributed W-Learning

Here we describe our contribution, the Single Policy Distributed W-Learning
(SP-DWL) algorithm, which is a variation of DWL [4] that deals with only
one Local Policy per agent, while maintaining the cooperation ability. SP-DWL
operates in a state space containing all variables of all objectives, while DWL
has several policies that operate in a subset of state variables that matter for a
given objective and arbitrates finding the most important objective for a given
moment. A system implementing SP-DWL is composed of the following elements:
(i) A set of agents, Ag = {Ag1, . . . , AgZ}, where Z is the total number of agents
in the system; (ii) A set of neighbors for every agent, Ni = {Ni,1, . . . , Ni,Y }
where Y is the number of agents Agi is able to communicate with; (iii) One
Local Policy LPi = {πl} for every agent Agi in the system; (iv) A set of Remote
Policies RPi = {πi,j,k, . . . , πi,Y,K} for each agent in the system, where πi,j,k is
the Remote Policy corresponding to Local Policy πk of agent Agj , and K is the
number of Local Policies of agent Agj . If all agents are implementing SP-DWL,
K = 1 and |RPi| = Y ; (v) A Reward Weighting function F (r), where r is the
vector of rewards for all objectives.
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Figure 3: SP-DWL action selection with two neighbors. There is just one Local
Policy even if the algorithm is dealing with more than one objective. Dashed
rectangles separate which policy refers to which agent (local agent or neighbor).
There are a total of 3 policies in this scenario.

The decision process of the winning action remains the same as in DWL;
thus, for each time step, the winning action is decided among local and remote
policies, as illustrated in Figure 3. When updating the Q and W tables, the
reward signal will be the result of F (r), defined as:

F (r) =

|r|∑

i=1

wi × ri, (2)

where wi is a weighting parameter for objective i.
Although in this paper F (r) is defined by Equation 2, other functions could

be used [6]. It is also noteworthy that, since the number of policies is reduced, the
size of data in each communication between agents is also reduced, because (if
all agents implement SP-DWL) only one reward and one current state must be
informed to neighbors for each decision step. The DWL algorithm (Algorithm 1)
is executed with the updateLPValues procedure of Algorithm 2, i.e., the process
for Local Policy update has changed from DWL. SP-DWL has only one Local
Policy πl, and multiple objectives are dealt with a Reward Weighting function,
thus, the loop on line 4 of Algorithm 1 is executed only once.

Algorithm 2 updateLPValues procedure in SP-DWL

1: procedure updateLPValues(Wwin,awin,sl)
2: Observe πl’s current state s′l
3: Get vector r with rewards for all objectives
4: Calculate rπl

= F (r) (Equation 2)
5: update Qπl

using (sl, awin, rπl
, s′l)

6: if Wπl
6= Wwin then

7: Update Wπl
(sl) (Equation 1)

8: end if

9: end procedure

One SP-DWL drawback is that its local policy operates in a state space that
is the cross-product of all variable states relevant to all objectives. This is not
a problem when the same variables are relevant for multiple objectives or there
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are not too many variables to describe the current state (as in our domain).
However, the state space can become too complex when multiple objectives deal
with different state variables. In that situation, the regular DWL is a better
option. Another issue is that there is no automatic approach to define the best
function F (r) for a given problem, which must be defined at the design time.

4 The Smart Grid Problem

The modeling of the Smart Grid load balancing problem for our experiments
was based on the experiment described in [11]. Experiments published in [5,12]
also used a very similar model.

There are 6 houses connected to a transformer, as illustrated in Figure 1,
and each house has an EV that is used every day on a daily journey. Each EV
requires a 5-hour charge to fully charge its battery, and an average of 3.5-hour
charge is needed to meet its daily journey. The hour for leaving the house is
drawn from a normal distribution at a mean of 9h a.m. and a variance of 1h.
The journey duration is drawn from a normal distribution with a mean of 12.5h
and a variance of 1h.

Each EV has a communication link with the next and the previous EV (the
first and last EVs have only one neighbor). In our experiments, the user demand
from the houses is not considered, and the transformer is in an overload state
if more than two EVs are charging at the same time. At each time step, every
EV receives a notification of the transformer load prior to their actions. The
actions can be charge or not charge. The state space for each EV is composed of
two variables: (1) current battery charge - discretized in slots of 20% of the
full charge (i.e., it can assume 5 possible values); and (2) transformer load -
number of EVs charging on the last time step.

We defined 3 reward functions (3 Policies for DWL), partially based on the
reward functions published in [5]; however, we removed the assumption that each
EV knows how much battery is needed for a daily journey: Reward Function

1 : This reward encodes the need of having enough battery for its daily journey.
When the time comes for the EV to perform its daily journey, if there is enough
battery, the agent receives a reward of +400. In case the battery does not have
enough energy, or no daily journey begin at this time step, the agent receives
a reward of 0; Reward Function 2 : This reward encodes the user desire for
maintaining the EV battery at the highest level possible. The battery is consid-
ered to be in a low level if there is remaining less than 20% of the full charge,
and in a high level if there is more than 80% of the full charge. When the battery
is low and the EV is charging, the agent receives a reward of +400, if the EV is
not charging, the reward is 0. If the battery is at a medium level and the EV is
charging, the agent receives a reward of +100, while if the EV is not charging,
the reward is 0. Finally, if the battery is at a high level and the EV is charg-
ing, the received reward is +100, in case it is not charging, the reward is +50;
Reward Function 3 : The last reward avoids the transformer overload. If the
transformer is in an overload status or no car is using the transformer, the agent
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receives a reward of 0. In case the transformer is in the desired load, the reward
is +400.

For DWL, each Reward Function represents one objective to be achieved,
thus, each agent has three Local Policies.

5 Experiments and Results

This Section describes our experimental evaluation of SP-DWL through a com-
parison with other algorithms in the Smart Grid problem.

5.1 Experimental Setup

In order to verify if the proposed algorithm would deal better with the difference
in temporal frequency of the rewards, we evaluated 4 different algorithms:

– Random Policy: Each EV completely ignores all other EVs and has 50%
of probability of being charging at each time step.

– Q-Learning: The Q-Learning algorithm was implemented receiving the
same reward weighting function as our proposal (Equation 2). All agents
learn independently from each other, i.e., this algorithm behaves in the same
way as our proposed algorithm if the cooperation parameter is set to C = 0.

– DWL: Each EV has 3 Local Policies, that will receive rewards as described
in Section 4. For this algorithm C = 1, i.e., all agents are fully cooperative.

– SP-DWL: The agents are implemented as described in Section 3. For this
algorithm C = 1.

A decision is made for each 15-minute period (i.e., each decision, charge or
not charge, lasts 15 minutes). If the EV has a completely charged battery, it can
no longer use the charge action. When the time comes for the daily journey of a
given EV, it cannot perform any action or update its Q-Table until the car has
come back. The ǫ-greed policy was used in the learning phase, and the following
parameters were set for all algorithms: α = 0.3, γ = 0.9 and ǫ = 0.1. A greedy
policy is used in the execution phase (i.e., the algorithms only choose the best
actions from their policies). All algorithms and simulations were implemented in
MATLAB [7].

5.2 Experimental evaluation

We evaluate the performance of each algorithm for each reward function. Every
algorithm was trained with a learning phase of 5 days, and tested in an exe-
cution phase of 10 days, where the cumulative reward for each reward function
was stored (only for rewards received in the execution phase). Then, the learn-
ing phase duration is incremented by 5 days (i.e., on the second iteration the
learning ends on the 10th day), and this procedure is repeated until the learning
time totals 100 days. The graphs show an average of 150 repetitions of the ex-
periments. The weight vector for the reward weighting function (calculated by
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Equation 2) was defined as w = [1.0, 0.5, 0.25], i.e., the battery reward functions
are prioritized over the transformer reward function, since the user comfort is a
priority in the Smart grid domain. The same weight vector was used for SP-DWL
and Q-Learning algorithms.

Figures 4, 5 and 6 show the results of this experiment for all three reward
functions. Since there is plenty of time for all EVs to charge until their daily
need, the Random approach presents very good results for the battery policies
(Rewards 1 and 2); however, this algorithm is likely to cause the transformer
overload in many time steps, resulting in a poor performance for the transformer
policy (Reward 3).

Figure 4: Average cumulative reward for Reward 1 after 150 repetitions of the
experiment. The horizontal axis represents days of learning phase, and each point
is the average cummulative reward in 10 days of execution phase.

Q-Learning presented one of the best results for the policy learned with
Reward 1, and the best result for Reward 2, which was expected since the battery
policies were prioritized by the weight vector. However, as the agents are unable
to cooperate, Q-Learning had a poor performance for Reward 3, even worse than
the Random approach after some time of learning. DWL, as expected, prioritized
Reward 3, since this reward function provides a feedback for all decision steps,
while Reward 1 gives feedback once each day. DWL achieved good results for
Reward 3, yet Figures 4 and 5 show that DWL achieved the worst results for
Rewards 1 and 2, and after 30 days of learning this algorithm roughly stabilizes,
i.e., this algorithm is not notably improving its performance with more learning
time. SP-DWL, in turn, provided a better balancing between the three reward
functions. For the battery policies, SP-DWL performance is better than DWL,
while maintaining a good performance for the transformer policy. According to
a Wilcoxon Signed Rank Test with a confidence level of 95%, the difference
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Figure 5: Average cumulative reward for Reward 2 after 150 repetitions of the
experiment. The horizontal axis represents days of learning phase, and each point
is the average cummulative reward in 10 days of execution phase.

Figure 6: Average cumulative reward for Reward 3 after 150 repetitions of the
experiment. The horizontal axis represents days of learning phase, and each point
is the average cummulative reward in 10 days of execution phase.

between the average cummulative reward for DWL and SP-DWL is statistically
significant in all cases for Reward 1 and Reward 2, except for 20 days of learning
(for Reward 1) and for 15 days of learning (for Reward 2). Analyzing these
results, SP-DWL is the most suitable algorithm for the Smart grid domain,
specially because of the difference in performance between SP-DWL and DWL
in Figures 4 and 5.

35



6 Conclusion

We contributed the Single Policy Distributed W-Learning (SP-DWL) algorithm,
a variation of the Distribution W-Learning (DWL) algorithm. In SP-DWL, mul-
tiple objectives are combined in one reward weighting function, and each agent
has just one Local Policy. Our experiment in the Smart Grid domain showed that
SP-DWL can deal with conflicting objectives that provide rewards in different
time frequencies better than DWL, while maintaining the agent’s cooperation
ability. SP-DWL also requires communicating less data per decision step than
DWL, since only one current state and one reward must be communicated to
neighboring agents. Further works will focus on studying means of automatic
detection and definition of more meaningful and informative Reward Weighting
Functions. Another open question is if the transfer learning approaches used in
DWL [11,12] are adaptable to SP-DWL.
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Abstract. Decentralized energy production is meant to reduce generation and

distribution inefficiencies, leading to major economic and environmental benefits.

This new model is meant to be supported by smart grids, electricity networks that

can intelligently integrate the actions of all users connected to them —generators,

consumers, and prosumers (those that do both)— to efficiently deliver sustain-

able, economic and secure electricity supplies. A major research challenge is the

design of markets for prosumers in smart grids that consider distribution grid

constraints. Recently, a discrete market model has been presented that allows pro-

sumers to trade electricity while satisfying the constraints of the grid. However,

most of the times energy flow problems possess a continuous nature, and that

discrete market model can only provide approximate solutions. In this paper we

extend the market model to deal with continuous (piecewise linear) utility func-

tions. We also provide a mapping that shows that the clearing of such a market

can be done by means of integer linear programming.

Keywords: smart grid; energy market; prosumers; mixed integer programming

1 Introduction

Our centralized model of production and transmission wastes enormous amounts of en-

ergy. According to [6], ”...an astonishing two-thirds of primary energy inputs”. Since

power stations are generally far from centers of demand, much of the produced heat

is not used, but vented up chimneys or discharged to rivers. Additional losses come

about as the electricity travels along the wires of the transmission and distribution sys-

tems [6,23]. As argued in [23], favoring the decentralized generation of energy over

traditional centralized electricity generation will reduce generation and distribution in-

efficiencies and will facilitate increased contributions from renewables. This new model

is meant to be supported by smart grids.

Following [3], a smart grid is an electricity network that can intelligently integrate

the actions of all users connected to it —generators, consumers, and prosumers (those

that do both)— to efficiently deliver sustainable, economic and secure electricity sup-

plies. In the smart grid the consumer can be either an individual or a household, but
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also a community or an SME. In its more general form, a smart grid is populated by

prosumers capable of both generating and consuming energy. Therefore, smart grids

clearly play the central role in the integration of all these prosumers (electricity grid

users) by means of the enactment of a system that satisfies a number of societal goals.

Out of these goals, there is that of setting market-based prices for electricity taking into

account grid system constraints. Thus, a major research challenge in the heart of several

roadmaps for the Smart Grid [3,4] is the design of markets for prosumers in smart grids

that consider distribution grid constraints. This vision will allow prosumers to directly

trade over the smart grid [8]. Following [18], market operations will involve a large

number of heterogeneous prosumers, distributed throughout the network (closer to the

point of use of electricity), and trading much smaller amounts of energy that are nowa-

days traded. The distribution of electricity employs one of the three common types of

network topologies: radial, ring main, and interconnected [5,7,21]. On the one hand,

radial networks are acyclic. On the other hand, as observed in [13], though ring main

and interconnected networks contain cycles, they are configured into acyclic networks

by means of switches to supply power [7,21].

The smart grid vision has spurred a wealth of research on the design of markets and

trading agents for the smart grid. The state-of-the-art has mainly considered to employ

different types of auctions for this endeavor. Thus, the market-based trading of energy is

typically addressed by the literature by having prosumers participate in a double auction

where energy is traded on a day-ahead basis [8,9,10,14,16,20]. Submitted buy and sell

orders for energy are matched either by means of either a continuous double auction

[10,16,20] or a call market [8,9,14]. Exceptions to this common approach are repre-

sented by the tailored multi-unit auctions in [22] and the simultaneous combinatorial

reverse auctions employed in [17] to match demand and supply.

In [1], the limitation of the market mechanisms employed in the literature are identi-

fied, noticing that up to then, no mechanism takes into account grid system constraints.

Thus, the clearing of the market occurs disregarding, for instance, that the transmission

of energy is carried out along capacity-constrained distribution networks (which is an

actual-world constraint [21]). Therefore, trading and distribution are considered as de-

coupled activities. Furthermore, the bidding language offered to grid users is pointed

out to be not expressive enough to express a prosumer’s energy profile since with the

exception of [17], which supports combinatorial bids, double auctions limit a grid user

to submit a single price-quantity bid to either buy or sell. This does not allow a pro-

sumer to express a full energy profile encompassing a combination of all her buy and

sell offers.

As a consequence of this analysis they introduce the Energy Allocation Problem

(EAP) as the problem of deciding how much energy each prosumer trades as well as

how energy must be distributed throughout the grid so that the overall benefit is max-

imized while complying with the grid constraints and the prosumers’ preferences. On

the one hand, they consider that the capacity of the distribution network is limited [21].

On the other hand, since a prosumer can both generate and consume energy, their for-

mulation considers that each prosumer can encode her preferences as a combination of

offers to both buy and sell energy. Solving the EAP amounts to clearing a prosumer-

oriented market. However, in the EAP, prosumers are limited to bid for discrete amounts
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of energy. That is, a prosumer can offer to buy either 3 KW for 6ce or 2 KW for 4ce,

but it is not allowed to express that he will buy any amount of energy between 2 KW

and 3 KW and that he will be willing to pay 2ce per KW. In many energy settings,

such offers make complete sense and provide a better representation of the prosumer

interests when approaching the market. Thus, in this paper we make headway towards

the application of these models by extending the EAP so that it allows prosumers to

communicate continuous (piecewise linear) utility functions.

More precisely, we make the following contributions:

– We extend the Energy Allocation Problem (EAP) into the continuous energy allo-

cation problem (CEAP). It turns out that the extension is not trivial and requires

some mathematical development. We provide some of the results required to deal

with piecewise linear functions to represent prosumer preferences.

– We show how to encode the CEAP as a mixed-integer program so that it can be

optimally solved for any distribution network topology by means of off-the-shelf

commercial solvers such as CPLEX or Gurobi.

– Finally, since the CEAP defines the allocation rule of our market, we also touch

upon the design of payment rules that together with our allocation rule can help

design a mechanism for our prosumer-oriented market.

The rest of the paper is organized as follows. Section 2 formally defines the alloca-

tion rule that we propose to clear prosumer-oriented electricity markets with piecewise

linear valuation functions. Thereafter, section 3 shows how to implement the clearing

of the market as a mixed-integer program (MIP). Next, section 4 touches upon how

to cope with prosumers’ strategic behavior, and section 5 concludes and sets paths to

future research.

2 The energy allocation problem

The aim of this section is to provide a simple mathematical model for the energy mar-

ket in a prosumer network, and the allocation rule proposed for that market. We start

by providing an example of an energy trading scenario that illustrates the model of

prosumers and the model of energy network that we will consider. Thereafter, we pro-

vide the allocation rule for that market as the solution to an optimization problem: the

continuous energy allocation problem (CEAP).

2.1 Example: energy trading scenario

Figure 1 shows an example of an energy trading scenario involving four prosumers,

each one represented by a circle. Each edge connecting two prosumers means that they

are physically connected. Moreover, each link is labeled with its capacity, namely with

the amount of energy it can transport. For instance, prosumer 1 is connected to prosumer

2, and their link can transport up to 2 energy units. Each prosumer can offer to either

buy, sell or transmit energy. The offer of each prosumer is represented as a table next to

each prosumer in Figure 1, where each entry in the table represents contains the range of
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1

2 4

3

2 5

3

Units     Price

[1,2]       0.5x+0.75

[0,1]     1.25x      

[-2,0]         3x

[-3,-2]        5x+4

Units     Price

[1,2]         0.75x+0.5

[0,1]         1.25x 

[-3,0]             2x

Units     Price

[-1,0]        2x

[-3,-1]    1.5x-0.5

Units     Price

 [4,5]        2.5x-1     

 [0,4]      2.25x

 

Fig. 1. Energy trading scenario.

energy units to which it applies and the linear function used to obtain the price provided

that the prosumer is required to provide a number of energy units in that range. As a

convention, a selling offer is expressed by means of a negative number of units, whereas

a buying offer is encoded with a positive number of units. For instance, prosumer 4’s

first entry communicates that, if as a result of clearing the market, he is provided an

amount of energy e between 1 KW and 2 KW, he will pay (0.5 · e + 0.75)ce. That is if

he is provided 1.5KW, he will pay 1.5ce. On the other hand, its last entry states that if

he is requested to provide an amount of energy e between 2 and 3 KW, he will be paid

(5 · e − 4) ce (note that the sign is reversed from the expression in the table because

we are encoding sell offers with negative numbers). Finally note that, by applying its

third valuation, he shows his willingness to transmit energy for free (he will be happy to

receive 0KW at price 0ce). In Figure 1, we observe that prosumer 1 only sells energy,

and prosumer 2 only buys energy, while prosumers 3 and 4 can either buy or sell.

2.2 Problem definition

Now the problem faced by the prosumers in Figure 1 is to decide how much energy to

trade and with whom so that the overall benefit (social welfare) is maximized while the

energy network’s capacity constraints are fulfilled. This means that: (i) each prosumer

must select how much to trade; and (ii) each pair of prosumers connected by a link must

agree on the amount of energy to be transferred by their link together with the direction

of the transfer (with whom). In what follows we cast this problem as an optimization

problem, and we put off the solution to this problem to sections 3.

Following example 1, we consider that the energy network connecting a set of pro-

sumers P can be modeled as an undirected graph (P, E), where the vertexes stand for

the prosumers and each edge in E connects a pair of prosumers. An edge {i, j} ∈ E

means that prosumer i and j are physically connected to trade energy. When {i, j} ∈ E,

i < j we say that i is an in-neighbor of j and that j is an out-neighbor of i. The set of

in-neighbors (resp. out-neighbors) of j is in( j) (resp. out( j)).

40



Each prosumer j expresses her offers to buy and sell energy by means of an general

valuation function o j : R → R ∪ {−∞}. For instance, o j(3) = 2 indicates that prosumer

j is willing to buy 3 energy units at 2ce, while o j(−4) = −2 indicates that she is

willing to sell 4 energy units if paid 2ce. Notice that offer functions capture prosumers’

constraints. To communicate her offer function, each prosumer sends a table like the

ones in Figure 1 making explicit her feasible energy states and their values. Given a

number of units x, if x does not belong to the interval of any of the entries in the table,

it means that such energy state is unfeasible for the prosumer and thus its value o j(x)

is −∞. If x appears in more that one interval, then its o j(x) is the maximum among the

values assigned for each of the entries in the table in which it is contained.

In the following we define formally the mathematical foundations that underlie

piecewise linear valuations.

Definition 1. A general valuation is any function α : R → R ∪ {−∞}. We use Fα to

note the subset of R in which α takes finite values, that is Fα = α
−1(R). We define the

zero valuation 0 as the function that maps every real number to −∞. That is, for all

x ∈ mathbbR we have that 0(x) = −∞. We define the unit valuation 1 as the one that

maps 0 to 0 and any other element to −∞. That is, 1(x) =















0 if x = 0

−∞ otherwise

Let W = {ω1, . . . , ωn} be a finite set of general valuations. We define FW as the

set of values where at least one of the valuations in W takes a finite value. That is,

FW =
⋃n

i=1 Fωi
.

Furthermore, we can define the maximum valuation β = max W as

β(x) = (max W)(x) =















max1≤i≤n {ωi(x)|x ∈ Fωi
} if x ∈ FW

−∞ otherwise.
(1)

Definition 2 (Point Valuation). A general valuation α is a point valuation if and only if

Fα contains a single element. We can always represent a point valuation by an ordered

pair (p, q) ∈ R2, such that

α(x) =















q if x = p

−∞ otherwise.
(2)

Note that the unit valuation is a point valuation represented by the ordered pair

(0, 0).

Definition 3 (Linear Interval Valuation). A real interval is a subset of real numbers

[l, u] = {x ∈ R | l ≤ x ≤ u}. A general valuation α is a linear interval valuation if and

only if there is a real interval Iα = [lα, uα], and two real numbers aα, bα, such that for

each x ∈ R

α(x) =















aα · x + bα if x ∈ Iα

−∞ otherwise
(3)

We say that the ordered tuple (lα, uα, aα, bα) ∈ R
4 is a representation of α.

Lemma 1. Any point valuation is a linear interval valuation
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Proof. Let (p, q) be the representation of a point valuation α. Then, (p, p, 0, q) is a

representation of α as interval lineal valuation.

Definition 4 (Discrete Valuation). A general valuation α is a discrete valuation if and

only there exists a finite set of point valuations W = {ω1, . . . , ωn}, such that α = max W.

That is, for each x ∈ R, we have that α(x) = (max W)(x).

Definition 5. A general valuation α is piecewise linear if and only there exists a finite

set of linear valuations W = {ω1, . . . , ωn}, such that α = max W.

In that case we say that W is a piecewise linear representation of α of size n. Note

that Fα =
⋃n

i=1 Iωi
.

Lemma 2. Any discrete valuation is piecewise linear.

Proof. Directly from the definitions of discrete and piecewise linear valuation and

Lemma 1.

Note that this means that piecewise linear valuations are a more general framework

than that used in [1]. Thus, any algorithm or problem definition that assumes piecewise

linear valuations will in particular be capable of working with discrete valuations. Next,

we provi

Lemma 3. Each piecewise linear valuation admits a representation W = {ω1, . . . , ωn}

in which

1. For each two linear interval valuations ωi and ω j, we have that |Fωi
∩ Fω j

| ≤ 1.

That is, the finite domains of ωi and ω j are either disjoint or share a single point.

2. There is no point shared by more than 3 linear interval valuations.

3. For each 1 ≤ i < n we have that uωi
≤ lωi+1

.

We call such a representation a canonical representation.

Proof. The proof proceeds constructively. It is relatively simple to build an algorithm

that builds the canonical representation of the maximum of two valuations given their

canonical representations. On the other hand, for any interval lineal valuation, its canon-

ical representation is direct. Thus given a representation which is not canonical, the

canonical representation can always be built by taking the canonical representations of

the interval lineal valuations in the representation and then successively taking max-

imums between them until we have assessed the maximum of all the interval linear

valuations in the representation.

Our fundamental assumption in this work is that prosumers’ offers are piecewise

linear valuations. Hence, in the remaining of the paper when we refer to a valuation we

will always mean a piecewise linear valuation.

Besides prosumers’ offers, we also consider that the energy network is physically

constrained by the capacity of the connections between prosumers. We will note as ci j

the capacity limit of edge {i, j}, namely the maximum number of energy units that the

link between prosumers i and j can transmit. An allocation specifies the number of

units that each prosumer trades with each neighboring prosumer. We will encode an
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allocation by means of a set of variables Y = {yi j | i ∈ P, j ∈ out(i)}, where yi j stands for

the number of units that prosumer i sells to prosumer j and is bounded by the capacity

limit ci j. That is, the domain of variable yi j is Di j = [−ci j .. ci j]. Thus, if yi j takes on

a value k greater than 0, it means that prosumer i sells k energy units to prosumer j.

Otherwise, if yi j takes on a negative value −k, we say that prosumer i buys k energy

units from prosumer j. From this follows that yi j represents a trade from prosumer i’s

perspective.

Now we want to assess the value of a given allocation. Before that, we will define

the local value of a given allocation for a single prosumer. We need to assess the amount

of energy that a prosumer acquires and sells according to an allocation Y. Prosumer j

will only consider its local view of the allocation, represented by Y j = y. j ∪ y j.. We can

assess the net energy balance for prosumer j as

net(Y j) =
∑

i∈in( j)

yi j −
∑

k∈out( j)

y jk, (4)

where each yi j and y jk are added with different signs because j takes the role of buyer

in yi j and that of seller in y jk. And therefore, the local value v j of an allocation Y for

prosumer j can be assessed as the value of her net energy balance by means of her offer

function

v j(Y j) = o j(net(Y j)). (5)

Therefore, the value of an allocation Y can be obtained by adding up the local value of

the allocations for each prosumer.

Value(Y) =
∑

i∈P

v j(Y j). (6)

Now, we are ready to define the energy trading allocation as that of finding the

allocation of maximum value that satisfies the capacity of the energy network.

Problem 1. Given a set of prosumers P, a canonical representation of their offers {o j| j ∈

P}, and an undirected graph E where each edge is labeled with its capacity ci j, the

continuous energy allocation problem (CEAP) amounts to finding an allocation Y that

maximizes Value(Y). Whenever the graph E is acyclic we say that the CEAP is acyclic.

At this point we can consider again the example in Figure 1. When solving the

CEAP defined by Problem 1, we obtain the variable assignment shown in Figure 2. The

solution indicates that prosumer 1 transfers 2 energy units to prosumer 2 (y12 = 2),

prosumer 2 also receives 3 energy units from prosumer 4 (y24 = −3), and prosumer 3

transfers 3 energy units to prosumer 4. Next to each offer table, we show the amount

of energy xi that each prosumer is provided (if xi is positive) or requested (when xi is

negative). This corresponds to the net energy balance (Equation 4). The value of the

offer of each prosumer in its energy balance state is added to assess the net value of the

allocation (see Equation 5). Thus, the allocation that maximizes Equation 6 has a value

of 2.

Notice that prosumer 2 obtains 5 energy units by aggregating the energy units re-

ceived from prosumers 1 and 4. However, prosumer 4 does not sell anything to pro-

sumer 2. The role of prosumer 4 is to relay to prosumer 2 the energy transferred from
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1

2 4

3

2 5

3

y
24

 = -3

y
34

 = 3y
12

 = 2

NET VALUE = -3.5 + 11.5 + 0 - 6 = 2

Units     Price

 [4,5]        2.5x-1     

 [0,4]      2.25x

 

Units     Price

[-1,0]        2x

[-3,-1]    1.5x-0.5

Units     Price

[1,2]       0.5x+0.75

[0,1]     1.25x      

[-2,0]         3x

[-3,-2]        5x+4

Units     Price

[1,2]         0.75x+0.5

[0,1]         1.25x 

[-3,0]             2x

x
2
 = 5

x
1
 = -2 x

3
 = -3

x
4
 = 0

Fig. 2. Solution to the CEAP represented by the energy trading scenario.

prosumer 3, which is the one that does sell energy. In general, our model supports that

each prosumer either: (i) aggregates energy received from its neighbors when buying

energy; (ii) splits and distributes energy to its neighbors when selling energy; or (iii)

relays energy so that other prosumers can satisfy their demand.

3 Solving the CEAP through MIP

Solving optimization problems by mapping them to linear programs has become a stan-

dard practice whenever such a mapping can be found. Through the advance of software

capabilities (including CPLEX and Gurobi), this practice turns out to be difficult to

beat even for problems, such as combinatorial auctions, that have attracted a stream of

research in specific algorithms [11]. Along this line, in this section we show how the

CEAP can be encoded as a linear program (LP).

Before translating the CEAP as an LP, we consider that the offer of prosumer j

is expressed as a piecewise linear valuation o j. According to lemma 3, each offer o j

admits a canonical representation that hereafter we denote as W j = {o
1
j
, . . . , o

n j

j
}, where

o1
j
, . . . , o

n j

j
are linear interval valuations. Thus, each linear interval valuation ok

j
∈ W j is

defined as follows:

ok
j(x) =















aok
j
· x + bok

j
if x ∈ Iok

j

−∞ otherwise
(7)

where Iok
j
= [lok

j
, uok

j
] is a real interval, aok

j
and bok

j
are two real numbers, and x ∈ R.

To encode our optimization problem, we will consider two types of decision vari-

ables: network decision variables and prosumer decision variables. On the one hand,
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as to the network, as described in section 2, for each edge (i, j) in the trading energy

network an integer variable yi j will take on as a value the number of units that prosumer

i sells to prosumer j (when yi j > 0), or that she buys from prosumer j (when yi j < 0).

Notice that yi j may also be zero if there is no trading between i and j. In general, the

value of yi j is within the domain Di j.

On the prosumer side, since the prosumer value v j(Y j) of equation 5 cannot be en-

coded as a linear function in terms of these variables, for each prosumer j we introduce

a set of auxiliary binary variables {zk
j
| j ∈ P, 1 ≤ k ≤ |W j|}, where variable zk

j
indicates

whether the k-th linear interval valuation in the offer is taken or not. Since the linear in-

terval valuations within the offer of prosumer j are mutually exclusive, these variables

are linked by a constraint that enforces that one and only one of them is active, namely
∑|W j |

k=1
zk

j
= 1.

Besides choosing some linear interval valuation out of an offer, we must also decide

the number of units that the prosumer is to trade. Thus, for each prosumer j we introduce

a set of auxiliary real variables {xk
j
| j ∈ P, 1 ≤ k ≤ |W j|}, where variable xk

j
indicates

the number of units the prosumer decides to trade. Therefore, we can readily encode the

value obtained from selecting xk
j

energy units to trade from the linear interval valuation

ok
j

as aok
j
· xk

j
+ bok

j
· zk

j
.

At this point, we can establish how to enable each zk
j

variable by means of the

following constraint:

zk
j = 1 if and only if xk

j ∈ Iok
j

(8)

This constraint ensures consistency between each prosumer’s decisions. If variable xk
j

is set to a value within Iok
j
, then variable zk

j
must be enabled to reflect that the k-th linear

interval valuation of prosumer j is selected. Thus, each variable zk
j

acts as an indicator

variable. Notice that equation 8 can be readily linearised by means of the following

inequations: zk
j
· lok

j
≤ xk

j
≤ zk

j
· uok

j
.

Now we are ready to put together the network and prosumer decision variables. The

net energy balance net(Y j) from equation 4 provides a connection between the flows

of energy in and out a prosumer and the offer selected. We can express equation 4 for

prosumer j by means of the constraint

∑

i< j

yi j −
∑

q> j

y jq =

|W j |
∑

k=1

xk
j .

Finally, the prosumer value can be easily written as a linear expression in terms of

these variables:
∑|W j |

l=1
vk

j
, where vk

j
= aok

j
· xk

j
+ bok

j
· zk

j
is the value contributed by the k-th

linear interval valuation.
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Now we are ready to define the LP that solves the energy allocation problem intro-

duced in the previous section.

maximize
∑|P|

j=1

∑|W j |

k=1
aok

j
· xk

j
+ bok

j
· zk

j

subject to zk
j
· lok

j
≤ xk

j
≤ zk

j
· uok

j
∀ j ∈ P, 1 ≤ k ≤ |W j|

∑|W j |

l=k
zk

j
= 1 ∀ j ∈ P, 1 ≤ k ≤ |W j|

∑

i< j yi j −
∑

q> j y jq =
∑|W j |

k=1
xk

j
∀ j ∈ P, 1 ≤ k ≤ |W j|

yi j ∈ Di j ∀(i, j) ∈ E

zk
j
∈ {0, 1} ∀ j ∈ P, 1 ≤ k ≤ |W j|

xk
j
∈ R ∀ j ∈ P, 1 ≤ k ≤ |W j|

Let us consider again the example in Figure 1, and its solution in Figure 2. The

optimal allocation Y presented in the previous section is obtained by the MIP above by

setting the network decision variables to the following values: y12 = 2, y24 = −3 and

y34 = 3; and the prosumer decision variables to the following ones: x1
1
= −2, x2

2
= 5,

x1
3
= −3 and z1

1
= 1, z2

2
= 1, z1

3
= 1, z3

4
= 1 (otherwise xk

j
= 0 and zk

j
= 0). This leads

to the following evaluation of the allocation (only those j, k sumands with zk
j
= 1 are

shown, since all others are zero):

[1.5 · (−2) − 0.5] + [2.5 · 5 − 1] + [1.25 · 0] + [2 · (−3)] = −3.5 + 11.5 + 0 − 6 = 2

4 Mechanism Design

Up to now, we have concentrated on how to formalize and provide a solution to the

CEAP through ILP, disregarding the strategic behavior of prosumers. Here we skim

through some game-theoretic considerations.

Mechanisms are composed of both a choice rule and a payment rule [19]. From

a mechanism design point of view, the CEAP can be understood as the choice rule

that selects the energy trades in our network based on the valuations provided by the

prosumers. The previous section shows that this choice rule can be assessed by means

of ILP However, we have not proposed any payment rule that establishes how much

should each agent pay/receive afterwards.

In their classical work from 1983, Myerson and Satterthwaite [15] proved the im-

possibility of having an efficient, individual-rational, incentive-compatible, and budget-

balanced mechanism in a simple exchange environment in which a buyer and a seller

trade a single unit of a given good. This very simple case is isomorph to an energy net-

work with two connected participants where one has available an energy unit that the

other one wants to buy. Thus, the impossibility result [15] extends to our setting.

On the other hand, the central result in mechanism design, on the incentive-compatibility

of the Vickrey-Clarke-Groves (VCG) mechanism, carries over to our model. Recall that

the VCG mechanism allocates goods in the most efficient manner and then determines
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the price to be paid by each bidder by subtracting from their offer the difference of the

overall value of the winning bids and the overall value that would have been attainable

without that bidder taking part. That is, this “discount” reflects the contribution to the

overall production of value of the bidder in question. The VCG mechanism is strategy-

proof: submitting their true valuation is a (weakly) dominant strategy for each bidder.

As an inspection of standard proofs of this result reveals [12], this does not depend on

the internal structure of the agreements that agents make. Hence, it also applies to our

model.

Furthermore, assessing the VCG payment for each prosumer only requires solving

a new CEAP problem where that particular prosumer is not present, which can also be

done by means of generic ILP software such as CPLEX or Gurobi.

Further studying mechanism design properties of such markets (including alterna-

tive payment rules that could lead to asymptotic efficiency along the lines of [2]) re-

mains as future work.

5 Conclusions and future work

In this paper we have investigated how to extend the work in [1] to enable energy trad-

ing in prosumer networks for prosumers with piecewise linear valuations, and taking

into account grid system constraints. We propose to cast the energy trading problem as

an optimization problem, the continuous energy allocation problem (CEAP). We then

show that the CEAP can be formulated as an MIP so that it can be optimally solved for

any network topology by means of commercial optimization solvers.

A solver for the CEAP by means of the mapping provided in this paper has ef-

fectively been implemented and is currently able to solve problems with hundreds of

prosumers in the order of a tenth of a second. A detailed evaluation of the efficiency of

that solver is ongoing.

In [1], an alternative distributed algorithm (RadPro) is provided for efficiently solv-

ing the discrete EAP when the graph is acyclic. Another promising line of future work

is the extension of RadPro to provide a decentralized solver for the acyclic CEAP. Pro-

vided that this is successfully achieved, the next step will be to consider how to extend

such a solver so that it is able to effectively solve problems which contain cycles.
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Abstract. This paper aims to identify central points in road networks
considering traffic demands. This identification of points is made with a
variation of betweenness centrality metric. In this variation, the graph
corresponding to the network is weighted according to the routes gener-
ated from the traffic demand. To test the proposed approach three net-
works have been created, which are Porto Alegre and Sioux Falls cities
and a regular 10x10 grid. Then traffic demands were microscopically
simulated and the results were compared with the proposed method.

Keywords: Traffic Assignment, Complex Networks, Centrality

1 Introduction

Metropolitan regions are currently facing major problems of urban mobility,
which have resulted, mostly, from choosing private transportation rather than
public transportation. For example, in 2014 Brazil had 78.1 million private ve-
hicles, which represents an increase of 229.3% of fleet vehicles when we consider
the last 10 years. This means one private vehicle per 2.6 inhabitants.

Therefore dealing with such growth in the fleet requires duly planning the
highway system along mechanisms and strategies to reduce the effects of traffic
on the population and the environment. Planning transportation systems in-
volves, among other factors, analyzing the distribution of traffic flow on road
networks. This is an essential activity for dealing with the maintenance of these
networks and it may contribute to diminish the effects of traffic.

There is evidence that the measure of betweenness centrality, as proposed
by Freeman [7], is capable of predict traffic flows in road networks. However,
this measure ought to be adapted because it does not suitably represents the
distribution of demand [11, 9, 8]. The objective of this paper is to analyse how
the measure of betweenness centrality may be adapted and used in identifying
central points in a road network. In this paper the term central points refers to
those points that are most often traversed by road users upon traveling along
their routes.
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2 Definitions

2.1 Transport Networks

Transport networks can be considered networks that are composed of roadways
and junctions between roadways (e.g. intersections). Such networks are typically
represented as weighted directed graphs G = {V, E}, composed of a set of
vertices V (junctions) and edges E (roadways) and a cost function C(e) which
associates weight with each edge. In context of public transport networks, the
length, the travel time or the capacity are commonly used as the weight of the
edges.

Demand for traffic represents the behavior of users in using the network
infrastructure. By behavior, it is understood that the decisions made by the
users that are relevant to the problem which is being modeled (e.g. choice of
routes).

The locations of origin and destination of demand are added in districts. Dis-
tricts can be defined based on information obtained through sociodemographic
studies, data of georeferencing and urban statistics, so that these variations may
be the least possible within a given district [1]. In general, and also in this work,
each district is associated to a location within the network and it is composed
of a set of vertices and edges without there being overlapping on other districts.

The demand of a network is commonly represented by a matrix that relates
districts of origin and destinations, associating each of these possible combina-
tions, to a figure that corresponds to the intensity in which these trips occur.
As it relates origins and destinations, it is called an origin-destination matrix,
or OD matrix.

A driver who wishes to travel from district s to district t, represented by (s,t),
may encounter more than one series of edges that lead from s to t. Each of these
possible paths is called a route. Since of each of these edges has an associated
cost, there is particular interest in the path with the lowest cost, which in this
article is called the path with the least length, or the shortest path. Therefore,
creating the routes consists of associating series of edges to trips that are specified
by the OD matrix.

2.2 Betweenness Centrality

Betweenness centrality is based on the idea that a vertex is the most central as
more low cost paths pass through it. The shortest paths between all the pairs of
vertices in the network are considered in this calculation. The traditional method
for calculating betweenness centrality, as well as another centrality measures,
were originally developed in the scope of studying social networks, and they
have recently been highlighted in the literature [10].

Betweenness centrality for vertex u is defined in accordance with Equation
1, in which σij is the number of shortest paths between i and j, and σij,u is the
number of these paths through which u passes. The shortest paths are calculated
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on the basis of cost of the edges, we remark that the centrality measure is
sensitive to the function of cost that has been chosen.

Bu =
∑

i∈V

∑

j∈V \{i}

σij,u

σij

. (1)

3 Methods

This section presents a method for calculating betweenness centrality by tak-
ing into consideration the demand that is applied to the network. The method
consists of constructing a graph that represents the network and weighing it by
using the demand. In order that upon calculating betweenness centrality, the oc-
cupation of the roadways is taking into consideration, resulting from the demand
that is represented by the OD matrix.

3.1 Attributing Weights to the Edges

Before calculate betweenness centrality by considering the demand, is neces-
sary to determine the routes that correspond to the demand. As an OD matrix
determines only origins and destinations, calculating the routes is necessary for
obtaining a table that adds up the amount of routes that pass through each edge.
The routes were obtained by calculating the path of the lowest cost between the
origin and the destination of each trip that is present in the OD matrix. That is
why sequences of edges that form the paths with the lowest cost were found for
each OD pair, by using the Dijkstra algorithm [6].

Once the routes that correspond to the demand have been calculated, it is
possible to construct a table of occurrence of the amount of routes which pass
through each edge. This procedure is a basic stage for defining the weights of
the edges of the network graph, since the amount of routes will as input for
the functions used to calculate the cost of the edges. Attributing weight to the
edges can be carried out in distinct manners. Several studies use the length of
the roadway as the cost of the edges [9, 4, 11, 5]. In this paper we have used the
occupation rate of the roadways as the weight of the edges, as it is understood
that it reflects the use of the network related to the demand. Furthermore, the
unitary function, in which the lowest cost routes refer to the number of hops
necessary to go from the origin to the destination, was also considered.

In this study, it was decided to use decreasing cost functions to perform the
attribution of costs to the edges. Figure 1 illustrates the situation that brought
about this decision. A network through which 10 routes pass along each of the
edges is shown in Figure 1a; the values of betweenness centrality for each of
the vertices are shown in the same figure. On may notice that the betweenness
values are equally distributed since this is a regular network.

Supposing that the number of trips between vertices A and B is increased
by 5 trips, the natural logic is to increase the number of trips on the edge to
15. Figure 1b illustrates whats happens to the values of betweenness centrality
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when the cost of edge AB is increased. In this case, as the betweenness central-
ity algorithm considers the paths of lowest cost, paths that previously passed
through AB have ceased to do so. Thus, vertices C and D have come to receive
the greatest betweenness values, while vertices A and B were those that received
a real increase in demand. This would require the reader to use and inverted in-
terpretation of the measure, so that the vertices with the lowest betweenness
values are central in relation to the demand.

In order to solve this problem and make the greatest values of betweenness
centrality be attributed to the vertices with the greatest volume of demand, it
was decided to use decreasing cost functions. In this case, an increase of demand
between vertices A and B causes a decrease in the weight of the edge, as this was
attributed by means of a decreasing function. Figure 1c shows that in this case
the vertices with the highest values of betweenness coincide with the vertices
that have received the highest demand.
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Fig. 1: Example of the influence of cost of the edges in distributing betweenness
centrality.

Thus, the experiments were guided by taking the following cost functions
into consideration:

F1: Decreasing Exponential It is possible to use an exponential function for
modeling the cost of an edge according to its occupation. Likewise, assuming
that the cost of an edge also decreases exponentially related to its rate of
occupation, the cost attributed to the edges is defined as function C, as
defined in range (0; 1]. This weight is calculated in accordance with the
decreasing exponential function that is shown in Equation 2, a particular
case of the family of equations y = a(1 − b)x, and it only considers the
amount of trips n that passes through a given edge.

C(n) = (1− 0.001)n. (2)
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F2: Rational Function The rational cost function shown in Equation 3 was
also considered in the experiments. This function was chosen to explore the
behavior of betweenness centrality distribution when cost decreases faster
than the exponential function previously explained.

C(n) = 1/n. (3)

F3: Decreasing Linear Function The linearly decreasing function exhibited
in Equation 4, in which k > n, was also considered in the experiments. The
main objective of using a linear cost function is to study the behavior of the
proposed method when edge costs are diminishing more smoothly than the
decreasing exponential function.

C(n) = k − n. (4)

F4: Number of Hops The unitary cost function was added to the experiments
and it considers the number of hops that were performed. This function
represents how many edges there are in the path with the lowest cost that
is calculated for an OD pair.

F5: Length of an Edge Considering that several studies have used the length
of a roadway as weight of the edges, this was used in the cost function F5,
as a way of comparing this study to previous studies.

3.2 Calculation of Betweenness Centrality Considering Demand

After the graph that represents roadways was constructed and its edges were
properly weighted by using the routes that were generated from the OD matrix
and cost function, it is possible to calculate the betweenness centrality. As the
interest here lies in identifying the central points, the results of the betweenness
centrality algorithm will show high values for vertices that have greater demand.

Algorithm 1 lists the steps involved in calculating betweenness centrality
considering the demand.

Algorithm 1 Betweenness centrality considering demand

Input: Network R, OD Matrix M, Cost Function C
Output: Betweenness centrality from all vertices
1: procedure DemandBetweennessCentrality(R,M,C)
2: Construct graph G with the same topology as R
3: Calculate the routes from M over G
4: Calculate a table T from the occurrence of routes through each edge
5: Attribute costs to the edges of G by using T and C
6: Calculate betweenness centrality over G
7: return betweenness centrality from the vertices
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4 Experiments and Results

The proposed approach in this study was tested by means of experiments on
three networks. Two of these are abstractions of real networks in the cities of
Porto Alegre and Sioux Falls, whereas a third network consists of regular 10x10
grid. All three networks are shown in Figure 2. Furthermore, with the aim of
analyzing the behavior of betweenness centrality at different occupation levels,
demands with volumes of 10%, 25%, 50% and 75% of the total capacity of each
network are used.

(a) POA Arterials (b) Sioux Falls (c) 10x10 Grid

Fig. 2: Networks used in the experiments.

4.1 Traffic Demand

For the POA Arterials network a pattern of demand was specified with the aim of
reproducing the flow patterns of drivers that are observed in the city of Porto Ale-
gre at the beginning of the day, in which they leave the outskirts of the city and go
downtown. In this demand, which is called Non-Uniform Outskirts→Downtown
Demand (NUODD), seven distinct points on the outskirts of the city and one
point in the central region of the city were used as origin and destination respec-
tively. Considering that the capacity of the POA Arterials network is 127,320
vehicles, demands of volume of 10% (12,372 trips), 25% (31,830 trips) and 50%1

(63,660 trips) were defined.
For the Sioux Falls network, the same model of demand used in the paper by

Chakirov and Fourie [3] was used. In their study the authors based their work
on census data to create a de-aggregate demand and a microscopic model of the

1 The total volume of demand if equal to 50% of the maximum capacity of the network,
corresponding to a situation that is much greater than reality. Demands with volumes
over 50% higher were not simulated.
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Sioux Falls network, based on the network that was originally used in the study
by LeBlanc et al [12]. In this study only the volume of demand corresponding
to the morning rush hour was used. Thus, the demand used in this network has
a volume of 44,652 trips and it was generated by an iterative model in order to
achieve the stochastic user equilibrium. See [3] for details.

For the regular 10x10 grid two regions were defined, which are the edge
and the center, on which three types of demand were defined. The first of these,
uniform demand (UD) shows uniform distribution of the origins and destinations
of the trips that were generated, and the aim of which if to create random
trips within 10x10 grid. The second one Non-Uniform Edge→Center Demand
(NUECD), is composed of trips that go from the perimeter toward the center
of the grid, and which have the aim of creating congestion in the central region.
The third type of demand which if called Non-Uniform Center→Edge Demand
(NUCED), is composed of trips that have a pattern that is opposite the previous
demand, in other words, trips that leave the center and go toward the edge of
the network. Considering that the grid has a capacity of 4,890 vehicles, demands
of volume equal to 10% (489 trips), 25% (1,223 trips), 50% (2,445 trips) e 75%
(3,668 trips), are used.

4.2 Comparing the Proposed Method to a Microscopic Simulation

Since access to the real measurements that were carried out on roadways of the
cities of Porto Alegre and Sioux Falls were not available, it was decided to test
the proposed technique by means of comparing it to a simulation. In this case, a
microscopic simulation that was performed in the SUMO [2] simulator was used,
and it applies the routes that were calculated from an OD matrix to a given
network. Figure 3 show the steps involved in the microscopic simulation process
and the steps of the proposed method. Both methods receive as input the OD
matrix and the road network files and calculate the betweenness centrality of
the vertices at the end. For the microscopic simulation, additional steps for trips
and routes generation are required to produce the SUMO related files.

Trips

Generation

(OD Pairs)

Routes

Generation
SUMO

Build Weighted

Network Graph

Calculate 

Betweenness

Centrality

Node

Betweenness

Output

Proposed Method

Edges

Occupation

Output

Calculate

Betweenness

Centrality
OD Matrix

+

Network File

Calculate Routes

Microscopic Simulation

Node

Betweenness

Output

Correlation

Between

Results

Fig. 3: Steps involved in the betweenness centrality calculation using the pro-
posed method and the microscopic simulation.

By using SUMO it was possible to obtain information about occupation of
the edges at the peak of the occupation of the network. Figure 4 shows the mean
occupation curve of the Sioux Falls network along time, highlighting time-step
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of the peak of mean occupation. The rates of occupation obtained were used to
weight a graph that represents the network, on which betweenness centrality that
serves as a basis for comparing it to the model proposed was calculated. Table 1
shows the vertex-by-vertex details of betweenness centrality that were calculated
by the proposed method and the betweenness centrality values calculated at the
peak of occupation of the network. The five most significant values of each case
study were highlighted to make visualization easier.
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Fig. 4: Mean occupation of the Sioux Falls network related to time, with the
peak of occupation occurring at the time-step 32,671.

4.3 Results

With the aim of comparing the results of betweenness centrality obtained by the
proposed method to the results obtained through simulation, Pearson’s correla-
tion coefficient was used. Thus, the correlation between the results generated by
the proposed method with the results obtained by the simulation were calculated
for each of the experiments. This correlation was calculated between the results
of betweenness centrality over each set set of vertices. Table 2 shows the results
that were detailed by the experiments and the cost function.

In the case of the POA Arterials network, decreasing linear function and
rational function showed the best results. Considering that hops and edge length
functions disregarded demand, it is possible to note that even so, the former
showed results that were significantly better than the latter. It is also possible to
note that, for lower volumes, the correlation values obtained were greater, which
may be attributed to the fact that microscopic simulation considers factors which
the static model does not consider.

In the experiment on the Sioux Falls network, the decreasing exponential
functions and the rational functions were those that showed the best results.
This experiment was the one that showed the lowest rates of correlation. This
can be attributed to the fact that the routes of this demand were generated by
a different process than the others. In this case, the routes were generated by
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Table 1: Betweenness centrality calculated by using different functions for at-
tributing cost and the simulation over the Sioux Falls network, detailed by ver-
tices. The top five betweenness values are shown in red for each case.

Cost Function
Vertex F1 F2 F3 F4 F5 Simulation

. . . . . . . . . . . . . . . . . . . . .

4 19294 17562 17038 19117 17006 12907

5 6554 10559 15610 18557 24134 7572

6 15091 18700 15519 15242 16639 14279

7 3326 3560 3560 3560 2767 10133

8 18790 18808 12784 12961 13774 16894

9 13674 13623 19573 20462 27655 14953

10 42980 37882 36784 30539 33664 31824

11 35269 33075 31314 25068 23418 42001

12 16393 16895 11209 11097 8809 17374

13 10899 8111 5499 5499 4923 4923

14 4657 6185 9400 12623 15148 29303

15 16300 15283 17327 18509 17621 29817

16 25777 21679 12148 12148 13699 29798

. . . . . . . . . . . . . . . . . . . . .

the model developed by Chakirov and Fourie [3], while in the other case studies,
the routes were calculated by considering the shortest paths.

In the case of the 10x10 grid, hops and edge length functions were the ones
that showed the best results. Specifically for this case study, the fact that shortest
paths with same value exist between a given origin and destination showed a
deviation that may have distorted the results. Another point to be noticed is the
strong correspondence between the hops and edge length columns, this is due to
the regularity of the grid, which makes the edge length function be equal to the
hops function.

Therefore, it was observed that the decreasing exponential function and the
decreasing linear function showed the best results when the instances of Sioux
Falls and POA Arterials were considered. As the occupation peak of the network
if being considered, many edges have occupation rates that are near 1, in the
hops function also showed significant results, exceeding the others in some cases.

5 Related Work

In Holme’s paper [10], the author investigates the relation between traffic flows
in communication networks and centrality measures. In this model, particles are
moved along the edges of a graph, constrained by the restriction that two parti-
cles may not occupy the same vertex at the same time. The particles move along
between their randomly defined origins and destinations, and therefore three dif-
ferent updating policies are considered, which are: random walk, in which parti-
cles randomly choose a position; detour-at-obstacle, in which a particle randomly
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Table 2: Correlation between betweenness centrality calculated by the proposed
method and simulation, detailed by experiments and cost functions.

Cost Function
Instance F1 F2 F3 F4 F5

Sioux Falls 0.61 0.61 0.59 0.54 0.45

POA Arterials NUODD Vol. 10% 0.96 0.92 0.99 0.98 0.69

POA Arterials NUODD Vol. 25% 0.80 0.84 0.84 0.81 0.58

POA Arterials NUODD Vol. 50% 0.76 0.78 0.77 0.74 0.69

Grade 10x10 NUECD Vol. 10% 0.84 0.79 0.88 0.89 0.89

Grade 10x10 NUECD Vol. 25% 0.90 0.83 0.91 0.86 0.86

Grade 10x10 NUECD Vol. 50% 0.91 0.85 0.93 0.80 0.80

Grade 10x10 NUECD Vol. 75% 0.94 0.80 0.93 0.73 0.73

Grade 10x10 UD Vol. 10% 0.67 0.61 0.67 0.89 0.89

Grade 10x10 UD Vol. 25% 0.63 0.59 0.63 0.91 0.91

Grade 10x10 UD Vol. 50% 0.73 0.73 0.73 0.75 0.75

Grade 10x10 UD Vol. 75% 0.69 0.71 0.67 0.87 0.87

Grade 10x10 NUCED Vol. 10% 0.90 0.73 0.90 0.88 0.88

Grade 10x10 NUCED Vol. 25% 0.84 0.82 0.85 0.87 0.87

Grade 10x10 NUCED Vol. 50% 0.78 0.67 0.78 0.83 0.83

Grade 10x10 NUCED Vol. 75% 0.90 0.77 0.89 0.81 0.81

chooses a position among their neighbors that are nearest the destination; and
wait-at-obstacle, in which if no vertices are free near the destination, the particle
does not move.

In order to monitor the traffic density regarding betweenness centrality, the
author chose the scale-free network model of Barabási-Albert, because it shows
a wide distribution of betweenness centrality values. Regarding betweenness cen-
trality, the author noted that the vertices with low or average betweenness rates
showed constant occupation rates, and concluded that betweenness centrality
itself cannot estimate the capacity of a vertex. At this point, our work differs
from Holme’s work since we use a microscopic simulation to compare with the
betweenness centrality. We also consider nonuniform demands that differ from
randomly defined OD pairs used in Holme’s work. Beyond that, the subject of
study in our work was road networks, while in Holme’s work the author focused
on communication networks. It influences basically on the network types stud-
ied: communication networks could be explained by scale-free models, while road
networks could be better explained by random graphs.

In the study of Kazerani and Winter [11], the issue related to the capacity of
betweenness centrality for explaining traffic flows was analyzed. In their study,
they came to the conclusion that the traditional betweenness centrality measure
[7] is unable to explain traffic flows significantly because it does not consider the
traffic demand that flows in a network, nor the dynamics.

Still regarding the study of Kazerani and Winter, the authors suggest that
an adaptation of the traditional centrality measure is necessary, in which the
physical and temporal aspects would be considered, so that a significant corre-
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lation with the traffic observed in the network may be attained. In this work,
we proposed a variation of the betweenness centrality that, by considering traf-
fic demand, achieved higher correlation with the observed traffic in microscopic
simulation.

In the study of Gao et al [9], the authors investigate the capacity of between-
ness centrality to preview traffic flows by analyzing the correlation between the
centrality measure and real traces collected from GPS. For that, data collected
from GPS installed on 149 taxis of the city of Qingdao (China) were used.From
this analysis, the authors concluded that the betweenness centrality measure
does not explains well the traffic flows, and they attribute it two main reasons:
first, when calculating betweenness centrality, origins and destinations of trips
are vertices of the graph, while in real OD pairs origins and destinations are
associated with edges; second, the OD pairs distribution is not uniform, being
associated to the distribution of human activity, that is influenced by factor like
area occupation.

In a trial to explain the differences between betweenness centrality and traffic
flows, the authors established a comparison between the centrality measure and
a model developed in three steps: in the first step it is assumed that the demand
occurred uniformly over geographic space; in the second, the model was extended
to consider the distribution of human activity using data collected from use of
cellphones; in the third step, the demand model developed in previous step was
extended to support distance decay factor, that models the behavior of people
of seeking for resources in nearest places.

When comparing with betweenness centrality values, the model developed
in the second step shown greatest correlation. The study suggests that the be-
tweenness centrality presents low correlation with model developed in the third
step because it does not consider distance decay factor. However the authors
does not suggest modifications in the betweenness centrality, that is known by
considers uniform demand and disregards distance decay factor.

In this sense, we also addressed the problem of distance decay factor found
in model presented by Gao et al by using an OD matrix. Since the OD matrix
represents in fact the traffic demand, only the OD pairs related to desired trips
will be found in this matrix.

In the study of Galafassi and Bazzan [8] a betweenness centrality variation
that considers traffic demand is suggested. Different from the metric proposed
by Freeman [7], in their study only the routes that belongs to the specified
traffic demand were considered. The authors compare the correlation between
the modified measure betweenness centrality with the amount of waiting vehicles
on the edges, and show that the proposed method explains traffic flows better
than the original measure. The experiments were executed over a 6x6 regular
grid and Porto Alegre network, both considering different demand volumes and
types (uniform vs nonuniform).

The method proposed here is an extension of the study developed by Galafassi
and Bazzan. In this work we kept the betweenness centrality calculation module
unchanged, modifying the way of how weights are attributed to the edges to
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consider the traffic demand. We also compare the proposed method with the
occupation of edges during simulation, instead of the waiting vehicles’ queue
and extended the experiments to consider Sioux Falls network.

6 Conclusions and Future Work

The problem addressed along this work was central points identification in road
networks using betweenness centrality. We noticed that some authors tried to
explain traffic flows using betweenness centrality and failed because this metric
itself assumes a uniform distribution of demand. Thus, our method consisted
in combine the betweenness centrality algorithm with the traffic demand so
that higher values of betweenness centrality were attributed to the vertices with
higher demand.

The proposed method was tested in three networks and a microscopic simu-
lation was performed for each one of them. The occupation of the edges was
extracted from the simulations and the results were correlated with the be-
tweenness centrality values calculated by the proposed method. In general, the
exponential decay and linear cost functions showed the best results among the
studied functions.

The improvement caused by the proposed method was basically caused by
two factors. First, the shortest paths calculated by the betweenness centrality
algorithm were influenced by the demand that uses a route. The second point is
credited to the use of decreasing cost functions, which caused the weight of an
edge decrease as a function of the number of routes that pass through it.

Despite the technique proposed in this study being able to help identify
central points in transport networks, it is only a step towards a larger goal, which
is to improve the road users’ travel times. Thus, a possible extension of this study
would be to assess whether traffic light operations at these points would improve
the average travel time for drivers, and whether the points identified with higher
values of betweenness centrality are, in fact, the most critical ones.

Another aspect that could be investigated is to use a weighted correlation
coefficient that is calculated considering the capacity of each vertex. A vertex
capacity could be estimated by the capacities of its incident edges. Thus, vertices
that have large capacity would receive greater weight in the calculation of the
correlation.

Another possible extension of this work is to analyze the occupation of links
individually during the microscopic simulation, and to approximate a function
that models its behavior. This function could be used in the algorithm proposed
in this work so that its performance could be compared with other functions
considered here.
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Abstract. We propose a decentralized approach for agents to complete tasks

with increasing costs over time. Our model accounts for both the natural growth

of tasks and the effort of agents at containing such growth. We use this model to

reason spatially and temporally to efficiently coordinate agents, i.e., to produce

solutions that minimize the growth of tasks. We propose a distributed coordina-

tion algorithm (based on max-sum) that is resistant to noise from the environment

and shown to outperform state-of-the-art methods from the literature in both a

simple simulation and the RoboCup Rescue agent simulation.

1 Introduction

Wide area surveillance, search and rescue, transportation and exploration and map-

ping all benefit from efficient task allocation. Transportation industries plan distribution

routes by solving vehicle routing problems [16] to reduce costs. Our work extends task

allocation to cover problems where the costs for completing tasks change over time. Ap-

plication for this type of problem include minimizing damage from an invasive species,

resource distribution for fighting epidemics and containment of forest fires.

In most practical applications, multiple agents need to cooperate to efficiently com-

plete all the tasks. (i.e., fire fighters that cooperate to extinguish large fires). When task

costs grow, if too few agents are assigned to a task, it can grow indefinitely. Although

we do not consider tasks that have strict deadlines, if the growth rate of a task surpasses

the reduction all the agents can provide, then this task can no longer be completed.

A centralized method for allocating tasks that grow over time is given in [10], which

here we extend to an efficient decentralized method (binary max-sum). We modify max-

sum [3] by incorporating uncertainty into the task growth model, which substantially

increases the performance when there is noise or uncertainties from the environment.

This provides the first decentralized solution to the problem of task allocation when the

cost of tasks grows over time. An approximation of that growth function is assumed

to be known upfront, using the model proposed in [10], but new tasks of any size can

appear at any time and agents may fail.

In particular, this paper provides the following contributions to the state of the art:

(i) a novel formulation of max-sum that incorporates a model for the noise from task

cost growth to provide better assignments, (ii) empirical evaluation and comparison

with previous state-of-the-art methods in simple simulation and RoboCup Rescue [4],

where our formulation of max-sum outperforms previous approaches.
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2 Related Work

Multi-agent task allocation with temporal constraints has been researched from a variety

of angles. Hard deadlines, also called time windows, are when tasks can be completed

only within a specified start and end time. Melvin et al. [8] describe efficient auction

based methods if the time windows and rewards for task completion are known. In their

work agents bid using local information only, but in our case the rewards are dependent

on the actions of other agents due to the cost changing over time. Amador et al. [1] use

Fisher market clearing with soft deadlines to assign agents to tasks with rewards that

decrease over time. Time in our work has a different effect on tasks by making them

harder to complete rather that worth less.

In [13] the authors address tasks that need to be completed before a deadline and

provide a decentralized solution using max-sum. Agents reduce the task cost at discrete

time intervals similarly to our problem, but they assume task costs are fixed, while we

assume task costs change over time. In [12], the authors use an efficient implementation

of max-sum for tasks that change over time, but the rewards are purely reactive to a

changing environment unlike our approach which can anticipate how the tasks will

grow over time. We use the task growth model from the centralized heuristic solution

in [10], and propose an efficient decentralized approach.

We model the problem as a Distributed Constraint Optimization Problem (DCOP).

DCOP solutions with max-sum can incorporate uncertainty in multiple ways. Stranders

et al. [14] show how the multi-armed bandit problem can be used to learn the originally

unknown utility, or constraint functions. Unfortunately we cannot learn the utility for

our problem, as the utility is dependent on the task size which, in our case, can grow

or shrink. Incorporating uncertainty into the DCOP formulation can be done via intro-

ducing random variables nodes in the constraint graph not controlled by agents [7] or

directly into the utility [2]. Both of these approaches assume the uncertainty is localized

in the graph, where in our case uncertainty effects the whole graph. Instead of passing

identical uncertainty distributions around inside of the DCOP formulation, we handle

the uncertainty outside of max-sum. This keeps the factor graph simple and reduces the

number of messages needed to be passed without detracting from the solution quality.

3 Problem Definition

Our problem focuses on the assignment of identical homogeneous agents to tasks which

have a cost that changes over time. We make no assumptions on the spatial locations

of agents or tasks other than an agent must be on a task’s location in order to work on

that task. In order for our methods to be effective, there should be more agents than

tasks since we assume multiple agents must be assigned to complete a single task. This

assumption is not too restrictive. As we show later in Section 5, one can define a task

as a cluster of smaller subtasks in order for this property to hold.

We denote the set of identical homogeneous agents by A = {a1, . . . , a|A|} and

the set of tasks by B = {b1, . . . , b|B|}. As mentioned above, |A| > |B|. The set of

active agent assignments is denoted by N t = {nt
1, . . . , n

t
|B|}, where nt

i is the set of

agents from A that are currently working on task bi at time unit t. An agent can only
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work on one task at a time, so nt
i ⊆ A and ∀i 6= j, nt

i ∩ nt
j = ∅. All agents and tasks

have a spatial location in the environment and the travel time, TT (x, y), between two

locations, x and y, is assumed to be computable. The travel time causes a delay between

the time an agent is active in one task and the time it can become active in another. This

means
∑

i n
t
i ≤ |A| as some agents might be in transit.

Each agent provides work amount w per time unit once the agent has reached a task.

Every task bi ∈ B has a cost defined with the following recursive relationship:

f t+1
i = f t

i + hi(f
t
i )− w · |nt

i|, (1)

where f t
i starts at some initial cost f0

i and hi is a positive semidefinite monotonically

increasing function as per the model proposed in [10]. We assume the growth function,

hi, is known or reasonably estimated.

If at some time t the cost of task bi, namely f t
i , reaches or passes zero, the task

is considered complete. For this reason, when f t
i is non-positive, hi(f

t
i ) is assumed

to be zero and we do not allow agents to be assigned to this task. When hi(f
t
i ) >

w ·|nt
i| this means f t

i is strictly monotonically increasing over t, which means the task is

growing faster than the assigned agents can reduce it. If this is true, the task will never be

completed unless more agents are assigned to it at a later point. We assume all tasks can

initially be completed, as the goal is unclear if tasks grow indefinitely. The time when

the last task is completed is defined as ts. The objective of our problem is to minimize

the accumulated growth of all tasks, which we will denote by Rts =
∑

t

∑

i h(f
t
i ).

The objective corresponds to reducing the negative effects of the tasks, for instance,

minimizing the number of trees burnt before a forest fire is extinguished.

4 Max-Sum Formulation

A Distributed Constraint Optimization Problem can be formally defined as a tuple

〈A,X ,D, C〉, where A = {a1, a2, ...a|A|} is a set of agents, X = {x1, x2, ...x|X |}
is a set variables, D = {D1, D2, ...D|X |} are the domains for the variables in X , and

C = {c1, c2, ...c|C|} are utility functions. Each utility function, ci, gives a value based

on its connected variables, {xi1 , xi2 , ...}, specifically ci : Di1 × Di2 × ... → ℜ. Ap-

proaches to solve DCOPs range from optimal techniques [9] to heuristics [3]. Optimal

solutions require an exponential coordination overhead. Heuristic approaches provide

no guarantees to solution quality, but have a low coordination overhead. As our model is

an approximation of an unknown process which involves a potentially large number of

agents, we use heuristic methods. Using an optimal technique would only solve for the

approximate model and not guarantee an actual optimal solution. Specifically, we use

binary max-sum in conjunction with tractable higher order potentials to more efficiently

pass messages [15]. This can reduce the message passing complexity from O(|B||A|)
to O(|A| log |A|). The use of binary variables means Di ∈ {0, 1}.

Our model of max-sum is very similar to [12], as they use binary max-sum in

RoboCup Rescue as well. However, in [12] the solution is one-shot using heuristics

on the current situation rather than our approach which models the problem and antic-

ipates and responds to future growth. Since we model an unknown growth rate, agents

benefit by adjusting to noise or inaccuracies by using a modification of max-sum (see
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Section 4.1). The heuristics in [12] are domain specific to RoboCup Rescue by assign-

ing explicit values to tasks (i.e., fires) based on the intensity of the fire and the number

of other agents assigned to the fire. Our max-sum model assumes task size follows the

recursive relationship defined in Eq. 1, then computes the exact effect on the tasks. This

allows our max-sum to generalize to any tasks whose size can be well approximated by

the general recursive relationship in Eq. 1.

Next we discuss the specifics of our max-sum problem formulation. We treat the

cost, f t
i , as an algebraic variable that is dependent on the time t and number of static

agents active |nt
i|. The goal is to minimize Rts , the total amount of growth before all

tasks are completed. Our task growth approximation for the model in Eq. 1 is h(f t
i ) =

gi ·f t
i , where gi is a constant found empirically. For ease of calculation, we assume that

time is continuous rather than discrete so this means
δft

i

δt
= gi ·f t

i . Solving for f t
i yields

the well known exponential function: f t
i = D·egi·t, where D is the integration constant.

The initial task cost, f0
i , is used to determine an appropriate D for each task. The cost

reduction from agents working on a task is represented as
δft

i

δt
= gi ·f t

i −|nt
i| ·w, which

can again be solved for f t
i :

f t
i =

|nt
i| · w
gi

+D · egi·t, (2)

where again D is an integration constant, which is negative if the agents are completing

the task faster than it is growing, namely D < 0 if and only if |nt
i| · w > gi · f t

i . If

the number of agents changes, then D will need to be recomputed. We can use further

algebra to get the following equations:

f t
i =

|nt
i| · w
gi

+

(

f0
i − |nt

i| · w
gi

)

· egi·t (3)

−R(|nt
i|) =

|nt
i| · w
gi

· (ln(α)+1−α)+ f t
i · (α− 1), with α =

|nt
i| · w

|nt
i| · w − f t

i · gi
(4)

Eq. 3 estimates the cost of task bi at time t and an active amount of agents assigned

|nt
i|. Eq. 4 is the cost which will be added to the system from time t until task i is

finished, which means
∑

i −R(|nt
i|) = −(Rts − Rt) as defined in Section 3. This

equation is not well defined if |nt
i| · w < f t

i · gi, so we evaluate it as to ∞.

The factor graph [6] used to solve this problem is shown in Figure 1, with circles as

variables and squares as functions. Each agent ai controls all |B| binary task assignment

indicator variables vi,j , where j indicates the agent’s assigned task, bj . The constraint

qi ensures an agent is assigned to exactly one task, specifically:

qi(vi,1, vi,2, ...vi,|B|) =

{

0
∑

j vi,j = 1

−∞ otherwise
. (5)

sj is the accumulated cost growth until the task is finished. Since we want to minimize

the accumulated growth, the negative of this value is taken:

sj(v1,j , v2,j , ...v|A|,j) = −R(
∑

i

vi,j), with R as in Eq. 4. (6)
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q2
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...
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...

...

s1 s2 s|B|...

...
V1,2 V1,B V2,1 V2,2 V2,B VA,1 VA,2 VA,B

Fig. 1: The factor graph for our representation, with v as binary indicators of an agent’s

assignment, p as distance penalties, q as constraints for ensuring an agent is active on

one task, and s as the utility function for the assignment detailed in Eq. 4.

pi,j(vi,j) is a travel penalty since sj assumes the agent arrives instantly, so the correct

amount is subtracted if vi,j is the only agent changing to this task. TT (vi,j , bj) denotes

the travel time between agent ai and task bj . The effect of the agent joining the task

depends on how many other agents are already present. Knowledge of T̂ , the time it

takes the currently assigned agents to complete the task, is approximated by the previous

assignment to find pi,j(vi,j) as follows:

pi,j(vi,j) =

{

w·eg·T̂

g
·
(

e−g·TT (vi,j ,bj) − 1
)

vi,j = 1

0 vi,j = 0
(7)

This factor graph is binary and composed of only Tractable Higher Order Potentials,

specifically only the cardinality of the inputs is required for sj (number of agents as-

signed to the task) and qi (number of tasks assigned to an agent) [15].

Our global utility function is a sum over all functions:

∑

i

qi(vi,1, vi,2, ...) +
∑

i

∑

j

pi,j(vi,j) +
∑

j

sj(v1,j , v2,j ...)

This factor graph is cyclical, so we cannot guarantee finding a global optimum. The

global utility of the solution will tend to rise and then oscillate. To get the best quality

solution, we keep a record of the highest utility solution ever seen. In addition, after

max-sum ceases passing messages, we greedily assign agents one at a time to tasks as

to maximize the global utility, and this assignment is used if it has higher utility.

Max-sum is run at every time step for multiple reasons. New tasks may appear,

new agents may join and current agents may leave. Also as both the modeling and solu-

tion are approximate, readjusting projections with the real outcomes improves accuracy.

Next, we add stability in the utility when faced with uncertainty in the environment.
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4.1 Noise Resistant Max-Sum

Max-sum attempts to optimize the global utility and will change many assignments for

a small gain. This works well if the utility evaluations are accurate, but as we will detail

in Section 5, this causes much assignment thrashing when there is noise or the utilities

are approximations. To create more stable assignments, we will incorporate uncertainty

into our model, which enables us to balance risk vs. benefit. We call this the “Noise

Resistant Max-Sum” (NR Max-Sum).

The inaccuracies that max-sum must handle stem from a variety of sources, such

as the regression model, error in the empirically evaluated parameters, and noise in the

tasks growth. We use the recurrence relation in Eq. 1, which has a few factors which

need to be derived. We assume that only the cost f t
i and assignment nt

i are known

exactly. This means we must fit hi and w to the domain of interest.

Both of these parts are integral in the shape of the function and the assignment

of agents. This means we cannot compartmentalize the uncertainty to a specific sec-

tion of our problem. For this reason, we apply the uncertainty directly into Eq. 1

and decide if the assignments derived are sufficiently better than the previous assign-

ments. Max-sum is chosen to derive new assignments as it has been shown to yield

good results in a decentralized manner, but this noise resistance can be applied to

any distributed coordination algorithm. Specifically, we run max-sum as normal un-

til it yields an assignment, and then recompute the global utility by modifying Eq. 1 as

f t+1
i = f t

i + hi(f
t
i ) − w · |nt

i| +N (0, σ2
hi

+ σ2
w). Here σ2

hi
and σ2

w are the estimated

variances of hi and w respectively.

We then sample the normal distribution and compare the resulting effect on both

the previous assignment and the newly computed assignment. If the new assignment is

better both on average and in a specific percent of the samples drawn, then the new as-

signment is adopted otherwise the old assignment is kept. The expected utility ensures

that on average there should be a gain in the new assignment and the superior perfor-

mance ratio reduce the effect of outlier samples and helps ensure the assignments are

stable. After parameter tuning, we found that requiring 70% of the samples to be better

works well, but if solution outliers (both good and bad) are less of an issue then this

percent could be lowered. This parameter depends on the accuracy of the model: the

greater the noise or inaccuracy the higher this parameter should be.

5 Results

We compare our noise resistant max-sum (NR Max-Sum) against the modified version

of RT-LFF based on LFF described in [10]. LFF is a one-shot algorithm that maximizes

the amount of time agents work on tasks. This provides an optimal solution in a few

cases, but often the inefficiency of assignments causes this algorithm to perform subop-

timally. RT-LFF is a real-time modification of LFF that can react to noise and inaccurate

modeling. RT-LFF is a centralized conservative method that only changes assignments

if a large gain is detected. We modify RT-LFF which originally attempted to minimize

finish time of the last task to instead minimize the accumulated task growth to cor-

respond with our problem definition. This modified RT-LFF has a worst-case running

time of O(|A||B|2), but is typically significantly less in practice.
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NR Max-Sum, max-sum and RT-LFF are compared in both a controlled simple sim-

ulator and in the RMASBench [5] extension of RoboCup Rescue to show the applica-

bility to complex environments and to make our results easily comparable. We provide

the optimal solution, which is computed assuming the travel time between tasks is zero

so it gives an unreachable lower bound when distance takes time to traverse.

5.1 Simple Simulator

The simple simulator gives us greater analytical power than RoboCup Rescue since

every aspect can be controlled. We can explicitly define the initial cost, f0
i , growth

functions, hi, and even the effect of agents on the task, w, for any number of tasks.

Travel time between tasks can be asymmetric, for example if a task is on top of a hill it

will be quicker to descend than ascend.

We consider the optimal, RT-LFF, max-sum and NR Max-Sum in different configu-

rations to highlight their strengths and weaknesses. First we compare these algorithms

for different types of growth fucntions (Table 1), then we analyze the performance of

these algorithms under noise and modeling inaccuracies (Table 2). All the experiments

in this section use 200 agents with work rate w = 0.0015. The number of agents is

large to minimize discretization effects. Coefficients for w and in the growth functions

are small to minimize the discretization of the time steps.

Table 1 compares the algorithms across four different sets of growth functions, hi,

each with very different optimal solutions. Each entry is the average over five runs,

with the NR Max-Sum assuming a 10% error in growth function despite there being

none. The optimal solution requires no travel time between tasks, TT (x, y) = 0, so

this setting is used for all algorithms in this table. The “mixed” row uses a different hi

function for each task, respectively h1(x) = x2, h2(x) = x, and h3(x) =
√
x. There is

no known optimal solution for this case when the growth functions are different.

We see that max-sum and NR Max-Sum perform quite close to optimal in all cases.

RT-LFF compares well, except for the concave growth function, namely
√
x. This is

because RT-LFF attempts to minimize the number of agents switched, but the optimal

solution for this type of task is to have all agents on the same task and move them

around together. As no initial settings are changed between runs, only the probabilis-

tic NR Max-Sum yields different results between trials. Using ANOVA with repeated

measures gives a p-value of 0.1698, which indicates none of the methods performs any

significantly different than each other, including the optimal.

When hi is approximated or noisy, the differences between the algorithms are more

distinctive. The average of five runs is shown in Table 2 using for cost growth h1(x) =

Table 1: Accumulated growth cost, Rts for different setups in the simple simulator

Growth functions, hi(x) Initial task costs, f0

i Optimal RT-LFF Max-Sum NR Max-Sum

0.00019 · x2 {10, 25, 30} 104.39 128.25 104.39 104.50

0.00360 · x {10, 30, 40} 188.72 188.72 188.72 188.72

0.02000 · √x {5, 10, 15, 20} 43.72 136.70 43.75 43.75

mixed {25, 10, 10} 31.25 24.48 24.48
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Table 2: Accumulated growth cost, Rts in the simple simulator experiments

Optimal RT-LFF Max-Sum NR Max-Sum

µ σ µ σ µ σ µ σ

known 30.71 0 36.23 0 33.50 0 33.53 0.02

known+ noise 33.37 2.26 41.05 0.50 42.48 1.55 37.51 0.72

unknown 14.06 0 15.04 0 16.75 0 14.61 0.19

unknown+ noise 15.46 1.38 23.82 0.29 30.50 1.71 21.19 0.72

h2(x) = 0.00019·x2, initial task sizes f0
1 = 20, f0

2 = 30, and travel time TT (x, y) = 5,

When noise is added, the growth function is changed to ĥi(x) = hi(x)+N (0, 0.02). If

the function is unknown the methods assume h(x) is defined as above, but the simulator

instead uses H1(x) = H2(x) = 0.000006 ·x3 and Ĥi(x) = H(x)i+N (0, 0.02) for the

cases without and with noise respectively. The optimal solution benefits over the other

algorithms in that it always knows the true growth function hi, agents have no travel

time between tasks and can assign based on the randomly generated noise. These add

up to a large advantage, but ensures that the true optimal is found.

From Table 2, we see that NR Max-Sum minimizes Rts more than the other al-

gorithms, with the exception of the optimal. Max-sum performs moderately on both

known and unknown task growth rates, but does quite poorly when noise is introduced.

This is because max-sum tries to adapt the assignments to changes even if they are

caused purely by noise. With a travel time of 5, max-sum typically has two agents

switching back and forth due to the random noise. While this is only one percent of the

agents, it is wasteful and illogical to constantly send agents back and forth between two

tasks not doing any work. The NR Max-Sum thrashes much less because the built in

uncertainty makes it difficult for the model uncertainty to surpass 70% of the samples.

Yet, if there is a definite gain it is able to capitalize on it.

RT-LFF has a fairly conservative heuristic and thus rarely thrashes. However, this

also means it bypasses many opportunities for small advantages and only takes them if

they become large. For this reason, RT-LFF did not perform as well as max-sum or NR

Max-Sum when the cost growth function was known. The very stable assignments also

reduce the average travel time of agents considerably in this method.

Treating the noise levels as a blocking factor, we see that an ANOVA test gives a

p-value of 0.01668. Using the Tukey HSD test, we find that the {Optimal, max-sum}
pair is statistically significant (p-value = 0.0142297) and the {Optimal, RT-LFF} pair

is close (p-value = 0.0584526). This shows that NR max-sum does not perform signifi-

cantly worse than the optimal solution for the tested function. In the simple simulation

the NR max-sum was not shown to be conclusively better than RT-LFF or max-sum,

which we will instead show in the RoboCup Rescue Simulator next.

5.2 RoboCup Rescue Simulator

In this section we focus on the problem of dealing with fires in the RoboCup Rescue

simulator. The RoboCup Rescue simulator is designed for urban search and rescue after

an earthquake, where buildings collapse and fires start in buildings. The environment
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is complex with thousands of buildings and hundreds of agents in the full simulation

extracted from street maps of real cities. The full simulator uses heterogeneous agents,

but for this work we focus only on the agents that can extinguish fires, i.e. firetrucks,

through the use of the RMASBench simulator extension [5]. Although RMASBench is

an extension of the RoboCup Rescue Agent Simulator, the communication is relaxed to

allow many more messages to be sent than in the original simulator, along with multiple

messages per time step.

Fires are the most dangerous hazard in RoboCup Rescue. Buildings heat up and

catch on fire based on how many other nearby buildings are on fire. This creates a

positive feedback loop, which causes fires to grow at exponential rates. A screenshot of

the simulator is shown in Figures 2a and 2b. Red dots represent fire trucks, dark gray

polygons are buildings while light gray polygons are roads. Buildings on fire are yellow,

orange and red in increasing intensity and temperature. If a building burns too long, it

will become completely destroyed and turn black. When a fire truck extinguishes a

building, it will become blue or purple. In the RoboCup Rescue simulator, fires are

defined per building. Nearby fires are clustered into a single task, where the cost is the

number of buildings on fire in the cluster.

This clustering is done using bottom-up hierarchical clustering with the Euclidean

distance as the metric and the minimum distance between all pairs linkage criteria. If

the distance between the closest pair of clusters is over 50 meters in the simulation, then

the clustering would cease.

Now that tasks are well defined for the problem, hi and w also need to be estimated.

As described earlier in Section 4, we will approximate the cost growth function as for

all tasks as ∀i hi(f
t
i ) = g · f t

i − |nt
i| · w. To estimate g, buildings were allowed to

burn unhindered for 100 simulation steps in 20 different tests. When using exponential

regression to find the best fit of the data, we have the choice of modeling this as c · ed·t
or simply ed·t, where d is the g we want. The two regression models that minimize

the sum of squares are: 4.6852 · e0.0393·t or e0.0561·t. We cannot directly use the first

regression model as hi is not defined in this way, so we will simply drop the scaling

factor and consider two possible g values: 0.0393 and 0.0561.

The work rate, w, was also empirically derived. A fixed small number of fires were

repeatedly extinguished in 70 tests. If f0
i , g, |nt

i| and f t
i for some t are known, Eq. 3 can

then be used to solve for w. The experiments found that w is rather noisy and typically

has a few high outliers. This means in some cases, the fire trucks were able to extinguish

the fire much more quickly than the model anticipated. The lack of low outliers is ideal

and provides stability, since this indicates agents do not extinguish poorly very often.

When g = 0.0393, the variance in w is decreased in addition to having fewer outliers.

We decided to use this value for g since it stabilizes w more. In the end our model for

projecting cost depends on both g and w, so it makes sense to optimize them together.

Virtual City 4 (VC 4) screenshots of max-sum and NR Max-Sum are shown in

Figures 2a and 2b respectively. Max-sum is overly responsive to noise and model inac-

curacies, so when a few more buildings unexpectedly start on fire or get extinguished,

agents will likely transfer. This can cause severe assignment thrashing for max-sum,

while NR Max-Sum is less responsive as a threshold must be reached before assign-

ments are changed. Assignment thrashing for max-sum and not for NR Max-Sum is
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(a) Max-sum near the end with 42% of the

buildings intact

(b) NR Max-Sum near the end with 76% of

the buildings intact

Fig. 2: Virtual City 4 (VC 4) map

(a) Max-sum near the end with 71% of the

buildings intact

(b) NR Max-Sum near the end with 87% of

the buildings intact

Fig. 3: Paris 1 map

also clear in Paris 1, shown in Figures 3a and 3b respectively. Differences as large as

shown are hard to create in maps and not seen on all maps [11], but our results show

NR Max-Sum performing better on average.

Table 3 shows the percentage of intact buildings for 5 variations of both the Virtual

City (VC) and Paris map. Each variation is denoted by a number after the map name

and changes the number and location of fires along with the number and location of

agents. Virtual City is a smaller map, so the number of agents and fires range between

8 to 15 and 30 to 50 respectively. In Paris there are between 10 to 50 agents with 50
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Table 3: Percent of buildings intact at the end of simulation on different versions of

Virtual City (VC) and Paris maps

Map RT-LFF Max-Sum NR Max-Sum

µ σ µ σ µ σ

VC 1 27.86 7.23 16.18 6.03 35.92 5.58

VC 2 81.04 0.43 78.98 0.33 81.66 0.49

VC 3 49.59 9.70 73.81 6.36 73.02 4.26

VC 4 70.98 2.90 43.47 4.50 74.84 3.94

VC 5 23.10 2.69 17.58 1.34 23.64 1.13

Paris 1 84.53 4.55 72.54 5.03 88.98 5.11

Paris 2 41.11 7.00 31.37 8.73 44.34 9.06

Paris 3 60.73 4.69 68.81 3.92 69.12 3.56

Paris 4 91.24 0.45 90.99 0.52 91.97 0.41

Paris 5 74.78 6.36 79.64 5.66 85.64 3.62

to 120 fires. This randomization causes some configurations to be easier to solve and

score higher than others. Each configuration was run 5 times. We compared the same

algorithms used in Section 5.1, with the exception of the optimal algorithm. Since hi

and w are only approximations, we cannot compute the optimal solution in this case.

Some results, such as VC 5, are poor across all algorithms. This indicates more that VC

5 is a hard configuration, rather than the efficiency of the algorithms. The opposite is

the case in VC 2, where the configuration is too easy and all algorithms scored well.

There is a large difference in score between agents barely containing fires and fires

slowly spreading, which cause algorithms to have bimodal score distributions [11]. Also

as mentioned above inherent map difficulty can cause algorithms to score similarly. For

these reasons we apply the non-parametric Wilcoxon signed-rank test instead of the

normal t-test. As NR Max-Sum performs on better on all maps in comparison to RT-

LFF, the test statistic z = 2.7775 which is greater than the α = 0.05 critical level

of 1.960. Virtual City 3 is the only map where max-sum outperforms NR Max-Sum

(z = 2.5734), which implies NR Max-Sum scores significantly higher than both of

these methods.

6 Conclusions and Future Work

In this work we focused on solving tasks with costs that grow over time. We provide the

first decentralized task assignment approach that considers task with growing cost over

time. Our solution, which is based on the max-sum algorithm, outperforms the previ-

ous centralized solution in both a simple simulation and the RoboCup Rescue Agent

Simulator.

Our functions that predict the future cost of tasks, assume that the number of agents

active on a task is constant. However, many times it is beneficial to reassign agents

before the end of the simulation. This causes our predictions of task cost to be inaccurate

since they assume static agent assignments. Future work will consider the effect of

planned reassignments over time. The current work also assumes that these functions
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are estimated upfront, but they could be learned over the course of the simulator. Given

different families of functions, the model could be refined over time to select the best

function family and parameters. This could also help determine what errors come from

modeling versus inherent randomness of the growth.
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